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A new perspective toward thermodynamic phase space of Reisser-Nordstrom (RN) black holes in an anti-
de-Sitter (AdS) spaces was recently proposed [1], where the square of the electric charge (Q 2) of black 
hole was regarded as a thermodynamic variable and the cosmological constant (pressure) as a fixed 
quantity. In this paper, we address the universality class and critical properties of any AdS black hole in 
this alternative phase space. We disclose the critical behavior of AdS black hole in the alternative phase 
space in which a continuous phase transition happens and in a very general framework, independent 
of the spacetime metric. Based on the expansion of the equation of state and Landau thermodynamic 
potential in the neighborhood of a critical point in the alternative phase space, we confirm that the set 
of values for critical exponents for generic black hole is analogous to the Van der Waals fluid system. 
Finally, we reveal that the scalar curvature in geometry thermodynamic diverges at the critical point 
of black hole. Our study shows that the approach here is powerful enough to investigate the critical 
behavior of any black holes and further supports the viability of the alternative viewpoint toward phase 
space of black holes suggested in [1].

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Thermodynamic phase transitions are one of the most intrigu-
ing phenomena in black hole physics which can provide insight 
into underlying structure of spacetime geometry. In particular, 
phase transition of anti-de-Sitter (AdS) black holes has received 
much attention since the discovery of the correspondence between 
gravity in an AdS spacetime and the conformal field theory (CFT) 
living on its boundary. The pioneering work in this regard was 
performed by Hawking and Page [2], who demonstrated the ex-
istence of a first-order phase transition in the Schwarzschild AdS 
black hole. According to the AdS/CFT duality, this phase transition 
can be interpreted as a confinement-deconfinement transition in 
the quark gluon plasma [3]. Later, the analogy between the small-
large black hole phase transition and the liquid-gas Van der Waals 

* Corresponding author.
E-mail addresses: amindehyadegari@gmail.com (A. Dehyadegari), 

bibhas.majhi@iitg.ac.in (B.R. Majhi), asheykhi@shirazu.ac.ir (A. Sheykhi), 
montakhab@shirazu.ac.ir (A. Montakhab).
https://doi.org/10.1016/j.physletb.2019.02.026
0370-2693/© 2019 Published by Elsevier B.V. This is an open access article under the CC
phase transition was reported in [4], where RN black hole was con-
sidered in asymptotic AdS spacetime. Later on, it was revealed that 
this similarity happens in the extended phase space of the RN-
AdS black hole in which the cosmological constant (�) is regarded 
as a thermodynamic variable corresponding to the thermodynamic 
pressure with a black hole’s volume as a conjugate quantity [5,
6]. In the extended phase space, the cosmological constant as a 
dynamical quantity can take on arbitrary values in the first law 
of black hole thermodynamics where the mass of AdS black hole 
is interpreted as the enthalpy [7]. In recent years, various studies 
on black holes phase transition in an extended phase space have 
been carried out such as zeroth-order phase transition [8], reen-
trant phase transition [9] as well as superfluid-like phase transition 
[10] as well as study of triple points [11]. For more details, we re-
fer to [12] and references therein.

Criticality is an interesting topic in phase transition context be-
cause thermodynamic quantities of the system show non-analytic 
behavior as one approaches the critical point, where a continuous 
phase transition occurs. This non-analytic behavior is expressed in 
the terms of power law functions which are governed by the criti-
cal exponents. The set of critical exponents define the universality 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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class of a system, which are thought to obey the same symmetry 
principles. In case of charged AdS black hole, a continuous (second 
order) phase transition occurs between small-large black hole in 
an extended phase space [6]. Furthermore, the critical exponents 
associated with this transition are the same as those in the Van 
der Waals liquid-gas transition, i.e., both systems belong to the 
same universality class [6]. Critical behavior and universality class 
of AdS black holes in the extended phase space have been investi-
gated in various spacetimes [13,14]. Recently, authors of Ref. [15]
have shown that if there is a critical point in an extended phase 
space of general AdS black hole, the small-large black hole transi-
tion is in the Van der Waals universality class. Another interesting 
approach towards critical phenomena of AdS black hole is through 
variation of the electric charge of black hole in a fixed AdS back-
ground geometry, i.e. keeping the cosmological constant (pressure) 
as a fixed parameter. In this perspective, the charge of black hole 
is treated as a natural thermodynamic variable that can take on 
arbitrary values in the thermodynamic process. In this view, the 
thermodynamic behavior of AdS black hole is analysed in a ther-
modynamics phase space. The critical point and associated critical 
exponents in a phase space of black hole have been studied in 
a general way [16]. It was found that the values of critical ex-
ponents differ from those of the Van der Waals phase transition 
[16]. All these phase transitions are also discussed from the ther-
mogeometrical point of view [17] where the phase transition is 
identified as the divergence of the Ricci scalar of the thermody-
namic geometry. In additional, an interesting phenomenon of black 
hole reentrant phase transition has also been investigated in four-
dimensional Born-Infeld AdS black in which the charge of system 
can vary and the cosmological constant is fixed [18]. In the con-
text of Gauss-Bonnet-AdS, Van der Waals-like phase transition has 
been studied with a spherical horizon in the framework of holog-
raphy [19]. It was shown that the nonlocal quantum objects can be 
used to determine the phase structure of Gauss-Bonnet-AdS black 
holes [19].

On the other hand, an alternative view of phase space has 
been proposed more recently where various thermodynamic quan-
tities find more natural and physical meaning [1]. In this view, the 
square of the electric charge of black hole is considered as a ther-
modynamic variable and � = 1/2r+ is subsequently considered as 
its conjugate, where r+ is the horizon radius. It was indeed shown 
that in this alternative phase space, phase transition and criti-
cal behavior of RN-AdS black hole, in four dimensions, occur in 
the Q 2-� plane, where relevant response function clearly signifies 
stable and unstable region [1]. Remarkably, in this viewpoint, the 
small-large black hole phase transition is quite similar to the Van 
der Waals liquid-gas system and belongs to the same universality 
class in contrast with previous study of [16]. Additionally, it would 
be interesting to study the universality class and critical proper-
ties for any AdS black hole in an alternative phase space where 
the cosmological constant (�) is taken to be constant. Hence, in 
this paper, we provide a general framework, i.e. a metric indepen-
dent way, for investigating the critical behavior of AdS black hole 
in the above-mentioned alternative phase space approach in which 
a continuous phase transition happens. In this analysis, the exis-
tence of the phase transition with respect to the alternative phase 
space variables is assumed to be there. Based on the expansion of 
the equation of state and Landau thermodynamic potential in the 
neighborhood of a critical point in the alternative phase space, we 
find that a set value of critical exponents for generic black hole is 
analogous to usual Van der Waals system. Also, we show that the 
scalar curvature in thermogeometric picture diverges at the critical 
point of black hole in an alternative phase space.

The present Article is structured as follows: In the next section, 
we obtain the critical exponents by using the equation of state of 
black hole in a general scheme. In section 3, by considering the 
Landau thermodynamic potential, we study universality properties 
of black hole at phase transition. In section 4, we investigate ther-
modynamic geometry of the system at critical point in alternative 
phase space. The last section is devoted to concluding remarks.

2. Equation of state: general approach

Here, we intend to prove that the critical exponents of a contin-
uous (second-order) phase transition are independent of the metric 
function (black hole) in an alternative phase space where Q 2 is 
treated as a thermodynamic quantity and its conjugate is � as 
proposed in [1]. For this purpose, the first law of black hole ther-
modynamics, for constant pressure, is written as1

dM = T dS + �dq, (1)

where q = Q 2. Here M , S and T are the total mass, entropy and 
Hawking temperature of black hole, respectively. In general, the 
entropy only depends on the event horizon, r+ , i.e. S = S(r+). The 
Gibbs free energy is a thermodynamic potential that can be calcu-
lated by Legendre transform of the above equation

dG = −SdT + �dq, (2)

where G = G(T , q). Thermodynamics of black hole may be de-
scribed by equation of state q = q(�, T ) where q depends on �
and T . As we know, the critical point in q − � plane is character-
ized by [1]

∂q

∂�

∣∣∣
Tc

= 0,
∂2q

∂�2

∣∣∣
Tc

= 0, (3)

where the subscript c refers to the critical point and critical quan-
tities are Tc , �c and qc . The behavior of thermodynamic functions 
near the critical point is identified by the critical exponents which 
are defined for a Van der Waals system as [20]

C ∼ |T − Tc|−α ,∣∣vl − v g
∣∣ ∼ |T − Tc|β ,

P − Pc ∼ ∣∣vl − v g
∣∣δ ,

χT = − 1

v

∂v

∂ P

∣∣∣
T

∼ |T − Tc|−γ .

The first equation defines the exponent for thermal response func-
tion C (heat capacity), the second equation characterizes the non-
analytic behavior of order parameter at the critical point, the third 
defines the critical isotherm, and the last equation defines the 
singularity in (mechanical) response function, χT (isothermal com-
pressibility). Here, v and P are specific volume and pressure, re-
spectively, which define the thermodynamic phase space. Now, in 
order to find the critical exponents for a black hole, we expand q
around the critical point

q(�, T ) = a00 + a01 (T − Tc) + a02 (T − Tc)
2

+a11 (T − Tc) (� − �c) + a12 (T − Tc)
2

× (� − �c) + a30 (� − �c)
3 + . . . , (4)

1 In the case of Gauss-Bonnet gravity, the first law of black hole thermodynamics 
is extended by considering the variation of Gauss-Bonnet coefficient [21]. Since we 
study critical behavior through the variation of charge only, the variation of the 
Gauss-Bonnet term in the first law is neglected. Hence, the main result of this paper 
does not change in the present of Gauss-Bonnet term.
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where we have used the convention

aij ≡ (i! j!)−1 ∂ i+ jq/∂�i∂T j
∣∣∣
�c,Tc

,

and use has been made of Eq. (3). It is worth noting that for func-
tion f = f (x, y) where x, y are independent variables, the Taylor 
series expansion around a point x = x0, y = y0 will have the fol-
lowing form:

f (x, y) = f (x0, y0) + a10(x − x0) + a01(y − y0)

+a11(x − x0)(y − y0) + ..., (5)

in which all powers of (x − x0) and (y − y0) must be positive 
integer. The only assumption is that the function f (x, y) is contin-
uous and n times differentiable within the interval [(x0, y0), (x, y)]. 
Therefore, since q(�, T ) was expanded into their derivatives, inte-
gral powers were appeared in the right hand of the expression. 
This will also be followed in the later analysis. For simplicity, we 
rewrite thermodynamic variables in dimensionless form as

q = qc(1 + 
),

T = Tc(1 + t),

� = �c(1 + ψ), (6)

where 
, t and ψ are deviation from critical point. Substituting 
above expressions into Eq. (4), we have


 = a′
01t + a′

02t2 + a′
11tψ + a′

12t2ψ + a′
30ψ

3, (7)

in which the prime quantities are equal to the rescaled coefficients 
in Eq. (4). Since phase transition occurs between small and large 
black hole under constant charge, one writes


 = a′
01t + a′

02t2 + a′
11tψs + a′

12t2ψs + a′
30ψ

3
s

= a′
01t + a′

02t2 + a′
11tψl + a′

12t2ψl + a′
30ψ

3
l , (8)

here, ψs (ψl) stands for ψ at small (large) horizon. Also, applying 
the Maxwell’s equal area law, 

∮
�dq = 0, which is obtained from 

Gibbs free energy [1,20], and using Eq. (7) one can arrive at

ψs∫
ψl

ψ
(

a′
11t + a′

12t2 + 3a′
30ψ

2
)

dψ = 0. (9)

It is a matter of calculations to show that Eqs. (8) and (9) have the 
following solution

ψl = −ψs =
√

−a′
11t + a′

12t2

a30
. (10)

Therefore, the order parameter near the critical point behaves as

|ψs − ψl| = 2ψs ∼ t1/2 =⇒ β = 1/2. (11)

In the vicinity of critical point, the shape of the critical isotherm, 
t = 0, is obtained by


 = a′
30ψ

3 =⇒ δ = 3. (12)

According to equation (7), the behavior of response function, χT =
∂�/∂q

∣∣∣
T

, is given by

χT ∼ 1

a′ t
=⇒ γ = 1. (13)
11
To denote the specific heat at fixed � close to the critical point, 
we perform the expansion of entropy around the critical point

S(�, T ) = s00 + s01(T − Tc) + s10 (� − �c)

+s11 (T − Tc) (� − �c) + . . . , (14)

where si j ≡ (i! j!)−1 ∂ i+ j S/∂�i∂T j
∣∣∣
�c ,Tc

. With S at hand, we can 

extract the critical exponent α, as follows

C� = T
∂ S

∂T

∣∣∣
�

= Tcs01 =⇒ α = 0.

It is remarkable to note that S is only a function of � for Maxwell 
electrodynamics, i.e. si j = 0 for j �= 0 [1]. In this way we calculate 
the critical exponents of a black hole in a general framework with-
out specifying the form of the metric, which coincide with those 
obtained for Van der Waals fluid system.

3. Phenomenological aspect: Landau function

Let us define the thermodynamic potential in this case as

K = M − T S − �q . (15)

Then use of first law Eq. (1) yields

dK = −SdT − qd� . (16)

The above states that K is function of both T and � and

S = −
(∂ K

∂T

)
�
; q = −

( ∂ K

∂�

)
T

. (17)

Consequently, the conditions Eq. (3) at the critical point take the 
following forms:

∂2 K

∂�2

∣∣∣
Tc

= 0,
∂3 K

∂�3

∣∣∣
Tc

= 0. (18)

Now since K = K (T , �), Taylor expansion of it near the critical 
point is given by

K (T ,�) = b00 + b10(T − Tc) + b11(T − Tc)(� − �c)

+b01(� − �c) + b20(T − Tc)
2 + b21(T − Tc)

2(� − �c)

+b22(T − Tc)
2(� − �c)

2 + b12(T − Tc)(� − �c)
2

+b13(T − Tc)(� − �c)
3 + b04(� − �c)

4 + . . . . (19)

In the above we have used bij = (i! j!)−1 (∂ i+ j K )/(∂ i T ∂ j�)

∣∣∣
�c ,Tc

and 

the condition Eq. (18). Using Eq. (6), we obtain the near critical 
point K as

K (t,ψ) = b00 + b′
10t + b′

11tψ + b′
01ψ + b′

20t2

+b′
12tψ2 + b′

21t2ψ + b′
22t2ψ2 + b′

13tψ3 + b′
04ψ

4 . (20)

Here the prime quantities are the rescaled coefficients which ap-
pear in Eq. (19). Since their explicit forms are not needed, we do 
not mention their values. The same logic will be followed again 
and again. Using the first and second relations of Eq. (17), we ob-
tain

S = b′′
10 + b′′

11ψ + b′′
20t + b′′

21tψ + b′′
12ψ

2

+b′′
22tψ2 + b′′

13ψ
3 , (21)

q = a′′
01 + a′′

11t + a′′
12tψ + a′′

21t2 + a′′
22t2ψ

+a′′
13tψ2 + a′′

04ψ
3 , (22)
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respectively. In the case of Maxwell electrodynamics, the coeffi-
cients of t in Eq. (21) is zero i.e. b′′

2i = 0 where i = 0, 1, 3.
Using the Maxwell construction (the equal-area law), one ob-

tains

ψl∫
ψs

ψdq =
ψl∫

ψs

ψ(a′′
12t + a′′

22t2 + 2a′′
13tψ + 3a′′

04ψ
2)dψ = 0 . (23)

By this construction, the unstable part of the isotherm is replaced 
by an isocharge which indicates that q is the same for ψs and ψl

[1]. Thus, near the critical point, one can write

q = a′′
01 + a′′

11t + a′′
12tψs + a′′

21t2 + a′′
22t2ψs

+a′′
13tψ2

s + a′′
04ψ

3
s ,

q = a′′
01 + a′′

11t + a′′
12tψl + a′′

21t2 + a′′
22t2ψl

+a′′
13tψ2

l + a′′
04ψ

3
l . (24)

Equating the above two and using Eq. (23), one obtains

ψl,s =
−a′′

13t ±
√

3t
[
a′′2

13t − 3a′′
04

(
a′′

12 + a′′
22t

)]
3a′′

04
, (25)

which leads to

|ψs − ψl| =
2
√

3t
[
a′′2

13t − 3a′′
04

(
a′′

12 + a′′
22t

)]
3a′′

04
, (26)

and to the lowest order in t

|ψs − ψl| ∼ (T − Tc)
1/2 , (27)

which yields β = 1/2. Next, Eq. (22) at T = Tc reduces to

q ∼ ψ3 ∼ (� − �c)
3 , (28)

and so δ = 3.
The isothermal compressibility is defined as χT = (∂�/∂q)T . 

Therefore differentiating Eq. (22) we find (to the lowest order in t), 
χT ∼ t−1 which yields γ = 1. Similarly, the specific heat is given 
by C� = T (∂ S/∂T )� and can be calculated using Eq. (21)

C� = (1 + t)
(∂ S

∂t

)
ψ

= (1 + t)
(

b′′
20 + b′′

21ψ + b′′
22ψ

2
)

, (29)

which to the lowest order is just a constant. Therefore we find the 
critical exponent α = 0.

4. Thermogeometric description

The approach toward phase transition by considering ther-
modynamic geometry (thermogeometric) was first introduced by 
Weinhold [22] and Ruppeinner [23]. In this case the Ricci scalar 
of the metric diverges at the critical point or in other words di-
vergence of Ricci scalar is the signature of the phase transition 
[24,25]. Both of these approaches are conformally related to each 
other by the temperature T . For recent studies on the Ruppeiner 
thermodynamic geometry, see [26–30] and references therein. This 
approach has different properties due to the different thermody-
namic potentials, i.e. is not invariant under Legendre transforma-
tion [31,32]. This distinct problem was later remedied by Quevedo 
[32], who presented a Legendre invariant set of metrics in the 
phase space. In particular, a Legendre invariant metric has been 
investigated for black holes in [33] (see also [34]). Below, we fol-
low procedure in [33], to construct the Legendre invariant metric 
in an alternative phase space.
The idea is as follows: First construct a thermodynamic phase 
space T on which the coordinates are Z A = (F , X a, Pa) where 
F is the thermodynamic potential and Pa are the conjugate vari-
ables of the thermodynamic variables X a . In this representation 
the fundamental one form is given by

θF = dF −
∑
a,b

δabPadX b , (30)

where δab is the Kronecker delta. With the present setup, one can 
choose the thermodynamic geometry on T as

G =
(

dF −
∑
a,b

δabPadX b
)2

+λ
(∑

a,b

ξabPaX b
)(∑

c,d

ηcddPcdX b
)

, (31)

which is invariant under the following set of Legendre transforma-
tions:

Fold = Fnew − δabX a
newPb

new ,

X a
old = −Pa

new; Pa
old = X a

new . (32)

Here ηab = diag(−1, 1, 1, . . . ) and λ is an arbitrary Legendre in-
variant function of X a while ξab is an arbitrary diagonal con-
stant matrix. The simplest choice is chosen as λ = 1 and ξab =
diag(1, 1, . . . ). Therefore the general form of the simplest Legen-
dre invariant metric is

G = θ2
F +

(∑
a,b

ξabPaX b
)(∑

c,d

ηcddPcdX b
)

. (33)

We shall work with this particular form.
For the present case, we start with K , Eq. (15), as a ther-

modynamic potential. So according to Eq. (16), the coordinates 
of the thermodynamic phase space are Z A = (K , X a, Pa) with 
X a = (�, T ) and Pa = (−q, −S). So the metric Eq. (33) takes the 
form:

G1 = θ2
K + (−ST − q�)(−dSdT + dqd�) , (34)

with θK = dK + qd� + SdT . Use of Eqs. (16) and (17) leads to the 
following form:

G1 = (T KT + �K�)(−K��d�2 + KT T dT 2) , (35)

where we use the conventions XY = ∂ X/∂Y and XY Y = ∂2 X/∂Y 2. 
The above metric is two dimensional which has the general form:

ds2 = − f (x, y)dx2 + g(x, y)dy2 . (36)

The Ricci scalar of this metric is given by

R = 1

2 f 2 g2

[
f
(

f y g y − g2
x

)
+ g

{
f 2

y − fx gx − 2 f
(

f yy − gxx

)}]
.

(37)

Here f = (T KT + �K�)K�� and g = (T KT + �K�)KT T . Therefore 
the Ricci scalar R diverges when K�� = 0 provided the numera-
tor is finite. If both vanish, then one needs to be careful and use 
L’Hospital’s rule to arrive at the same conclusion. This shows that 
the first condition (see Eq. (18)) at the critical point implies the di-
vergence of Ricci tensor of the metric Eq. (35) at the critical point, 
i.e. K�� = 2b02 = 0.

For the other condition we consider the original situation 
where q is expressed as function of � and T . In this case dq =
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q�d� + qT dT . Therefore the Legendre invariant metric can be cho-
sen as

G2 = θ2
q + (q�� + qT dT )(−d�dq� + dT dqT ) , (38)

where we have considered the thermodynamic phase space as 
Z A = (q, X a, Pa) with X a = (�, T ) and Pa = (q�, qT ). Here the 
fundamental one form is θq = dq − q�d� − qT dT . Now since q�

and qT are functions of both � and T , proceeding as before, the 
above reduces to the following form:

G2 = (q�� + qT dT )(−q��d�2 + qT T dT 2) . (39)

This is again of the form Eq. (36) whose Ricci scalar is given by 
Eq. (37). Here f = (q�� +qT dT )q�� and (q�� +qT dT )qT T . There-
fore the Ricci scalar for the present metric diverges at the critical 
point as q�� vanishes at this point, i.e. q�� = 2a20 = 0.

5. Concluding remarks

Choosing the correct independent thermodynamic variables is 
a key starting point in any thermodynamic treatment. The conve-
nient choice of independent thermodynamic variables can lead to 
easier solutions, as is clearly demonstrated by usefulness of Leg-
endre transform in thermodynamics. However, the “wrong” set of 
independent variables could lead to nonphysical results. In Ref. [1], 
an alternative thermodynamic phase space was proposed for RN 
black holes in AdS space. In this alternative view, the square of 
black hole electric charge (instead of the usual charge) was con-
sidered to be the independent thermodynamic variable. It was 
shown that the thermodynamic behavior in such an alternative 
view makes more physical sense and that the critical behavior re-
sembled strongly with Van der Waals fluid, belonging to the same 
universality class. In the present work, we have approached the 
same problem by (i) generalizing to any AdS black hole indepen-
dent of spacetime metric, and (ii) solving the problem both from 
the equation of state as well as thermodynamic potential approach. 
Both approaches lead clearly to the set of four critical exponents 
which are the same as the Van der Waals fluid system. This pro-
vides further evidence for the generality of Van der Waals univer-
sality class for AdS black holes on one hand, as well as indicating 
the validity of the alternative phase space proposed in [1]. Further-
more, we have also provided a thermogeometric approach where 
Ricci scaler has been calculated and shown to diverge at the criti-
cal point within the general alternative phase space.

Acknowledgements

We thank Shiraz University Research Council. The work of AS 
has been supported financially by Research Institute for Astronomy 
and Astrophysics of Maragha, Iran. The work of BRM is supported 
by a START-UP RESEARCH GRANT (No. SG/PHY/P/BRM/01) from In-
dian Institute of Technology Guwahati, India.

References

[1] A. Dehyadegari, A. Sheykhi, A. Montakhab, Critical behaviour and microscopic 
structure of charged AdS black holes via an alternative phase space, Phys. Lett. 
B 768 (2017) 235, arXiv:1607.05333.

[2] S. Hawking, D.N. Page, Thermodynamics of black holes in anti-de sitter space, 
Commun. Math. Phys. 87 (1983) 577.

[3] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in 
gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505, arXiv:hep -th /9803131.

[4] A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes 
and catastrophic holography, Phys. Rev. D 60 (1999) 064018, arXiv:hep -th /
9902170;
A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Holography, thermodynam-
ics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026, 
arXiv:hep -th /9904197.
[5] B.P. Dolan, The cosmological constant and the black hole equation of state, 
Class. Quantum Gravity 28 (2011) 125020, arXiv:1008 .5023;
B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, 
Class. Quantum Gravity 28 (2011) 235017, arXiv:1106 .6260.

[6] D. Kubiznak, R.B. Mann, P-V criticality of charged AdS black holes, J. High En-
ergy Phys. 1207 (2012) 033, arXiv:1205 .0559.

[7] D. Kastor, S. Ray, J. Traschen, Enthalpy and the mechanics of AdS black holes, 
Class. Quantum Gravity 26 (2009) 195011, arXiv:0904 .2765.

[8] A. Dehyadegari, A. Sheykhi, A. Montakhab, Novel phase transition in charged 
dilaton black holes, Phys. Rev. D 96 (2017) 084012, arXiv:1707.05307.

[9] S. Gunasekaran, R.B. Mann, D. Kubiznak, Extended phase space thermodynam-
ics for charged and rotating black holes and Born-Infeld vacuum polarization, 
J. High Energy Phys. 1211 (2012) 110, arXiv:1208 .6251.

[10] R.A. Hennigar, R.B. Mann, E. Tjoa, Superfluid black holes, Phys. Rev. Lett. 118 
(2017) 021301, arXiv:1609 .02564.

[11] A.M. Frassino, D. Kubiznak, R.B. Mann, F. Simovic, Multiple reentrant phase 
transitions and triple points in Lovelock thermodynamics, J. High Energy Phys. 
1409 (2014) 080, arXiv:1406 .7015.

[12] D. Kubiznak, R.B. Mann, M. Teo, Black hole chemistry: thermodynamics with 
Lambda, Class. Quantum Gravity 34 (6) (2017) 063001, arXiv:1608 .06147 [hep -
th].

[13] S.H. Hendi, M.H. Vahidinia, Extended phase space thermodynamics and P-V 
criticality of black holes with a nonlinear source, Phys. Rev. D 88 (2013) 
084045, arXiv:1212 .6128;
M.H. Dehghani, S. Kamrani, A. Sheykhi, P-V criticality of charged dilatonic black 
holes, Phys. Rev. D 90 (2014) 104020, arXiv:1505 .02386;
De.Ch. Zou, Sh.-J. Zhang, B. Wang, Critical behavior of Born-Infeld AdS black 
holes in the extended phasespace thermodynamics, Phys. Rev. D 89 (2014) 
044002, arXiv:1311.7299.

[14] S.H. Hendi, S. Panahiyan, B. Eslam Panah, P–V criticality and geometrical ther-
modynamics of black holes with Born-Infeld type nonlinear electrodynamics, 
Int. J. Mod. Phys. D 25 (2016) 1650010, arXiv:1410 .0352;
Z. Sherkatghanad, B. Mirza, Z. Mirzaeyan, S.A.H. Mansoori, Critical behaviors 
and phase transitions of black holes in higher order gravities and extended 
phase spaces, Int. J. Mod. Phys. D 26 (2017) 1750017, arXiv:1412 .5028.

[15] B.R. Majhi, S. Samanta, P-V criticality of AdS black holes in a general frame-
work, Phys. Lett. B 773 (2017) 203, arXiv:1609 .06224.

[16] K. Bhattacharya, B.R. Majhi, S. Samanta, Van der Waals criticality in AdS black 
holes: a phenomenological study, Phys. Rev. D 96 (2017) 084037, arXiv:1709 .
02650.

[17] K. Bhattacharya, B.R. Majhi, Thermogeometric description of the van der Waals 
like phase transition in AdS black holes, Phys. Rev. D 95 (2017) 104024, arXiv:
1702 .07174 [gr-qc].

[18] A. Dehyadegari, A. Sheykhi, Reentrant phase transition of Born-Infeld-AdS black 
holes, Phys. Rev. D 98 (2018) 024011, arXiv:1711.01151.

[19] S. He, L.F. Li, X.X. Zeng, Holographic Van der Waals-like phase transition in the 
Gauss-Bonnet gravity, Nucl. Phys. B 915 (2017) 243, arXiv:1608 .04208.

[20] H.B. Callen, 2nd ed., John Wiley & Sons, New York, 1985.
[21] R.G. Cai, L.M. Cao, L. Li, R.Q. Yang, P-V criticality in the extended phase space of 

Gauss-Bonnet black holes in AdS space, J. High Energy Phys. 1309 (2013) 005, 
arXiv:1306 .6233.

[22] F. Weinhold, J. Chem. Phys. 63 (1975) 2479;
F. Weinhold, J. Chem. Phys. 63 (1975) 2484;
F. Weinhold, J. Chem. Phys. 63 (1975) 2488;
F. Weinhold, J. Chem. Phys. 63 (1975) 2496;
F. Weinhold, J. Chem. Phys. 65 (1976) 559.

[23] G. Ruppeiner, Thermodynamics: a Riemannian geometric model, Phys. Rev. A 
20 (1979) 1608.

[24] G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. 
Mod. Phys. 67 (1995) 605;
G. Ruppeiner, Rev. Mod. Phys. 68 (1996) 313, Erratum.

[25] J.D. Nulton, P. Salomon, Geometry of the ideal gas, Phys. Rev. A 31 (1985) 2520;
D.A. Johnston, W. Janke, R. Kenna, Information geometry, one, two, three (and 
four), Acta Phys. Pol. B 34 (2003) 4923.

[26] B. Mirza, H. Mohammadzadeh, Nonperturbative thermodynamic geometry of 
anyon gas, Phys. Rev. E 80 (2009) 011132.

[27] B. Mirza, H. Mohammadzadeh, Ruppeiner geometry of anyon gas, Phys. Rev. E 
78 (2008) 021127.

[28] S.W. Wei, Y.X. Liu, Insight into the microscopic structure of an AdS black hole 
from thermodynamical phase transition, Phys. Rev. Lett. 115 (2015) 111302, 
arXiv:1502 .00386.

[29] M. Kord Zangeneh, A. Dehyadegari, A. Sheykhi, Comment on “Insight into the 
microscopic structure of an AdS black hole from a thermodynamical phase 
transition”, arXiv:1602 .03711.

[30] M. Kord Zangeneh, A. Dehyadegari, M.R. Mehdizadeh, B. Wang, A. Sheykhi, 
Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-
dilaton Lifshitz black holes in the presence of Maxwell and Born-Infeld elec-
trodynamics, Eur. Phys. J. C 77 (2017) 423, arXiv:1610 .06352.

http://refhub.elsevier.com/S0370-2693(19)30122-4/bib414141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib414141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib414141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4850s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4850s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib57697474656Es1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib57697474656Es1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib56445731s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib56445731s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib56445731s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib56445731s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib56445731s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib56445731s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib446F6C616Es1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib446F6C616Es1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib446F6C616Es2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib446F6C616Es2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5056s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5056s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib656E7468616C7079s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib656E7468616C7079s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4E414141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4E414141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4249525054s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4249525054s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4249525054s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib7375706572666C7569644248s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib7375706572666C7569644248s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D525054s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D525054s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D525054s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib42484368s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib42484368s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib42484368s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s3
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s3
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424831s3
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424832s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424832s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424832s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424832s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424832s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib766172696F7573424832s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686931s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686931s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686932s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686932s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686932s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686933s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686933s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686933s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4141s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4C69s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4C69s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib43616C6C656Es1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib436169s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib436169s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib436169s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5765696E686F6C64s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5765696E686F6C64s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5765696E686F6C64s3
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5765696E686F6C64s4
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5765696E686F6C64s5
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5275707065696E657231s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5275707065696E657231s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5275707065696E657232s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5275707065696E657232s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5275707065696E657232s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib444350s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib444350s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib444350s2
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D69727A6131s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D69727A6131s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D69727A6132s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D69727A6132s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313530322E3030333836s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313530322E3030333836s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313530322E3030333836s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313630322E3033373131s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313630322E3033373131s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313630322E3033373131s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313631302E3036333532s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313631302E3036333532s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313631302E3036333532s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib313631302E3036333532s1


A. Dehyadegari et al. / Physics Letters B 791 (2019) 30–35 35
[31] R. Mrugala, J.D. Nulton, J.C. Schon, P. Salamon, Statistical approach to the geo-
metric structure of thermodynamics, Phys. Rev. A 41 (1990) 3156.

[32] H. Quevedo, Geometrothermodynamics, J. Math. Phys. 48 (2007) 013506, arXiv:
physics /0604164.
[33] J.L. Alvarez, H. Quevedo, A. Sanchez, Unified geometric description of black hole 
thermodynamics, Phys. Rev. D 77 (2008) 084004, arXiv:0801.2279.

[34] R. Banerjee, B.R. Majhi, S. Samanta, Thermogeometric phase transition in a uni-
fied framework, Phys. Lett. B 767 (2017) 25, arXiv:1611.06701 [gr-qc].

http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D727567616C61s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D727567616C61s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5175657665646Fs1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib5175657665646Fs1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib416C766172657As1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib416C766172657As1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686934s1
http://refhub.elsevier.com/S0370-2693(19)30122-4/bib4D616A686934s1

	Universality class of alternative phase space and Van der Waals criticality
	1 Introduction
	2 Equation of state: general approach
	3 Phenomenological aspect: Landau function
	4 Thermogeometric description
	5 Concluding remarks
	Acknowledgements
	References


