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We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to
investigate the nonstrange udū d̄ and hidden-strange usū s̄ tetraquark states with exotic quantum numbers
JPC ¼ 0þ−. We systematically construct all eight possible tetraquark currents in this channel without a
covariant derivative operator. Our analyses show that the udū d̄ systems have good behavior of sum rule
stability and expansion series convergence in both the LSR and FESR analyses, while the LSR for the usū s̄
states do not associate with convergent OPE series in the stability regions and only the FESR can provide
valid results. We give the mass predictions 1.43� 0.09 GeV and 1.54� 0.12 GeV for the udū d̄ and usū s̄
tetraquark states, respectively. Our results indicate that the 0þ− isovector usū s̄ tetraquark may only decay
via weak interaction mechanism, e.g., Xusū s̄ → Kππ, since its strong decays are forbidden by kinematics
and the symmetry constraints on the exotic quantum numbers. It is predicted to be very narrow, if it does
exist. The 0þ− isoscalar usū s̄ tetraquark is also predicted to be not very wide because its dominate decay
mode Xusū s̄ → ϕππ is in P wave.

DOI: 10.1103/PhysRevD.99.014025

I. INTRODUCTION

In the constituent quark model, mesons consist of a pair
of quark and antiquark (qq̄) [1,2]. They can be charac-
terized by the isospin I, the total angular momentum J, the
parity P, and the charge-conjugation parity C (for charge
neutral states). For a fermion-antifermion system (qq̄),
these quantum numbers are given as

I ¼ 0; 1; J ¼ 0; 1; 2…; P ¼ ð−1ÞLþ1; C ¼ ð−1ÞLþS;

ð1Þ
where L is the relative orbit angular momentum between q
and q̄ and S the total spin. For charged mesons, it is useful
to define the G parity instead of C parity

G ¼ ð−1ÞIC ¼ ð−1ÞLþSþI: ð2Þ
For such meson states, the allowed J ≤ 2 quantum num-
bers are JPC ¼ 0−þ; 0þþ; 1−−; 1þ−; 1þþ; 2−−; 2−þ; 2þþ.

The combinations JPC ¼ 0−−; 0þ−; 1−þ; 2þ− are not
allowed for the conventional qq̄ systems. In other words,
they are exotic quantum numbers in the quark model.
However, these exotic quantum numbers can be reached

in other configurations such as hybrids [3–7], glueballs
[8,9], and tetraquarks, which are not forbidden by QCD
itself. Tetraquarks (qqq̄ q̄) are bound states of diquarks (qq)
and antidiquarks (q̄ q̄). Their existence was firstly sug-
gested by R. Jaffe in 1977 [10,11]. The light scalar mesons
have been considered as good candidates of tetraquarks
[12–14]. For hadrons with exotic quantum numbers, the
1−þ hybrid meson has been extensively studied since it was
predicted to be the lightest hybrid state [15]. Especially,
there are now some evidence on the existence of such
hybrid mesons [16–18]. The 1−þ light tetraquarks have
also been studied in Refs. [19,20] to predict their masses
for both I ¼ 0 and 1 channels. In Refs. [21,22], the light
tetraquark state with JPC ¼ 0−− was predicted to be the
possible ρπ dominance in the D0 decay.
To date, the studies for other exotic quantum numbers

JPC ¼ 0þ−; 2þ− are much less appealing. In Ref. [23], the
tetraquark states with JPC ¼ 0þ− were studied for both
light and heavy sectors in QCD sum rules. The authors used
the tetraquark currents containing a covariant derivative,
which will increase the dimension of the interpolating
operators. Finally, the light 0þ− tetraquark was concluded
not to exist due to the bad OPE series behavior. In this
paper, we shall revisit the light 0þ− tetraquarks by using the
interpolating currents without the derivative. These currents
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have a lower dimension than those in Ref. [23], which will
result in better OPE behaviors and mass predictions. We
shall use both the Laplace sum rules (LSR) and finite
energy sum rules (FESR) to perform numerical analyses.
The possible decay patterns of the 0þ− tetraquark states will
be discussed last.

II. LAPLACE SUM RULES AND FINITE
ENERGY SUM RULES

In this section, we introduce the formalism of QCD sum
rules, which has been a very useful method to study the
hadronic properties in the past several decades [24–26]. For
a vector current of the general form jμðxÞ, we consider the
two-point correlation function

Πμνðq2Þ ¼ i
Z

d4xeiqxh0jT½jμðxÞjþν ð0Þ�j0i

¼ ðqμqν − q2gμνÞΠvðq2Þ þ qμqνΠsðq2Þ; ð3Þ

where Πvðq2Þ and Πsðq2Þ are the invariant functions
receiving the contributions from the corresponding pure
vector and scalar intermediate states, respectively. The
invariant functions obey the dispersion relation, which
relates the Πðq2Þ with the spectral function

Πðq2Þ ¼ ðq2ÞN
Z

∞

0

ds
ρðsÞ

sNðs − q2 − iϵÞ þ
XN−1

k¼0

bnðq2Þk;

ð4Þ

where bn are the unknown subtraction constants and they
can be removed by performing the Borel transformation to
Πðq2Þ. On the QCD side, we can perturbatively calculate
the correlation function by using the operator product
expansion (OPE) method. In such calculations, the corre-
lation function Πðq2Þ is expressed as power expansion
series using the QCD vacuum condensates of increasing
dimensions.
On the hadronic side, the spectral functions are expressed

via the quark hadron duality

ρðsÞ≡ 1

π
ImΠv=sðsÞ ≃

X
n

δðs −m2
nÞh0jηjnihnjηþj0i

≃ f2Hδðs −m2
HÞ þ � � � ; ð5Þ

where we use the “one single narrow resonance ansatz”
[27,28]. “� � �” denotes the contributions of the higher
excited states and the QCD continuum, and mH and fH
are the mass and the coupling of the lowest lying hadron
state. One should note that we omit the tensor structure
in the second step if η be a vector current. Under this
duality ansatz, one can match the QCD side of the
correlation function with the hadronic side, and then
obtain the sum rules for the hadron parameters such as

the hadron mass, the coupling constant, and the magnetic
moment. Technically, one usually applies the Borel trans-
formation to Πðq2Þ at both sides in order to enhance the
contribution of the lowest-lying state and improve the
OPE convergence. Finally, the Laplace/Borel sum rules
(LSR) moment can be derived as

Mðτ; s0Þ ¼
Z

s0

0

dse−sτρðsÞ: ð6Þ

Inserting the spectral function in Eq. (5), we extract the
lowest-lying hadron mass as the following ratio:

Rðτ; s0Þ ¼ −
d
dτ

lnM ¼ M2
H; ð7Þ

in which τ is the Borel parameter and s0 is the continuum
threshold above which the contributions from the higher
excited states and QCD continuum can be approximated
well by the spectral function. It is clear that the hadron
mass MH will depend on these two parameters ðτ; s0Þ.
To establish reliable sum rule analyses, one needs to pick
out suitable ðτ; s0Þworking range to make sure the validity
of the OPE truncation and the suppression of the con-
tinuum contribution. In this parameter working range, we
would expect that the mass curves are insensitive to the
variation of τ and s0, which will finally provide reliable
predictions on the hadron masses.
As is well-known, the LSR for light tetraquarks usually

suffer from a higher dimension of the interpolating
currents which lead to poor OPE convergence or an
absence of the sum rule stability. The finite energy sum
rule, also known as the local duality sum rule, can be a
valid complementary method. FESR can be obtained
either by applying the Cauchy theorem to the correlator
on a contour with radius r ¼ s0 [29] or by simply letting
the Borel parameter τ vanish in LSR. This method reduces
the effects from the power corrections to the sum rule
moment and has been shown to be useful in studying
multiquark states [20,22,30,31].1 The nth moment and
ratio of FESR read

Wðn; s0Þ ¼
Z

s0

0

ρðsÞsnds; ð8Þ

M2
Hðn; s0Þ ¼

Wðnþ 1; s0Þ
Wðn; s0Þ

: ð9Þ

In this work we use the zeroth moment ratio which
enhances the convergence of the FESR expansion series
in Eq. (8).

1For very recent applications of FESR in studying the decay
constants of heavy-light mesons, see [32,33].

FU, HUANG, ZHANG, and CHEN PHYS. REV. D 99, 014025 (2019)

014025-2



III. TETRAQUARK INTERPOLATING
CURRENTS WITH JPC = 0+ −

In this section, we construct the tetraquark interpolating
currents with exotic quantum numbers JPC ¼ 0þ−. In
Ref. [23], the exotic 0þ− light tetraquarks have been
studied by using the tetraquark currents containing covar-
iant derivatives. However, their calculations do not sup-
port the existence of such tetraquarks since there is no
stable mass sum rule there. Such bad sum rule behavior
appears due to the special Lorentz structures of the
interpolating currents adopted in Ref. [23]. The covariant

derivative draw a P-wave excitation to the current, which
will result in unstable mass sum rules. In this work, we
shall revisit the light 0þ− tetraquarks by constructing the
interpolating currents without derivative. These lower
dimension currents may lead to better OPE behavior
and mass prediction.
We compose the light tetraquark currents by using six

distinct diquark operators in Lorentz space: qTaCqb,
qTaCγ5qb, qTaCγμqb, qTaCγμγ5qb, qTaCσμνqb, qTaCσμνγ5qb.
The diquark-antidiquark type of tetraquark currents without
derivatives are then constructed as

J1μ ¼ uTaCγ5dbðūaγμγ5Cd̄Tb þ ūbγμγ5Cd̄TaÞ − uTaCγμγ5dbðūaγ5Cd̄Tb þ ūbγ5Cd̄TaÞ;
J2μ ¼ uTaCγνdbðūaσμνCd̄Tb − ūbσμνCd̄TaÞ − uTaCσμνdbðūaγνCd̄Tb − ūbγνCd̄TaÞ;
J3μ ¼ uTaCγ5dbðūaγμγ5Cd̄Tb − ūbγμγ5Cd̄TaÞ − uTaCγμγ5dbðūaγ5Cd̄Tb − ūbγ5Cd̄TaÞ;
J4μ ¼ uTaCγνdbðūaσμνCd̄Tb þ ūbσμνCd̄TaÞ − uTaCσμνdbðūaγνCd̄Tb þ ūbγνCd̄TaÞ;
J5μ ¼ uTaCdbðūaγμCd̄Tb þ ūbγμCd̄TaÞ − uTaCγμdbðūaCd̄Tb þ ūbCd̄TaÞ;
J6μ ¼ uTaCγνγ5dbðūaσμνγ5Cd̄Tb þ ūbσμνγ5Cd̄TaÞ − uTaCσμνγ5dbðūaγνCd̄Tb þ ūbγνCd̄TaÞ;
J7μ ¼ uTaCdbðūaγμCd̄Tb − ūbγμCd̄TaÞ − uTaCγμdbðūaCd̄Tb − ūbCd̄TaÞ;
J8μ ¼ uTaCγνγ5dbðūaσμνγ5Cd̄Tb − ūbσμνγ5Cd̄TaÞ − uTaCσμνγ5dbðūaγνγ5Cd̄Tb − ūbγνγ5Cd̄TaÞ; ð10Þ

where a, b are color indices, T is the transposition operator,
and C the charge conjugation operator. These interpolating
currents in Eq. (10) can couple to both the JPC ¼ 0þ− and
1−− channels, which will induce the scalar Πsðq2Þ and
vectorΠvðq2Þ, respectively, in Eq. (3). In this work, we focus
on the exotic 0þ− channel in our calculation. By replacing
d → s in Eq. (10), we obtain the corresponding usū s̄
tetraquark currents with JPC ¼ 0þ−. Using these interpolat-
ing currents, we calculate their two-point correlation func-
tions and the spectral functions. We shall study both the
udū d̄ and usū s̄ tetraquark systems in the following section.

IV. QCD EXPRESSIONS FOR THE TWO-POINT
CORRELATION FUNCTIONS

Using the interpolating currents listed above, we obtain
the QCD expressions for the corresponding two-point
correlation functions via the standard technique of the
SVZ expansion [34]. Up to dimension-8 condensate terms
in the power expansion and leading-order contributions in
the perturbative expansion, the general expression for the
LSR moment corresponding to the udū d̄-type and the
usū s̄-type currents, respectively, read

Mudū d̄
0 ðτ; s0Þ ¼

Z
s0

0

ρudū d̄0 ðsÞe−τsds ¼ ai
e−s0τf−s0τ½s0τðs0τ þ 3Þ þ 6� − 6g þ 6

τ4
þ bi

1 − e−s0τðs0τ þ 1Þ
τ2

− ci
1 − e−s0τ

τ
þ di

�
2þ lnð4πÞ − ln

�
1

τμ̃2

�
þ Γð0; s0τÞ

�
; ð11Þ

and

Musū s̄
0 ðτ; s0Þ ¼

Z
s0

0

ρusū s̄0 ðsÞe−τsds ¼ −a0i
e−s0τf−s0τ½s0τðs0τ þ 3Þ þ 6� − 6g þ 6

τ4
− b0i

e−s0τ½−s0τðs0τ þ 2Þ − 2� þ 2

τ3

− c0i
1 − e−s0τðs0τ þ 1Þ

τ2
− d0i

1 − e−s0τ

τ
þ e0i þ f0i

�
γE − ln

�
1

τμ̃2

�
þ Γð0; s0τÞ

�
; ð12Þ

where μ̃ ¼ 1 GeV, γE the Euler constant, and Γ the incomplete Gamma function. The values of the QCD condensates are
listed in Table. I, and ai-di, a0i-f

0
i are the Wilson coefficients. We list their expressions in Appendix.
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V. LSR AND FESR NUMERICAL ANALYSES

In this section, we shall perform our numerical analyses
for the nonstrange and hidden-strange 0þ− tetraquark states
using both the LSR and the FESR methods. The method-
ology adopted in this work directly follow from [22] and
the references therein, where one can find more details
about the sum rule stability criteria applied.

A. Analysis for the udū d̄ tetraquark states

We first focus on the udū d̄-type tetraquark systems.
From the Wilson coefficients listed in Appendix, we find
that there exist degeneracies between the OPE results
corresponding to the udū d̄-type J1=J5, J2=J8, J3=J7,
and J4=J6 in the chiral limit (mu ¼ md ¼ 0). Therefore,
we will only present the analyses for J1–J4.
While applying the LSR analysis, we require both the τ

and s0 stability in order to get solid predictions. Practically,
we read the predictions from the extremum points of the
mH − τ andmH − s0 curves, from which continuum thresh-
old can also be rigorously determined. In the case where the
LSR stability is reached, the OPE convergence at the given
stability points should be further checked before taking into

account the obtained mass values in the final estimation.
For the udū d̄ currents, we find that all the associated LSR
moment ratios reach stability, but only those corresponding
to J3 (J7) and J4 (J6) have converging OPE series. For J1
(J5) and J2 (J8), the highest order power corrections
(dimension-8 condensate terms) contribute more than
10% in the OPE series, rendering a problematic truncation.
Therefore, we only consider results obtained using J3 (J7)
and J4 (J6) for the final mass determination.
The behaviors of the LSR ratios corresponding to J3 (J7)

and J4 (J6) are shown in Fig. 1, where the left panel shows
the τ stability (if any) and the right panel shows the s0
stability. One can see that the LSR ratio corresponding
to J3 (J7) and J4 (J6) reach the τ and s0 stability when
the values of the dimension-8 condensates are estimated
using the vacuum saturation approximation. However, the
mass curve corresponding to J4 (J6) becomes monotonous
when factorization is violated by a factor of 2 [see the green
curve in Fig. 1(a)]. In contrast, the LSR curves correspond-
ing to J3 (J7) have both the τ and s0 stability with and
without considering the violation of factorization, which
can provide an error estimation due to violation of
factorization. From Fig. 1(b), we obtain the mass predic-
tions at the s0-stability points (extremums) as below

MJ3=J7;LSR ¼ 1.39ð1.49Þ GeV at s0 ¼ 4.50ð4.75Þ GeV2;

MJ4=J6;LSR ¼ 1.35 GeV at s0 ¼ 4.09 GeV2; ð13Þ

where the values in the parentheses are obtained by taking
into account the violation of factorization of the dimension-
8 condensates by a factor of 2. For J1 (J5) and J2 (J8), we
obtain similar curves as those in Fig. 1, but the stability
points associate with poorly OPE convergence; therefore,
we do not consider these values. In Table II, we present the
behavior of OPE at the stability points of τ and s0.

(a) (b)

FIG. 1. (a) udū d̄ four quark state mass versus τ in LSR obtained using J3ðJ7Þ (red continuous), J3ðJ7Þ considering violation of
factorization (blue dotted-dashed), J4ðJ6Þ (black continuous), and J4ðJ6Þ considering violation of factorization (green dotted); (b) the
same as (a) but for mass versus s0.

TABLE I. QCD parameters used in our analysis: ρ indicates the
violation of factorization hypothesis.

QCD parameters Reference

hαsG2i ≃ ð7� 2Þ × 10−2 GeV4 [35–39]
ghψ̄Gψi≡ghψ̄ λa

2
σμνGa

μνψi≃ ð0.8�0.1ÞGeV2hψ̄ψi [40,41]

ραshψ̄ψi2 ≃ ð4.5� 0.3Þ × 10−4 GeV6 [36,42,43]
ΛQCD ¼ ð353� 15Þ MeV [43]
hs̄si=hūui ¼ 0.74� 0.03 [44]
ms ¼ 95þ9

−3 MeV [2]
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In Fig. 2, we show the FESR curves obtained by
truncating the OPE at different orders. One can see that
for all currents the corresponding FESR moment ratios
increase gradually for considering only the perturbative
terms. With inclusion of the dimension-4 or dimension-6
condensate contributions, the mass curves start to present
inflexions or stability points. One can then read the
optimal mass values from these stability points. As
shown in Fig. 2, the stability points of the FESR curves
obtained by considering the condensate contributions up to
dimension-8 (black continuous curves) are close to those of
the curves obtained by only considering d ≦ 6 condensate

terms (blue dotted-dashed curves), except for the curve
corresponding to J4 (J6). The difference is about 13% for
J4 (J6) while less than 10% for other currents, which
indicates that the OPE truncation for J4 (J6) may associate
with relatively large uncertainties. Accordingly, we retain
the mass predictions in FESR as

MJ1=J5;FESR ¼ 1.53ð1.57Þ GeV at s0 ¼ 5.32ð5.43Þ GeV2;

MJ2=J8;FESR ¼ 1.46ð1.49Þ GeV at s0 ¼ 4.86ð4.85Þ GeV2;

MJ3=J7;FESR ¼ 1.41ð1.44Þ GeV at s0 ¼ 4.49ð4.41Þ GeV2:

ð14Þ

(a) (b)

(c) (d)

FIG. 2. (a) udū d̄ four quark state mass versus s0 in FESR obtained using J1ðJ5Þ considering in the OPE series the perturbative terms
(yellow continuous), d ¼ 4 condensate terms (red dotted), d ¼ 6 condensate terms (blue dotted-dashed), d ¼ 8 condensate terms (black
continuous); (b), (c), (d) are the same as (a) but for J2ðJ8Þ, J3ðJ7Þ, J4ðJ6Þ, respectively.

TABLE II. OPE terms at the LSR stability points using the udū d̄ currents.

Ji 1
τ B̂Π

d¼0
i =GeV4 1

τ B̂Π
d¼4
i =GeV4 1

τ B̂Π
d¼6
i =GeV4 1

τ B̂Π
d¼8
i =GeV4 1

τ B̂Π
d¼8
i /OPE τ=GeV−2 s0=GeV2

J1=J5 5.779 35 × 10−6 −7.942 95 × 10−7 −8.643 14 × 10−6 −9.161 39 × 10−7 0.200 283 0.433 5.33
J2=J8 2.126 27 × 10−5 1.243 96 × 10−6 −1.622 46 × 10−5 −2.381 52 × 10−6 −0.6105 77 0.346 4.89
J3=J7 2.059 76 × 10−5 2.120 63 × 10−6 −7.061 29 × 10−6 −1.1931 × 10−6 −0.082 488 6 0.265 4.50
J4=J6 1.2703 × 10−3 7.478 71 × 10−5 −7.586 11 × 10−5 −1.239 08 × 10−5 −0.009 858 74 0.148 4.09
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Taking the arithmetic average of the valid LSR and FESR
results, we give our prediction for the 0þ− udū d̄ tetraquark
mass as

Mudū d̄ ¼ 1.43� 0.09 GeV; ð15Þ

where the error comes from the uncertainties of the QCD
parameters, the results from different interpolating currents
and the violation of factorization.

B. Analysis for the usū s̄ tetraquark states

The situation for the usū s̄ tetraquark state is somewhat
different from that for the udū d̄ system. The OPE
degeneracy between J1 and J5 (also for J2=J8, J3=J7, or
J4=J6) in the udū d̄ system is slightly changed for the usū s̄
system due to the SU(3) breaking. The coefficients of
hαsG2imshq̄qi have opposite signs for J1 and J5, as shown
in Appendix. Although the contributions of these terms are
small, we still perform numerical analyses for all inter-
polating currents in the usū s̄ system. In this case, LSR does
not work as well as FESR: the LSR moment ratios are
dominated by the dimension-6 condensates rather than the
perturbative terms, which suggests that the OPE truncations
are invalid. We shall take the current J1 as an example.

From Fig. 3, it is shown that the curves have the s0 and τ
stability. However, the OPE series are not converging but
dominated by dimension-6 condensate terms, as shown in
Table III. This situation holds for all the other usū s̄
currents in LSR. We then perform the FESR analyses
for the usū s̄ systems. In our analysis, the FESR ratio shows
nice behavior in the sense that it reach stability in the
continuum threshold s0, as shown in Fig. 4. The dimension-
8 condensate only slightly affect the mass prediction, which
justify the validity of OPE truncation. The same situations
happen for all the other currents J2–J8. The mass pre-
dictions obtained from the stability points read

MJ1;FESR¼1.65ð1.69ÞGeVat s0¼6.17ð6.45ÞGeV2;

MJ2;FESR¼1.58ð1.63ÞGeVat s0¼5.67ð5.99ÞGeV2;

MJ3;FESR¼1.51ð1.57ÞGeVat s0¼5.25ð5.60ÞGeV2;

MJ4;FESR¼1.44ð1.51ÞGeVat s0¼4.76ð5.15ÞGeV2;

MJ5;FESR¼1.65ð1.69ÞGeVat s0¼6.16ð6.44ÞGeV2;

MJ6;FESR¼1.43ð1.51ÞGeVat s0¼4.75ð5.14ÞGeV2;

MJ7;FESR¼1.51ð1.57ÞGeVat s0¼5.26ð5.61ÞGeV2;

MJ8;FESR¼1.57ð1.62ÞGeVat s0¼5.66ð5.98ÞGeV2: ð16Þ

TABLE III. OPE terms at the LSR stability points using the usū s̄ currents.

Ji 1
τ B̂Π

d¼0
i =GeV4 1

τ B̂Π
d¼2
i =GeV4 1

τ B̂Π
d¼4
i =GeV4 1

τ B̂Π
d¼6
i =GeV4 1

τ B̂Π
d¼8
i =GeV4 1

τ B̂Π
d¼8
i /OPE τ=GeV−2 s0=GeV2

J1 1.131 12 × 10−6 −2.2152 × 10−7 −1.142 84 × 10−6 −5.265 36 × 10−6 2.230 76 × 10−7 −0.043 806 3 0.651 6.17
J2 2.807 21 × 10−6 −4.847 44 × 10−6 −1.075 04 × 10−6 −8.992 66 × 10−6 −8.235 84 × 10−8 0.010 521 5 0.574 5.7
J3 1.0706 × 10−6 −1.787 51 × 10−7 −6.0989 × 10−8 −3.102 59 × 10−6 −6.501 02 × 10−8 0.027 820 9 0.555 5.28
J4 2.265 33 × 10−5 −2.76002 × 10−6 3.85241 × 10−6 −2.56595 × 10−5 −2.622 88 × 10−6 0.578 144 0.405 4.76
J5 9.844 44 × 10−7 −1.996 08 × 10−7 −1.066 17 × 10−6 −5.085 68 × 10−6 2.918 61 × 10−7 −0.057 507 9 0.674 6.18
J6 1.686 58 × 10−5 −2.212 17 × 10−6 3.324 06 × 10−6 −2.383 51 × 10−5 −2.000 34 × 10−6 0.254 568 0.436 4.62
J7 1.549 53 × 10−6 −2.358 71 × 10−7 −7.3373 × 10−8 −3.403 04 × 10−6 −1.738 89 × 10−7 0.074 418 1 0.506 5.28
J8 2.274 58 × 10−6 −4.139 82 × 10−7 −9.676 97 × 10−7 −8.531 88 × 10−6 8.610 95 × 10−8 −0.011 400 9 0.605 5.68

(a) (b)

FIG. 3. (a) usū s̄ four quark state mass versus τ in LSR obtained using J1 (black continuous) and J1 considering violation of
factorization(blue dotted-dashed); (b) the same (a) but for mass versus s0.
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We finally give the mass of the hidden-strange 0þ−

tetraquark to be

Musū s̄ ¼ 1.54� 0.12 GeV; ð17Þ

where we have already considered the mass differences in
Eq. (16) as one kind of the error sources.

VI. DECAY PATTERNS OF THE
0+ − TETRAQUARKS

Under the SU(2) symmetry, the udū d̄ interpolating
currents would couple to all I ¼ 0, 1, 2 isospin multiplets.
In our calculation, these multiplets shall degenerate since
we do not consider the effects of isospin symmetry
breaking. In other words, our calculations will give the
same mass predictions for the IGJPC ¼ 0−0þ−; 1þ0þ−;
2−0þ− tetraquarks with quark contents udū d̄. For the
usū s̄ tetraquarks, the quantum numbers will be IGJPC ¼
0−0þ−; 1þ0þ− considering the isospin. Tetraquark states
have abundant decay modes so long as the kinematics
allows.
Considering the symmetry constraints for the isospin I,

spin J, parity P,C parity, andG parity, all S-wave two-body
strong decays are forbidden for the charge neutral udū d̄
tetraquarks, while only P-wave decay modes are allowed
(as shown in Table IV). Their dominant decay modes b1π,
h1π, a1π are suitable for detection and partial-wave
analyses. The charged partners udd̄ d̄ and udū ū in the
isospin-1 multiplet can dominantly decay into ππ modes in
S wave and thus, are expected to be very wide.
For the isovector usū s̄ tetraquark, both two-body

and three-body strong decays are totally forbidden by
the kinematics and the strong constraints on the exotic
quantum numbers IGJPC ¼ 1þ0þ−. Especially the S-wave

KþK− and K0K̄0 final states are forbidden by the negative
C parity of the tetraquarks. In other words, the charge
neutral isovector usū s̄ tetraquark state can only decay via
weakly interaction into final states such as Kππ. It is
predicted to be very narrow. For the charged partners usd̄ s̄
and dsū s̄ states, one may also search for them in theKþK̄0,
K−K0 hadronic modes, respectively.
The decay behavior of the isoscalar usū s̄ tetraquark

will be different. Besides the weak decays, the dominant
decay mode for the isoscalar usū s̄ tetraquark will be the
three-body hadronic mode usūs̄→ϕππðσ→ππÞ. However,
such a three-body decay is relatively small due to a P-wave
suppression between ϕ and σðππÞ. This isoscalar usū s̄
tetraquark state may be not very wide Γ < 1 MeV and has
convenient decay modes like ϕππ; Kππ.

VII. SUMMARY AND CONCLUSIONS

In this work, we have studied the udū d̄ and usū s̄
tetraquark states with JPC ¼ 0þ− in Laplace sum rules and
finite energy sum rules. We consider all possible diquark-
antidiquark interpolating currents with such exotic quan-
tum numbers without containing covariant derivative
operators. The dimension of such currents is lower than
those used in Ref. [23], which will result in better OPE
behaviors and more reliable mass predictions.
We find that both LSR and FESR work well for the

udū d̄ system following the standard stability criteria of
QCD sum rules and the requirement of well justified OPE
truncation. For the usū s̄ system, all interpolating currents
suffer from poor OPE convergence in LSR. However, the
FESR ratios could yield too good s0 stability, around which
one can extract the hadronic masses. Considering both the
LSR and FESR results, we predict the masses of the udū d̄
and the usū s̄ tetraquarks to be 1.43� 0.09 GeV and
1.54� 0.12 GeV, respectively.
Accordingly, we discuss the possible decay patterns for

these exotic tetraquarks. The light udū d̄ tetraquark can
decay into two-body final states in P-wave hadronic modes,
as shown in Table IV. Our analyses show that the 0þ−

charge neutral isovector usū s̄ tetraquark may only decay
via the weak interaction mechanism such as usū s̄ → Kππ,
since its strong decay modes are all forbidden by the
kinematics and strong constraints on the exotic quantum
numbers. It is predicted to be very narrow. The 0þ−

isoscalar usū s̄ tetraquark is also expected to be not very
wide due to its P-wave dominant decay mode usūs̄→ϕππ.

FIG. 4. Mass prediction for the usū s̄ tetraquark state versus s0
in FESR by using J1 considering in the OPE series the pertur-
bative term (yellow continuous), d ¼ 2 term (green dashed),
d ¼ 4 term (red dotted), d ¼ 6 term (blue dotted-dashed), d ¼ 8
term (black continuous).

TABLE IV. Possible two-body strong decay modes for the
charge neutral udū d̄ tetraquarks.

IGJPC S wave P wave

0−0þ− × b1π; σω
1þ0þ− × h1π; ρσ; a1π
2−0þ− × b1π
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These tetraquark states may be detectable in the near future
at BESIII and Belle II.
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APPENDIX: THE COEFFICIENTS OF
LSR MOMENTS FOR THE udū d̄

AND usū s̄ CURRENTS

In this Appendix, we present the Wilson coefficients
in Eqs. (11) [see Eqs. (A1)–(A8)] and (12) [see
Eqs. (A9)–(A16)].

a1 ¼
1

30270π6
; b1 ¼

−hαsG2i
1536π5

; c1 ¼
hq̄qi2
6π2

; d1 ¼
hq̄Gqihq̄qi

12π2
ðA1Þ

a2 ¼
1

20480π6
; b2 ¼

hαsG2i
1536π5

; c2 ¼
hq̄qi2
4π2

; d2 ¼
hq̄Gqihq̄qi

8π2
ðA2Þ

a3 ¼
1

61440π6
; b3 ¼

hαsG2i
1536π5

; c3 ¼
hq̄qi2
12π2

; d3 ¼
hq̄Gqihq̄qi

24π2
ðA3Þ

a4 ¼
1

10240π6
; b4 ¼

11hαsG2i
1536π5

; c4 ¼
hq̄qi2
2π2

; d4 ¼
hq̄Gqihq̄qi

4π2
ðA4Þ

a5 ¼
1

30270π6
; b5 ¼

−hαsG2i
1536π5

; c5 ¼
hq̄qi2
6π2

; d5 ¼
hq̄Gqihq̄qi

12π2
ðA5Þ

a6 ¼
1

10240π6
; b6 ¼

11hαsG2i
1536π5

; c6 ¼
hq̄qi2
2π2

; d6 ¼
hq̄Gqihq̄qi

4π2
ðA6Þ

a7 ¼
1

61440π6
; b7 ¼

hαsG2i
1536π5

; c7 ¼
hq̄qi2
12π2

; d7 ¼
hq̄Gqihq̄qi

24π2
ðA7Þ

a8 ¼
1

20480π6
; b8 ¼

hαsG2i
1536π5

; c8 ¼
hq̄qi2
4π2

; d8 ¼
hq̄Gqihq̄qi

8π2
ðA8Þ

a01 ¼ −
1

30720π6
; b01 ¼

5m2
s

1536π6
; c01 ¼

hαsG2i
1536π5

−
m4

s

256π6
−
mshs̄si
32π4

; d01 ¼ −
hαsG2im2

s

384π5
−
mshs̄Gsi
32π4

þ hq̄qi2
12π2

þ hs̄si2
12π2

;

e01 ¼ ½2þ γE − lnð4πÞ�
�
m2

shq̄qi2
6π2

þm2
shs̄si2
24π2

þ hαsG2imshq̄qi
576π3

−
hαsG2imshs̄si

144π3
−
hq̄Gqihq̄qi

24π2
−
hs̄Gsihs̄si

24π2

�
;

f01 ¼ −
m2

shq̄qi2
2π2

þm2
shs̄si2
24π2

−
hαsG2imshq̄qi

64π3
þ hq̄Gqihq̄qi

24π2
þ hs̄Gsihs̄si

24π2
ðA9Þ

a02 ¼ −
1

20480π6
; b02 ¼

5m2
s

1024π6
; c02 ¼ −

hαsG2i
1536π5

−
3m4

s

512π6
−
3mshs̄si
64π4

; d02 ¼
3hαsG2im2

s

512π5
−
3mshs̄Gsi

64π4
þ hq̄qi2

8π2
þ hs̄si2

8π2
;

e02 ¼ ½2þ γE − lnð4πÞ�
�hαsG2im4

s

284π5
þm2

shq̄qi2
4π2

þm2
shs̄si2
16π2

þ hαsG2imshq̄qi
288π3

þ hαsG2imshs̄si
192π3

−
hq̄Gqihq̄qi

16π2
−
hs̄Gsihs̄si

16π2

�
;

f02 ¼ −
3m2

shq̄qi2
4π2

þm2
shs̄si2
16π2

−
hαsG2imshq̄qi

32π3
−
hαsG2imshs̄si

64π3
þ hq̄Gqihq̄qi

16π2
þ hs̄Gsihs̄si

16π2
ðA10Þ

a03 ¼ −
1

61440π6
; b03 ¼

5m2
s

3072π6
; c03 ¼ −

hαsG2i
1536π5

−
m4

s

512π6
−
mshs̄si
64π4

; d03 ¼
hαsG2im2

s

384π5
−
mshs̄Gsi
64π4

þ hq̄qi2
24π2

þ hs̄si2
24π2

;

e03 ¼ ½2þ γE − lnð4πÞ�
�
m2

shq̄qi2
12π2

þm2
shs̄si2
48π2

−
hαsG2imshq̄qi

576π3
þ hαsG2imshs̄si

288π3
−
hq̄Gqihq̄qi

48π2
−
hs̄Gsihs̄si

48π2

�
;

f03 ¼ −
m2

shq̄qi2
4π2

þm2
shs̄si2
48π2

þ hαsG2imshq̄qi
64π3

þ hq̄Gqihq̄qi
48π2

þ hs̄Gsihs̄si
48π2

ðA11Þ

FU, HUANG, ZHANG, and CHEN PHYS. REV. D 99, 014025 (2019)

014025-8



a04 ¼−
1

10240π6
; b04 ¼

5m2
s

512π6
; c04 ¼−

11hαsG2i
1536π5

−
3m4

s

256π6
−
3mshs̄si
32π4

; d04 ¼
23hαsG2im2

s

512π5
−
3mshs̄Gsi

32π4
þhq̄qi2

4π2
þhs̄si2

4π2
;

e04 ¼ ½2þ γE − lnð4πÞ�
�
5hαsG2im4

s

384π5
þm2

shq̄qi2
2π2

þm2
shs̄si2
8π2

þhαsG2imshq̄qi
144π3

þhαsG2imshs̄si
64π3

−
hq̄Gqihq̄qi

8π2
−
hs̄Gsihs̄si

8π2

�
;

f04 ¼−
3m2

shq̄qi2
2π2

þm2
shs̄si2
8π2

−
hαsG2imshq̄qi

16π3
−
5hαsG2imshs̄si

64π3
þhq̄Gqihq̄qi

8π2
þhs̄Gsihs̄si

8π2
ðA12Þ

a05 ¼ −
1

30720π6
; b05 ¼

5m2
s

1536π6
; c05 ¼

hαsG2i
1536π5

−
m4

s

256π6
−
mshs̄si
32π4

; d05 ¼ −
hαsG2im2

s

384π5
−
mshs̄Gsi
32π4

þ hq̄qi2
12π2

þ hs̄si2
12π2

;

e05 ¼ ½2þ γE − lnð4πÞ�
�
m2

shq̄qi2
6π2

þm2
shs̄si2
24π2

−
hαsG2imshq̄qi

576π3
−
hαsG2imshs̄si

288π3
−
hq̄Gqihq̄qi

24π2
−
hs̄Gsihs̄si

24π2

�
;

f05 ¼ −
m2

shq̄qi2
2π2

þm2
shs̄si2
24π2

þ hαsG2imshq̄qi
64π3

þ hq̄Gqihq̄qi
24π2

þ hs̄Gsihs̄si
24π2

ðA13Þ

a06 ¼ −
1

10240π6
; b06 ¼

5m2
s

512π6
; c06 ¼ −

11hαsG2i
1536π5

−
3m4

s

256π6
−
3mshs̄si
32π4

; d06 ¼
23hαsG2im2

s

512π5
−
3mshs̄Gsi

32π4
þhq̄qi2

4π2
þhs̄si2

4π2
;

e06 ¼ ½2þ γE − lnð4πÞ�
�
5hαsG2im4

s

384π5
þm2

shq̄qi2
2π2

þm2
shs̄si2
8π2

−
hαsG2imshq̄qi

144π3
þhαsG2imshs̄si

64π3
−
hq̄Gqihq̄qi

8π2
−
hs̄Gsihs̄si

8π2

�
;

f06 ¼ −
3m2

shq̄qi2
2π2

þm2
shs̄si2
8π2

þhαsG2imshq̄qi
16π3

−
5hαsG2imshs̄si

64π3
þhq̄Gqihq̄qi

8π2
þhs̄Gsihs̄si

8π2
ðA14Þ

a07 ¼ −
1

61440π6
; b07 ¼

5m2
s

3072π6
; c07 ¼ −

hαsG2i
1536π5

−
m4

s

512π6
−
mshs̄si
64π4

; d07 ¼
hαsG2im2

s

384π5
−
mshs̄Gsi
64π4

þ hq̄qi2
24π2

þ hs̄si2
24π2

;

e07 ¼ ½2þ γE − lnð4πÞ�
�
m2

shq̄qi2
12π2

þm2
shs̄si2
48π2

þ hαsG2imshq̄qi
576π3

þ hαsG2imshs̄si
288π3

−
hq̄Gqihq̄qi

48π2
−
hs̄Gsihs̄si

48π2

�
;

f07 ¼ −
m2

shq̄qi2
4π2

þm2
shs̄si2
48π2

−
hαsG2imshq̄qi

64π3
þ hq̄Gqihq̄qi

48π2
þ hs̄Gsihs̄si

48π2
ðA15Þ

a08 ¼ −
1

20480π6
; b08 ¼

5m2
s

1024π6
; c08 ¼ −

hαsG2i
1536π5

−
3m4

s

512π6
−
3mshs̄si
64π4

; d08 ¼
3hαsG2im2

s

512π5
−
3mshs̄Gsi

64π4
þ hq̄qi2

8π2
þ hs̄si2

8π2
;

e08 ¼ ½2þ γE − lnð4πÞ�
�hαsG2im4

s

384π5
þm2

shq̄qi2
4π2

þm2
shs̄si2
16π2

−
hαsG2imshq̄qi

288π3
þ hαsG2imshs̄si

192π3
−
hq̄Gqihq̄qi

16π2
−
hs̄Gsihs̄si

16π2

�
;

f08 ¼ −
3m2

shq̄qi2
4π2

þm2
shs̄si2
16π2

þ hαsG2imshq̄qi
32π3

−
hαsG2imshs̄si

64π3
þ hq̄Gqihq̄qi

16π2
þ hs̄Gsihs̄si

16π2
ðA16Þ
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