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2Departamento de Fı́sica and Mestrado Profissional em Práticas da Educação Básica (MPPEB), Colégio Pedro II,
20.921-903 - Rio de Janeiro-RJ, Brazil
3Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, 21.941-972 - Rio de Janeiro-RJ, Brazil

Correspondence should be addressed to Henrique Boschi-Filho; hboschi@gmail.com

Received 26 July 2018; Revised 22 December 2018; Accepted 30 December 2018; Published 13 January 2019

Academic Editor: George Siopsis

Copyright © 2019 Rodrigo C. L. Bruni et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The publication of this article was funded by SCOAP3.

In this work we calculate the static limit of the energy for a quark-antiquark pair from the Nambu-Goto action using a holographic
approach with a deformed AdS space, with warp factor exp{(𝜅𝑧)𝑛/𝑛}. From this energy we derive the Cornell potential for the
quark-antiquark interaction. We also find a range of values for our parameters which fits exactly the Cornell potential parameters.
In particular, setting the zero energy of the Cornell potential at 0.33 fermi, we find that 𝜅 = 0.56 GeV and 𝑛 = 1.3.

1. Introduction

The quark-antiquark potential has been a very useful tool
for the investigation of strong interactions and quark con-
finement. This potential can be used, for example, to analyze
the transition between the confined and deconfined phases of
matter (see, for instance, [1]).

Recently, efforts have been made to obtain the quark-
antiquark potential [2–11] using the well-known AdS-CFT
correspondence. For another approach using effective string
theory, see, for instance, [12]. This correspondence was
originally formulated as a mapping of correlation functions
of a superconformalN = 4 Yang-Mills theory defined on the
boundary of the AdS space and a string theory living in its
bulk. It works in such a way that a strongly coupled regime
on the boundary theory is mapped into a weakly coupled one
in the bulk [13–17].

However, since the original formulation of the correspon-
dence is based on a conformal field theory, which has no
characteristic scale, the confining behavior of the potential is
not contemplated once confinement implies a typical length
scale.

In order to describe both the confining and nonconfining
behaviors, it becomes necessary to break the conformal
invariance of the theory. There are various ways of doing so

butwemention just two of them: the hardwall [18–24] and the
softwall [25–28] models which break conformal invariance
introducing a cutoff in the action. Inspired by [6], here we
break the conformal invariance modifying the background
metric instead of the bulk action. So the metric is given by

𝑑𝑠2 = 𝑔𝑚𝑛𝑑𝑋𝑚𝑑𝑋𝑛 = 𝑅2
𝑧2 ℎ (𝑧) (𝑑𝑥𝑖𝑑𝑥𝑖 + 𝑑𝑧2) , (1)

where 𝑅 is the AdS radius, 𝑚, 𝑛 = 0, 1, 2, 3, 𝑧, where 𝑧 is the
holographic coordinate while 𝑥𝑖 with 𝑖 = 0, 1, 2, 3 represents
an Euclidean space in four dimensions. The warp factor that
we consider here in this work is given by

ℎ (𝑧) = exp {1𝑛 (𝜅𝑧)𝑛} , (2)

in which 𝜅 has dimensions of inverse length and 𝑛 is a
dimensionless number.Wewill keep these constants arbitrary
until Section 3, wherewe relate our results to phenomenology
of the quark-antiquark potential. Note that, if we restrict 𝑛 =2, we reobtain the results of [6].

The main goal of this work is to calculate the energy con-
figuration for a quark-antiquark pair from the Nambu-Goto
action using a holographic approach within the deformed
metric (1) with the warp factor given by (2). From this energy
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we will obtain the Cornell potential [29–33] (for excellent
reviews of the Cornell potential see [34, 35]):

𝑉 (ℓ) = −𝜉ℓ +
ℓ
𝑎2 + 𝐶, (3)

and also find a range of values for the parameters 𝜅 and 𝑛
which describe ℎ(𝑧) in order to fit this potential.

This work is organised as follows. In Section 2, using the
warp factor exp{(𝜅𝑧)𝑛/𝑛}, we compute the separation and the
energy of the quark-antiquark pair using the Wilson loop
from the AdS/CFT correspondence. In Section 3, we discuss
the matching of our parameters 𝜅 and 𝑛 to fit the Cornell
potential. Finally, in Section 4, we present our comments and
conclusions.We also include an appendixwherewe give some
details of the calculation of the energy and the separation
distance of the string.

2. The Wilson Loop and the Quark Potential

The starting point of our calculations involves the Wilson
loop. For convenience we choose one circuit corresponding
to a rectangular spacetime loop with temporal extension 𝑇
and spatial extension ℓ in the association with the area of the
string worldsheet that lives in theAdS space, whose boundary
is just the flat spacetime in 4 dimensions where the loop is
defined [2, 3].

So, following this prescription, we just have to calculate
the Nambu-Goto action of a string with the endpoints
(identified as the quark and antiquark) fixed at 𝑧 = 0,
assuming a “U-shape” equilibrium configuration in the bulk
of deformed AdS.

Assuming also that the string configuration is, by hypoth-
esis, static, i.e., it moves in the interior of the deformed
AdS without change in its shape, one can show that the
interquark separation and energy for the type of metric (1)
are, respectively, given by (see the appendix for details)

ℓ = 2∫𝑧0
0

𝑧2
𝑧20
ℎ (𝑧0)ℎ (𝑧)

1
√1 − (ℎ (𝑧0) /ℎ (𝑧))2 (𝑧4/𝑧40)

𝑑𝑧, (4)

𝐸 = 1
𝜋𝛼󸀠 ∫

𝑧0

0

𝑅2
𝑧2 ℎ (𝑧)

1
√1 − (ℎ (𝑧0) /ℎ (𝑧))2 (𝑧4/𝑧40)

𝑑𝑧. (5)

Note that 𝑧0 is the minimum of the 𝑧 coordinate and
corresponds to the bottom of the U-shape curve.

The form of (4) and (5) is very convenient because it
makes explicit that the expressions of energy and separation
distance depend only on thewarp factor chosen for themetric
and the value of 𝑧0.

It is useful to rewrite the integrals (4) and (5) in terms of
a dimensionless variable. If we define V fl 𝑧/𝑧0, the integrals
become

ℓ = 2𝑧0 ∫
1

0

ℎ (1)
ℎ (V) V2 [1 − (

ℎ (1)
ℎ (V))

2

V4]
−1/2

𝑑V. (6)

𝐸 = 𝑅2
𝜋𝛼󸀠

1
𝑧0 ∫
1

0
ℎ (V) V−2 [1 − (ℎ (1)ℎ (V) )

2

V4]
−1/2

𝑑V, (7)

which makes explicit the dimensions of ℓ and 𝐸 since the
integrals are now dimensionless, and where we identifyℎ(V) ≡ ℎ(𝑧). Note also that the ratio 𝑅2/𝜋𝛼󸀠 is dimensionless.

Now we introduce the dimensionless parameter 𝜆 fl(𝜅𝑧0)𝑛 such that (6) and (7) become

ℓ = 2𝜆1/𝑛𝜅 ∫1
0
V2𝑒(𝜆/𝑛)(1−V𝑛) (1 − 𝑒(2𝜆/𝑛)(1−V𝑛)V4)−1/2 𝑑V, (8)

𝐸 = 𝑅2
𝜋𝛼󸀠

𝜅
𝜆1/𝑛 ∫

1

0
𝑒(𝜆/𝑛)V𝑛V−2 (1 − 𝑒(2𝜆/𝑛)(1−V𝑛)V4)−1/2 𝑑V, (9)

where 𝜅 has the dimension of energy. Let us analyze the above
expressions when 𝜆 ≈ 0 and 𝜆 ≈ 2, which are the interesting
physical limits since for 𝜆 󳨀→ 0 one has ℓ 󳨀→ 0, while for𝜆 󳨀→ 2 one has ℓ 󳨀→ ∞, as we are going to discuss below.

2.1. Calculation of ℓ
2.1.1. 𝜆 Close to Zero. If we express the integrand in (8) as
a power series in 𝜆 centered at zero, to first order in 𝜆, and
integrate it, we obtain

𝐼 (𝜆, 𝑛)
= −√𝜋2𝑛 (Γ (3/4) (𝜆 − 2𝑛)Γ (1/4) − 𝜆Γ ((𝑛 + 3) /4)Γ ((𝑛 + 1) /4) ) ,

(10)

where the above result is valid only if 𝑛 > −3; otherwise the
integral does not converge.

Substituting this result in (8) and grouping terms propor-
tional to 𝜆, one finds
ℓ = 1

𝜌0
𝜆1/𝑛
𝜅 {1 − 𝜆

2𝑛 [1 − 𝐹 (𝑛) 𝜋𝜌0]} + O (𝜆2) ;
(𝜆 ≈ 0) .

(11)

Here we have defined the dimensionless number 1/𝜌0 fl
(2𝜋)3/2/Γ2(1/4) and function 𝐹(𝑛) fl (2/√𝜋)(Γ((3 +𝑛)/4)/Γ((1 + 𝑛)/4)).
2.1.2. 𝜆 Close to 2. If we repeat the procedure of last
subsection for 𝜆 now centered at 2, we will not be able
to achieve an analytic expression for the integral. We note
however that the integral of (8) is dominated by V ∼ 1. We
thus expand the integrand around V = 1 to first order and
integrate it, obtaining the following.

𝐼 (𝜆, 𝑛) = ( 1
√𝜆 (2𝜆 + 𝑛 − 9) + 10)

⋅ [− log (−2 (𝜆 − 2) [𝜆 (2𝜆 + 𝑛 − 9) + 10]) + 2
⋅ log (𝜆 (2𝜆 + 𝑛 − 9)
+ √[𝜆 (2𝜆 + 𝑛 − 11) + 14] [𝜆 (2𝜆 + 𝑛 − 9) + 10]
+ 10)]

(12)
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As the first logarithm of (12) diverges when 𝜆 = 2,
one would expand again around 𝜆 = 2 up to first order.
However, since terms of order O(1) in the expansion will not
contribute to the functional form of the Cornell potential
and we are extracting just the leading behavior of (8) for𝜆 ≈ 2, we can safely neglect contributions of order O(𝜆) in
the aforementioned expansions, obtaining

𝐼 (𝜆, 𝑛) = − 1
√2𝑛 log (2 − 𝜆) + O (1) , (13)

which, due to (8), leads to

ℓ = 21/𝑛
𝜅 [−√2

𝑛 log (2 − 𝜆) + O (1)] ; (𝜆 ≈ 2) . (14)

As mentioned above, the limit 𝜆 󳨀→ 2 implies ℓ 󳨀→ ∞.

2.2. Calculation of the Energy. Beforewe calculate the integral
in (9), let us point out that it diverges as 1/V2 when V 󳨀→ 0.
This becomes clear if one analyzes the series expansion of the
integrand in 𝜆 close to 0 and 2.

So, we choose the renormalization of (9) as

𝐸Ren. = 𝑅2
𝜋𝛼󸀠

𝜅
𝜆1/𝑛 {−1

+ ∫1
0
𝑒(𝜆/𝑛)V𝑛V−2 [(1 − 𝑒(2𝜆/𝑛)(1−V𝑛)V4)−1/2 − 1] 𝑑V} ,

(15)

such that this energy expression is finite and now we can
analyze again the limits of 𝜆 close to 0 and 2.

2.2.1. 𝜆 Close to Zero. Expanding the integrand in (15) with
respect to 𝜆, centered at zero, we find

𝐼 (𝜆, 𝑛) = 1 − 1
2𝜌0

+ [√𝜋 (𝑛 + 1) Γ ((𝑛 − 1) /4)8𝑛Γ ((𝑛 + 1) /4) − 1
4𝑛

1
𝜌0] 𝜆,

(16)

so that the renormalized energy is

𝐸Ren. = − 𝑅2
𝜋𝛼󸀠

1
2𝜌0

⋅ 𝜅
𝜆1/𝑛 {1 +

𝜆
2𝑛 [1 − 𝐺 (𝑛) 𝜋𝜌0] + O (𝜆2)} ,

(17)

where we defined the dimensionless function 𝐺(𝑛) = (𝑛 +1)Γ((𝑛 − 1)/4)/2√𝜋Γ((𝑛 + 1)/4).
Writing the prefactor 𝜅/𝜆1/𝑛 as a function of ℓ (c.f. (11)),

substituting in (17), and keeping only linear terms in 𝜆, we get
𝐸Ren. = 𝑅2

𝜋𝛼󸀠 {−
𝜉0ℓ + 𝜆

4ℓ [
𝐺 (𝑛) − 𝐹 (𝑛)

𝜌0𝑛 ] + O (𝜆2)} , (18)

where we defined the dimensionless number 𝜉0 fl 1/(2𝜌20 ).
Using (11) we can rewrite 𝜆 ≈ 0 in terms of 𝜌0 and 𝜅:

𝜆 ≈ (𝜅ℓ𝜌0)𝑛 [1 + 𝜆
2 (1 − 𝐹 (𝑛) 𝜋𝜌0)] . (19)

Substituting this result in (18) and keeping in mind that𝜆 ≈ 0 is equivalent to the regime of short distances, one can
safely disregard terms proportional to ℓ2𝑛−1 in comparison
with the terms proportional to ℓ𝑛−1. Then, we obtain

𝐸Ren. = 𝑅2
𝜋𝛼󸀠 {−

𝜉0ℓ + 𝜎0 (𝑛) ℓ𝑛−1 + O (ℓ2𝑛−1)} , (20)

where we defined the function 𝜎0(𝑛) fl (1/4)𝜅𝑛𝜌𝑛−10 [(𝐺(𝑛) −𝐹(𝑛))/𝑛], with dimensions of (energy)𝑛.
2.2.2. 𝜆Close to 2. In this sectionwe are going to calculate the
renormalized energy for 𝜆 close to 2. Repeating the procedure
employed in Section 2.1.2, i.e., rewriting all the integrand in
(15) inside the square root

𝐼 (𝜆, V, 𝑛) = [V4𝑒−2𝜆V𝑛/𝑛 (1 − V4𝑒2𝜆(1−V𝑛)/𝑛)]−1/2 − V−2, (21)

and expanding this integrand with respect to V centered at 1,
to second order we find
𝐼 (𝜆, V, 𝑛) = 2 (2 − 𝜆) (1 − V) 𝑒−2𝜆/𝑛

− 𝑒−2𝜆/𝑛 (6𝜆2 − 𝜆𝑛 − 23𝜆 + 22) (1 − V)2
+ 3 (1 − V)2 + 2 (1 − V) .

(22)

For the above expression to be real, the first two terms
must be positive and the last one must be negative which
implies, respectively, that 𝜆 < 2 and (𝑛 + 23)/12 − (1/
12)√𝑛2 + 46𝑛 + 1 < 𝜆 < (1/12)√𝑛2 + 46𝑛 + 1 + (𝑛 + 23)/12.
Now, integrating (22), one has

𝐼 (𝜆, 𝑛) = −3 − log (4 − 2𝜆)
√𝑒−2𝜆/𝑛 (−6𝜆2 + 𝜆 (𝑛 + 23) − 22)

+ 2 log [√𝜆 (−6𝜆 + 𝑛 + 21) − 18 + √𝜆 (−6𝜆 + 𝑛 + 23) − 22]√𝑒−2𝜆/𝑛 [−6𝜆2 + 𝜆 (𝑛 + 23) − 22] .
(23)

Keeping only terms in lowest order of 𝜆 and substituting𝜆 = 2 in the denominator of above expression, we get from
(15)

𝐸Ren. = 𝑅2
𝜋𝛼󸀠

𝜅
21/𝑛 {−

𝑒2/𝑛 log (2 − 𝜆)
√2𝑛 + O (1)}

= 𝑅2
𝜋𝛼󸀠 [𝜎 (𝑛) ℓ + O (1)] ,

(24)

wherewe have used the relation between ℓ and 𝜆 given by (14)
and defined 𝜎(𝑛) fl (1/2)𝜅2(𝑒/2)2/𝑛.
3. Phenomenology

Summarizing the results of the last section, the renormalized
energies (20) and (24) in terms of the separation ℓ are given
by

𝐸𝜆≈0Ren. = 𝑅2
𝜋𝛼󸀠 {−

𝜉0ℓ + 𝜎0 (𝑛) ℓ𝑛−1 + O (ℓ2𝑛−1)} , (25)

𝐸𝜆≈2Ren. = 𝑅2
𝜋𝛼󸀠 [𝜎 (𝑛) ℓ + O (1)] , (26)
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with

𝜉0 fl 1
2𝜌20 ;

1
𝜌0 fl

(2𝜋)3/2
Γ2 (1/4) ;

𝜎 (𝑛) fl 1
2𝜅2 (

𝑒
2)
2/𝑛 .

(27)

The precise definition of 𝜎0(𝑛), given after (20), will not be
needed here since in this section we are going to disregard
the term proportional to ℓ𝑛−1 in comparison with the term of
order ℓ−1, once 𝑛 > 0 and in (25) ℓ ≈ 0.

Now we are going to fit the constants of our model with
the phenomenological constants of the Cornell potential (3)
with 𝜉 = 0.52 and 𝑎 = 2.34GeV−1 [29–33] (for excellent
reviews of the Cornell potential see [34, 35]).

First of all, we fix the dimensionless ratio 𝑅2/𝜋𝛼󸀠 from
the slope of the linear potential at long distances, where the
stringy picture ismore reliable. Since this regime is equivalent
to 𝜆 ≈ 2, we compare (3) with (26), which leads to the
condition 1/𝑎2 = 𝑅2𝜎(𝑛)/𝜋𝛼󸀠 and therefore

𝑅2
𝜋𝛼󸀠 =

2
(𝑎𝜅)2 × (

2
𝑒)
2/𝑛 . (28)

Next, we compare the expression (25) with (3), finding𝑅2/𝜋𝛼󸀠 = 𝜉/𝜉0, so that eliminating the ratio 𝑅2/𝜋𝛼󸀠, one
obtains

𝜉 = 1
(2.34𝜅)2 × (

2
𝑒)
2/𝑛 1

𝜌20 . (29)

The above equation can be solved graphically for given
values of 𝜅: we present some of these solutions in Figure 1, for
the interval (0.55 ≤ 𝜅 ≤ 0.70) GeV.

With the values of parameter 𝜅 and its corresponding
values of 𝑛 we can investigate the energy associated with
the quark-antiquark pair through numerical calculations. In
Figure 2 we plot the quark-antiquark potential 𝐸𝑅𝑒𝑛. in terms
of the quark separation ℓ, for some values of 𝜅.

If we fix the constant 𝐶 in the Cornell potential (3) to be
zero, we can obtain a phenomenological constraint such that𝑉(ℓ) = 0 occurs for ℓ ≈ 0.33 fermi. Then, for our warp factor
such behavior is achieved for 𝜅 = 0.56 GeV and 𝑛 = 1.3,
which corresponds approximately to the red dashed line in
Figure 2.

Note also that in Figure 2, for the linear confining
behavior all the curves shown present the same slope. This
is not a universal property of the deformation we have
considered but rather is a choice to fit the Cornell potential
parameters.

4. Concluding Remarks

In this work we have calculated the energy corresponding
to a given separation between a quark-antiquark pair from
the Nambu-Goto action using a deformed AdS space as a
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0.56

0.54

0.52

0.50
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0.46

0 2 4 6 8
n



 = 0.55 GeV
 = 0.57 GeV
 = 0.60 GeV

 = 0.65 GeV
 = 0.70 GeV

 = 0.52

Figure 1: Equation (29) solved graphically: The curves are plots of
(29) for some values of 𝜅 with 𝑎 = 2.34 GeV−1. The horizontal
dashed line represents the phenomenological desired value of the
parameter 𝜉, i.e., 𝜉 = 0.52 to fit the Cornell potential.

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

E (GeV)

0.2 0.4 0.6 0.8 1.0
l (fm)

=0.55 GeV
=0.56 GeV
=0.57 GeV

Figure 2: 𝐸𝑅𝑒𝑛. against ℓ obtained directly from (8) and (15) through
numerical integration, for three particular values of 𝜅: 0.55 GeV,
0.56 GeV, 0.57 GeV and their respective approximate values of 𝑛:
1.2, 1.3, 1.4. These curves correspond to possible matches with the
Cornell potential. The values 𝑛 come from Figure 1 for each curve
corresponding to a given 𝜅.

background. The choice of the deformed AdS space is based
on the introduction of an exponential factor given by ℎ(𝑧) =
exp{(𝜅𝑧)𝑛/𝑛}, (2). We have also shown that this configuration
energy has the shape of a Cornell potential. In order to fit
the Cornell potential parameters we can choose a variety of
possibilities for the pair (𝜅, 𝑛). In Figure 1, we have shown
someof these possibilities, and in Figure 2, we presented some
profiles for the Cornell potential. Note that in Figure 2 we
observe the transition from a confining to a nonconfining
regime around ℓ ∼ 0.3 fm. Specifically, for the choice 𝜅 = 0.56
GeV and 𝑛 = 1.3, we matched the Cornell potential with the
condition 𝐶 = 0, as represented by the red dashed line.
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Another interesting feature of our model is the universal
nonconfining behavior for ℓ ≈ 0, already pointed out by [2].
In the context of our model, this universal behavior for short
distances is due to the fact that ℓ ≈ 0 is equivalent to𝜆 ≈ 0 (c.f.
Section 2.1.1) which means that ℎ(𝑧) 󳨀→ 1, hence we recover
the geometry of pureAdS space, and thereforewemust obtain
the nonconfining term due to the conformal symmetry of the
background space.

Also one can see that our deformation of the AdS, which
is a UV deformation, is the fact that it only affects the
large distance physics. This modification is encapsulated by
the coefficients of the linear term in (26), which become
dependent on the deformation ℎ(𝑧), where 𝜅 and 𝑛 are the
parameters that control the deformation. It is interesting that
the confining behavior is maintained despite the choice of𝜅 and 𝑛 which is actually an explicit manifestation of the
criterion discussed by [3].

Appendix

We start this appendix following [3], defining a metric given
by

𝑑s2 = −𝐺00 (𝑠) 𝑑𝑡2 + 𝐺𝑥‖𝑥‖𝑑𝑥2‖ + 𝐺𝑠𝑠𝑑𝑠2 + 𝐺𝑥𝑇𝑥𝑇𝑑𝑥2𝑇, (A.1)

and the Nambu-Goto action:

𝑆 = 1
2𝜋𝛼󸀠 ∫𝑑𝜎𝑑𝜏√det [𝜕𝛼𝑋𝑀𝜕𝛽𝑋𝑁𝐺𝑀𝑁]. (A.2)

Choosing the gauge 𝜎 = 𝑥 and 𝜏 = 𝑡 and integrating with
respect to 𝑡, one gets

𝑆 = 𝑇
2𝜋𝛼󸀠 ∫𝑑𝑥√𝐺00 (𝑠 (𝑥)) 𝐺𝑥‖𝑥‖ (𝑠 (𝑥)) + 𝐺00 (𝑠 (𝑥)) 𝐺𝑠𝑠 (𝑠 (𝑥)) (𝜕𝑥𝑠)

2. (A.3)

Here 𝑇 is the temporal extension of the Wilson loop.
Then, we define [3]

𝑓2 (𝑠 (𝑥)) = 𝐺00 (𝑠 (𝑥)) 𝐺𝑥‖𝑥‖ (𝑠 (𝑥)) (A.4)

𝑔2 (𝑠 (𝑥)) = 𝐺00 (𝑠 (𝑥)) 𝐺𝑠𝑠 (𝑠 (𝑥)) (A.5)

so that we are left with the integral

𝑆 = 𝑇
2𝜋𝛼󸀠 ∫𝑑𝑥√𝑓2 (𝑠 (𝑥)) + 𝑔2 (𝑠 (𝑥)) (𝜕𝑥𝑠)

2. (A.6)

Using the differential equation for the geodesic of the
string in its equilibrium configuration, we get that the
separation of the endpoints (or, in our perspective, the quark
and antiquark distance) is given by

𝑙 = ∫ 𝑑𝑥 = ∫( 𝑑𝑠𝑑𝑥)
−1 𝑑𝑠

= 2∫𝑠1
𝑠0

𝑔 (𝑠)
𝑓 (𝑠)

𝑓 (𝑠0)
√𝑓2 (𝑠) − 𝑓2 (𝑠0)

𝑑𝑠,
(A.7)

where 𝑠0 and 𝑠1 are, respectively, de equilibrium position of
the bottom of the string and the position of its endpoints.

Since the action has dimensions of energy × time, the
energy of the configuration associated with the string will be
given by (A.6)

𝐸 = 1
𝜋𝛼󸀠 ∫

𝑠1

𝑠0

𝑔 (𝑠)
𝑓 (𝑠)

𝑓2 (𝑠)
√𝑓2 (𝑠) − 𝑓2 (𝑠0)

𝑑𝑠. (A.8)

Performing the change of variable 𝑠 = 𝑅2/𝑧, where 𝑅 is
the AdS radius, we have 𝑧0 = 𝑅2/𝑠0, 𝑧1 = 𝑅2/𝑠1, and 𝑑𝑠 =

−(𝑅2/𝑧2)𝑑𝑧. We take the limit 𝑠1 󳨀→ ∞, which means that𝑧1 󳨀→ 0 and we can rewrite (A.7) and (A.8) as

𝑙 = 2 ∫𝑧0
0

𝑔 (𝑧)
𝑓 (𝑧)

𝑓 (𝑧0)
√𝑓2 (𝑧) − 𝑓2 (𝑧0)

𝑅2
𝑧2 𝑑𝑧 (A.9)

𝐸 = 1
𝜋𝛼󸀠 ∫

𝑧0

0

𝑔 (𝑧)
𝑓 (𝑧)

𝑓2 (𝑧)
√𝑓2 (𝑧) − 𝑓2 (𝑧0)

𝑅2
𝑧2 𝑑𝑧. (A.10)

Using metric (1) we have 𝑓(𝑧) = ℎ(𝑧)(𝑅2/𝑧2) and 𝑔(𝑠) = ℎ(𝑧).
Then, from (A.9) and (A.10), one gets (4) and (5).
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