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Exotic tetraquark states with J7¢=0+-

Yi-Chao Fu,"" Zhuo-Ran Huang,>" Zhu-Feng Zhang,™* and Wei Chen"*
'School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
*Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3Physics Department, Ningbo University, Ningbo, 315211, China

® (Received 12 November 2018; published 16 January 2019)

We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to
investigate the nonstrange udii d and hidden-strange usii 5 tetraquark states with exotic quantum numbers
JP€ = 0*~. We systematically construct all eight possible tetraquark currents in this channel without a
covariant derivative operator. Our analyses show that the udii d systems have good behavior of sum rule
stability and expansion series convergence in both the LSR and FESR analyses, while the LSR for the usi §
states do not associate with convergent OPE series in the stability regions and only the FESR can provide
valid results. We give the mass predictions 1.43 +0.09 GeV and 1.54 4 0.12 GeV for the udii d and usii
tetraquark states, respectively. Our results indicate that the 0%~ isovector usi § tetraquark may only decay
via weak interaction mechanism, e.g., X,;; — Kz, since its strong decays are forbidden by kinematics
and the symmetry constraints on the exotic quantum numbers. It is predicted to be very narrow, if it does
exist. The 07~ isoscalar usii 5 tetraquark is also predicted to be not very wide because its dominate decay

mode X,;; = ¢ is in P wave.

DOI: 10.1103/PhysRevD.99.014025

I. INTRODUCTION

In the constituent quark model, mesons consist of a pair
of quark and antiquark (¢g) [1,2]. They can be charac-
terized by the isospin /, the total angular momentum J, the
parity P, and the charge-conjugation parity C (for charge
neutral states). For a fermion-antifermion system (gg),
these quantum numbers are given as

1=0,1, J=0,12.... P=(=1)L, C=(=1)L*5,

(1)

where L is the relative orbit angular momentum between ¢
and g and S the total spin. For charged mesons, it is useful
to define the G parity instead of C parity

G = (—1)1C — (_1)L+S+1. (2)

For such meson states, the allowed J < 2 quantum num-
bers are JPC=0"*,0tt 1——, 17, 1t+ 27— 2=+ 2+,
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The combinations JP¢€ =0"",0"",1"7,27~ are not
allowed for the conventional gg systems. In other words,
they are exotic quantum numbers in the quark model.

However, these exotic quantum numbers can be reached
in other configurations such as hybrids [3-7], glueballs
[8,9], and tetraquarks, which are not forbidden by QCD
itself. Tetraquarks (gqg g) are bound states of diquarks (gq)
and antidiquarks (g g). Their existence was firstly sug-
gested by R. Jaffe in 1977 [10,11]. The light scalar mesons
have been considered as good candidates of tetraquarks
[12—14]. For hadrons with exotic quantum numbers, the
1~ hybrid meson has been extensively studied since it was
predicted to be the lightest hybrid state [15]. Especially,
there are now some evidence on the existence of such
hybrid mesons [16-18]. The 1~ light tetraquarks have
also been studied in Refs. [19,20] to predict their masses
for both 7 = 0 and 1 channels. In Refs. [21,22], the light
tetraquark state with JP¢ = 0=~ was predicted to be the
possible pz dominance in the D° decay.

To date, the studies for other exotic quantum numbers
JP€ = 07=,2% are much less appealing. In Ref. [23], the
tetraquark states with J°¢ = 0%~ were studied for both
light and heavy sectors in QCD sum rules. The authors used
the tetraquark currents containing a covariant derivative,
which will increase the dimension of the interpolating
operators. Finally, the light 07~ tetraquark was concluded
not to exist due to the bad OPE series behavior. In this
paper, we shall revisit the light 07~ tetraquarks by using the
interpolating currents without the derivative. These currents
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have a lower dimension than those in Ref. [23], which will
result in better OPE behaviors and mass predictions. We
shall use both the Laplace sum rules (LSR) and finite
energy sum rules (FESR) to perform numerical analyses.
The possible decay patterns of the 0"~ tetraquark states will
be discussed last.

II. LAPLACE SUM RULES AND FINITE
ENERGY SUM RULES

In this section, we introduce the formalism of QCD sum
rules, which has been a very useful method to study the
hadronic properties in the past several decades [24-26]. For
a vector current of the general form j, (x), we consider the
two-point correlation function

M, (q?) = / e (O[T, (x)j¢ (0)][0)

= (9,9, = 49)1,(4%) + 4,9.11,(q°). (3)
where I1,(¢?) and TII;(¢?) are the invariant functions
receiving the contributions from the corresponding pure
vector and scalar intermediate states, respectively. The
invariant functions obey the dispersion relation, which
relates the T1(g?) with the spectral function
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where b, are the unknown subtraction constants and they
can be removed by performing the Borel transformation to
I1(g?). On the QCD side, we can perturbatively calculate
the correlation function by using the operator product
expansion (OPE) method. In such calculations, the corre-
lation function T1(g?) is expressed as power expansion
series using the QCD vacuum condensates of increasing
dimensions.

On the hadronic side, the spectral functions are expressed
via the quark hadron duality

pls) = Iml, . (s) ) D ats =) O )
~ f25(s —md) + . (5)

where we use the “one single narrow resonance ansatz”
[27,28]. - --” denotes the contributions of the higher
excited states and the QCD continuum, and my and fy
are the mass and the coupling of the lowest lying hadron
state. One should note that we omit the tensor structure
in the second step if n be a vector current. Under this
duality ansatz, one can match the QCD side of the
correlation function with the hadronic side, and then
obtain the sum rules for the hadron parameters such as

the hadron mass, the coupling constant, and the magnetic
moment. Technically, one usually applies the Borel trans-
formation to T1(g?) at both sides in order to enhance the
contribution of the lowest-lying state and improve the
OPE convergence. Finally, the Laplace/Borel sum rules
(LSR) moment can be derived as

M(z,s9) = /OS0 dse™"p(s). (6)

Inserting the spectral function in Eq. (5), we extract the
lowest-lying hadron mass as the following ratio:

d
R(7,s0) = —ElnM = M3, (7)

in which 7 is the Borel parameter and s is the continuum
threshold above which the contributions from the higher
excited states and QCD continuum can be approximated
well by the spectral function. It is clear that the hadron
mass My will depend on these two parameters (z, sq).
To establish reliable sum rule analyses, one needs to pick
out suitable (z, s9) working range to make sure the validity
of the OPE truncation and the suppression of the con-
tinuum contribution. In this parameter working range, we
would expect that the mass curves are insensitive to the
variation of = and s,, which will finally provide reliable
predictions on the hadron masses.

As is well-known, the LSR for light tetraquarks usually
suffer from a higher dimension of the interpolating
currents which lead to poor OPE convergence or an
absence of the sum rule stability. The finite energy sum
rule, also known as the local duality sum rule, can be a
valid complementary method. FESR can be obtained
either by applying the Cauchy theorem to the correlator
on a contour with radius r = s [29] or by simply letting
the Borel parameter 7 vanish in LSR. This method reduces
the effects from the power corrections to the sum rule
moment and has been shown to be useful in studying
multiquark states [20,22,30,31].1 The nth moment and
ratio of FESR read

W(n s0) = A " p(s)s"ds, (8)

W(n+1,s0)

M3 (n.so) =
H(n SO) W(I’Z,SO)

©)

In this work we use the zeroth moment ratio which
enhances the convergence of the FESR expansion series
in Eq. (8).

'For very recent applications of FESR in studying the decay
constants of heavy-light mesons, see [32,33].
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III. TETRAQUARK INTERPOLATING
CURRENTS WITH JP€=0*-

In this section, we construct the tetraquark interpolating
currents with exotic quantum numbers JF¢ =0*~. In
Ref. [23], the exotic 07~ light tetraquarks have been
studied by using the tetraquark currents containing covar-
iant derivatives. However, their calculations do not sup-
port the existence of such tetraquarks since there is no
stable mass sum rule there. Such bad sum rule behavior
appears due to the special Lorentz structures of the
interpolating currents adopted in Ref. [23]. The covariant
|

J1, = ul Cysdy(it,y,ysCd} + tyy,ysCdl) —
ul Co,,dy(it,y* Cdl — i,y CdL),
ul Cy,ysdy (i ysCdl — iiyysCdy),

derivative draw a P-wave excitation to the current, which
will result in unstable mass sum rules. In this work, we
shall revisit the light 0™~ tetraquarks by constructing the
interpolating currents without derivative. These lower
dimension currents may lead to better OPE behavior
and mass prediction.

We compose the light tetraquark currents by using six
distinct diquark operators in Lorentz space: ¢q.Cg,,
44Cr5qps 45Crudps 96Crursaps 44Couwap: 44CoWY5qp-
The diquark-antidiquark type of tetraquark currents without
derivatives are then constructed as

MZC}’ﬂ}’sdb(ﬁai/scag + dipysCdy),

= ugcyydb(ﬁagﬂvcal{ + ubaﬂvcag) - ugco—pbdb(uayvcalj; + Ijtb}/”CL_ig),

Jo, = ul Cy*dy(i,0,,Cd} — iiy0,,Cdl) —

J3, = ul Cysdy(ii,y,ysCdl, — ipy,ysCdy) —

i

Js, = ul Cdy(it,y,Cd} + iy, CdL) — ul Cy,d,(,Cdl + i, CdY),
Js

where a, b are color indices, T is the transposition operator,
and C the charge conjugation operator. These interpolating
currents in Eq. (10) can couple to both the J7¢ = 0"~ and
1=~ channels, which will induce the scalar I (¢*) and
vector I, (g?), respectively, in Eq. (3). In this work, we focus
on the exotic 0"~ channel in our calculation. By replacing
d — s in Eq. (10), we obtain the corresponding usi§
tetraquark currents with J°¢ = 07~ Using these interpolat-
ing currents, we calculate their two-point correlation func-
tions and the spectral functions. We shall study both the
udii d and usi 5 tetraquark systems in the following section.
|

= MZCyDySdb(ﬁao;wyS CalY; - ﬁba;wySCC_lZ) - MZCGyUySdb(ﬁuyDYSCEZZ - ﬁbynyCC_lg)’

e~ {—sot[sot(so7 +3) + 6] -6} + 6 N

w = MZCyDySdb(ﬁaG;tuyS Cé_l'}]; + ﬁb%u)’scglaT) - MZ;CUMD}/Sdb(ﬁaYDCC_Z}T; + ﬁbyvcag)’
= ”ZCdb(ﬁayycaZ - ﬁb]’ycgﬁ;) - ”Z;C}'ﬂdb(ﬁacc_ll - Ijtch_lZ),

(10)

IV. QCD EXPRESSIONS FOR THE TWO-POINT
CORRELATION FUNCTIONS

Using the interpolating currents listed above, we obtain
the QCD expressions for the corresponding two-point
correlation functions via the standard technique of the
SVZ expansion [34]. Up to dimension-8 condensate terms
in the power expansion and leading-order contributions in
the perturbative expansion, the general expression for the
LSR moment corresponding to the udiid-type and the
usii s-type currents, respectively, read

1 —e " (sor+ 1)

- S =7
My (5, s0) = [ pind(s)emds =
0

1 — =507
—ci————

and

b
1
4 72

— S I
Mg.\'ux(r’ SO) — /) OpgS”“‘(s)e‘Tsds — _az

L= (sor + 1)
— Ci 12

—d

1
td [2 +In(47) — In (—2> +1(0, sm)} : (11)
th
{ e {=syzlsoz(sor +3) + 6] =6} +6 b e [—sor(soT +2) — 2] +2
4 i ,L_S
I—e™or 1
+ei+fi ]/E—III ? +F(O7SOT) P (12)

where ji = 1 GeV, yg the Euler constant, and I' the incomplete Gamma function. The values of the QCD condensates are
listed in Table. I, and a;-d;, a)-f} are the Wilson coefficients. We list their expressions in Appendix.
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TABLE 1. QCD parameters used in our analysis: p indicates the
violation of factorization hypothesis.

QCD parameters Reference
(a,G?) ~ (74 2) x 1072 GeV* [35-39]
9(WGy) = g0 Gy)~(0.8+0.1) GeV2 () [4041]
pag (y)? ~ (4.5 £0.3) x 10™* GeV® [36,42,43]
Agcp = (353 £15) MeV [43]
(5s)/(auy = 0.74 £ 0.03 [44]
mg =957 MeV [2]

V. LSR AND FESR NUMERICAL ANALYSES

In this section, we shall perform our numerical analyses
for the nonstrange and hidden-strange 0"~ tetraquark states
using both the LSR and the FESR methods. The method-
ology adopted in this work directly follow from [22] and
the references therein, where one can find more details
about the sum rule stability criteria applied.

A. Analysis for the udiid tetraquark states

We first focus on the udiid-type tetraquark systems.
From the Wilson coefficients listed in Appendix, we find
that there exist degeneracies between the OPE results
corresponding to the uditd-type J,/Js, J»/Jg, J3/J7,
and J,/Jg in the chiral limit (m, = m,; = 0). Therefore,
we will only present the analyses for J;—J4.

While applying the LSR analysis, we require both the =
and s stability in order to get solid predictions. Practically,
we read the predictions from the extremum points of the
mpy — 7 and my — sq curves, from which continuum thresh-
old can also be rigorously determined. In the case where the
LSR stability is reached, the OPE convergence at the given
stability points should be further checked before taking into

FIG. 1.

account the obtained mass values in the final estimation.
For the udii d currents, we find that all the associated LSR
moment ratios reach stability, but only those corresponding
to J3 (J7) and J4 (Jg) have converging OPE series. For J,
(Js) and J, (Jg), the highest order power corrections
(dimension-8 condensate terms) contribute more than
10% in the OPE series, rendering a problematic truncation.
Therefore, we only consider results obtained using J3 (J7)
and J, (Jg) for the final mass determination.

The behaviors of the LSR ratios corresponding to J5 (J7)
and J, (Jg) are shown in Fig. 1, where the left panel shows
the 7 stability (if any) and the right panel shows the s,
stability. One can see that the LSR ratio corresponding
to J3 (J7) and J4 (Jg) reach the 7 and s, stability when
the values of the dimension-8 condensates are estimated
using the vacuum saturation approximation. However, the
mass curve corresponding to J4 (/) becomes monotonous
when factorization is violated by a factor of 2 [see the green
curve in Fig. 1(a)]. In contrast, the LSR curves correspond-
ing to J3 (J;7) have both the 7 and s, stability with and
without considering the violation of factorization, which
can provide an error estimation due to violation of
factorization. From Fig. 1(b), we obtain the mass predic-
tions at the sy-stability points (extremums) as below

My, sk = 1.39(1.49) GeV at 5y = 4.50(4.75) GeV?,
M/4/16;LsR = 1.35 GeV at s = 4.09 GeV?, (13)

where the values in the parentheses are obtained by taking
into account the violation of factorization of the dimension-
8 condensates by a factor of 2. For J; (J5) and J, (Jg), we
obtain similar curves as those in Fig. 1, but the stability
points associate with poorly OPE convergence; therefore,
we do not consider these values. In Table II, we present the
behavior of OPE at the stability points of z and s.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

so/Gev2
(b)

(a) udiid four quark state mass versus 7 in LSR obtained using J5 (J7) (red continuous), J5(J;) considering violation of

factorization (blue dotted-dashed), J4(J4) (black continuous), and J,(J¢) considering violation of factorization (green dotted); (b) the

same as (a) but for mass versus s.
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TABLE II. OPE terms at the LSR stability points using the ud@ d currents.

Ji L B1I¢=0/GeV* L BII¢=*/GeV* LBII¢=6/GeV* L BI1¢=% /GeV* 1BI¢=¥/OPE  7/GeV™?  s50/GeV?
Ji/Js  577935x 107  —7.94295x 1077 —8.64314x 107®  —9.16139 x 1077 0.200 283 0.433 5.33
Jo/Js 212627 x 1073 124396 x 107°  —1.62246 x 107> —2.38152x10° —0.610577 0.346 4.89
J3/J7  2.05976 x 1075 2.12063 x 10®  —7.06129 x 1076 —1.1931 x 107®  —0.0824886 0.265 4.50
JalJs 1.2703 x 1073 747871 x 107 —7.58611 x 10> —1.23908 x 1075 —0.009 858 74 0.148 4.09

In Fig. 2, we show the FESR curves obtained by
truncating the OPE at different orders. One can see that
for all currents the corresponding FESR moment ratios
increase gradually for considering only the perturbative
terms. With inclusion of the dimension-4 or dimension-6
condensate contributions, the mass curves start to present
inflexions or stability points. One can then read the
optimal mass values from these stability points. As
shown in Fig. 2, the stability points of the FESR curves
obtained by considering the condensate contributions up to
dimension-8 (black continuous curves) are close to those of
the curves obtained by only considering d = 6 condensate

terms (blue dotted-dashed curves), except for the curve
corresponding to J4 (J¢). The difference is about 13% for
J4 (Jg) while less than 10% for other currents, which
indicates that the OPE truncation for J, (/) may associate
with relatively large uncertainties. Accordingly, we retain
the mass predictions in FESR as

M, sk = 1.53(1.57) GeV at s, = 5.32(5.43) GeV2,
M, pese = 1.46(1.49) GeV at sy = 4.86(4.85) GeV?,
M, pese = 1.41(1.44) GeV at sy = 4.49(4.41) GeV2.

(14)

my/Gev

my/Gev

my/Gev

myl/Gev

so/Gev2

(©)

FIG. 2.

sc,/Gev2

(d)

(a) udi d four quark state mass versus s, in FESR obtained using J, (J5) considering in the OPE series the perturbative terms

(yellow continuous), d = 4 condensate terms (red dotted), d = 6 condensate terms (blue dotted-dashed), d = 8 condensate terms (black
continuous); (b), (c), (d) are the same as (a) but for J,(Jg), J3(J7), J4(J), respectively.
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FIG. 3.

35 4.0 45 50 55 6.0 6.5 7.0
sc,/Gev2
(W]

(a) usus four quark state mass versus z in LSR obtained using J; (black continuous) and J; considering violation of

factorization(blue dotted-dashed); (b) the same (a) but for mass versus s.

Taking the arithmetic average of the valid LSR and FESR
results, we give our prediction for the 07~ udii d tetraquark
mass as

M, u7 =143 +0.09 GeV, (15)

where the error comes from the uncertainties of the QCD
parameters, the results from different interpolating currents
and the violation of factorization.

B. Analysis for the usiis tetraquark states

The situation for the usi § tetraquark state is somewhat
different from that for the udiid system. The OPE
degeneracy between J; and Js (also for J,/Js, J3/J7, or
J4/Je) in the udii d system is slightly changed for the usi 5
system due to the SU(3) breaking. The coefficients of
(a,G?*Ym(gq) have opposite signs for J; and Js, as shown
in Appendix. Although the contributions of these terms are
small, we still perform numerical analyses for all inter-
polating currents in the usii 5 system. In this case, LSR does
not work as well as FESR: the LSR moment ratios are
dominated by the dimension-6 condensates rather than the
perturbative terms, which suggests that the OPE truncations
are invalid. We shall take the current J; as an example.

TABLE III.

From Fig. 3, it is shown that the curves have the s, and =
stability. However, the OPE series are not converging but
dominated by dimension-6 condensate terms, as shown in
Table III. This situation holds for all the other usiis
currents in LSR. We then perform the FESR analyses
for the usii 5 systems. In our analysis, the FESR ratio shows
nice behavior in the sense that it reach stability in the
continuum threshold s, as shown in Fig. 4. The dimension-
8 condensate only slightly affect the mass prediction, which
justify the validity of OPE truncation. The same situations
happen for all the other currents J,—Jg. The mass pre-
dictions obtained from the stability points read

M, gesg = 1.65(1.69) GeV at sy =6.17(6.45) GeV2,
M pesg = 1.58(1.63) GeV at sy =5.67(5.99) GeV?,
M, resg = 1.51(1.57) GeV at 5o =5.25(5.60) GeV?,
M, resg = 1.44(1.51) GeV at sy =4.76(5.15) GeV?,
M;_psg = 1.65(1.69) GeV at sy =6.16(6.44) GeV?,
M, resg = 1.43(1.51) GeV at sy =4.75(5.14) Ge V2,
M, gesg = 1.51(1.57) GeV at sy =5.26(5.61) Ge V2,
M pesg = 1.57(1.62) GeV at 5o =5.66(5.98) GeV2.  (16)

OPE terms at the LSR stability points using the usii 5 currents.

Ji LBI¢0/Gev* LBI¢2/Gev*  LBIV/Gev*

LBTIY=S /GeV*

LBn¢=3/Gev*  L1BII¢=8/OPE 7/GeV™? s50/GeV?

Ji 113112 x 107°

J;  1.0706 x 107 —1.78751 x 1077
Jy 226533 x 1075 —2.76002 x 10~°

Js 9.84444 x 1077 —1.99608 x 1077 —1.06617 x 107 —5.08568 x 10~°
3.32406 x 107 —2.38351 x 107> —2.00034 x 107°
—7.3373 x 107 —3.40304 x 10° —1.73889 x 1077
Jg 227458 x 107% —4.13982 x 1077 —9.67697 x 1077 —8.53188 x 1076

Js 1.68658 x 1075 —2.21217 x 107°
J; 1.54953 x 107 —2.35871 x 107’

—22152 x 1077 —1.14284 x 1075 —5.26536 x 1076
Jy 2.80721 x 107° —4.84744 x 107° —1.07504 x 107° —8.99266 x 107° —8.23584 x 1078
—-6.0989 x 1078 —3.10259 x 106 —6.50102 x 1078
3.85241 x 107® —2.56595 x 105 —2.62288 x 10~°

223076 x 1077 -0.0438063  0.651 6.17
0.0105215 0.574 5.7
0.0278209  0.555 5.28
0.578 144 0.405 4.76

291861 x 107 —0.0575079 0.674 6.18
0.254 568 0.436 4.62
0.0744181 0.506 5.28

8.61095 x 1078 —0.0114009  0.605 5.68
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So/Gev?

FIG. 4. Mass prediction for the usi § tetraquark state versus s,
in FESR by using J; considering in the OPE series the pertur-
bative term (yellow continuous), d =2 term (green dashed),
d = 4 term (red dotted), d = 6 term (blue dotted-dashed), d = 8
term (black continuous).

We finally give the mass of the hidden-strange 07~
tetraquark to be

M, = 1.54£0.12 GeV, (17)

where we have already considered the mass differences in
Eq. (16) as one kind of the error sources.

VI. DECAY PATTERNS OF THE
0*~ TETRAQUARKS

Under the SU(2) symmetry, the udiid interpolating
currents would couple to all 7 = 0, 1, 2 isospin multiplets.
In our calculation, these multiplets shall degenerate since
we do not consider the effects of isospin symmetry
breaking. In other words, our calculations will give the
same mass predictions for the I°JPC = 0-0*—,170*",
270"~ tetraquarks with quark contents udiid. For the
usit 5 tetraquarks, the quantum numbers will be /6JF€ =
00", 170" considering the isospin. Tetraquark states
have abundant decay modes so long as the kinematics
allows.

Considering the symmetry constraints for the isospin 7/,
spin J, parity P, C parity, and G parity, all S-wave two-body
strong decays are forbidden for the charge neutral udii d
tetraquarks, while only P-wave decay modes are allowed
(as shown in Table IV). Their dominant decay modes b, x,
hym, a;m are suitable for detection and partial-wave
analyses. The charged partners uddd and udiiit in the
isospin-1 multiplet can dominantly decay into zzz modes in
S wave and thus, are expected to be very wide.

For the isovector usus tetraquark, both two-body
and three-body strong decays are totally forbidden by
the kinematics and the strong constraints on the exotic
quantum numbers /9JP¢ = 1t0*~. Especially the S-wave

TABLE 1IV. Possible two-body strong decay modes for the
charge neutral udii d tetraquarks.

19J°¢ S wave P wave
0-0*— X bz, ow
170" X h\m,po,am
270"~ X blﬂ'

KK~ and K°K? final states are forbidden by the negative
C parity of the tetraquarks. In other words, the charge
neutral isovector usit § tetraquark state can only decay via
weakly interaction into final states such as Kzz. It is
predicted to be very narrow. For the charged partners usd 5
and dsii 5 states, one may also search for them in the K+ K,
K~K° hadronic modes, respectively.

The decay behavior of the isoscalar usu s tetraquark
will be different. Besides the weak decays, the dominant
decay mode for the isoscalar usii s tetraquark will be the
three-body hadronic mode usii s — ¢nr(o — nr). However,
such a three-body decay is relatively small due to a P-wave
suppression between ¢ and o(zz). This isoscalar usi s
tetraquark state may be not very wide I' < 1 MeV and has
convenient decay modes like ¢zz, Knn.

VII. SUMMARY AND CONCLUSIONS

In this work, we have studied the udiid and wusis
tetraquark states with J°¢ = 0*~ in Laplace sum rules and
finite energy sum rules. We consider all possible diquark-
antidiquark interpolating currents with such exotic quan-
tum numbers without containing covariant derivative
operators. The dimension of such currents is lower than
those used in Ref. [23], which will result in better OPE
behaviors and more reliable mass predictions.

We find that both LSR and FESR work well for the
udind system following the standard stability criteria of
QCD sum rules and the requirement of well justified OPE
truncation. For the usii 5 system, all interpolating currents
suffer from poor OPE convergence in LSR. However, the
FESR ratios could yield too good s stability, around which
one can extract the hadronic masses. Considering both the
LSR and FESR results, we predict the masses of the udii d
and the wusus tetraquarks to be 1.43 +0.09 GeV and
1.54 £ 0.12 GeV, respectively.

Accordingly, we discuss the possible decay patterns for
these exotic tetraquarks. The light udiid tetraquark can
decay into two-body final states in P-wave hadronic modes,
as shown in Table IV. Our analyses show that the 0"~
charge neutral isovector usi 5 tetraquark may only decay
via the weak interaction mechanism such as usi s - Knrr,
since its strong decay modes are all forbidden by the
kinematics and strong constraints on the exotic quantum
numbers. It is predicted to be very narrow. The 07~
isoscalar usu § tetraquark is also expected to be not very
wide due to its P-wave dominant decay mode usits — ¢zr.
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These tetraquark states may be detectable in the near future APPENDIX: THE COEFFICIENTS OF
at BESIII and Belle II. LSR MOMENTS FOR THE udiid
AND usii § CURRENTS
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014025-8



EXOTIC TETRAQUARK STATES WITH J*¢ = 0=

PHYS. REV. D 99, 014025 (2019)

4o 1 b — 5m? o 11{a,G?) _ 3m? _3ms<§s> , _23<asG2>m§_3mS<§Gs> <E]q)2+ (55)?
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