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In quadratic-order degenerate higher-order scalar–tensor (DHOST) theories compatible with gravitational-
wave constraints, we derive the most general Lagrangian allowing for tracker solutions characterized 
by φ̇/H p = constant, where φ̇ is the time derivative of a scalar field φ, H is the Hubble expansion 
rate, and p is a constant. While the tracker is present up to the cubic-order Horndeski Lagrangian 
L = c2 X − c3 X (p−1)/(2p)�φ, where c2, c3 are constants and X is the kinetic energy of φ, the DHOST 
interaction breaks this structure for p �= 1. Even in the latter case, however, there exists an approximate 
tracker solution in the early cosmological epoch with the nearly constant field equation of state wφ =
−1 − 2pḢ/(3H2). The scaling solution, which corresponds to p = 1, is the unique case in which all the 
terms in the field density ρφ and the pressure Pφ obey the scaling relation ρφ ∝ Pφ ∝ H2. Extending 
the analysis to the coupled DHOST theories with the field-dependent coupling Q (φ) between the scalar 
field and matter, we show that the scaling solution exists for Q (φ) = 1/(μ1φ + μ2), where μ1 and μ2
are constants. For the constant Q , i.e., μ1 = 0, we derive fixed points of the dynamical system by using 
the general Lagrangian with scaling solutions. This result can be applied to the model construction of 
late-time cosmic acceleration preceded by the scaling φ-matter-dominated epoch.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

There have been numerous attempts to modify or extend Gen-
eral Relativity (GR) at large distances [1–6]. One of such motiva-
tions is to explain the observational evidence of late-time cosmic 
acceleration by introducing a new ingredient beyond the scheme of 
standard model of particle physics. The simple candidate for such a 
new degree of freedom (DOF) is a scalar field φ [7–13], which has 
been widely exploited to describe the dynamics of dark energy.

The theories in which the scalar field is directly coupled to 
gravity (with two tensor polarized DOFs) are generally called 
scalar–tensor theories [14,15]. It is known that Horndeski theories 
[16] are the most general scalar–tensor theories with second-order 
equations of motion [17–19]. The second-order property ensures 
the absence of an Ostrogradsky instability [20] associated with a 
linear dependence of the Hamiltonian arising from extra DOFs.
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Horndeski theories can be extended to more general theoretical 
schemes without increasing the number of propagating DOFs [21]. 
For example, Gleyzes–Langlois–Piazza–Vernizzi (GLPV) expressed 
the Horndeski Lagrangian in terms of scalar quantities arising in 
the 3+1 decomposition of spacetime [22] and derived a beyond-
Horndeski Lagrangian without imposing two conditions Horndeski 
theories obey [23]. The Hamiltonian analysis in the unitary gauge 
showed that the GLPV theories do not increase the number of 
DOFs relative to those in Horndeski gravity [24–26].

One can further perform a healthy extension of Horndeski the-
ories by keeping one scalar and two tensor DOFs. Even if Euler–
Lagrange equations contain derivatives higher than second order 
in the scalar field and the metric, it is possible to maintain the 
same number of propagating DOFs by imposing the so-called de-
generacy conditions of their Lagrangians [27–31]. They are dubbed 
degenerate higher-order scalar–tensor (DHOST) theories, which en-
compass GLPV theories as a special case. The absence of an extra 
DOF was confirmed by the Hamiltonian analysis [26,28] as well as 
by the field definition linking to Horndeski theories [29,30,32].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2019.01.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:shinji@rs.kagu.tus.ac.jp
https://doi.org/10.1016/j.physletb.2019.01.009
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2019.01.009&domain=pdf


168 N. Frusciante et al. / Physics Letters B 790 (2019) 167–175
The DHOST theories contain the products of covariant deriva-
tives of the field which are quadratic and cubic in ∇μ∇νφ, say, 
(�φ)2 and (�φ)3, respectively. If we apply the DHOST theories 
to dark energy and adopt the bound of the speed ct of gravita-
tional waves constrained from the GW170817 event [33] together 
with the electromagnetic counterpart [34], the Lagrangians consis-
tent with ct = 1 (in the unit where the speed of light is equiva-
lent to 1) are up to quadratic in ∇μ∇νφ with one of the terms 
vanishing (A1 = 0) [35] among six coefficients of derivative in-
teractions. From the degeneracy conditions there are three con-
straints among the other five coefficients [36–38], so we are left 
with two quadratic-order free functions. If we take into account 
the decay of gravitational waves to dark energy [39], we have 
an additional constraint on the quadratic-order Lagrangian.1 Hence 
there is one free DHOST interaction containing the term B4(φ, X)R
(where R is the Ricci scalar) besides the Horndeski Lagrangian 
L = G2(φ, X) − G3(φ, X)�φ up to cubic order.

If we apply shift-symmetric Horndeski theories to dark energy, 
there are self-accelerating solutions preceded by a constant tracker 
equation of state wφ with φ̇ ∝ H p (p is a constant). For example, 
the covariant Galileon [41,42] gives rise to the value wφ = −2 with 
p = −1 during the matter era [43,44], but it is disfavored from 
the joint data analysis of supernovae type Ia, cosmic microwave 
background, and baryon acoustic oscillations [45]. The extended 
Galileon proposed in Ref. [46] can accommodate the tracker equa-
tion of state wφ closer to −1, in which case the model can be 
consistent with the observational data [47]. In DHOST theories, 
(approximate) tracker solutions were found for particular models 
[38,48], but the general conditions for its existence have been un-
known.

In Horndeski theories, there is a special kind of tracker called 
the scaling solution [49–62] along which the field density ρφ is 
proportional to the background matter density ρm . If the scalar 
field has a constant coupling Q with matter, the scaling solu-
tion satisfying the relation φ̇ ∝ H exists for the cubic-order Horn-
deski Lagrangian L = X g2(Y ) − g3(Y )�φ, where g2, g3 are arbi-
trary functions of Y = Xeλφ (λ is a constant) [63]. In this case, it 
is possible to construct viable dark energy models with a scaling 
φ-matter dominated epoch (φMDE). In DHOST theories, the condi-
tions for realizing the scaling solution were not derived yet.

In this paper, we will derive the Lagrangian allowing for track-
ing and scaling solutions in DHOST theories compatible with ob-
servational constraints of gravitational waves. We impose the con-
dition φ̇ ∝ H p by assuming that the quantity h = −Ḣ/H2 is 
nearly constant. For p �= 1, we show the existence of approxi-
mate tracker solutions characterized by the field equation of state 
wφ � −1 + 2ph/3 in the early cosmological epoch. The scaling so-
lution with the power p = 1 is the special case in which the exact 
scaling behavior of the field density (ρφ ∝ ρm ∝ H2) can be re-
alized without assuming the dominance of ρm over ρφ . We also 
extend the analysis to the case in which a field-dependent cou-
pling Q (φ) between φ and matter is present and obtain the most 
general Lagrangian allowing for scaling solutions.

This paper is organized as follows. In Sec. 2, we derive the back-
ground equations of motion in DHOST theories in the presence of 
the field-dependent coupling Q (φ) with matter. In Sec. 3, we con-
strain the forms of DHOST Lagrangians allowing for the existence 
of tracker and scaling solutions for Q = 0. In Sec. 4, we obtain 
the most general Lagrangian with scaling solutions for the field-

1 This assumes that the effective theories of dark energy are valid up to 
the energy scale corresponding to the gravitational-wave frequency observed by 
LIGO/Virgo ( f ∼ 100 Hz) [40].
dependent coupling Q (φ) and also derive the fixed points of the 
dynamical system for constant Q . Sec. 5 is devoted to conclusions.

2. Background equations in DHOST theories

Let us consider the quadratic-order DHOST theories given by 
the action [27–31]:

S =
∫

d4x
√−g

(
R

2
+ L

)
+ Sm

(
φ, gμν

)
, (2.1)

where g is the determinant of metric tensor gμν , R is the Ricci 
scalar, and

L = G2(φ, X) − G3(φ, X)�φ + B4(φ, X)R + A4(φ, X)Z . (2.2)

Here, we use the unit where the reduced Planck mass Mpl is 
equivalent to 1. The functions G2, G3, B4, A4 depend on φ and 
X = −∇μφ∇μφ/2, with the covariant derivative operator ∇μ and 
the d’Alembert operator � = ∇μ∇μ . The quantity Z is defined by

Z = ∇μφ∇νφ∇μ∇ρφ∇ρ∇νφ . (2.3)

The function A4 is related to B4 according to

A4 = 3B2
4,X

1 + 2B4
, (2.4)

with the notation B4,X ≡ ∂ B4/∂ X . The full DHOST theories con-
tain the other four Lagrangians L1 = A1(φ, X)∇μ∇νφ∇μ∇νφ, 
L2 = A2(φ, X) (�φ)2, L3 = A3(φ, X) (�φ)∇μφ∇νφ∇μ∇νφ, and 
L5 = A5(φ, X)(∇μφ∇νφ∇μ∇νφ)2. Requiring that the speed ct of 
gravitational waves is equivalent to 1, it follows that A1 = 0 [35]. 
The degeneracy conditions constrain the coupling A2 to be 0 and 
the functions A3 and A5 are related to each other according to 
A5 = −2A3(B4,X + A3 X)/(1 + 2B4). To avoid the decay of gravi-
tational waves to dark energy perturbations [39], these functions 
are constrained to be A3 = 0 = A5. On using the other degeneracy 
condition, we end up with the Lagrangian (2.2) with the particular 
relation (2.4).

The theory (2.2) can be also obtained from the cubic-order 
Horndeski Lagrangian L = P (φ, X) + Q (φ, X)�φ + f (φ)R af-
ter performing an invertible conformal transformation gμν →
C(φ, X)gμν [39]. We also note that the GLPV theories [23] cor-
respond to A3 = −A4 = −B4,X/X �= 0 and A5 = 0, so they do not 
belong to the Lagrangian (2.2). In other words, the GLPV theories 
do not satisfy the bound arising from the decay of gravitational 
waves to dark energy.

For the matter action Sm , we consider a barotropic perfect fluid 
which can be coupled to the scalar field φ. In scalar–tensor the-
ories without vector propagating DOFs, the matter sector can be 
described by the Schutz–Sorkin action [63–68]:

Sm = −
∫

d4x
[√−g ρm (n, φ) + Jμ∇μ�

]
, (2.5)

where the matter density ρm depends on the fluid number den-
sity n as well as on φ. The four vector Jμ is related to n, as 
n = √

Jμ Jν gμν/g , and � is a scalar quantity. We define the cou-
pling between φ and matter, as

Q (φ) ≡ ρm,φ

ρm
, (2.6)

where ρm,φ ≡ ∂ρm/∂φ.
To study the background cosmological dynamics, we consider 

a flat Friedmann–Lemaître–Robertson–Walker spacetime given by 
the line element
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ds2 = −N2(t̂)dt̂2 + a2(t̂)δi jdxidx j , (2.7)

where N(t̂) is a lapse, and a(t̂) is a scale factor. The Lagrangian in 
the action (2.1) is given by

L = G2 + (
φ̈ + 3Hφ̇

)
G3 + 6

(
2H2 + Ḣ

)
B4

− 3B2
4,X

1 + 2B4
φ̇2φ̈2, (2.8)

with 
√−g = Na3 and H ≡ ȧ/a, where a dot represents the deriva-

tive with respect to t ≡ ∫
Ndt̂ .

For the matter sector, the temporal component of Jμ is related 
to the background number density n0, as J 0 = n0a3, so the matter 
action is expressed as

Sm = −
∫

d4x a3
[

Nρm(n0, φ) + n0
d�

dt̂

]
. (2.9)

The variations of Sm with respect to n0 and � lead to �̇ = −ρm,n , 
where ρm,n ≡ ∂ρm/∂n, and

ṅ0 + 3Hn0 = 0 , (2.10)

respectively.
Varying the total action (2.1) with respect to N and a, we obtain 

the modified Friedmann equations:

3H2 = ρφ + ρm , (2.11)

2Ḣ + 3H2 = −Pφ − Pm . (2.12)

Here, ρφ and Pφ correspond to the field density and pressure de-
fined, respectively, by

ρφ = φ̇2G2,X − G2 − φ̇2 (
G3,φ − 3Hφ̇G3,X

) − 6H2 B4

−6Hφ̇
(

B4,φ + Hφ̇B4,X + φ̇2 B4,Xφ

)
+ 3

φ̇
B1 (1 + 2B4)

[
2

...
φB1 + 2Hφ̈ (3B1 − 1) − 3

φ̇
φ̈2 B1

]

+6B1(1 + 2B4)
(

Ḣ + 3H2
)

+6Hφ̇
[
2B1 B4,φ + B1,φ(1 + 2B4)

]
+6B1

[
B1φ̈

2 B4,X + 2B1φ̈B4,φ

+(1 + 2B4)φ̈
(
φ̈B1,X + 2B1,φ

)]
, (2.13)

Pφ = G2 − φ̇2 (
G3,φ + φ̈ G3,X

) + 2B4

(
2Ḣ + 3H2

)
+ 4Hφ̇B4,φ

+2φ̈
(

B4,φ + 2Hφ̇B4,X
) + 2φ̇2 (

B4,φφ + φ̈B4,Xφ

)
+ φ̈2

φ̇2

[
2φ̇2 B1,X (1 + 2B4) + 2B1

(
2φ̇2 B4,X − 1 − 2B4

)
−3B2

1 (1 + 2B4)
]
+ 4φ̈B1 B4,φ

+ 2

φ̇
(1 + 2B4)

(
B1,φφ̇φ̈ + B1

...
φ
)

, (2.14)

where

B1 ≡ 2X B4,X

1 + 2B4
, (2.15)

Pm ≡ n0ρm,n − ρm , (2.16)

with X = φ̇2/2. If B4 depends on φ alone, both A4 and B1 vanish. 
In this case, the Lagrangian (2.2) reduces to a sub-class of Horn-
deski theories. Thus, the dimensionless variable B1 characterizes 
the deviation from Horndeski theories.
The expressions of ρφ and Pφ derived above are valid even 
for DHOST theories with non-vanishing functions A3 and A5, in 
which case the function B1 is given by B1 = 2X(B4,X + A3 X)/(1 +
2B4) [38]. Since we are now considering the theories with A3 = 0, 
B1 is directly related to B4 according to Eq. (2.15).

On using the property ρ̇m = ρm,nṅ0 + Q (φ)ρmφ̇ and the mat-
ter pressure (2.16), the conservation (2.10) of total fluid number 
translates to

ρ̇m + 3H (1 + wm)ρm = Q (φ)ρmφ̇ , (2.17)

where wm = Pm/ρm . Varying the total action S with respect to φ, 
it follows that

ρ̇φ + 3H
(
1 + wφ

)
ρφ = −Q (φ)ρmφ̇ , (2.18)

where wφ = Pφ/ρφ . One can also derive Eq. (2.18) by taking the 
time derivative of Eq. (2.13) and using Eqs. (2.14) and (2.17).

From Eq. (2.11), the density parameters 	φ = ρφ/(3H2) and 
	m = ρm/(3H2) obey

	φ + 	m = 1 . (2.19)

From Eq. (2.12) with Eq. (2.11), we obtain

h ≡ − Ḣ

H2
= 3

2
(1 + weff) , (2.20)

where weff is the effective equation of state defined by

weff = wφ	φ + wm	m . (2.21)

We note that there are time derivatives 
...
φ in Eqs. (2.11)–(2.12) as 

well as 
....
φ and Ḧ in Eq. (2.18). As we will discuss in Sec. 4.3, 

however, the background equations reduce to the dynamical sys-
tem containing the time derivatives of φ and a up to second order 
thanks to the degeneracy conditions.

3. Tracker and scaling solutions for Q = 0

We derive the Lagrangian L allowing for the tracking solution 
satisfying

φ̇

H p
= α , (3.1)

where p and α are constants. We focus on the case

Q = 0 , (3.2)

and impose the condition

wφ = Pφ

ρφ

= constant , (3.3)

so that Pφ scales in the same way as ρφ .
The tracker solution found for covariant Galileons [43,44] corre-

sponds to p = −1, with the field equation of state wφ = −2 during 
the matter era. The scaling solution found for cubic-order Horn-
deski theories [63] corresponds to p = 1, with wφ = wm . Now, we 
are extending the analysis to a more general power p.

We take into account the canonical kinetic term X in G2 and 
search for the theories in which each term in ρφ and Pφ evolves 
in the same way as X , i.e.,

ρφ ∝ Pφ ∝ φ̇2 ∝ H2p . (3.4)

The terms associated with the couplings G2 and B4 in the La-
grangian (2.8) appear in the expressions of ρφ or Pφ . Moreover, 
the G3-dependent contributions to Eq. (2.8) reduce to the term 
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−φ̇2(G3,φ + φ̈ G3,X ) in Pφ after the integration by parts. Then, the 
Lagrangian should follow the same time dependence as ρφ and Pφ , 
i.e.,

L ∝ H2p . (3.5)

In the following, we obtain the form of the Lagrangian allowing 
for the property (3.5). Since there are terms in ρφ and Pφ which 
are absent in L, we need to confirm whether each term in ρφ and 
Pφ obeys the property (3.4) after deriving the Lagrangian satisfying 
the condition (3.5).

The relation (3.5) translates to

L̇

H L
= −2ph , (3.6)

where h is defined by Eq. (2.20). In what follows, we consider 
the case in which h is (nearly) constant. The constancy of h ex-
actly holds for scaling solutions along which both 	φ and 	m
are constant. For tracking solutions in which 	φ varies in time, 
the quantity h is approximately constant during the radiation- and 
matter-dominated epochs in which the contribution of the term 
wφ	φ to Eq. (2.20) can be negligible. The constancy of h also holds 
for the scalar-field dominated solution (	φ = 1).

In DHOST theories given by Eq. (2.2), the Lagrangian depends 
on φ, X , �φ, R , and Z . Then, we can write Eq. (3.6) in the form

∂L

∂φ

φ̇

H
+ ∂L

∂ X

Ẋ

H
+ ∂L

∂�φ

˙(�φ)

H
+ ∂L

∂ R

Ṙ

H
+ ∂L

∂ Z

Ż

H
= −2phL . (3.7)

On using the relation (3.1), the quantities associated with the time 
derivatives of φ, X , �φ = −φ̈ − 3Hφ̇, R = 6(2H2 + Ḣ), and Z =
−φ̇2φ̈2 can be expressed, respectively, as

φ̇

H
= 2ph

λ
Xn , (3.8)

Ẋ

H
= −2ph X , (3.9)

˙(�φ)

H
= −(p + 1)h�φ , (3.10)

Ṙ

H
= −2hR , (3.11)

Ż

H
= −2(2p + 1)h Z , (3.12)

where

λ ≡ 21−n phα−1/p , n ≡ p − 1

2p
. (3.13)

Substituting the Lagrangian (2.2) into Eq. (3.7) and treating A4 as 
an independent function from B4, it follows that the couplings 
G = G2, G3, B4, A4 need to separately obey the partial differential 
equations:

XG,X − 1

λ
XnG,φ − sG = 0 , (3.14)

where s is a constant given by

s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for G = G2 ,
p − 1

2p
for G = G3 ,

p − 1

p
for G = B4 ,

− p + 1

p
for G = A4 .

(3.15)

In the following, we discuss the cases p �= 1 and p = 1, separately.
3.1. Tracker solutions: p �= 1

For p �= 1 (i.e., n �= 0), the general solution to Eq. (3.14) is given 
by

G(φ, X) = X s g(Y) , (3.16)

where g is an arbitrary function of

Y = Xn + nλφ . (3.17)

Since we are now considering the case in which h = −Ḣ/H2 is 
approximately constant, the integration of this relation gives

H = 1

h(t − t0)
, (3.18)

where t0 is a constant. Then, we can integrate Eq. (3.1) to give

φ = φ0 + α

hp(1 − p)
(t − t0)

1−p , (3.19)

where φ0 is an integration constant. Since Xn = 2−nα2nh1−p(t −
t0)

1−p , it follows that Y = nλφ0 = constant. Then, the function 
g(Y) does not vary in time along the tracker solution.

Let us study whether each term in ρφ and Pφ following from 
the Lagrangian (3.16) obeys the property (3.4). First of all, the 
quadratic Lagrangian is given by G2 = X g2(Y), where g2(Y) is 
an arbitrary function of Y . Since g2(Y) does not vary in time 
along the tracker solution, the term G2 in ρφ and Pφ evolves 
as G2 ∝ X ∝ H2p . The contribution φ̇2G2,X to ρφ has the depen-
dence φ̇2G2,X = φ̇2(g2 +nXn g2,Y ), so it satisfies the property (3.4)
for g2,Y = 0, i.e., g2(Y) = c2 = constant. Hence the quadratic La-
grangian obeying the relation (3.4) is constrained to be

G2 = c2 X . (3.20)

The integrated solution to (3.14) for the cubic Lagrangian is given 
by G3 = Xn g3(Y). In order to have the relation φ̇2G3,φ ∝ φ̇2, we 
require that G3,φ = nλXn g3,Y does not change in time and hence 
g3(Y) = c3 = constant. This restricts the Lagrangian to the form

G3 = c3 X (p−1)/(2p) . (3.21)

In this case, both the terms 3Hφ̇3G3,X and −φ̇2φ̈G3,X are pro-
portional to φ̇2, so all the cubic-order contributions to ρφ and 
Pφ satisfy the relation (3.4). The cubic Galileon G3 = c3 X corre-
sponds to p = −1, in which case the tracker solution characterized 
by φ̇H = constant is present during the radiation- and matter-
dominated epochs [43,44].

The coupling B4 following from the solution (3.16) is given by 
B4 = X2nb4(Y). The term Hφ̇B4,φ in ρφ and Pφ is in propor-
tion to H3p−1b4,Y . Since we are considering the case p �= 1, this 
term is consistent with the dependence (3.4) only for b4(Y) = c4 =
constant. Then we have

B4 = c4 X (p−1)/p , (3.22)

so the function B1 defined by Eq. (2.15) yields

B1 = 4nc4 X2n

1 + 2c4 X2n
. (3.23)

The field density ρφ and the pressure Pφ contain the terms 
like H2 B4 proportional to H2p . On the other hand, there exists the 
term

B2
1(1 + 2B4)

φ̈2

˙2
= 24−nn2c2

4 p2h2α8n

2n
H4p−2 , (3.24)
φ 1 + 2c4 X
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which does not behave as ∝ H2p for p �= 1. Under the condition 
|2c4 X2n| � 1, there are also contributions to ρφ and Pφ propor-
tional to c3

4 H6p−4. If we demand the exact tracking behavior along 
which all the terms in ρφ and Pφ have the dependence ∝ H2p , we 
have c4 = 0 and hence

B4 = 0 , B1 = 0 . (3.25)

This property can be confirmed by substituting B4 = c4 X2n into 
the degeneracy condition (2.4), i.e.,

A4 = 12n2c2
4

1 + 2c4 X2n
X−2/p . (3.26)

For c4 �= 0, this is at odds with the integrated solution A4 =
X−(p+1)/pa4(Y).

Even in the case c4 �= 0, there exists an approximate tracker so-
lution in the early cosmological epoch. Provided that |2c4 X2n| � 1, 
the leading-order terms to ρφ and Pφ for p < 1 correspond to 
those proportional to H2p , which arise from the couplings G2 =
c2 X , G3 = c3 X (p−1)/(2p) as well as B4 = c4 X (p−1)/p . The existence 
of the coupling B4 = c4 X (p−1)/p gives rise to terms with the differ-
ent power-law dependence of H . The next-to-leading contributions 
to ρφ and Pφ are in proportion to H4p−2. Then, it follows that

ρφ = α1 H2p + c4

(
α2 H4p−2 + · · ·

)
, (3.27)

Pφ = β1 H2p + c4

(
β2 H4p−2 + · · ·

)
, (3.28)

where α1,2 and β1,2 are constants, and the abbreviation means 
the terms which are next order to H4p−2. Substituting Eqs. (3.27)–
(3.28) and the time derivative ρ̇φ into the continuity equation ρ̇φ +
3H(ρφ + Pφ) = 0, we can solve it for β1. On using this relation, the 
field equation of state wφ = Pφ/ρφ yields

wφ � −1 + 2

3
ph + c4

2h(p − 1)α2 H2(p−1)

3α1 + 3c4α2 H2(p−1)
, (3.29)

where we picked up the terms up to the order H4p−2 in Eqs. (3.27)
and (3.28).

For c4 = 0, we have wφ = −1 + 2ph/3. Indeed, the cubic 
Galileon corresponds to p = −1, in which case wφ = −7/3 during 
the radiation dominance (h = 2) and wφ = −2 during the mat-
ter dominance (h = 3/2) [43,44]. For general values of p, we have 
wφ = −1 + p during the matter era. In this case, for p closer to 0, 
the model can be compatible with the observational data associ-
ated with the background expansion history.

The non-vanishing coupling B4 = c4 X (p−1)/p gives rise to the 
variation of wφ . For p < 1, the terms in the parentheses of 
Eqs. (3.27) and (3.28) evolve faster than H2p , so they are sup-
pressed relative to the former in the asymptotic past. In this limit, 
we recover the tracker equation of state wφ = −1 + 2ph/3. As 
long as the terms in the parentheses of Eqs. (3.27) and (3.28)
catch up with their first terms, wφ starts to deviate from the 
tracker value −1 + 2ph/3. Thus, in the presence of the coupling 
B4 = c4 X (p−1)/p , the tracking behavior can be approximately re-
alized in the early cosmological epoch during which the terms 
proportional to H4p−2 and H6p−4 are subdominant to the H2p

contributions to ρφ and Pφ .
From Eq. (3.29), we observe that, in the limit p → 1, the field 

equation of state reduces to the tracker value wφ → −1 + 2h/3 =
weff even in the presence of the DHOST term B4 = c4 X (p−1)/p . This 
limit corresponds to the scaling solution along which wφ is equiv-
alent to wm with constant 	φ . For p = 1, the solution to Eq. (3.14)
is different from Eq. (3.16), so we discuss this case separately in 
the following.
3.2. Scaling solutions: p = 1

If p = 1, then the solution to Eq. (3.14) is given by

G(φ, X) = X s g(Y ) , (3.30)

where s is given by Eq. (3.15), and g is an arbitrary function of

Y = Xeλφ , (3.31)

and λ is a constant. Each coefficient in the Lagrangian can be writ-
ten in the form:

G2(φ, X) = X g2(Y ) , (3.32)

G3(φ, X) = g3(Y ) , (3.33)

B4(φ, X) = b4(Y ) , (3.34)

A4(φ, X) = X−2a4(Y ) . (3.35)

From the degeneracy condition (2.4), the function a4(Y ) is deter-
mined from b4(Y ), as

a4(Y ) = 3Y 2b4,Y (Y )2

1 + 2b4(Y )
. (3.36)

Unlike the case p �= 1, the Lagrangian A4 derived above is con-
sistent with the other scaling Lagrangian B4. From Eq. (2.15), the 
quantity B1 is given by

B1 = 2Y b4,Y (Y )

1 + 2b4(Y )
, (3.37)

which depends on Y alone. For the solution satisfying the condi-
tion (3.1), the scalar field evolves as

φ = φ0 + α ln a , (3.38)

where φ0 is an integration constant. Since X ∝ H2 and eλφ ∝
a2h ∝ H−2, the quantity Y remains constant. Then, the functions 
G3, B4, B1 do not vary in time in the scaling regime. On using the 
solutions (3.32)–(3.34) and (3.37) in Eqs. (2.13) and (2.14), we find 
that all the terms in ρφ and Pφ are in proportion to H2. Hence the 
background equations of motion obey the scaling property φ̇ ∝ H
for the Lagrangians (3.32)–(3.35) with (3.36).

4. Scaling Lagrangian for general field-dependent coupling Q (φ)

In Sec. 3, we showed that the power p = 1 is the special case 
in which all the terms of the background equations of motion 
scale in the same manner (ρφ ∝ Pφ ∝ H2) for Q = 0. Now, we 
extend the analysis to the field-dependent coupling Q (φ) and de-
rive the Lagrangian whose equations of motion obey the scaling 
relations ρφ ∝ Pφ ∝ H2. Since the scaling solution satisfies the re-
lation ρφ/ρm = constant, both 	φ and 	m are constant. Then, the 
effective equation of state weff and the quantity h = −Ḣ/H2 do 
not vary in time in the scaling regime.

4.1. Derivation of the scaling Lagrangian

The scaling relation ρφ/ρm = constant translates to ρ̇φ/ρφ =
ρ̇m/ρm . Then, from Eqs. (2.17) and (2.18), we have

φ̇

H
= 2h

λ̃Q (φ)
, (4.1)

where

λ̃ ≡ 2h

3	 (w − w )
. (4.2)
φ m φ
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In the scaling regime, the quantity λ̃ is constant. From Eq. (4.1), 
the field derivative has the dependence φ̇ ∝ H/Q (φ).

As we mentioned in Sec. 3, the Lagrangian L contains terms 
which are present in ρφ and Pφ . We first derive the form of L
consistent with the condition L ∝ H2 and study whether some ad-
ditional conditions are required to satisfy the scaling relations of 
each term in ρφ and Pφ . Then, the Lagrangian obeys

L̇

H L
= −2h , (4.3)

which corresponds to p = 1 in Eq. (3.7). On using Eq. (4.1), it fol-
lows that

Ẋ

H
= −2h

(
1 + 2Q ,φ

λ̃Q 2

)
X , (4.4)

˙(�φ)

H
= −2h (1 +F1)�φ , (4.5)

Ṙ

H
= −2hR , (4.6)

Ż

H
= −2h (1 +F2) Z , (4.7)

where

F1 = 2(h − 3)λ̃Q 2 Q ,φ − 4h(Q Q ,φφ − 3Q 2
,φ)

2λ̃Q 2[(h − 3)λ̃Q 2 + 2hQ ,φ] , (4.8)

F2 = 2Q 2(4λ̃Q ,φ + λ̃2 Q 2) − 4(Q Q ,φφ − 4Q 2
,φ)

λ̃Q 2(λ̃Q 2 + 2Q ,φ)
. (4.9)

Substituting the Lagrangian (2.2) into Eq. (3.7), it follows that the 
couplings G = G2, G3, B4, A4 need to separately obey the partial 
differential equations:(

1 + 2Q ,φ

λ̃Q 2

)
XG,X − 1

λ̃Q
G,φ + f (φ)G = 0 , (4.10)

where

f (φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 for G = G2 ,

F1 for G = G3 ,

0 for G = B4 ,

F2 for G = A4 .

(4.11)

The integrated solution to Eq. (4.10) is generally given by

G(φ, X) = g̃(Ỹ ) eλ̃
∫

f (φ)Q (φ)dφ , (4.12)

where g̃ is an arbitrary function of

Ỹ = Q 2(φ)Xeλ̃ψ , (4.13)

and ψ is defined by

ψ =
∫

Q (φ)dφ . (4.14)

From Eq. (4.12), each coupling is restricted to be

G2(φ, X) = X g̃2(Ỹ )Q 2(φ) , (4.15)

G3(φ, X) = g̃3(Ỹ )
Q 3(φ)

q1(φ)
, (4.16)

B4(φ, X) = b̃4(Ỹ ) , (4.17)

A4(φ, X) = X−2ã4(Ỹ )
Q 4(φ)

q2(φ)
, (4.18)
2

where g̃2, ̃g3, ̃b4, ̃a4 are arbitrary functions of Ỹ , and

q1(φ) = Q 2(φ) + 2h

λ̃(h − 3)
Q ,φ(φ) , (4.19)

q2(φ) = Q 2(φ) + 2

λ̃
Q ,φ(φ) . (4.20)

The Lagrangians G2 and G3 agree with those derived in Refs. [58]
and [63], respectively.

The couplings A4 and B4 are related to each other according to 
the degeneracy condition (2.4). On using Eqs. (4.17) and (4.18), it 
follows that Q ,φ/Q 2 = constant. This is integrated to give

Q (φ) = 1

μ1φ + μ2
, (4.21)

where μ1 and μ2 are constants. Thus, the degeneracy condition 
restricts the coupling to be of the form (4.21). In this case, both 
q1(φ) and q2(φ) are proportional to Q 2(φ). Absorbing the pro-
portionality constant into the definitions of g̃3(Ỹ ) and ã4(Ỹ ), the 
Lagrangian corresponding to the functions (4.15)–(4.18) yields

L = X g̃2(Ỹ )Q 2(φ) − g̃3(Ỹ )Q (φ)�φ

+b̃4(Ỹ )R + X−2ã4(Ỹ )Z , (4.22)

where, from the degeneracy condition (2.4), the function ã4(Ỹ ) is 
constrained to be

ã4(Ỹ ) =
3Ỹ b̃2

4,Ỹ
(Ỹ )2

1 + 2b̃4(Ỹ )
. (4.23)

From Eq. (2.15), we have

B1(φ, X) = b̃1(Ỹ ) ≡ 2Ỹ b̃4,Ỹ (Ỹ )

1 + 2b̃4(Ỹ )
, (4.24)

which depends on Ỹ alone. On using Eq. (4.1), we find that 
the quantity ψ defined by Eq. (4.14) has the dependence ψ =
(2h/λ̃) ln a + ψ0, where ψ0 is a constant. Then, we have eλ̃ψ ∝
a2h ∝ H−2 and hence Ỹ ∝ Q 2φ̇2 H−2 = constant. This means that 
the couplings B4 and B1 do not change in time in the scaling 
regime.

Exploiting Eq. (4.1) together with the property Q ,φ/Q 2 =
−μ1 = constant, it follows that

φ̈ ∝ H2

Q (φ)
,

...
φ ∝ H3

Q (φ)
. (4.25)

Moreover, the φ and X derivatives of B4 = b̃4(Ỹ ) have the depen-
dence

B4,φ ∝ Q (φ) , B4,X ∝ X−1 ,

B4,φφ ∝ Q 2(φ) , B4,Xφ ∝ Q (φ)X−1 , (4.26)

where the function B1 also satisfies similar relations. Then, all the 
terms appearing in ρφ and Pφ are in proportion to H2. We have 
thus shown that the Lagrangian (4.22) with the coupling (4.21)
ensures the existence of scaling solutions.

For the Lagrangian G2 = X g̃2(Ỹ )Q 2(φ), there exist scaling so-
lutions for any arbitrary coupling Q (φ). In theories containing 
the functions G3 and B4, however, the coupling is constrained to 
be of the form (4.21). In cubic Horndeski theories the degener-
acy conditions are absent, so the coupling Q (φ) does not seem 
to be constrained. Substituting Eq. (4.16) into the G3-dependent 
terms of ρφ and Pφ , however, they are proportional to H2 only 
for Q ,φ/Q 2 = constant. Hence we obtain the same coupling as 
Eq. (4.21) [63].
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4.2. Constant Q

If μ1 = 0, then the matter coupling (4.21) is constant (Q =
1/μ2). Since ψ = Q φ, the function (4.17) yields B4 = b̃4(Q 2Y ), 
where

λ = λ̃Q = 2hQ

3	φ(wm − wφ)
, Y = Xeλφ . (4.27)

We absorb the constant Q 2 into the new arbitrary function 
b4(Y ) = b̃4(Q 2Y ). Applying the similar procedure to the other 
functions in Eq. (4.22), the existence of scaling solutions for non-
vanishing constant Q restricts the Lagrangian to be

L = X g2(Y ) − g3(Y )�φ + b4(Y )R + X−2a4(Y )Z , (4.28)

where

a4(Y ) = 3Y 2b4,Y (Y )2

1 + 2b4(Y )
, (4.29)

with the function B1 given by Eq. (3.37). The Lagrangian (4.28)
is of the same form as the one corresponding to the functions 
(3.32)–(3.35) derived for Q = 0. Thus, we have shown that the re-
sult (4.28) is valid for both Q = 0 and non-vanishing constant Q .

4.3. Fixed points for constant Q

We derive the fixed points for the dynamical system given by 
the Lagrangian (4.28) with the application to dark energy in mind. 
The background Eqs. (2.11) and (2.12) contain the time derivatives 
Ḣ and 

...
φ , but they can be eliminated to give

f1(φ̇, φ)H2 + f2(φ̈, φ̇, φ)H + f3(φ̈, φ̇, φ)

= ρm − 3B1 Pm , (4.30)

where f1, f2, f3 are functions of their arguments. The branch with 
an expanding Universe corresponds to

H =
√

f 2
2 − 4 f1 f3 + 4 f1(ρm − 3B1 Pm) − f2

2 f1
. (4.31)

The quantity f 2
2 − 4 f1 f3 does not possess the second derivative φ̈ , 

whereas f2/(2 f1) contains the term proportional to φ̈ . Then, the 
Hubble parameter can be expressed in the form

H = A1(φ̇, φ)φ̈ +A2(φ̇, φ,ρm) , (4.32)

where Pm is related to ρm according to wm = Pm/ρm = constant. 
Taking the time derivative of Eq. (4.30) and using the continuity 
Eq. (2.17), Ḣ and 

...
φ appear again. However, they can be eliminated 

by using Eq. (2.11). The resulting equation can be combined with 
Eq. (4.30) to solve for the second-order field derivative φ̈ in the 
form

φ̈ = B1(φ̇, φ,ρm) , (4.33)

where we do not write the explicit form of B1 due to its complex-
ity. Substituting Eq. (4.33) into Eq. (4.32), it follows that the right 
hand side of Eq. (4.32) depends on φ̇ , φ, and ρm alone. Taking the 
time derivative of H and using Eq. (4.33) again, we can express Ḣ
in the form

Ḣ = B2(φ̇, φ,ρm) . (4.34)

The above discussion shows that the dynamical system is kept up 
to second order in time derivatives for both φ and a.
To derive the fixed points of DHOST theories given by the La-
grangian (4.28), it is convenient to introduce the following dimen-
sionless variables:

x ≡ φ̇√
6H

, y ≡ e−λφ/2

√
3H

, (4.35)

where the quantity Y can be expressed as Y = x2/y2. Since both x
and Y are constant along the scaling solution, y does not vary in 
time either. The variables x and y obey

x′ = x
(
εφ + h

)
, (4.36)

y′ = −y

(√
6

2
λx − h

)
, (4.37)

where εφ = φ̈/(Hφ̇) and h = −Ḣ/H2, and a prime represents a 
derivative with respect to N = ln a. The quantities εφ and h are 
known from Eqs. (4.33) and (4.34).

The fixed points of the dynamical system (4.36)–(4.37) can be 
derived by setting x′ = 0 and y′ = 0. The scaling solution obtained 
for constant Q corresponds to

−εφ = h =
√

6

2
λxc , (4.38)

where the subscript “c” represents the value on the critical point. 
Since the relations φ̈ = −√

6H2hxc and 
...
φ = 2

√
6H3h2xc hold on 

the fixed points, we substitute them into Eqs. (2.11)–(2.12) and 
solve them for g2,Y and b4, respectively. On using Eq. (4.33), the 
fixed points satisfying the condition (4.38) obey[

2(Q + λ)xc − √
6(1 + wm)

]
	m = 0 . (4.39)

There are the following two fixed points.

• (a) Scaling solution: xc =
√

6(1 + wm)

2(Q + λ)
.

This corresponds to the case in which 	φ and 	m are non-
vanishing constants. Along this solution, wφ and weff are 
given, respectively, by

wφ = wm − Q (1 + wm)

(1 − 	m)(Q + λ)
, (4.40)

weff = − Q − wmλ

Q + λ
. (4.41)

For the vanishing coupling (Q = 0), it follows that wφ =
weff = wm . In the presence of the coupling Q , the scaling so-
lution can lead to the cosmic acceleration for weff < −1/3, but 
we need |Q | to be larger than the order |λ| for achieving this 
purpose.

• (b) Scalar-field dominated point: 	m = 0.
There is another fixed point satisfying 	φ = 1. In this case, we 
have

weff = wφ = −1 +
√

6λxc

3
, (4.42)

where xc is known for given functions g2(Y ), g3(Y ), and 
b4(Y ). If λxc <

√
6/3, then the point (b) can be used for the 

late-time cosmic acceleration.

For the dynamical system (4.36)–(4.37), there exist other 
kinetic-type fixed points satisfying

yc = 0 , (4.43)
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under which Yc = x2
c /y2

c → ∞. The functions g2(Y ), g3(Y ), b4(Y )

consistent with the background equations of motion are given by

g2(Y ) =
∑
n≥0

cnY −n , (4.44)

g3(Y ) =
∑
n≥1

dnY −n , (4.45)

b4(Y ) =
∑
n≥1

enY −n , (4.46)

where cn, dn, en are constants and n is an integer. In g3(Y ), we 
do not include a constant d0 since it is just a total derivative. The 
term d̃1 ln Y can be taken into account in g3(Y ) as in Refs. [61,63]. 
Here, we do not do so since we are interested in the effect of the 
function b4(Y ) on the fixed points. A constant e0 is not included 
in b4(Y ) by reflecting the fact that this is merely a shift of the 
reduced Planck mass. We substitute Eqs. (4.44)–(4.46) and their Y
derivatives into Eqs. (2.11)–(2.12) and solve them for 	m and h. 
Plugging these relations into Eq. (4.33), we find that there are the 
following two fixed points.

• (c) φMDE.
This is characterized by

xc =
√

6

3c0(wm − 1)
Q , (4.47)

with

wφ = 1 , (4.48)

weff = wm − 2Q 2

3c0(wm − 1)
, (4.49)

	φ = 2Q 2

3c0(wm − 1)2
. (4.50)

The constant en (n ≥ 1) in b4(Y ) does not modify the values 
of wφ , weff, and 	φ of the standard φMDE [69]. For wm = 0, 
we have weff = 	φ = 2Q 2/(3c0). Provided that |Q | � 1, the 
φMDE can replace the standard matter era.

• (d) Purely kinetic point.
There exists another kinetic point satisfying

xc = ±
√

1

c0
, (4.51)

with

wφ = 1 , weff = 1 , 	φ = 1 . (4.52)

This can be used for neither radiation/matter eras nor the cos-
mic acceleration.

In cubic-order Horndeski theories, it was shown in Ref. [63]
that there exist viable dark energy models with the φMDE fol-
lowed by the fixed point (b). In the presence of the coupling b4(Y )

of the form (4.46), it is of interest to study in detail how the cos-
mological dynamics and the evolution of perturbations are subject 
to change compared to cubic-order Horndeski theories.

5. Conclusions

In this paper, we considered quadratic-order DHOST theories 
satisfying degeneracy conditions to avoid the Ostrogradsky insta-
bility, the constraint on the speed of gravitational waves, and the 
bound on the decay of gravitational waves to dark energy pertur-
bations. The Lagrangian of this class is given by Eq. (2.2), where A4
is related to B4 according to Eq. (2.4). We derived the most gen-
eral Lagrangians that are able to reproduce separately tracking and 
scaling behaviors under the condition that h = −Ḣ/H2 is approxi-
mately constant. In the absence of coupling Q between the scalar 
field and matter, we obtained the Lagrangian of tracking solutions 
satisfying the conditions L ∝ H2p and φ̇ ∝ H p . In particular, the 
scaling behavior corresponds to the choice p = 1.

In Sec. 3.1, we showed that, for Q = 0, the exact tracker so-
lution exists up to the cubic-order Horndeski Lagrangian with 
the functions G2 = c2 X and G3 = c3 X (p−1)/(2p) . We verified that 
these contributions to the background equations obey the rela-
tions ρφ ∝ Pφ ∝ H2p . In the presence of the DHOST Lagrangian, 
we found that the function B4 = c4 X (p−1)/p leads to the approxi-
mate tracker solution at early times when the terms proportional 
to H2p (with p < 1) are the dominant contributions to ρφ and Pφ . 
At late times, the other terms in ρφ and Pφ , which grow faster 
than H2p , give rise to a variation in the field equation of state wφ . 
For p = 1, we found that the exact scaling solution can be realized 
by the DHOST Lagrangian given by Eqs. (3.32)–(3.35) with (3.36).

In Sec. 4, we extended the analysis of scaling solutions to the 
case of a field-dependent coupling Q (φ). The most general La-
grangian with scaling solutions is of the form (4.22), with ã4(Ỹ )

related to b̃4(Ỹ ) according to Eq. (4.23). We showed that the 
degeneracy condition (2.4) fixes the form of the coupling to be 
Q (φ) = 1/(μ1φ + μ2), including the constant Q as a special case. 
Indeed, we verified that all the terms in ρφ and Pφ are in propor-
tion to H2. The coupling Q (φ) can be arbitrary for the quadratic 
Lagrangian L = X g̃2(Ỹ )Q 2(φ) alone, but the existence of cubic and 
quartic Lagrangians restricts the coupling to be of the above form 
to satisfy the scaling property of each term in ρφ and Pφ (as 
shown in Ref. [63] for the cubic Lagrangian).

For a non-vanishing constant Q , the Lagrangian with scaling 
solutions reduces to the form (4.28) with (4.29), which matches 
with the result found for Q = 0 in Sec. 3.2. In Sec. 4.3, we de-
rived the fixed points of the dynamical system described by this 
Lagrangian. In particular, we obtained four fixed points: (a) a scal-
ing critical point, (b) a scalar-field dominated point, (c) a φMDE 
point, and (d) a purely kinetic critical point. The points (c) and 
(d) arise for the models given by the functions (4.44)–(4.46). The 
point (a) is unlikely to be responsible for the late-time cosmic ac-
celeration with weff close to −1 because one would need a large 
value for the coupling |Q |, while the observations of tempera-
ture anisotropies in cosmic microwave background place the upper 
bound |Q | < O(0.1) [70]. On the other hand, the other scaling 
point (c) can replace the standard matter era. Moreover, the point 
(b) can be used for driving the cosmic acceleration.

It would be of interest to apply the Lagrangians with tracking 
and scaling solutions to the construction of concrete dark energy 
models. In particular, one can investigate whether there exists a 
viable cosmology allowing for the φMDE point (c) followed by the 
accelerated point (b) without ghost and Laplacian instabilities. In 
such a case, one can explore the differences with the dark energy 
model in cubic-order Horndeski theories where a viable cosmologi-
cal sequence exists [63]. The analysis of cosmological perturbations 
is also important to compare those models with the observations 
associated with the cosmic growth history.
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