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We construct a noncommutative extension of the Loop Quantum Cosmology effective scheme for the flat FLRW model with a
free scalar field via a theta deformation. Firstly, a deformation is implemented in the configuration sector, among the holonomy
variable and the matter degree of freedom. We show that this type of noncommutativity retains, to some degree, key features of the
Loop Quantum Cosmology paradigm for a free field. Secondly, a deformation is implemented in the momentum sector, among the
momentum associated with the holonomy variable and the momentum associated with the matter field. We show that in this latter
case the scalar field energy density is the same as the one in standard Loop Quantum Cosmology.

1. Introduction

The idea of noncommutativity in spacetime is not new (1947)
[1]. It was proposed as an attempt to regularize Quan-
tum Field Theory before the renormalization program was
established. Due to its nonlocal behavior, noncommutativity
was quickly forgotten after renormalization proved to be
successful. In the 1970s M. Flato and coworkers proposed
an alternative path to quantization [2–4], in which a defor-
mation of the Poisson structure of classical phase space is
performed and is encoded in the Moyal ⋆-product [5], and
generalizations of it (for a review see [6]). In the early 1980s
mathematicians led by A. Connes succeeded in formulating
what they called Noncommutative Geometry [7], motivated
by generalizing a classic theorem characterizing 𝐶∗-algebras.

At the end of the last century the noncommutative
paradigm was resurrected, mainly due to results in String
Theory [8, 9], in which Yang-Mills theories in a noncom-
mutative space arise in different circumstances as effective
theories when taking certain limits, for instance, the low
energy limit. This renewed interest has led to a deeper under-
standing, from the physical and mathematical points of view,
of noncommutative field theory (for a review see [10, 11]).

Additionally, it is believed that in a full quantum theory of
gravity the continuum picture of spacetime would no longer
be consistent at distances comparable to the Planck lengthℓ𝑝 ∼ 10−35cm; a quantization of spacetime itself could be in
order.

A possible way to model these effects could be via an
uncertainty relation for the spacetime coordinates of the form

[𝑥𝑖, 𝑥𝑗] = 𝑖𝜃𝑖𝑗. (1)

This commutation relation is the starting point for noncom-
mutative field theories. Attempts to implement this idea for
the gravitational field have led to different proposals for a
noncommutative theory of gravity (see, for example, [12–
15]). In particular, a noncommutative generalization of Loop
Quantum Gravity (LQG) was constructed in [15]. Different
incarnations of noncommutative gravity have a common
feature; they are highly nonlinear theories, whichmakes them
very difficult to work with.

A possible way to study noncommutativity effects in the
early universe was proposed by Garcı́a-Compeán et al. [16].
They implemented noncommutativity in configuration space,
in contrast to noncommutative spacetime, but only after a
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symmetry reduction of spacetime had been imposed and
the Wheeler-DeWitt quantization had been carried, giving
rise to a noncommutative quantum cosmology, mathemat-
ically similar to the noncommutative quantum mechanics
constructed in [17–19]. Later, G. D. Barbosa and N. Pinto-
Neto [20] introduced this minisuperspace noncommutativity
already at the classical level. The idea is that, perhaps, this
effective noncommutativity could incorporate novel effects
and insights of a full quantum theory of the gravitational field,
alongside with providing a simple framework for studying
the implications of such possible noncommutative effects
in the early universe through cosmological models. Since
the publication of these two seminal investigations, some
works along this line have been conducted. For instance, the
noncommutativity of the FLRWcosmology has been studied,
as well as some of the Bianchi Class A models [21, 22].
Quantum black holes have also been investigated within this
framework [23].

On the other hand, LQG [24, 25] is an attempt to quantize
the gravitational field taking seriously the lessons from
General Relativity; that is, it aims at a full nonperturbative
background independent quantization of General Relativity.
It could be said that LQG is an improvement of the canonical
Weeler-DeWitt quantization programme. On the other hand,
Loop Quantum Cosmology (LQC) [26, 27] is the quantiza-
tion of cosmological, symmetry reduced, models following
closely the ideas and methods of LQG. In this way, the LQC
of the FLRW and some of the Bianchi Class A models in the
presence of a massless scalar field, employed as internal time,
have been constructed [28–35]. In particular, as a result of
the underlying quantum geometry, it has been shown that
the loop quantization of the FLRWmodels features a bounce
which enables the resolution of the cosmological singularity
[36].The LQC of the inhomogeneous Gowdy model has also
been constructed [37].

As a consequence of loop quantization, the Wheeler-
DeWitt equation is no longer a differential equation, but a
difference equation, which is difficult to work with even in
the simplest models. In order to extract physics, effective
equations based on a geometrical formulation of quantum
mechanics have been employed to study the outcome of loop
quantum corrections in cosmological models [38]. The rele-
vance for using the effective equations in LQC lies in the fact
that this effective scheme is an excellent approximation to the
underlying quantum theory. This conclusion can be drawn
from [39, 40]. In both works, numerical simulations for the
effective dynamics in LQC are employed. In the first one, the
flat FRWwith a free scalar field is studied; and the second one,
the anisotropic vacuum Bianchi-I model, is address.

Recently, works that focus on the possible relation, at dif-
ferent physical/mathematical levels, among noncommutativ-
ity and LQG have been conducted. For instance, an emergent
noncommutativity in LQG is found in [41] when constructing
position operators for spin-networks; a relation between
LQG-inspired deformations of spacetime and 𝜅-Minkowski
noncommutative spacetime is established in [42, 43].

The present investigation aims at constructing a non-
commutative effective scheme for the flat FLRW model in
the presence of a free scalar field, and establishing whether

such noncommutative scheme could be compatible with the
LQC paradigm, in the sense of retaining key features of
the LQC of the flat FLRW model. Along this lines, our
work could be related to a minisuperspace approximation
of a more fundamental noncommutative construction based
on the LQG approach, such as the one in [15], signaling
possible restrictions on the way noncommutativity is to
be incorporated in such general frameworks. While being
related, our philosophy is different from the class of works
cited in the above paragraph since we implement a simple
type of noncommutativity in an LQG-related model, rather
than trying to obtain noncommutativity from LQG or LQG-
inspired models.

The manuscript is organized as follows: In Section 2 we
introduce the loop variables for the flat FLRW model with
a free standard scalar field and the corresponding effective
scheme. In Section 3 we recall a way in which noncommuta-
tivity can be implemented in Classical Mechanics through a
deformation of the product. Section 4 is devoted to construct
a noncommutative model for the Effective Loop Quantum
Cosmology of the flat FLRW model with the help of the
method introduced in Section 3, along the lines of [20]. In
the remaining part of this section we recall the canonical
formulation of the flat FLRW model in metric variables, in
the presence of a free scalar field.

1.1. FLRWModel in the Metric Variables. The line element of
a spatially homogeneous and isotropic universe is

𝑑𝑠2 = −𝑁2 (𝑡) 𝑑𝑡2 + 𝑎2 (𝑡) [ 𝑑𝑟21 − 𝜅𝑟2 + 𝑟2𝑑Ω2] , (2)

where 𝑎(𝑡) is the scale factor, 𝑁(𝑡) is the lapse function, and𝜅 is the curvature constant, which can take values 0, 1, and−1, which corresponds to a flat, closed, and open universe,
respectively. The corresponding Ricci scalar is

𝑅 = 6( ̈𝑎𝑁2𝑎 + ̇𝑎2𝑁2𝑎2 − ̇𝑎𝑁̇𝑎𝑁3 + 𝜅𝑎2) . (3)

Working with the Einstein-Hilbert action

𝑆𝐸𝐻 = ∫𝑑𝑡𝑑3𝑥√− det𝑔𝑅 [𝑔] , (4)

the Lagrangian for a flat universe takes the form

𝐿 = ∫𝑑3𝑥(− 18𝜋𝐺 3 ̇𝑎2𝑎𝑁 ) . (5)

where 𝐺 is Newton’s constant. The spatial slice Σ is topolog-
ically R3; since this space is noncompact the spatial integral
in the Lagrangian diverges. Restricting the integration to a
fiducial cellV (which we can safely do due to homogeneity),
taking a homogeneous scalar field (𝜙 = 𝜙(𝑡)) we have

𝐿 = − 𝑉08𝜋𝐺 3 ̇𝑎2𝑎𝑁 + ̇𝜙2𝑎32𝑁 , (6)
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where 𝑉0 = ∫
V
𝑑3𝑥 is the coordinate volume of the auxiliary

cellV. The momenta 𝑝𝐼 = 𝜕𝐿/𝜕 ̇𝑞𝐼 are
𝑝𝑎 = 𝜕𝐿𝜕 ̇𝑎 = −6𝑎 ̇𝑎𝑁 ,
𝑝𝜙 = 𝜕𝐿

𝜕 ̇𝜙 = 𝑎3 ̇𝜙𝑁 ,
(7)

where we have set the fiducial volume equal to one. In the
LQC paradigm a great deal of care has been taken in order
to ensure that the physical content of the theory does not
take into account this fiducial structure. Taking the Legendre
transform, 𝐿can = 𝑝𝜇 ̇𝑞𝜇 − 𝑁H, where 𝑁 acts as a Lagrange
multiplier which imposes the Hamiltonian constraintH = 0,
we have

𝐻 = 𝑁𝑎−3 [−2𝜋𝐺3 𝑎2𝑝2𝑎 + 𝑝2𝜙2 ] . (8)

With the canonical relations

{𝑞𝐼, 𝑝𝐽} = 𝛿𝐼𝐽 (9)

and the Hamiltonian at hand, Hamilton equations

𝑝̇𝐼 = {𝑝𝐼, 𝐻} = −𝜕𝐻𝜕𝑞𝐼 ;
̇𝑞𝐼 = {𝑞𝐼, 𝐻} = 𝜕𝐻𝜕𝑝𝐼

(10)

read

𝑝̇𝑎 = −2𝜋𝐺𝑝2𝑎3𝑎2 + 3𝑝2𝜙2𝑎4 ,
𝑝̇𝜙 = 0,
̇𝑎 = −4𝜋𝐺𝑝𝑎3𝑎 ,
̇𝜙 = 𝑝𝜙𝑎3 ,

(11)

where 𝑁 = 1 has been set. Taking into account the field
equations and the Hamiltonian constraint one arrives at the
Friedmann equation

H2 = 8𝜋𝐺3 𝜌, (12)

H = ̇𝑎/𝑎 is called theHubble parameter, and, in this particular
case of a free standard homogeneous scalar field, 𝜌 = ̇𝜙2/2 =𝑝2𝜙/2𝑉2 (𝑉 = 𝑎3) is the energy density.
2. Connection Variables and
Effective Dynamics

2.1. The FLRW Model in the Ashtekar-Barbero Variables. In
this section, we recall the formulation of the flat FLRW

model in the Ashtekar-Barbero variables, with a free massless
scalar field. The Ashtekar-Barbero variables cast General
Relativity in the form of a gauge theory, in which phase space
is described by an su(2) gauge connection, the Ashtekar-
Barbero connection 𝐴𝑖𝑎, and its canonical conjugate momen-
tum, the densitized triad 𝐸𝑎𝑖 . In both, the Ashtekar-Barbero
and the densitized triad, 𝑖, 𝑗, . . ., denote internal su(2) indices
while 𝑎, 𝑏, . . ., denote spatial indices. These quantities are
defined as

𝐴𝑖𝑎 = Γ𝑖𝑎 + 𝛾𝐾𝑖𝑎,
𝐸𝑎𝑖 = √𝑞𝑒𝑎𝑖 , (13)

where𝐾𝑖𝑎 = 𝐾𝑎𝑏𝑒𝑎𝑗 , with 𝑒𝑖𝑎 and 𝑒𝑎𝑖 being the triad and cotriad,
respectively, which satisfied 𝑒𝑖𝑎𝑒𝑎𝑗 = 𝛿𝑖𝑗 and 𝑞𝑎𝑏 = 𝛿𝑖𝑗𝑒𝑖𝑎𝑒𝑗𝑏; Γ𝑖𝑎
is defined through the spin connection 𝜔𝑖𝑎𝑗 compatible with
the triad by the relation 𝜔𝑖𝑎𝑗 = 𝜖𝑖𝑗𝑘Γ𝑖𝑎 with 𝜖𝑖𝑗𝑘 the totally
antisymmetric symbol and ∇𝑎𝑒𝑖𝑏 + 𝜔𝑖𝑎𝑗𝑒𝑗𝑏 = 0 (∇𝑎 being the
usual spatial covariant derivative); 𝛾 is a real constant called
the Barbero-Immirzi parameter. The canonical pair has the
following Poisson structure

{𝐴𝑎𝑖 (𝑥) , 𝐸𝑗𝑏 (𝑦)} = 8𝜋𝐺𝛾𝛿𝑗𝑖𝛿𝑎𝑏𝛿 (𝑥, 𝑦) , (14)

with 𝛿(𝑥, 𝑦) being the Dirac delta distribution on the space-
like hypersurface Σ. In these variables, the gravitational
Hamiltonian density takes the form

𝐶𝑔𝑟𝑎V
= ( 1|𝐸| 𝜖𝑖𝑗𝑘 [𝐹𝑖𝑎𝑏 − (1 + 𝛾2) 𝜖𝑖𝑚𝑛𝐾𝑚𝑎 𝐾𝑛𝑏] 𝐸𝑎𝑗𝐸𝑏𝑘) ,

(15)

where 𝐹𝑖𝑎𝑏 = 𝜕𝑎𝐴𝑖𝑏 − 𝜕𝑏𝐴𝑖𝑎 + 𝜖𝑖𝑗𝑘𝐴𝑗𝑎𝐴𝑘𝑏 is the curvature of the
Ashtekar-Barbero connection and 𝐸 is the determinant of the
densitized triad.

From the gravitational Hamiltonian density (15), one can
cast the gravitational Hamiltonian through

𝐻𝑔𝑟𝑎V = ∫𝑑3𝑥𝑁𝐶𝑔𝑟𝑎V, (16)

in the case for spatially flat homogeneous models reduces to
[27]

𝐻𝑔𝑟𝑎V = −𝛾2𝑁∫
V

𝑑3𝑥 1|𝐸| 𝜖𝑖𝑗𝑘𝐹𝑖𝑎𝑏𝐸𝑎𝑗𝐸𝑏𝑘, (17)

where the integral is taken in a fiducial cell V. When
imposing also isotropy, the connection and triad can be
described by parameters 𝑐 and 𝑝, respectively, defined by [27]

𝐴𝑖𝑎 = 𝑐𝑉0 𝑜𝑒𝑖𝑎,
𝐸𝑖𝑎 = 𝑝𝑉0√ 𝑜𝑞 𝑜𝑒𝑎𝑖 ,

(18)

where 𝑜𝑞𝑎𝑏 is a fiducial flat metric and 𝑜𝑒𝑎𝑖 , 𝑜𝑒𝑖𝑎 are constant
triad and cotriad compatible with 𝑜𝑞𝑎𝑏; 𝑉0 is the volume of
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V with respect to 𝑜𝑞𝑎𝑏. These variables do not depend on
the choice of the fiducial metric. The relation among these
variables and the usual geometrodynamical variables is

𝑐 = 𝑉1/30 𝛾 ̇𝑎,
𝑝 = 𝑉2/30 𝑎2, (19)

where the canonical relations for this last two variables obey

{𝑐, 𝑝} = 8𝜋𝐺𝛾3 . (20)

Performing the following change of variables

𝛽 = 𝑐
√𝑝,

𝑉 = 𝑝3/2,
(21)

the Hamiltonian (17), with a free massless scalar field as the
matter content, takes the form

𝐻 = 𝑁[− 38𝜋𝐺𝛾2𝛽2𝑉 + 𝑝2𝜙2𝑉] , (22)

with the canonical relations for 𝛽 and 𝑉 being

{𝛽, 𝑉} = 4𝜋𝐺𝛾. (23)

The holonomy correction due to Quantum Gravity effects is
coded in the replacement [27]

𝛽 󳨃󳨀→ sin (𝜆𝛽)
𝜆 , (24)

where 𝜆2 = 4√3𝜋𝛾ℓ2𝑝 is the smallest eigenvalue of the area
operator in the full LoopQuantumGravity [25].The resulting
effective Hamiltonian is thus given by

𝐻𝑒𝑓𝑓 = 𝑁[− 38𝜋𝐺𝛾2𝜆2 sin2 (𝜆𝛽)𝑉 + 𝑝2𝜙2𝑉] . (25)

Before we proceed any further, it is convenient to address
some issues that exist regarding the lapse function 𝑁. In
earlier treatments of the FLRW with a free scalar field in
LQC, the classical dynamics were studied in terms of the
proper time (which corresponds to 𝑁 = 1) and after the
quantization of the Hamiltonian constraint the dynamics
were describe by an internal time defined by the scalar field
[28]. All these investigations were done numerically. On the
other hand, in [44] they obtain an analytical soluble model
for the FLRW with a free scalar field in the LQC paradigm,
employing the scalar field (using𝑁 = 𝑎3) as an internal clock
to describe the (effective) dynamics already at the classical
level. Furthermore, they show that either choice of the lapse
function, 𝑁 = 1 or 𝑁 = 𝑎3, at the classical level, then
proceeding to quantize theHamiltonian constraint, results on
slightly different factor orderings in the quantizeHamiltonian

constraint. For details see [44]. From this point on and
through the manuscript, we will use𝑁 = 1.

Taking into account the discussion of the last paragraph
for the Hamiltonian constraint (25), the field equations are

̇𝛽 = 4𝜋𝐺𝛾𝜕𝐻𝑒𝑓𝑓𝜕𝑉 = − 3𝛾𝜆2 sin2 (𝜆𝛽) − 4𝜋𝐺𝛾
𝑝2𝜙2𝑉2 , (26a)

𝑉̇ = −4𝜋𝐺𝛾𝜕𝐻𝑒𝑓𝑓𝜕𝛽 = 3𝛾𝜆𝑉sin (𝜆𝛽) cos (𝜆𝛽) , (26b)

̇𝜙 = 𝜕𝐻𝑒𝑓𝑓𝜕𝑝𝜙 = 𝑝𝜙𝑉 , (26c)

𝑝̇𝜙 = −𝜕𝐻𝑒𝑓𝑓𝜕𝜙 = 0. (26d)

Since 𝑉̇/3𝑉 = ̇𝑎/𝑎 = H, where H is the Hubble parameter,
then, taking into account the effective Hamiltonian con-
straint, 𝐻𝑒𝑓𝑓 ≈ 0, and the field equation for 𝑉, we have that
the Friedmann equation now reads [45]

H2 = ( 𝑉̇3𝑉)2 = 8𝜋𝐺3 𝜌(1 − 𝜌𝜌𝑚𝑎𝑥) , (27)

where 𝜌 = ( ̇𝜙)2/2 = 𝑝2𝜙/2𝑉2 = (3/8𝜋𝐺𝛾2𝜆2)sin2(𝜆𝛽) and𝜌𝑚𝑎𝑥 is the maximum value that 𝜌 can take in view of the
effective Hamiltonian constraint, that is, 𝜌𝑚𝑎𝑥 = 3/8𝜋𝐺𝛾2𝜆2.
The turning points of the volume function occur at 𝛽 =±𝜋/2𝜆, which correspond to a bounce. Equation (27) is the
modified Friedmann equation, which incorporates holon-
omy corrections due to Loop Quantum Gravity. In the limit𝜆 󳨀→ 0 (no area gap) we recover the ordinary Friedmann
equation (12).

The relational evolution of 𝑉 in terms of 𝜙 is given by

𝑑𝑉𝑑𝜙 = 𝑑𝑉𝑑𝑡 𝑑𝑡𝑑𝜙 = 3𝛾𝜆 sin (𝜆𝛽) cos (𝜆𝛽) 𝑉𝑝𝜙
= √12𝜋𝐺𝑉(1 − 𝜌𝜌𝑚𝑎𝑥)

1/2
(28)

where we have used the field equations for 𝑉 and 𝜙 and the
effective Hamiltonian constraint.

3. Deformations in Classical and
Quantum Mechanics

The ideas of deformed minisuperspace, in connection with
noncommutative cosmology, were introduced in the seminal
work of Garcı́a-Compeán et al. [16]. The introduction of a
deformation to the minisuperspace, in order to incorporate
an effective noncommutativity, made it possible to avoid
working with a noncommutative theory of gravity and still
get relevant physics of the Kantoswki-Sachs cosmological
model. In the canonical quantum cosmological scenario, the
Wheeler-DeWitt equation is responsible for the description
of the quantum behavior of the Universe. An alternative
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approach to study quantummechanical effects is to introduce
deformations to the Poisson structure of classical phase space;
the approach is an equivalent path to quantization and is part
of a complete and consistent type of quantization known as
deformation quantization [2–4]. In [46], the authors apply
the deformation quantization formalism to cosmological
models in the flat minisuperspace.Within this setup, relevant
minisuperspace cosmological models are studied in detail,
namely, the de Sitter and Katowski-Sachs, among others.

In the deformation phase space approach, the deforma-
tion is introduced by the Moyal brackets {𝑓, 𝑔}𝛼 = 𝑓⋆𝛼𝑔 −𝑔⋆𝛼𝑓, where the product between functions is replaced by
the Moyal ⋆-product

(𝑓 ⋆ 𝑔) (𝑥)
= exp [12𝛼𝑎𝑏𝜕(1)𝑎 𝜕(2)𝑏 ] 𝑓 (𝑥1) 𝑔 (𝑥2)󵄨󵄨󵄨󵄨𝑥1=𝑥2=𝑥 ,

(29)

such that

𝛼 = ( 𝜃𝑖𝑗 𝛿𝑖𝑗 + 𝜎𝑖𝑗
−𝛿𝑖𝑗 − 𝜎𝑖𝑗 𝜂𝑖𝑗 ) , (30)

where the 2 × 2 matrices 𝜃𝑖𝑗 and 𝜂𝑖𝑗 are assume to be
antisymmetric and represent the noncommutativity in the
coordinates and the momenta, respectively. The resulting 𝛼-
deformed algebra for the phase space is

{𝑥𝑖, 𝑥𝑗}𝛼 = 𝜃𝑖𝑗,
{𝑥𝑖, 𝑝𝑗}𝛼 = 𝛿𝑖𝑗 + 𝜎𝑖𝑗,
{𝑝𝑖, 𝑝𝑗}𝛼 = 𝜂𝑖𝑗.

(31)

An alternative to derive an algebra similar to (31) is making
the following transformation on the classical phase variables{𝑥, 𝑦, 𝑃𝑥, 𝑃𝑦}

𝑥 = 𝑥 + 𝜃2𝑃𝑦,
𝑦 = 𝑦 − 𝜃2𝑃𝑥,

(32a)

𝑃̂𝑥 = 𝑃𝑥 − 𝜂2𝑦,
𝑃̂𝑦 = 𝑃𝑦 + 𝜂2𝑥,

(32b)

where particular expressions for the deformations have been
considered, namely, 𝜃𝑖𝑗 = −𝜃𝜖𝑖𝑗 and 𝜂𝑖𝑗 = 𝜂𝜖𝑖𝑗. The resulting
algebra is the same as (31), but the Poisson brackets are
different in the two algebras. For (31), the brackets are the𝛼-deformed ones and are related to the Moyal product; for
the other algebra the brackets are the usual Poisson brackets,
which read

{𝑦, 𝑥} = 𝜃,
{𝑥, 𝑃̂𝑥} = {𝑦, 𝑃̂𝑦} = 1 + 𝜎,
{𝑃̂𝑦, 𝑃̂𝑥} = 𝜂,

(33)

where 𝜎 = 𝜃𝜂/4.

In this two scenarios the outcome can be summarized as
follows: first, in the deformation quantization formalism, the𝛼-deformed algebra (31), when applied to a given system char-
acterized by a canonical Hamiltonian𝐻, one gets a deformed
Hamiltonian𝐻󸀠 given rise to deformed equations of motion.
Secondly, constructing a deformed phase space introducing
the transformations (32a) and (32b), it is possible to formulate
a Hamiltonian, formally analogous to a canonical one, but
with the variables that obey the modified algebra (33). In this
paper we will work under the lines of thought of the latter.

4. Noncommutativity in Flat FLRW Loop
Quantum Cosmology

4.1. FLRWwithout LQCCorrections. Wewill start this section
analysing the flat FLRW model for a free scalar field and
without the LQC corrections. In Ashtekar variables and
volume representation, the classical Hamiltonian takes the
form

𝐻 = − 38𝜋𝐺𝛾2𝛽2𝑉 + 𝑝2𝜙2𝑉. (34)

In view of the above discussion, we would like to consider
effects of a deformed algebra (noncommutativity)

{𝛽𝑛𝑐, 𝜙𝑛𝑐} = 𝜃,
{𝛽𝑛𝑐, 𝑉𝑛𝑐} = 4𝜋𝐺𝛾,
{𝜙𝑛𝑐, 𝑝𝑛𝑐𝜙 } = 1,

(35)

with the remaining brackets zero. The above relations can be
implemented by working with the shifted variables

𝛽𝑛𝑐 = 𝛽 + 𝑎𝜃𝑝𝜙,
𝜙𝑛𝑐 = 𝜙 + 𝑏𝜃𝑉,
𝑉𝑛𝑐 = 𝑉,
𝑝𝑛𝑐𝜙 = 𝑝𝜙,

(36)

where 𝑎 and 𝑏 satisfy the relation 4𝜋𝐺𝛾𝑏 − 𝑎 = 1.
The deformed Hamiltonian constraint arising from the

steps above has the same functional form as (34) but is valued
in the new noncommuting variables (as in [20]); that is,

𝐻𝑛𝑐 = − 38𝜋𝐺𝛾2 (𝛽𝑛𝑐)2 𝑉 + 𝑝2𝜙2𝑉; (37)

in the limit 𝜃 󳨀→ 0 this Hamiltonian reduces to the usual one
(34). The noncommutative equations of motion are

̇𝛽 = 4𝜋𝐺𝛾𝜕𝐻𝑛𝑐𝜕𝑉 = − 32𝛾 (𝛽𝑛𝑐)2 − 4𝜋𝐺𝛾
𝑝2𝜙2𝑉2 , (38a)

𝑉̇ = −4𝜋𝐺𝛾𝜕𝐻𝑛𝑐𝜕𝛽 = 3𝛾𝑉𝛽𝑛𝑐, (38b)

̇𝜙 = 𝜕𝐻𝑛𝑐𝜕𝑝𝜙 = − 3𝑎𝜃𝑉4𝜋𝐺𝛾2𝛽𝑛𝑐 +
𝑝𝜙𝑉 , (38c)
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𝑝̇𝜙 = −𝜕𝐻𝑛𝑐𝜕𝜙 = 0, (38d)

and as expected, these Hamiltonian equations reduce to the
usual ones when taking 𝜃 󳨀→ 0. Furthermore, the energy
density is given by

𝜌 = ( ̇𝜙)2
2 = 12𝑉 (− 3𝑎𝜃𝑉4𝜋𝐺𝛾2𝛽𝑛𝑐 +

𝑝𝜙𝑉 )2 . (39)

The exact solutions to the system of ((38a)-(38d)) are

𝛽 (𝑡) = 𝛾 − 3𝑎𝐵𝜃𝑡 + 𝑎𝐴𝐵𝛾𝜃3𝑡 − 𝐴𝛾 , (40a)

𝑉 (𝑡) = 𝐶 (3𝑡 − 𝐵𝛾) , (40b)

𝜙 (𝑡) = −3𝑎𝐶𝜃𝑡4𝜋𝐺𝛾 + 𝐵 log (3𝐶𝑡 − 𝐴𝐶𝛾)
3𝐶 + 𝐷, (40c)

𝑝𝜙 (𝑡) = 𝐵, (40d)

where 𝐴, 𝐵, 𝐶,𝐷 are integration constants. These solutions
reduce to the usual ones (those obtain with (34)) when taking𝜃 󳨀→ 0. We note that the solution for the volume function is
the same as in the usual commutative case [47].

4.2. FLRW with LQC Corrections. Now we want to imple-
ment noncommutativity in the flat FLRWmodel, by working
in the shifted variables (36) defined atop. Since we are
not actually performing a deformation of the symplectic
structure, the loop quantization of the original variables can
be carried as usual.

Considering the steps above and taking into account the
ideas posed in the last section, we can therefore implement
the effects of relation (36) at the effective scheme of LQC by
considering the Hamiltonian

𝐻𝑛𝑐𝑒𝑓𝑓 = − 38𝜋𝐺𝛾2𝜆2 sin2 (𝜆𝛽𝑛𝑐) 𝑉 + 𝑝2𝜙2𝑉, (41)

where the noncommutative effective field equations result to
be

̇𝛽 = 4𝜋𝐺𝛾𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝑉
= − 32𝛾𝜆2 sin2 (𝜆𝛽𝑛𝑐) − 4𝜋𝐺𝛾

𝑝2𝜙2𝑉2 ,
(42a)

𝑉̇ = −4𝜋𝐺𝛾𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝛽 = 3𝛾𝜆𝑉sin (𝜆𝛽𝑛𝑐) cos (𝜆𝛽𝑛𝑐) , (42b)

̇𝜙 = 𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝑝𝜙
= − 3𝑎𝜃𝑉4𝜋𝐺𝛾2𝜆 sin (𝜆𝛽𝑛𝑐) cos (𝜆𝛽𝑛𝑐) + 𝑝𝜙𝑉 ,

(42c)

𝑝̇𝜙 = −𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝜙 = 0, (42d)

and again, in the limit 𝜃 󳨀→ 0 we recover the commutative
field equations. Due to the field equation for ̇𝜙, we note that
now the matter density 𝜌 = ̇𝜙2/2 is not given only by 𝑝2𝜙/2𝑉2,
but by

𝜌 = 12 (− 3𝑎𝜃4𝜋𝐺𝛾2𝜆 sin (𝜆𝛽𝑛𝑐) cos (𝜆𝛽𝑛𝑐) + 𝑝𝜙𝑉 )2 . (43)

In order to construct the analog of the Friedmann equation
we would need to obtain a relation for 𝑝𝜙 in terms of ̇𝜙,
but, due to the equation for ̇𝜙 being now more tangled, such
relation can not be obtained. The relational evolution of 𝑉 in
terms of 𝜙 is now given by

(𝑑𝑉𝑑𝜙 )
2 = (3𝑉𝛾𝜆 )

2

sin2 (𝜆𝛽𝑛𝑐) cos2 (𝜆𝛽𝑛𝑐)
⋅ [ 3𝜃8𝜋𝐺𝛾2𝜆2 sin2 (𝜆𝛽𝑛𝑐) cos2 (𝜆𝛽𝑛𝑐) +

𝑝𝜙𝑉 ]−2 ,
(44)

when taking 𝜃 󳨀→ 0 this relation reduces to (28).
We note that the equations for ̇𝛽 and 𝑉̇ are very similar to

their commutative counterparts; the equation for ̇𝜙 is the only
one being considerably more tangled, as pointed out above.
The equation for 𝑝̇𝜙 is exactly the same, indicating that 𝑝𝜙 is
a constant of motion.

We observe that 𝑉̇ = 0 for 𝛽 = ±𝜋/2𝜆 − 𝑎𝜃𝑝𝜙, further-
more, 𝑉̈|𝛽=±𝜋/2𝜆−𝑎𝜃𝑝𝜙 = 6𝑉/𝛾2𝜆2 > 0. So these values of 𝛽
correspond to a minimum in the volume function and to a
change in sign in 𝑉̇, indicating that a bounce takes place. The
energy density at the bounce is 𝜌|𝛽=±𝜋/2𝜆−𝑎𝜃𝑝𝜙 = 3/8𝜋𝐺𝛾2𝜆2,
the same as in the commutative case; this means that the key
features of LQC are maintained.

The equation for ̇𝛽 can be solved at once with the help of
the Hamiltonian constraint (𝐻𝑛𝑐𝑒𝑓𝑓 ≃ 0):

𝛽 (𝑡) = 1𝜆 arccot(3𝑡 + 2𝐴𝛾𝜆2𝛾𝜆 ) − 𝑎𝜃𝑝𝜙, (45)

𝐴 is an integration constant. If the bounce takes place at 𝑡 = 0
(like in standard LQC) then we must have 𝐴 = 0 and 𝛽(𝑡)
takes the form

𝛽 (𝑡) = 1𝜆 arccot( 3𝑡𝛾𝜆) − 𝑎𝜃𝑝𝜙, (46)

and we can see the behavior of 𝛽 as a function of 𝑡 in Figure 1.
This solution reduces to the commutative one [47] upon
taking 𝜃 󳨀→ 0.

By substituting the solution for ̇𝛽 in the equation for 𝑉̇we
obtain

𝑉 (𝑡) = 𝐵√𝛾2𝜆2 + 9𝑡2, (47)

𝐵 is an integration constant. This solution coincides with
the one obtained in the commutative case [47]. Therefore,
the behavior of the volume function in this noncommutative
construct is the same as in the usual LQC, as shown in
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Figure 2: The behavior of the volume function is the same as in
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values of the noncommutative parameter, with the remaining
constants fixed. We observe that the bounce can be shifted by tuning𝜃.
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Figure 2. In Figure 3, we present the functional relation of 𝑉
and 𝛽, it is observed that the bounce can be shifted by the
noncommutative parameter.

Substituting the solutions for 𝛽(𝑡) and 𝑉(𝑡) in the equa-
tion for ̇𝜙 we get

𝜙 (𝑡) = 𝐶 + 𝑝𝜙3𝐵 log (3𝑡 + √𝛾2𝜆2 + 9𝑡2)

− 𝑎𝐵𝜃√𝛾2𝜆2 + 9𝑡2
4𝜋𝐺𝛾 ,

(48)

where 𝐶 is another integration constant. This solution also
reduces to the commutative one upon taking 𝜃 󳨀→ 0 [47].

Employing the solution for 𝜙(𝑡) to construct the energy
density 𝜌 = ̇𝜙2/2, we observe that its behavior is similar
to the one encountered in LQC. We note that this energy
density overlaps very fast to the one found in LQC, as we
take smaller values for the noncommutative parameter 𝜃, as
shown in Figure 4.

4.3. Noncommutativity inMomentum Sector of FLRW. In this
section we would like to study the effects of noncommutativ-
ity in themomentum sector.Theway to proceed is in the same
manner as the past sections. Consider a deformed algebra

{𝑉𝑛𝑐, 𝑝𝑛𝑐𝜙 } = 𝜃,
{𝛽𝑛𝑐, 𝑉𝑛𝑐} = 4𝜋𝐺𝛾,
{𝜙𝑛c, 𝑝𝑛𝑐𝜙 } = 1,

(49)

with the remaining brackets being zero. The above relations
can be implemented working with the shifted variables

𝑉𝑛𝑐 = 𝑉 + 𝑎𝜃𝜙,
𝑝𝑛𝑐𝜙 = 𝑝𝜙 + 𝑏𝜃𝛽,
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𝛽𝑛𝑐 = 𝛽,
𝜙𝑛𝑐 = 𝜙,

(50)

where 𝑎 and 𝑏 satisfy the relation 𝑎 − 4𝜋𝐺𝛾𝑏 = 1.
The deformed Hamiltonian takes the form

𝐻𝑛𝑐𝑒𝑓𝑓 = − 38𝜋𝐺𝛾2𝜆2 sin2 (𝜆𝛽)𝑉𝑛𝑐 +
(𝑝𝑛𝑐𝜙 )22𝑉𝑛𝑐 , (51)

and the noncommutative effective field equations are

̇𝛽 = 4𝜋𝐺𝛾𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝑉 = − 32𝛾𝜆2 sin2 (𝜆𝛽) , (52a)

𝑉̇ = −4𝜋𝐺𝛾𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝛽
= 3𝛾𝜆𝑉𝑛𝑐 sin (𝜆𝛽) cos (𝜆𝛽) −

4𝜋𝐺𝛾𝑏𝜃𝑝𝑛𝑐𝜙𝑉𝑛𝑐 ,
(52b)

̇𝜙 = 𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝑝𝜙 = 𝑝𝑛𝑐𝜙𝑉𝑛𝑐 , (52c)

𝑝̇𝜙 = −𝜕𝐻𝑛𝑐𝑒𝑓𝑓𝜕𝜙 = 3𝑎𝜃8𝜋𝐺𝛾2𝜆2 sin2 (𝜆𝛽) + 𝑎𝜃
(𝑝𝑛𝑐𝜙 )2
2 (𝑉𝑛𝑐)2 , (52d)

in the limit 𝜃 󳨀→ 0 we recover the commutative field equa-
tions.

The equation for 𝛽(𝑡) is the same as in standard Loop
Quantum Cosmology, the remaining equations of motion are
nowmore complex, and an exact solution could not be found.

With the help of the Hamiltonian constraint, we observe
that 𝜌 = (3/8𝜋𝐺𝛾2𝜆2)sin2(𝜆𝛽), the same relation as in stan-
dard Loop Quantum Cosmology; and hence, the maximum
value that 𝜌 can attain is the same as in the commutative
case, 𝜌𝑚𝑎𝑥 = 3/8𝜋𝐺𝛾2𝜆2. This maximum value is reached,
according to the equation for 𝛽(𝑡), at 𝑡 = 0, as in the
commutative case. We also note, again with the help of the
Hamiltonian constraint, that 𝑉̇(𝑡 = 0) = 0. This indicate that,
when implementing the noncommutativity defined by (49),
not only a bounce occurs, but that this bounce has the same
characteristics as the one in standard LQC (the same critical
density, corresponding to aminimum in the volume function,
at 𝑡 = 0).
5. Discussion and Final Remarks

A simple noncommutative extension of the open FLRW
model in Loop Quantum Cosmology has been constructed,
through the introduction of a deformation at the effective
scheme of Loop Quantum Cosmology. These models could
incorporate effective corrections from both Loop Quantum
Gravity and Noncommutative Geometry.

When introducing noncommutativity in the configura-
tion sector, it is observed from the equation for 𝑉̇ that a
bounce occurs when 𝛽 = 𝜋/2𝜆 − 𝑎𝜃𝑝𝜙; therefore, the bounce

can be shifted in time by tuning 𝜃 as shown in Figure 3;
moreover, at this value of 𝛽, the noncommutative density is
the same as in Effective Loop Quantum Cosmology, 𝜌𝑚𝑎𝑥.
Even when the behavior of the energy density is similar
to the one of standard Loop Quantum Cosmology, as we
consider smaller and smaller values for the noncommutative
parameter, the form of the density function is not retained;
this can be seen in Figure 4.

For the case of noncommutativity in the momentum
sector, it was observed that the equation for 𝛽(𝑡) agrees with
the one in standard LoopQuantumCosmology.The solutions
for the remaining degrees of freedomcould not been obtained
analytically. It is observed that the behavior of the energy
density is the same as in the commutative case: the character-
istics of the bouncematch those of standard LQC.This signals
more compatibility of this kind of noncommutativity with the
LQC paradigm than the one in the configuration sector.

Finally, we conclude that a deformation in the momen-
tum sector of the phase space spanned by the flat FLRW
model with a standard free scalar field is more compatible
with the LQC paradigm than a deformation in the con-
figuration sector. Of course, further research is required
to establish how deep this compatibility is. Some of this
additional analysis will be reported by the authors elsewhere.
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