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1 Introduction

Recently it has been proposed that for any solution of N = 2, d = 10 supergravity with

isometries, there exists a very simple deformation, such that the Classical Yang-Baxter

equation (CYBE) for the deformation parameter implies that the deformed background is

a solution to the supergravity field equations [1, 2]. For a supergravity solution specified

by the metric Gmn, dilaton Φ and possibly some Ramond-Ramond (RR) fields, but with

vanishing Kalb-Ramond tensor Bmn = 0, the deformation produces a solution given by

gmn, bmn, φ, according to the transformation rules:

gmn + bmn = (G−1 + β)−1
mn, e−2φ|det gmn|1/2 = e−2Φ|detGmn|1/2. (1.1)

Here the deformation parameter βmn is an antisymmetric tensor, which is constructed from

the Killing vectors kma ∂m of the original background metric Gmn:

βmn = rabkma knb , rab = −rba. (1.2)

The conjecture put forward in [1] was that the supergravity equations of motion for the

deformed fields gmn, bmn, and φ are satisfied, as soon as the matrix rab (the r-matrix)

obeys the CYBE:

fde
[arb|d|rc]e = 0, (1.3)

where fab
c are structure constants of the isometry algebra, [ka, kb] = fab

ckc.

Emergence of the CYBE from a purely gravitational theory is remarkable, given the

prominent role played by the CYBE in integrable systems [3]. The conjecture outlined

above can be viewed as a concrete realisation of the earlier proposal of a gravity/CYBE

correspondence [4, 5]. It was suggested in [1] that the deformation (1.1) can be used

as a solution generating technique for arbitrary supergravity solutions with isometries.

Although in this article we will concentrate exclusively on the NSNS sector of type II

supergravity, note that the complete recipe for the deformation including the RR fields can

be found in [1].
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The map (1.1) was originally introduced by Seiberg and Witten [6] in their seminal

study of open strings on D-branes in the background fields gmn, bmn, which belong to

the closed string spectrum. It was demonstrated that the open string can effectively be

described as propagating on a non-commutative spacetime with the metric Gmn and non-

commutativity parameter βmn (proportional to the quantum commutator [xm, xn]). We

will thus refer to the field redefinition (1.1) as the open/closed string map.

Introduction of the solution generating technique of [1] has built upon the earlier

observation [7, 8] that the open/closed string map has the same effect on supergravity

solutions as the Yang-Baxter deformation, developed in [9–12] for classically integrable

superstring σ-models in the coset formalism. From the supergravity viewpoint, however,

the solution generation prescription of [1] is more generic in that it is applicable to coset and

non-coset geometries alike. The fundamental difference is that in the σ-model approach the

r-matrix solution to the CYBE has to be put in by hand, and this step is necessary for the

deformed solution to preserve the classical integrability of the σ-model. In the approach

of [1] this logic is essentially reversed: the deformation parameter is given by (1.2) with an

arbitrary r-matrix, and the CYBE emerges after imposing the supergravity field equations

on the deformed solution. Presence or absence of superstring integrability in the initial

background plays no role for the workings of the deformation. Whether emergence of the

CYBE after the deformation hints to integrability of any kind has yet to be seen.

Various classes of Yang-Baxter deformations have been linked to T-duality-shift-T-

duality (TsT) transformations [13], or more generally non-abelian T-dualities [14–17] and

O(d, d) transformations [18–21]. In certain cases, the Yang-Baxter deformation may lead to

a background that is not, strictly speaking, a solution to supergravity. Such backgrounds

have been interpreted as resulting from T-duality in non-isometric direction [22, 23]. Al-

though not supergravity solutions, they were shown to satisfy the field equations of gen-

eralised supergravity [24, 25], where the generalisation consists in certain additional terms

that depend on a Killing vector field Im. The latter is related to the deformation (non-

commutativity) parameter [1, 8]:

Im = ∇kβ
km. (1.4)

Whenever this happens to be zero, the generalised field equations reduce to those of the

usual type II supergravity; otherwise one has to deal with the generalised equations and

the CYBE emerges from there as well.

Most recently, a generalisation of the open/closed string map (1.1) resulting from non-

abelian T-dualities was proposed in the sigma-model setup [26]. This paper has extended

the previous works, which rely on the coset formulation of the sigma-model action, to

generic sigma-models with isometries. Assuming the CYBE for the deformation parameter

it was proven that kappa-symmetry is preserved under the deformation, which implies that

the background fields satisfy the (generalised) supergravity field equations [25].

In the supergravity framework of [1], the conjecture that the CYBE appears from the

(generalised) supergravity field equations after the deformation (1.1) was supported by ex-

plicit examples of coset and non-coset geometries alike, such as AdS2×S2 and Schwarzschild

spacetimes. More examples of generated solutions both to standard and to generalised su-
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pergravity have appeared in [1, 2, 27]. In the present article we will give a proof of the

conjecture at the level of supergravity action and field equations. This will enable us to

highlight the relevant dual field theory for this problem, the β-supergravity. The use of su-

pergravity language will help us pose certain unsolved problems that cannot be addressed

in the string sigma-model formalism: the generalised version of β-supergravity, and d = 11

generalization of the whole Yang-Baxter deformation narrative.

Proof of the conjecture at the supergravity level can be achieved, in principle, by

making the field redefinition (1.1) directly in the supergravity field equations for the trans-

formed fields gmn, bmn, φ. One can then expand the equations in powers of βmn, use the

Killing bi-vector ansatz (1.2), and see if the structure of the CYBE emerges. Such per-

turbative approach to proving the conjecture was undertaken recently in [2], where it was

shown that up to the third order in powers of β the supergravity field equations reduce to

the CYBE. The complete non-perturbative proof for an arbitrary initial metric Gmn was

still lacking.

It turns out, however, that the field redefinition (1.1) can be performed consistently in

the full type II supergravity action. This has been done explicitly in [28] and the resulting

theory whose dynamical fields are the metric Gmn, the bi-vector field βmn, and the dilaton

Φ is called β-supergravity. Initially the interest in rewriting of the theory in such a way

stemmed from the goal of finding a supergravity description for non-geometric backgrounds

characterised by the Q-flux [29, 30]. In the framework of β-supergravity the Q-flux is simply

given by Qm
pq = ∇mβpq, and in general can be related to the torsion of the Weitzenböck

connection in Double Field Theory [31, 32].

Double Field Theory (DFT) provides the most transparent understanding of the struc-

ture of β-supergravity. DFT is a field theory on the doubled spacetime that incorporates

the usual supergravity and is explicitly covariant under the O(d, d) symmetry group com-

ing from the string theory T-duality [33, 34] (see [35, 36] for review; earlier applications of

DFT to Yang-Baxter deformations include [18–20, 37]). Dynamical fields of the theory are

the T-duality invariant dilaton d and the so-called generalised metric

H ∈ O(10, 10)

O(1, 9)×O(1, 9)
. (1.5)

Such coset element can be parametrised by the metric gmn and the Kalb-Ramond field

bmn, which gives the usual field content of the NS-NS sector of supergravity. Alternatively,

the same element can be parametrised by the fields Gmn and βmn, in which case DFT

reduces to β-supergravity. At the level of fields this reparametrization of the coset element

is precisely the open-closed string map (1.1).

This allows to make a formal transition from the standard description of type II su-

pergravity with dynamical fields gmn, bmn, φ, which in this context is referred to as the

b-frame of DFT, to the description in terms of the fields Gmn, β
mn,Φ in the β-frame. The

dynamical equations in the β-frame can be used to derive the CYBE under the assumption

of the ansatz (1.2), as we show below.

This paper is organised as follows. In section 2 a short review of β-supergravity is

given, followed by the proof of the conjecture. In section 3 we discuss possible applications

and consequences of the technique.
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Gmn,Φ Gmn, β
mn,Φ gmn, bmn, φ

b-frame

solution

β-frame

solution

b-frame

solution

constraints on βmn

deformation open/closed map

Yang-Baxter deformation

Figure 1. Relationships between the relevant theories and their solutions. b-frame refers to the

standard supergravity (possibly generalised), while β-frame is the theory of [28]. Yang-Baxter

deformation acts within usual supergravity, but we interpret it as a composition of the open/closed

string map with a deformation by βmn. This leads to the constraints for βmn (essentially the

CYBE) arising from supergravity field equations.

2 The gravity/CYBE correspondence

Starting with a solution to the ordinary supergravity Gmn,Φ with vanishing Bmn, one de-

forms it by introducing a 2-form βmn. We interpret the resulting configuration Gmn, β
mn,Φ

as a supergravity background in the β-frame. The DFT construction then implies that the

background gmn, bmn, φ resulting from the open/closed string map is a solution to the stan-

dard b-frame supergravity field equations. The crucial point of this procedure is that the

same fields Gmn,Φ must furnish a solution to the usual supergravity before the deforma-

tion, as well as to β-supergravity, when accompanied by a deformation field βmn. This

restricts possible deformations by effectively imposing the CYBE. Solving it for a given

background Gmn,Φ will determine all possible deformations of this background. This can

be summarised with a diagram of figure 1.

2.1 β-supergravity

Dynamical fields of Double Field Theory (DFT) are the generalised metric HMN and the

invariant dilaton d, both of which depend on the full doubled space-time with coordinates

X
M = (xm, x̃m). The generalised metric is an element of the coset space O(10, 10)/O(1, 9)×

O(1, 9) and can be parametrised by

HMN =

[

gmn − bm
lbln bm

q

bn
p gpq

]

. (2.1)

The invariant dilaton is given by d = φ + 1
4 log g, with g = det gmn. The DFT action has

been constructed in [34] and can be written as

SHHZ =

∫

dx dx̃ e−2d

(

1

8
HMN∂MHKL∂NHKL − 1

2
HKL∂LHMN∂NHKM

−2∂Md ∂NHMN + 4HMN∂Md ∂Nd

)

.

(2.2)
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Integration over the full doubled space here is formal and just denotes that one has to

integrate over all coordinates on which non-trivial dependence was left after solving the

section constraint:

ηMN∂M ⊗ ∂N = 0. (2.3)

This constraint is necessary for the algebra of generalised diffeomorphisms to close, and it

means that all fields of the theory must depend only on one half of the total number of the

coordinates. More precisely, one cannot have dependence on both a geometric coordinate

x and its dual x̃.

Solving the section constraint in the DFT action explicitly, one recovers the action for

the bosonic sector of type II supergravity

SHHZ

∣

∣

∣

SC
=

∫

dx e−2φ√−g

(

R(g)− 1

12
HmnkHmnk + gmn∂mφ∂nφ

)

, (2.4)

where H = db, and R is the curvature scalar. This establishes the fact that the b-frame

parametrisation of double field theory (2.1) is equivalent to the standard supergravity.

However, one is free to choose a different parametrisation for the generalised metric

HMN =

[

Gmn −βm
q

−βn
p Gpq − βp

lβ
lq

]

. (2.5)

These two natural choices of parametrization follow from the upper- and lower-triangular

form of the generalised vielbein

EA
M = (E0)

A
N (O1)

N
M , or EA

M = (E0)
A
N (O2)

N
M , (2.6)

where the matrices E0 and O1,2 are given by

E0 =

[

eam 0

0 enb

]

, O1 =

[

δmk −βml

0 δln

]

, O2 =

[

δkp 0

−Blp δql

]

. (2.7)

One can obtain (2.1) and (2.5) as HMN = EA
MEB

NHAB with

HAB =

[

ηab 0

0 ηab

]

. (2.8)

The open/closed string map (1.1) in this context is a condition that (2.1) and (2.5) describe

the same object.

Again solving the section constraint explicitly and substituting the generalised metric

parametrised by Gmn and βmn one obtains the action of β-supergravity as described in [28]

L̃β = e−2Φ
√
−G

(

R(G) + R̂+ 4(∂Φ)2 − 1

2
R2 + 4(βmp∂pΦ+ Im)2

)

, (2.9)
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where one defines

R̂ = GmnR̂mn, R̂mn = −βpq∂qΓ̂
mn
p + βmq∂qΓ̂p

pn + Γ̂p
mnΓ̂q

qp − Γ̂p
qmΓ̂q

pn,

Γ̂mn
p =

1

2
Gpq (−βmr∂rG

nq − βnr∂rG
mq + βqr∂rG

mn) +GpqG
r(m∂rβ

n)q − 1

2
∂pβ

mn

= ∇(mβn)
p −

1

2
∇pβ

mn + βmqΓn
pq,

Im = ∇kβ
km ≡ −Γ̂k

km = −∂kβ
mk +

1

2
βmnGpq∂nG

pq

∇̂mV p = −βmn∂nV
p − Γ̂n

mpV n, ∇̂mVp = −βmn∂nVp + Γ̂p
mnVn

Rmnp = 3βq[m∇qβ
np].

(2.10)

For the Riemann and Ricci curvature tensors the standard conventions have been taken

[∇m,∇n]V
p = Rp

q,mnV
q,

Rp
q,mn = 2∂[mΓp

n]q + 2Γp
k[mΓk

n]q,

Rmn = Rp
m,pn.

(2.11)

For further use R̂mn can be written explicitly in terms of the 2-vector βmn as

R̂mn =− βpq∇q∇(mβn)
p + βmq∇q∇pβ

np − 1

2
βpqβrmRn

r,pq +∇(mβn)
p∇qβ

pq

− 1

2
∇pβ

mn∇qβ
pq − 1

2
∇qβ

mp∇pβ
nq +

1

2
∇qβm

p∇qβ
pn +

1

4
∇mβpq∇nβpq

+∇qβp(m∇n)βpq.

(2.12)

The tensor Rmnk is the so-called non-geometric R-flux (when integrated over a non-trivial

3-cycle) which signals about non-associativity properties of a chosen background. The

vector Im is also a signature of non-geometry and at the level of Yang-Baxter deformations

can be realised in generalised supergravity, as will be discussed below.

Equations of motion for the fields Gmn, β
mn and Φ can be derived from the equations of

motion of DFT upon the condition ∂̃m• = 0 or by direct variation of the Lagrangian (2.9).

These can be written as

1

4

(

R(G) + R̂(G)− 1

2
R2

)

= (∂Φ)2 −∇2Φ+ (βmr∂rΦ+ Im)2

+Gmn∇̂m(βnr∂rΦ+ In);

Rpq − R̂(pq) +
1

4
RpmnRq

mn =− 2∇p∂qΦ− 2∇̂(p

(

βq)r∇rΦ
)

− 2∇̂(pIq);

1

2

(

e2Φ∇̂m(e−2ΦRmrp) + 2ImRmrp

)

=− 1

2
e2Φ∇m(e−2Φ∇mβrp)− 2R[p

sβr]s

+ e−2Φ∇q(e2Φ∇[pβr]q) + 4Gn[p∇r](β
nq∂qΦ).

(2.13)

Following the logic of [28] these equations can be understood as equations of motion of

the conventional supergravity rewritten in terms of the new fields. Hence, any solution

– 6 –
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of supergravity field equations after the open/closed string map must satisfy the above

equations. Conversely, for a conventional supergravity solution with added field βmn and

no B-field to also be a solution after the open/closed string map, it should satisfy the

equations of motion of beta-supergravity.

2.2 Proof

We are now finally in a position to prove that the homogeneous CYBE is sufficient for the

supergravity equations of motion to be satisfied by the deformed background. One can

explicitly check the field equations of β-supergravity (2.13), using the bi-Killing ansatz for

the β-deformation

βmn = rabkma knb , (2.14)

as well as the fact that the undeformed metric and the dilaton satisfy the conventional field

equations:

R(G) = 4(∂Φ)2 − 4∇2Φ

Rpq(G) = −2∇p∂qΦ.
(2.15)

In addition we assume βmn∂nΦ = 0 since the isometries of the original solution preserve

the dilaton as well. Another constraint comes from the fact that although we are dealing

with the beta-frame formulation, this is still conventional supergravity rather than the

generalised. This implies that the vector Im = ∇kβ
km must be zero. Upon the bi-Killing

ansatz this condition gives

Im = ∇kβ
km = ka

n∂nkb
mrab =

1

2
fab

ckc
mrab = 0. (2.16)

Finally, for the R-flux we have, using the ansatz:

Rmnk = 3βq[m∇qβ
nk] = 3 kma knb k

k
c fde

[arb|d|rc]e. (2.17)

Thus the assumption that the CYBE holds implies the vanishing of the R-flux. Taking all

this into account, the equations of motion of β-supergravity boil down to

0 = R̂(mn),

0 =
1

2
e2Φ∇m(e−2Φ∇mβpr) + 2Gn[pRr]mβnm − e−2Φ∇m(e2Φ∇[rβp]m) .

(2.18)

Equation for the dilaton trivially follows from the trace part of the first equation here.

In the proof the following identities for the Killing vectors, usually referred to as the

Kostant formula, will be used

∇m∇pk
q = Rq

p,mnk
n,

�km = −Rm
nk

n.
(2.19)

– 7 –
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Let us start first with the equation for βmn, which is the second line above, and expand

the covariant derivatives of products. This gives

0 =
1

2
e2Φ∇m(e−2Φ∇mβpr) + 2R[r

mβp]m − e−2Φ∇m(e2Φ∇[rβp]m)

= −∇mΦ∇mβpr +
1

2
�βpr + 2R[r

mβp]m −∇m∇[rβp]m − 2βm[p∇r]∇mΦ

= −∇mΦ∇mβpr +
1

2
�βpr +R[r

mβp]m −∇m∇[rβp]m

(2.20)

where we have used symmetry of the dilaton βmn∇nΦ = 0 in the second line and the

equation of motion for the dilaton Rpq(G) = −2∇p∂qΦ in the third line. Furthermore, the

first term above can be transformed as follows

−∇mΦ∇mβpr = −2rab∇mΦ
(

∇mkb
[r
)

ka
p] = 2rab∇mΦ ka

[p∇r]kb
m

= 2rabka
[p∇r]

(

kb
m∇mΦ

)

− 2rabkb
mka

[p∇r]∇mΦ = R[r
mβp]m.

(2.21)

Hence, the equation of motion simplifies and can be rewritten more conveniently as

0 =
1

2
�βpq +∇m∇[pβq]m − 2R[p

mβq]m. (2.22)

Let us show, that this vanishes upon Im = 0. We start with the second term above, which

can be manipulated as follows

∇m∇[pβq]m = [∇m,∇[p]βq]m = R[q
r,m

p]βrm +Rr
[pβq]r. (2.23)

For the first term in (2.22) we write (antisymmetry in {p, q} is always understood)

1

2
�βpq = ∇k

(

ka
p∇kkb

q
)

rab = ∇kka
p∇kkb

qrab + ka
p
�kb

qrab

= −∇p
(

ka
k∇kkb

q
)

rab + ka
k∇p∇kkb

qrab + ka
p
�kb

qrab

= −1

2
∇[pkc

q]fab
crab + ka

kR[q
k,
p]
rkb

rrab − ka
[pRq]

r kb
rrab

= −R[q
k,r

p]βkr +R[p
rβ

q]r,

(2.24)

where we have used the Killing equation ∇(mka
n) = 0 in the second line, the Kostant

formula (2.19) in the third line, and symmetry properties of the Riemann tensor in the last

line. Substituting everything back to (2.22) one concludes that the equations of motion for

βmn are satisfied identically on the bi-Killing ansatz, given Im = 0.

Consider now the Einstein-Hilbert equation, which is the first line in (2.18). For this

we need to write the tensor R̂mn and the corresponding connection symbols in terms of

the field βmn. Let us start with splitting the connection symbols into tensorial and non-

tensorial part
Γ̂p

mn = Γ̄p
mn + γp

mn,

Γ̄p
mn = −ka

m∇pkb
nrab,

γp
mn = βmqΓn

pq.

(2.25)

– 8 –



J
H
E
P
0
1
(
2
0
1
9
)
1
4
0

Substituting this decomposition back into R̂mn and rewriting everything in terms of co-

variant derivatives one obtains the following most general expression

R̂mn = −βpq∇qΓ̄p
mn + βmq∇qΓ̄p

pn + Γ̄p
mnΓ̄q

qp − Γ̄p
qmΓ̄q

pn

+
1

2
βpqβmrRn

r,pq.
(2.26)

Substituting the bi-Kiling ansatz here we get

R̂mn = kqc∇qkb
mka

nfef
arberfc − 1

2
βmq∇qkc

nfab
crab +

1

2
ka

m∇pkb
nke

pfcd
erabrcd. (2.27)

The last two terms here have similar structure and vanish upon fab
crab = 0, while the first

can be shown to be proportional to the CYBE plus terms of the same structure as the last

two. Indeed, consider the following expression proportional to the CYBE

−3kc
q∇qkb

mka
n
(

fef
[arb|e|rc]f

)

= −kc
q∇qkb

mka
nfef

ar[b|e|rc]f − 2kc
q∇qkb

mka
nfef

[crb]frae

= −kc
q∇qkb

mka
nfef

ar[b|e|rc]f − kg
mka

nfcb
gfef

crbfrae

= −kc
q∇qkb

mka
nfef

arbercf +
1

2
kg

mka
nfce

gffb
crbfrae

(2.28)

where in the second line we used the bracket of two Killing vectors and in the third line we

used the Jacobi identity for the structure constants fab
c. The first term in the last line above

is precisely the one we have found in R̂mn, while the second vanishes upon fab
crab = 0,

and the equation R̂mn = 0 is proportional to the CYBE given the condition Im = 0.

The above calculations provide a proof of the conjecture of [1]: we have shown that

the classical Yang-Baxter equation emerges from the open/closed string map, applied to

supergravity solutions deformed by a 2-form (2.14), assuming that we do not have to deal

with generalised supergravity ∇mβmn = 0.

3 Discussion

In this work we have provided a detailed proof that the deformation of a supergravity

solution parametrised by tensor βmn subject to the bi-Killing ansatz

βmn = rabka
mkb

n (3.1)

is a solution of supergravity equations, if the r-matrix rab satisfies classical Yang-Baxter

equation and the vector Im = ∇nβ
mn = 0 vanishes. The idea of the proof is that the

field equations of supergravity for the deformed background gmn, bmn, φ obtained by the

open-closed string map

(G−1 + β)−1 = g + b (3.2)

are equivalent to the equations of motion of β-supergravity for the background Gmn, β
mn,

Φ. The fact that the background before the deformation Gmn,Φ satisfies the equations of

motion of the conventional supergravity provides dynamical equations for the deformation

parameter βmn.

– 9 –
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The described approach provides a natural framework for addressing deformations of

supergravity backgrounds both integrable and not. There are several directions where this

approach can be extended and which we consider interesting.

3.1 Applications and outlook

General deformations: the case of flat backgrounds. Starting with a given solution

of supergravity equations of motion Gmn,Φ, consider its general bi-vector deformation

Gmn → Gmn + βmn. (3.3)

According to the above logic, equations of motion of beta-supergravity for this background

provide constraints which must be satisfied for the deformation βmn to generate a solution.

Hence, beta-supergravity allows to classify all such deformations for a given background,

not only of the Yang-Baxter form, however, not distinguishing between integrable and

non-integrable deformations.

As a simple illustration of the idea consider the flat background of the form

Gmn = ηmn, Φ = 0. (3.4)

Equations of motion of beta-supergravity then take the following form

R̂ − 1

2
R2 = 4(Im)2 + 4∇̂mIm

R̂(pq) −
1

4
RpsvRq

sv = 2∇̂(pIq)

∇̂mRmrp + 2ImRmrp = ∂m∂mβpr + 2∂[rIp].

(3.5)

Any solution of these equations for βmn will give a deformation which generates a back-

ground gmn, bmn, φ that solves field equations of supergravity. Note that at this stage we

do not restrict ourselves to the case Im = 0.

To provide explicit examples, let us consider the most simple case of dimension d = 2.

This may be understood as a class of backgrounds where deformed is only a two-dimensional

block inside the full metric. For this case the deformation parameter is a single function

βmn = βǫmn, where the alternating symbol is defined as ǫmnǫnk = αδmk. Here α = +1 for

the Minkowski case and α = −1 for the Euclidean case. In addition Rmnk = 0 as there is

no R-flux in two dimensions.

With these simplifications the equations for the deformation parameter become

R̂mn = −βα∂mnβ + βǫmkǫnl∂klβ +
1

2
α∂mβ ∂nβ − 1

2
ǫmkǫnl∂kβ ∂lβ +

1

2
αδmn∂lβ ∂lβ

Im = ǫkm∂kβ.

(3.6)

This implies

4I2 − 2 ∂mβnk ∂nβmk − ∂mβnk ∂mβnk = 0, (3.7)

– 10 –
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which is identically satisfied in the dimension chosen. To get to explicit solutions of these

equations one has to consider the Minkowski and Euclidean cases separately. Let us start

with the former, where α = +1 and we define ǫ01 = 1. This gives the following equations

ββ̈ + β̇2 = 0,

ββ̇′ + β̇β′ = 0,

ββ′′ + β′2 = 0.

(3.8)

The first equation implies β(t, x) = ±
√

a(x)t+ b(x), from the second equation one con-

cludes a′(x) = 0 and from the third one that b′′(x) = 0. Altogether this gives the following

general solution of the above equations

β(t, x) = ±
√
at+ bx+ c, (3.9)

where a, b, c are constant parameters.

For the Euclidean case one has α = −1 and the equations become

β∂11β + (∂1β)
2 = 0,

β∂12β + ∂1β∂2β = 0,

β∂22β + (∂2β)
2 = 0.

(3.10)

Following the same steps as above one obtains a similar solution

β(x1, x2) = ±
√

ax1 + bx2 + c. (3.11)

Altogether the solutions for the Minkowski and Euclidean cases can be written as

β = ±
√

kmxm + c, (3.12)

where km is a constant vector in two dimensions.

Performing the open/closed string map, we obtain the following deformation of the

initial flat background

g =
1

c+ kpxp
η, b = ±

√
kmxm + c− 1

c+ kmxm

[

0 −1

1 0

]

, e−2(φ−φ0) = |c+ kmxm|. (3.13)

This b-field is trivial and can be written as a pure gauge bmn = ∂[mαn] with

αm = ∓4
ǫmnk

n

k2

[

√

c− 1 + kpxp + arctan
(
√

c− 1 + kpxp
)

]

. (3.14)

The background itself is conformally flat and in general is non-trivial.

It is important to note, that the obtained deformation is not of the Yang-Baxter class

and cannot be represented in the form of the bi-Killing ansatz. In order to recover a bi-

Killing βmn, one would need to solve the β-supergravity version of generalised supergravity

equations, since Im = ∇nβ
nm 6= 0. This example illustrates, that the described approach

is able to produce deformations of a very general class.
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Deformations with non-vanishing Im. The proof here has been restricted to the

case Im = ∇kβ
km = 0. We know, however, that CYBE similarly arises from generalised

supergravity equations of motion after the open/closed string map, if Im is non-zero. In

principle one could seek to find a generalisation of β-supergravity, such that the open/closed

string map would take this new theory to generalised supergravity.

The generalised supergravity field equations can be obtained from the usual ones by

replacing

∂mφ → Xm = ∂mφ+ (g − b)mnI
n = ∂mφ+ (g − b)mn∇kβ

kn. (3.15)

However, the natural conjecture that the same replacement can be done in the β-super-

gravity field equations does not result in correct equations of motion, e.g. one cannot

reproduce the bi-Killing ansatz for βmn by solving them. Hence, a more subtle deformation

of equations of motion of beta-supergravity needs to be found, which is still an open

question. An earlier generalisation of the DFT to include generalised supergravity has

appeared in [38, 39].

Deformations of backgrounds with non-zero b-field. As was already discussed, β-

supergravity descends from the DFT after a special parametrisation of degrees of freedom

of the generalised metric is chosen. This choice of parametrisation allows to consider

deformations of backgrounds with non-vanishing b-field using the same approach as above.

Consider generalised vielbein EM
A ∈ O(d, d) that includes both the 2-form Kalb-

Ramond field bmn and the bivector βmn. The generalised vielbein can be represented

as a product of the following

EA
M = (E0)

A
N (O1)

N
K(O2)

K
M ,

E′A
M = (E0)

A
N (O2)

N
K(O1)

K
M ,

(3.16)

where the matrices E0 and O1,2 are given by

E0 =

[

eam 0

0 enb

]

, O1 =

[

δmk −βml

0 δln

]

, O2 =

[

δkp 0

−Blp δql

]

. (3.17)

Naively, the corresponding generalised metric contains more degrees of freedom than the

conventional generalised metric of DFT. However, equating generalised metric in each

of these parametrizations to generalised metric in the conventional parametrization, one

obtains the following simple field redefiniton rules respectively

(G−1 + β)−1 +B = g + b,

(G−B)−1 − β = (g − b)−1.
(3.18)

The Double Field Theory equations of motion for these parametrizations provide a natural

framework for generating deformations of backgrounds with non-vanishing B.

Deformations of d = 11 backgrounds within exceptional field theory. For back-

grounds of d = 10 supergravity one introduces the deformation parameter β and then

performs the open/closed string map

(G−1 + β)−1 = g + b. (3.19)

– 12 –
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This map, when understood as a change of frame in supergravity, imposes the CYBE as

a consistency condition on the parameter β, which ensures that the deformed background

satisfies the field equations given that the background Gmn,Φ is a solution.

From the point of view of the double field theory these are just two different ways to

write the generalised metric HMN , which is an element of the coset O(d, d)/O(d)×O(d).

The same idea can be applied to solutions of d = 11 supergravity. In this case one

should employ the generalised metric of exceptional field theory [40, 41], which transforms

under U-duality and contains fields gµν , Cµνρ, Cµνρσκ, . . . . Acting in a similar fashion

one can change the frame by a U-duality rotation, so as to have Gµν ,Ω
µνρ,Ωµνρσκ, . . .

as the fundamental degrees of freedom. Imposing that the metric Gµν be a solution to

the conventional d = 11 equations of motion, the parameters Ω are deformations which

generalise the non-commutativity parameter β. One could speculate that a tri-Killing

ansatz will be appropriate,

Ωmnk = ka
mkb

nkc
kρabc, (3.20)

with some totally antisymmetric tensor ρabc. We remark that recently a tri-vector super-

gravity deformations have been considered in the framework of generalised geometry [42].

Substituting this deformation back into the equations of motion of exceptional field theory

in the Ω-frame, and assuming the d = 11 supergravity equations of motion for the original

background, will result in some algebraic equations for the ρ-tensor. The significance and

nature of these equations at present can be debated, but functionally they arise in the same

manner, as the CYBE in the case of d = 10 deformations. Detailed investigation of this

and related issues is a promising direction for the future work.
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[2] I. Bakhmatov, E. Ó Colgáin, M.M. Sheikh-Jabbari and H. Yavartanoo, Yang-Baxter

Deformations Beyond Coset Spaces (a slick way to do TsT), JHEP 06 (2018) 161

[arXiv:1803.07498] [INSPIRE].

– 13 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.98.021901
https://arxiv.org/abs/1710.06784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06784
https://doi.org/10.1007/JHEP06(2018)161
https://arxiv.org/abs/1803.07498
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.07498


J
H
E
P
0
1
(
2
0
1
9
)
1
4
0

[3] M. Jimbo, Introduction to the Yang-Baxter Equation, Int. J. Mod. Phys. A 4 (1989) 3759

[INSPIRE].

[4] T. Matsumoto and K. Yoshida, Integrable deformations of the AdS5 × S5 superstring and the

classical Yang-Baxter equation — Towards the gravity/CYBE correspondence,

J. Phys. Conf. Ser. 563 (2014) 012020 [arXiv:1410.0575] [INSPIRE].

[5] T. Matsumoto and K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter

equation — towards the gravity/CYBE correspondence, JHEP 06 (2014) 135

[arXiv:1404.1838] [INSPIRE].

[6] N. Seiberg and E. Witten, String theory and noncommutative geometry,

JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].
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[21] T. Araujo, E. Ó Colgáin, Y. Sakatani, M.M. Sheikh-Jabbari and H. Yavartanoo, Holographic

integration of T T̄ & JT̄ via O(d, d), arXiv:1811.03050 [INSPIRE].

[22] B. Hoare and A.A. Tseytlin, Type IIB supergravity solution for the T-dual of the η-deformed

AdS5 × S5 superstring, JHEP 10 (2015) 060 [arXiv:1508.01150] [INSPIRE].

[23] D. Orlando, S. Reffert, J.-i. Sakamoto and K. Yoshida, Generalized type IIB supergravity

equations and non-Abelian classical r-matrices, J. Phys. A 49 (2016) 445403

[arXiv:1607.00795] [INSPIRE].

[24] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the

η-deformed AdS5 × S5 superstring, T-duality and modified type-II equations,

Nucl. Phys. B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].

[25] L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d

supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].

[26] R. Borsato and L. Wulff, Non-abelian T-duality and Yang-Baxter deformations of

Green-Schwarz strings, JHEP 08 (2018) 027 [arXiv:1806.04083] [INSPIRE].
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[29] D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for

non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

[30] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for

non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].
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