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We present precise predictions for the Higgs boson rapidity distribution at the LHC in the gluon fusion
production mode. Our approach relies on the fully analytic computation of six terms in a systematic
expansion of the partonic differential cross section around the production threshold of the Higgs boson at
next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We observe a mild correction
compared to the previous perturbative order and a significant reduction of the dependence of the cross
section on the perturbative scale throughout the entire rapidity range.
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I. INTRODUCTION

The precision study of the Higgs boson is key to the
current and future physics program at the LHC. This is
reflected by the remarkable accomplishments [1,2] of the
ATLAS and CMS experiments that continue to test the
interactions of the Higgs boson after its discovery [3,4].
The resulting precise determination of the couplings of the
Higgs boson to standard model (SM) particles promises to
be a crucial test of physics beyond the SM, especially in
the absence of direct observations of new particles at the
LHC. Our capability to observe small deviations from SM
couplings provides key information to test many models
that address problems in high-energy physics, such as the
origin and nature of dark matter. Particularly, in the advent
of the high-luminosity phase of the LHC it is paramount
that the experimental precision is met or surpassed by
theoretical predictions in order to reap the full benefit of
LHC measurements.
The dominant mechanism for the production of a Higgs

boson at the LHC is described by the fusion of two gluons,
resolved from the incoming protons, into a virtual top quark
loop that then radiates the Higgs boson. Naturally, there is a
significant effort by the particle physics community to
determine this particular production mode with utmost
precision. It has long been known that the gluon fusion
cross section is afflicted by particularly large perturbative

quantum chromodynamics (pQCD) corrections [5–12].
This has motivated a long-running program to compute
higher-order QCD corrections to the inclusive gluon fusion
cross section that culminated in the recent determination of
the next-to-next-to-next-to-leading order (N3LO) correc-
tions in pQCD [13–22]. Taking into account effects due to
the neglected quark masses as well as electroweak correc-
tions and appraising residual uncertainties from missing
higher-order effects, the current state-of-the-art prediction
for the Higgs production cross section in gluon fusion was
obtained in [20,21].
Due to the astounding experimental progress we are able

to go beyond the determination of total rates and ask more
detailed questions about the nature of the Higgs boson. In
particular, it is possible to perform measurements differ-
ential in kinematic variables such as the transverse momen-
tum or rapidity of the Higgs boson. Currently, precise
predictions through next-to-next-to-leading order (NNLO)
in QCD are available not only for differential Higgs boson
observables but also for observables where a Higgs boson
is produced in association with a jet [23–29].
In this paper we report the calculation of the Higgs boson

rapidity distribution at N3LO in QCD perturbation theory.
The rapidity distribution is the only observable that receives
genuine corrections at N3LO that are beyond the formal
accuracy of cross sections at NNLO for the production of a
Higgs boson in association with a jet. Our calculation of
this observable relies on an approximation of N3LO matrix
elements by means of an expansion around the production
threshold of the Higgs boson. This drastically simplifies the
calculation of the amplitudes contributing to the N3LO
cross section and was already successfully used in the
calculation of the inclusive corrections to Higgs boson
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production at N3LO [13–20]. Additionally, we work in an
effective theory (EFT) where the top quark is considered to
be infinitely heavy and its degrees of freedom are integrated
out. Recently, in Ref. [30], the rapidity distribution for
Higgs production was also approximated at N3LO in the
formalism of qT subtraction [31], exploiting the assumption
that one of the ingredients (the third-order collinear
function) is uniform over the entire rapidity range.

II. SETUP

In collinear factorization, the probability to produce a
Higgs boson with a given rapidity Y can be expressed as

dσPP→HþX

dY
¼ σ̂0

X
i;j

Z
1

0

dx1dx2dy1dy2fiðy1Þfjðy2Þ

× δðτ − x1x2y1y2Þδ
�
Y −

1

2
log

�
x1y1
x2y2

��

× ηijðx1; x2Þ: ð1Þ

Here, fiðyÞ are parton distribution functions (PDFs) and
ηijðx1; x2Þ are the partonic coefficient functions (PCFs).
The sum runs over all possible combinations of initial state
partons and we integrate over the energy fraction of the
incoming partons y1=2. Furthermore, we define τ ¼ m2

h=S
and S ¼ ðP1 þ P2Þ2, where the Pi are the momenta of the
incoming protons and mh is the Higgs boson mass. We
factor out the leading order partonic cross section σ̂0.
The main result of our calculation is the analytic

determination of the PCFs in pQCD through N3LO:

ηijðx1; x2Þ ¼
X3
i¼0

�
αS
π

�
i
ηðiÞij ðx1; x2Þ þOðα4SÞ: ð2Þ

We employ the heavy top quark effective theory which
allows us to work only with massless partons and couple
the Higgs bosons directly to gluons via an effective inter-
action. The required Wilson coefficient, matching the EFT
to full QCD, was computed in Refs. [32–36]. The PCFs are
comprised of squared partonic matrix elements with up to
three unresolved partons in the final state integrated over
the available phase space. The matrix elements through
NNLO are known [37], but we recompute them using our
methodology. The purely virtual matrix elements and
matrix elements with one additional parton in the final
state were computed in Refs. [38–41] and we rederive
them for the purpose of this article. Our computation is
performed in the framework of dimensional regularization
in the MS scheme and we rely on previously computed
splitting functions [42,43] and β-function coefficients
[44–47] to absorb initial state infrared singularities by a
standard mass factorization redefinition of our PDFs and to
perform ultraviolet renormalization. Our main result relies
on a suitable approximation of squared matrix elements

with two and three partons in the final state which we
discuss below.

III. THRESHOLD EXPANSION

The probability to produce a Higgs boson via gluon
fusion at the LHC is strongly correlated with the probability
to find a pair of gluons in the colliding protons. This gluon
luminosity is steeply falling with the center-of-mass energy
s of the gluon pair. This results in an enhancement of the
hadronic cross section, when the Higgs boson is produced
close to threshold, i.e., when s equals the mass of the Higgs
boson. This kinematic enhancement was exploited success-
fully in the past to perform precise approximations of the
inclusive Higgs boson production cross section in terms of
a systematic expansions around the production threshold
[10,19]. In this limit the threshold parameter z ¼ m2

h=s ¼
x1x2 tends to one and an expansion can be performed
around z̄ ¼ 1 − z ¼ 0.
In Ref. [48] we demonstrated that the rapidity distribution

at NNLO can be approximated to a high degree of precision
using a threshold expansion. Furthermore, we already
obtained the first two terms in the threshold expansion of
the PCFs at N3LO. In this article we go beyond this result
and obtain in total the first six terms of the expansion in z̄.
We achieve this by following the strategies outlined in
Ref. [48] based on integrand expansions of Higgs differential
cross sections [13,14,18,49], which generalize the tech-
niques employed at NNLO [50–52]. The result is a PCF
differential in the transverse momentum and rapidity of the

Higgs boson. In order to obtain our ηð3Þij ðx1; x2Þ we analyti-
cally integrate out the extra degree of freedom corresponding
to the transverse momentum.
In the variables x1 and x2 the threshold expansion can be

performed by introducing a formal expansion parameter δ
such that

x̄1 → δx̄1
1 − x̄2
1 − δx̄2

; x̄2 → δx̄2: ð3Þ

Here, x̄i ¼ 1 − xi. The expansion parameter δ is chosen
exactly such that each term in the expansion around
δ ¼ 0 of our PCF corresponds exactly to one term in the
expansion in z̄.

IV. EXPLOITING THE DIVERGENCE
STRUCTURE

The bare PCFs at N3LO, arising from the calculation
of contributing squared matrix elements, in d ¼ 4 − 2ϵ
dimensions take the form

ηð3Þij;bareðx̄1; x̄2Þ ¼ ηð3Þij;virtδðx̄1Þδðx̄2Þ

þ
X3
n;m¼1

x̄−1−mϵ
1 x̄−1−nϵ2 ηð3;m;nÞ

ij;bare ðx̄1; x̄2Þ: ð4Þ
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The term ηð3Þij;virtδðx̄1Þδðx̄2Þ corresponds to the purely
virtual contributions with a leading divergence of 1=ϵ6.

The functions ηð3;n;mÞ
ij;bare ðx̄1; x̄2Þ are holomorphic around

x̄i ¼ 0 and contain fourth-order poles in ϵ. In order
to expand the PCFs in the dimensional regulator we
perform a standard expansion of singular factors in terms
of delta functions δðx̄iÞ and plus distributions ½Ln

i =x̄i�þ
with Li ¼ logðx̄iÞ.
We obtain our finite, renormalized N3LO coefficient

function by combining the bare PCF with a suitable mass
factorization and ultraviolet renormalization counterterm

CTð3Þ
ij . This counterterm equally contains distributions

and renders the renormalized PCFs finite:

ηð3Þij ðx1; x2Þ ¼ lim
ϵ→0

½ηð3Þij;bareðx1; x2Þ þ CTð3Þ
ij ðx1; x2Þ�

¼
X
k;l

Dkðx̄1ÞDlðx̄2Þηð3Þij;ðk;lÞðx1; x2Þ: ð5Þ

In the second line in the above equation we isolate the
structures that are singular in the limit x̄i → 0 into the

functions Dkðx̄iÞ such that the coefficients ηð3Þij;ðk;lÞðx1; x2Þ
are either real numbers or holomorphic functions in the
limit. The nonholomorphic function Dkðx̄iÞ corresponds
to the kth entry of the following list of 12 possible
structures that can appear in the cross section through
N3LO:

�
δðx̄iÞ;

�
L0
i

x̄i

�
þ
;…;

�
L5
i

x̄i

�
þ
; L0

i ;…L4
i

�
: ð6Þ

The fact that all explicit poles in the dimensional
regulator have to cancel among the different contributions
in Eq. (5) allows us to derive relations among the various
bare partonic coefficients in Eq. (4) and the counterterm.
Using the fact that only the known, genuine two-loop
contributions can produce bare coefficient functions con-
tributing to the n ¼ 1 or m ¼ 1 terms in Eq. (4), this
becomes a powerful tool to determine many of the

coefficients ηð3Þij;ðk;lÞðx1; x2Þ exactly.
All coefficients of terms proportional to two distribu-

tions were already computed in Ref. [48] and can also be
deduced from the inclusive cross section at threshold
(cf. Refs. [15,53]) as was done in Ref. [54]. Furthermore,
we observe that if we consider only the leading power term
in either one of the x̄i, a reduced number of exponents
contributes to Eq. (4), such that n ≤ m, which further
constrains our system of equations. Using these relations,
we were able to determine all coefficients in Eq. (5) exactly
in x̄i, except for the terms

ηð3Þij;missingðx1; x2Þ

¼
�
δðx̄1Þ logðx̄2Þηð3Þij;ð1;9Þð0; x2Þ

þ δðx̄1Þηð3Þij;ð1;8Þð0; x2Þ þ
�
1

x̄1

�
þ
ηð3Þij;ð2;8Þð0; x2Þ

þ logðx̄2Þηð3Þij;ð8;9Þðx1; x2Þ
�
þ ½ðx1 ↔ x2Þ�

þ ηð3Þij;ð8;8Þðx1; x2Þ þ logðx̄1Þ logðx̄2Þηð3Þij;ð9;9Þðx1; x2Þ: ð7Þ

While the above terms could not be determined exactly from
our current knowledge of unexpanded matrix elements, we
obtained them via a threshold expansion as described above.
Notice that the above contributions contain maximally one
power of a logarithm that is enhanced as x̄i → 0.
In our final approximation of the PCF we choose to

reorganize the terms without any distributions such that
all terms proportional to threshold logarithms logiðz̄Þ with
i ≥ 3 are maintained exactly. We approximate terms with
lower powers of threshold logarithms using the threshold
expansion as discussed above. Note that the relations
among the different components of the PCF provide a
highly nontrivial consistency check on the results from our
threshold expansion.
The partonic coefficient functions also depend explicitly

on logarithms of the perturbative scale μ and we can
rearrange them as

ηð3Þij ðx1; x2Þ ¼
X3
l¼0

ηð3;lÞij ðx1; x2Þ logl
�
m2

h

μ2

�
: ð8Þ

Naturally, the functions ηð3;lÞij ðx1; x2Þ can be decomposed
into distribution-valued or logarithmically enhanced terms
as above. However, the coefficients with l ≥ 1 can be
derived exactly from lower-order cross sections by solving
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
equations. Consequently, we determine them exactly, with
one exception: The derivation of the nondistribution valued,
nonlogarithmically enhanced term of the coefficient of
log ðm2

h=μ
2Þ involves rather cumbersome convolution inte-

grals. We approximate this particular term using a threshold
expansion which modifies our approximation at terms
beyond the claimed formal accuracy.

V. MATCHING TO THE INCLUSIVE
CROSS SECTION

The inclusive PCF for Higgs boson gluon fusion
production at N3LO was computed exactly in Ref. [22].
It is a one-parameter function of the threshold variable z.

By performing the variable transformation fx̄1 ¼ ð1−x̄Þz̄
1−x̄ z̄ ;

x̄2 ¼ x̄ z̄gwe can relate our differential PCF to the inclusive
one:
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ηð3Þ;incij ðzÞ ¼
Z

1

0

z̄dx̄
ð1 − z̄ x̄Þ η

ð3Þ
ij

�ð1 − x̄Þz̄
1 − x̄ z̄

; x̄ z̄

�
: ð9Þ

The above relation provides an enormously stringent check
on our partonic coefficient functions. Indeed, our threshold
expansion agrees with the threshold expansion of the
inclusive partonic coefficient function for all computed
orders.
Furthermore, Eq. (9) allows us to modify our differential

partonic coefficient functions by terms of higher order in
the threshold expansion such that the exact inclusive cross
section is automatically obtained if the integral over the
rapidity distribution is performed:

ηð3Þ;matched
ij ðx1; x2Þ ¼ ηð3Þ;appij ðx1; x2Þ þ

x1 þ x2
2ð1 − x1x2Þ

× ½ηð3Þ;incij ðx1x2Þ − ηð3Þ;inc;appij ðx1x2Þ�:
ð10Þ

Here, ηð3Þ;appij corresponds to the approximation of the PCF

obtained as described in the previous sections and ηð3Þ;inc;appij

is its inclusive counterpart obtained by virtue of Eq. (9).

Furthermore, ηð3Þ;incij is the inclusive partonic coefficient
function obtained in Ref. [22]. The term in the square
brackets of Eq. (10) contains therefore only terms that are
higher order in the threshold expansion than those obtained
as described above. This modification of the PCF ensures
that if the inclusive integral over the Higgs boson rapidity is
performed the correct cross section is obtained for each
partonic center-of-mass energy. The approximation derived
in Eq. (10) will be the basis for our numerical results
presented below.

VI. PHENOMENOLOGICAL RESULTS

In the previous sections we derive an analytic approxi-
mation to the PCF for the Higgs boson cross section
differential in the rapidity through N3LO in QCD. We now

use MMHT2014 PDFs [55] to derive predictions for
hadronic Higgs boson rapidity distribution at the LHC
with a center-of-mass energy of 13 TeV by means of
Eq. (1). We implement our coefficient functions into a
private C++ code and use LHAPDF [56] to perform the μ2

evolution of the PDF grids and evaluate them with a private
grid interpolator. The Cuba library [57] is used to perform
the numerical integration over the momentum fractions of
the partons.
As validation, we first derive the NNLO analogue of the

approximation of the PCF used at N3LO and show the
resulting predictions in the left panel of Fig. 1 normalized
to the exact rapidity distribution through NNLO with a
central scale of μ ¼ mh=2. The blue band corresponds to
the cross section obtained by varying the common scale μ
in the interval ½mh=4; mh�. The colored lines show the cross
section obtained by truncating the threshold expansion in
our approximation at different orders. We observe that our
approximation describes the NNLO rapidity distribution
very well for central rapidities ðjYj < 3Þ and even performs
fine for larger rapidities. Deterioration of the threshold
approximation at larger rapidities can be expected as on
average the final state of the scattering process is more
energetic, i.e., further from the production threshold.
Including an increasing number of terms systematically
improves the approximation. We also observe that all
rapidity distributions obtained from truncated threshold
expansions fall well within the scale variation band of the
exact NNLO cross section.
In the right panel of Fig. 1 we show predictions for the

N3LO rapidity distribution truncating the threshold expan-
sion at different orders normalized to our best approxima-
tion. Similarly to the case at NNLO, including more terms
in the expansion systematically stabilizes our approxima-
tion. Central rapidities are remarkably stable under the
inclusion of more and more expansion terms. In particular,
all truncated approximations are once again contained
within the scale variation band for central rapidities. We
explored relaxing some of the ingredients of our approxi-
mation (less exact distributions or no matching to the exact

FIG. 1. Approximate Higgs boson rapidity distribution with threshold expansion truncated at different orders. The left panel shows the
ratio of the approximate NNLO to the exact result; the right panel shows the approximate N3LO result to the best prediction obtained in
this work.
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inclusive cross section) which amounts to a modification of
terms beyond those computed in our threshold expansion
and find only slight variation in our prediction. For
example, basing our calculation purely on a threshold
expansion with six terms underestimates the inclusive cross
section by 0.25% and only slightly varies the shape of the
rapidity distribution. Similarly, we checked that a simple
reweighting of the threshold-expanded N3LO rapidity
distribution to the exact inclusive cross section at N3LO
produces results that are very close to our best prediction
including the matching procedure according to Eq. (9). We
observe that at NNLO we approximate the exact PCF to
better than 1% for jYj < 2 and better than 2% for jYj < 3.
In order to be conservative we estimate that our prediction

is at the same level of precision relative to the exact result
at N3LO.
In Fig. 2 we show the rapidity distribution of the Higgs

boson truncated at different orders in QCD perturbation
theory. Our newly derived N3LO predictions display a
stabilization of the perturbative series as well as a drastic
reduction of the size of perturbative scale dependence. We
observe that the ratio of the rapidity distribution at N3LO
relative to NNLO is uniform over the entire range of Higgs
boson rapidities. Consequently, the N3LO rapidity distri-
bution can be reproduced to very high accuracy by
rescaling the NNLO prediction by the inclusive N3LO k
factor. Our findings for the central value and scale variation
of the rapidity distribution are in agreement with the result
presented in Ref. [30]. At very large rapidities the authors
of Ref. [30] observe a slight deviation from an entirely
uniform N3LO correction but our predictions are still
compatible within uncertainties.
To conclude, in this article we have obtained theoretical

predictions for the Higgs boson rapidity distribution at sig-
nificantly improved levels of precision. The scale variation
of the N3LO cross section for jYj < 3 is reduced to
½−3.4%;þ0.9%� and we estimate the uncertainty due to
missing higher orders in the threshold expansion to be less
than 1% for jYj < 2 and less than 2% for jYj < 3. Our result
has direct implications for the LHC phenomenology pro-
gram and represents a milestone in the field of perturba-
tive QCD. We expect the result of this work to be the
cornerstone of future fully differential Higgs boson
phenomenology.
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