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We continue our study of heavy-light four-quark states and find evidence from lattice QCD for the
existence of a strong-interaction-stable IðJPÞ ¼ 0ð1þÞ udc̄b̄ tetraquark with mass in the range of 15 to
61 MeV below D̄B� threshold. Since this range includes the electromagnetic D̄Bγ decay threshold, current
uncertainties do not allow us to determine whether such a state would decay electromagnetically or only
weakly. We also perform a study at fixed pion mass, with non-relativistic QCD (NRQCD) for the heavy
quarks, simulating qq0b̄0b̄ and qq0b̄0b̄0 tetraquarks with q, q0 ¼ ud or ls and variable, unphysical mb0 in
order to investigate the heavy mass dependence of such tetraquark states. We find that the dependence of
the binding energy follows a phenomenologically expected form and that, though NRQCD breaks down
beforemb0 ¼ mc is reached, the results at highermb0 clearly identify the udb̄0b̄ channel as the most likely to
support a strong-interaction-stable tetraquark state at mb0 ¼ mc. This observation serves to motivate the
direct udc̄ b̄ simulation. Throughout we use dynamical nf ¼ 2þ 1 ensembles with pion massesmπ ¼ 415,
299, and 164 MeV reaching down almost to the physical point, a relativistic heavy quark prescription for
the charm quark and NRQCD for the bottom quark(s).
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I. INTRODUCTION

Many theoretical efforts since the formulation of QCD
have hypothesized the existence of exotic states containing
four or more quarks and/or antiquarks (for a recent review
see [1] and references therein). It is only in the past decade
that unambiguously exotic states, including the hidden-
charm pentaquark states recently discovered at LHCb [2]
and at least some of the X, Y and Z states [1], which fail to
fit into the standard quark model picture, have begun to be
observed experimentally. These experimental results have
shown that complicated many-quark structures do exist in
nature, and the goal for theorists is to investigate why some
such multiquark structures are preferred and to elucidate
the mechanisms underlying their existence. The mecha-
nisms behind the binding of such configurations should
help to provide greater insight into the complex phenomena
of QCD in the nonperturbative realm.

In this work we use lattice QCD to investigate configu-
rations of two light quarks and two heavy antiquarks in
channels expected to be favorable to the formation of
bound, exotic tetraquark states. In general, such four-quark
bound states have not yet been definitely proven to exist
experimentally, but there are indications, both from models
and from lattice QCD [3–29], that they should exist.
A benefit of employing the lattice approach is that un-
physical quark masses can be used as input simulation
parameters, allowing for an extended investigation of the
underlying binding mechanisms.
In a prior work [29] we predicted the existence of udb̄ b̄

and lsb̄b̄ tetraquarks with quantum numbers IðJPÞ ¼
0ð1þÞ and 1

2
ð1þÞ, respectively, using lattice QCD. The

focus on these channels was motivated by features of the
splittings in the heavy baryon spectrum. The key obser-
vation is that a pair of heavy antiquarks in a color 3c
configuration will serve as the source of a nearly static color
3c field, analogous to that produced by the heavy quark in a
singly heavy baryon. From the pattern of splittings in the
heavy baryon sector, it is clear that a strong spin-dependent
attraction exists for light quark ud or ls pairs in Jaffe’s [30]
“good-diquark” configuration (color 3̄c and I ¼ J ¼ 0 or
I ¼ 1=2, J ¼ 0, for ud or ls, respectively). The strength of
this attraction, moreover, increases the lighter the light
quark mass. In a doubly heavy IðJPÞ ¼ 0ð1þÞ or 1

2
ð1þÞ

qq0Q̄Q̄0 tetraquark channel, this good-diquark attraction is
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available to a localized four-quark state, but not to the
lowest-lying asymptotic two-meson state in the same
channel, where the spin-dependent interactions of the light
quarks with their heavy antiquark partners from the same
meson are suppressed by the heavy quark mass. The
attractive Q̄Q̄0 3c color-Coulomb interaction provides a
further contribution to binding in the localized tetraquark
configuration not available to two separated mesons. This
picture leads to the expectation that bound udb̄ b̄ and lsb̄ b̄
tetraquark states should exist in the IðJPÞ ¼ 0ð1þÞ and
1
2
ð1þÞ channels, with binding of order 150–200 MeV for

the former and a reduced binding for the latter. These
semiquantitative expectations were confirmed by explicit
lattice simulations, in which we found states bound by
jΔEudb̄ b̄j ¼ 189ð10Þð3Þ and jΔElsb̄ b̄j ¼ 98ð7Þð3Þ MeV
relative to the corresponding two-meson thresholds, BB�
and BsB�, respectively, at the physical mass point. With
such binding energies, these states are not only strong-
interaction stable, but can, in fact, decay only weakly. Other
lattice studies using static prescriptions of the bottom
quarks and heavier than physical sea quarks [31–40]
analyzing similar quantities have observed attractive poten-
tials in this channel and some [28,41–43] have indicated
binding as well.
Since the discovery of the doubly charmed Ξcc baryon at

LHCb [44], sum rule calculations and phenomenological
models (see e.g., [24,25,45,46]) have also led to the
identification of these channels as favorable to doubly
heavy tetraquark binding. In the model calculations, an
important role is also played by the attractive natures of the
light-quark spin-dependent interactions and short distance
color-Coulomb potential for heavy antiquark pairs in a 3c
color configuration [1].
Assuming the above picture correctly captures the basic

physics involved in the binding observed in the udb̄ b̄ and
lsb̄ b̄ systems, one should see binding which grows as the
heavy quark mass is increased since the short-distance, 3c
color-Coulomb attraction should scale as the reduced mass
of the heavy anti-diquark system. One should also see
contributions to the binding which are, to a first approxi-
mation, independent of the heavy quark mass correspond-
ing to the good-light-diquark attraction in the static heavy
quark limit. Corrections to this limit should produce
binding corrections proportional to the inverse of the heavy
quark mass. The increase with decreasing heavy-quark
mass of the net residual light-heavy spin-dependent attrac-
tion in the two-meson (vector-pseudoscalar) threshold will
also reduce the tetraquark binding relative to this threshold
and produce binding corrections proportional to the inverse
of the heavy quark mass.
These qualitative expectations can be tested by extending

our previous study to include unphysical values of the
masses of one or both of the two heavy antiquarks. The
only limitation is the non-relativistic QCD (NRQCD)
approach to treating the b̄, which breaks down before

the charm quark mass is reached. As we will see, the results
of this variable-heavy-mass study confirm the picture
outlined above. Once this has been established, even
though the NRQCD-based approach does not allow us
to push this study down to the charm mass, the pattern of
bindings obtained as the variable heavy mass (or masses) is
(are) decreased below mb can, nonetheless, be used to
identify which channel (or channels) involving one or two
charmed antiquarks is (are) most likely to support bound
tetraquark states. Such information is useful for optimally
allocating available computing resources. The results of
this study lead us to focus our attention, and direct
simulation efforts, on the most favorable of these channels,
which turns out to be the udc̄ b̄ channel.
In this paper we will first detail the variable heavy mass

study outlined above, and then we discuss the results of our
direct simulations of the udc̄ b̄ channel. Throughout, we
will use the same three dynamical, fixed lattice spacing,
nf ¼ 2þ 1 PACS-CS ensembles employed in our previous
udb̄ b̄ study. These ensembles have pion massesmπ ¼ 164,
299, and 415 MeV. A relativistic prescription will be used
for the charm quark and, as before, NRQCD for the bottom
quark. Evidence is presented for the existence of an
IðJPÞ ¼ 0ð1þÞ udc̄ b̄ tetraquark bound with respect to
the lowest noninteracting two-meson threshold, D̄B�, in
this channel.
For the variable-heavy-mass study, we will focus our

attention on the ensemble with mπ ¼ 299 MeV and study
the heavy anti-diquark mass dependence for unphysical
tetraquark candidates qq0Q̄Q̄0, with q ¼ u, q0 ¼ d, s, and
either Q̄0 ≠ Q̄ or Q̄0 ¼ Q̄.

II. PHENOMENOLOGY OF HEAVY-LIGHT
TETRAQUARKS

We focus on heavy-light tetraquark candidates qq0Q̄Q̄0
that can be pictured as a combination of a “good” light-
diquark qq0 and heavy anti-diquark Q̄Q̄0 with qq0 ¼ ud, or
ls and Q, Q0 ¼ b or c. The color 3̄c, J ¼ 0, flavor-
antisymmetric good-light-diquark configuration is acces-
sible only when the heavy anti-diquark is in color 3c.
Assuming no spatial excitation between the heavy anti-
quarks, the heavy anti-diquark spin is necessarily Jh ¼ 1
when Q ¼ Q0. The favored tetraquark configuration is
then JP ¼ 1þ.
In the limit of infinitely heavy Q, Q0, mQ;Q0 → ∞, the

attractive nature of the color-Coulomb potential guarantees
a bound ground state of the qq0Q̄Q̄0 type [47–49]. Whether
a bound state is realized away from this limit, in particular,
when Q, Q0 are charm or bottom quarks, depends on the
details of nonperturbative effects in such systems.
The phenomenological arguments outlined in the pre-

vious section, based on observed splitting patterns in the
heavy baryon system, were shown in Ref. [29] to suggest
the likelihood of the existence of tetraquark bound states of
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the qq0b̄ b̄ type with tetraquark binding increasing with
decreasing light quark mass(es).
The lattice results of Ref. [29] not only confirmed the

existence of these bound states, but produced binding
energies for physical light quark masses in line with those
expected based on the heavy baryon spectrum arguments.
Assuming the picture underlying this successful prediction
is correct, and the good-diquark contribution to binding
indeed increases with decreasing light quark mass, this
implies it is imperative to have access to light quark masses
as close to physical as possible in lattice simulations of such
tetraquark channels. This is a firm prediction of this binding
mechanism, one that may seem counterintuitive given the
common experience with lattice calculations in other
channels, for example, in the study of multibaryon states,
where a decrease in constituent quark masses also
decreases the binding energy (for a collection of recent
results and presentation of the issues faced see [50] and
references therein).
It is possible to further test the qualitative physical

picture underlying this understanding of the udb̄ b̄ and
lsb̄ b̄ tetraquark binding observed in Ref. [29] by studying
related systems with variable heavy antiquark mass(es).
This study is carried out using the same NRQCD action
used previously, in Ref. [51], for the physical bottom quark
case. A brief outline of the NRQCD framework, together
with details of the implementation of the variable b0 mass,
are provided in Appendix A. The NRQCD heavy-mass
parameter, mQ, was tuned by measuring the dispersion
relation of the spin-averaged ϒ and ηb. We also computed
static propagators, allowing the extrapolation ofmb0 to∞ to
be carried out for the Q0 ≠ Q case. For the variable heavy
mass study, we focus, to be specific, on the intermediate
ensemble, EM, with mπ ¼ 299 MeV and mπL ¼ 4.4, and
consider unphysical bottom quark masses ≃6.29, 4.40,
1.93, 1.46, 0.85, 0.68, 0.64, and 0.60 times the physical
bottom quark mass. Lower values are not accessible in this
approach due to the breakdown of the NRQCD approxi-
mation. Denoting such unphysical bottom quarks by b0, we
investigate qq0b̄b̄0 and qq0b̄0b̄0 tetraquark channels.
Given the qualitative physical picture outlined above, we

expect there to be a contribution to tetraquark binding from
the color-Coulomb attraction between the two heavy
antiquarks in the color 3c configuration which scales
linearly with the reduced mass of the heavy anti-diquark
system. There should also be a contribution to the binding
which, for a given light-diquark channel, should be
independent of the heavy quark masses, reflecting the
attractive nature of the good-light-diquark configuration in
the infinite heavy quark mass limit. Finally, there should be
contributions to the binding resulting from the presence of
residual heavy-light interactions, scaling as the inverse of
the heavy quark mass(es), in both the tetraquark and two-
meson threshold states. Contributions of the former type
should scale as 1

mh1
þ 1

mh2
for tetraquark states with heavy

antiquark masses mh1 and mh2. Residual interactions
between a heavy quark and light diquark are also present
in the heavy baryon systems. Comparing the Σh − Λh and
Ξ0
h − Ξh splittings for h ¼ b, c, one finds heavy baryon

residual interactions depending on both the inverse of the
heavy quark mass and the type (ud or ls) of light diquark.
We thus expect the coefficient of 1

mh1
þ 1

mh2
for the residual

heavy-light tetraquark interactions to be different for tetra-
quarks containing ud and ls good diquarks. With the
ratio of observed charm and bottom vector-pseudoscalar
splittings in good agreement with expectations based on the
assumption that these scale as the inverse of the relevant
heavy quark mass, the contributions to tetraquark binding
from residual heavy-light interactions in the corresponding
two-meson threshold state can be directly determined from
the observed B� − B, B�

s − Bs, D� −D, and D�
s −Ds

splittings, bearing in mind that the correct two-meson
threshold must be chosen. Thus, for example, denoting
by V 0 and P0 the b̄0l vector and pseudoscalar states, one has
that, for tetraquarks of the udb̄b̄0 type, the relevant thresh-
old is B�P0 formb0 < mb but BV 0 formb0 > mb. We assume
that the observed 1=mh scaling of the bottom and charm
vector-pseudoscalar splittings persists for the variable-b-
mass V 0 − P0 splittings. The two-meson threshold contri-
butions for a given physical-to-variable b quark mass ratio,
r ¼ mb=mb0 , are then fixed by the observed charm/bottom
meson splittings and depend on mh1 and mh2 in a manner
that varies depending on the relation between these two
masses. We use that the vector meson, V 0, and pseudoscalar
meson, P0, lie, respectively, 1

4
ðmV 0 −mP0 Þ above and

3
4
ðmV 0 −mP0 Þ below the spin average of the V 0 and P0

masses.
Taking these expectations into account, and writing the

results in terms of the physical-to-variable mass ratio
r ¼ mb=mb0 , one expects to obtain a good-quality fit to
the binding energies of tetraquarks with at least one
unphysical variable-mass antiquark using an expression
having the form

ΔE ¼ C0

2r
þ Cud

1 þ Cud
2 ð2rÞ þ 23 MeV r ð1Þ

for the udb̄0b̄0 case, where the first term represents the
Coulomb binding contribution, the second the good-ud-
diquark attraction, the third the residual heavy-light inter-
actions in the tetraquark state, and the fourth the two-meson
threshold contribution. The numerical value appearing in
the fourth term follows from the observed meson splittings.
Similarly, for the udb̄0b̄ case, one expects the form

ΔE¼ C0

1þ r
þCud

1 þCud
2 ð1þ rÞ þ ð34 MeV− 11 MeVrÞ

ð2Þ
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to provide a good representation formb0 > mb and the form

ΔE¼ C0

1þ r
þCud

1 þCud
2 ð1þ rÞ þ ð34 MeVr− 11 MeVÞ

ð3Þ

to provide a good representation for mb0 < mb. The
corresponding expectations for the cases involving an
ls, rather than ud, good diquark are

ΔE ¼ C0

2r
þ Cls

1 þ Cls
2 ð2rÞ þ 24 MeV r ð4Þ

for lsb̄0b̄0,

ΔE¼ C0

1þ r
þCls

1 þCls
2 ð1þ rÞ þ ð34 MeV− 12 MeVrÞ

ð5Þ

for lsb̄0b̄ with mb0 > mb, and

ΔE¼ C0

1þ r
þCls

1 þCls
2 ð1þ rÞ þ ð36 MeVr− 11 MeVÞ

ð6Þ

for lsb̄0b̄ with mb0 < mb.
For the variable-b-mass study just described, details of

the setup and determination of the resulting tetraquark
binding energies may be found in Appendixes A and B.
Figure 1 and Table I display these results for mb0 running
from 6.29 to 0.60 times mb. The restriction to mb0 ≥
0.60mb is designed to ensure that the b0 masses considered
are all sufficiently heavy that the NRQCD approximation is

reliable. The same 2 × 2 generalized eigenvalue problems
(GEVPs) used in Ref. [51] are employed for the udb̄0b̄0 and
lsb̄0b̄0 channels, while new 3 × 3 GEVPs, described in
more detail in the next section, are used for udb̄0b̄ and
lsb̄0b̄. The results of a fit to these data using the forms
detailed above are shown in Fig. 1 and Table II. The success
of this fit in describing tetraquark binding energies over a
wide range of variable heavy quark masses confirms that
the physical picture underlying those fit forms successfully
captures the main features responsible for the binding
observed in these systems.
While the use of NRQCD precludes extending the results

of the variable-b-mass study down to the charm mass, the
pattern of binding energies shown in Fig. 1 clearly points to
the udc̄ b̄ channel as by far the most likely among the four
channels, udc̄ b̄, lsc̄ b̄, udc̄ c̄, or lsc̄ c̄, in which one or
both of the b̄ antiquarks in udb̄ b̄ is replaced by c̄, to
support a strong-interaction-stable bound state. A naive
extrapolation of the results for this channel, moreover,
produces a result very near the D̄B� threshold, strongly
motivating direct udc̄ b̄ simulations using a relativistic
action for the charm quark. Similar naive extrapolations
of the variable-heavy-mass results suggest none of the other
three channels is likely to support a strong-interaction-
stable bound state. The results of the variable-b-mass study
thus allow us to focus in what follows on the udc̄ b̄ channel,
leaving detailed simulations of the other channels for a
subsequent work.

FIG. 1. The dependence on the heavy-quark mass ratio,
r ¼ mb

bare=m
b0
bare, of the binding energies for the udb̄0b̄, udb̄0b̄0,

lsb0b, and lsb0b0 channels. The results for each channel are
separately fit to the phenomenologically motivated ΔEðmQÞ
ansatze detailed in Eqs. (1)–(6) of the text.

TABLE I. Table of binding energies determined in the non-
relativistic regime. Note the values denoted with “*” were
calculated previously in [51].

ΔE [MeV]

mb0=mb udb̄0b̄0 udb̄0b̄ lsb̄0b̄0 lsb̄0b̄

0.594 −76ð11Þ −86ð10Þ −35ð5Þ −35ð4Þ
0.636 −82ð11Þ −100ð12Þ −39ð5Þ −41ð3Þ
0.680 −98ð13Þ −108ð11Þ −50ð6Þ −53ð2Þ
0.846 −123ð15Þ −131ð12Þ −73ð8Þ −72ð3Þ
1.000 −163ð8Þ� � � � −94ð9Þ� � � �
1.463 −206ð20Þ −166ð13Þ −143ð13Þ −95ð10Þ
1.928 −256ð23Þ −177ð14Þ −176ð21Þ −112ð7Þ
4.935 −375ð39Þ −208ð12Þ −296ð21Þ −134ð13Þ
6.287 −438ð20Þ −210ð18Þ −354ð16Þ −148ð15Þ
∞ � � � −249ð30Þ � � � −170ð17Þ

TABLE II. Fit results for the constants parametrizing the heavy-
quark mass dependence of tetraquark binding energies on the
ensemble EM with pion mass mπ ¼ 299 MeV.

C0 Cud
1 Cud

2 Cls
1 Cls

2

−82ð6Þ −217ð14Þ 40(5) −116ð10Þ 22(3)
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III. LATTICE CORRELATORS AND OPERATORS

The generic form of a lattice QCD correlation function
for a particle at rest, i.e., p ¼ 0, in Euclidean time is
given by

CO1O2
ðtÞ ¼

X
x

hO1ðx; tÞO2ð0; 0Þ†i

¼
X
n

h0jO1jnihnjO2j0i
2En

e−Ent; ð7Þ

with the interpolating operatorsOi being chosen to have the
quantum numbers of the continuum state to be studied. For
example, the simplest local meson operator is

OmðxÞ ¼ q̄αaðxÞΓαβq0βaðxÞ; ð8Þ
where upper (Greek) indices denote Dirac spin and lower
(Roman) color. The q and q0 represent the constituent quark
flavors.
In the case of the 3̄F, JP ¼ 1þ tetraquarks, the relevant

noninteracting two-meson thresholds are given by the sums
of the lowest-lying pseudoscalar (P) Γ ¼ γ5 and vector (V)
Γ ¼ γi meson masses. Table III provides a list of these
thresholds for the cases of interest here.
Given the phenomenological picture of the previous sec-

tions, a natural first choice of the interpolating operator for
qq0Q̄Q̄0-type tetraquarks is one with a diquark–anti-diquark
structure. Using the epsilon identity ϵabcϵdec ¼ δadδbe−
δaeδbd, the local version of this operator takes the form

DðxÞ ¼ ððqαaðxÞÞTðCγ5Þαβq0βbðxÞÞ
× ½Q̄κ

aðxÞðCγiÞκρðQ̄0ρ
bðxÞÞT

− Q̄κ
bðxÞðCγiÞκρðQ̄0ρ

aðxÞÞT �; ð9Þ
where C ¼ iγyγt is the charge-conjugation matrix. This
operator has Q̄Q̄0 color 3c, spin 1, and light-quark flavor-
spin-color ð3̄F; 0; 3̄cÞ.
A second possible local operator is one whose discrete

structure is meson-meson-like. For tetraquark channels
with Q ¼ Q0 this could be

MðxÞ ¼ ðQ̄α
aðxÞγαβ5 qβaðxÞÞðQ̄κ

bðxÞγκρi q0ρbðxÞÞ
− ðQ̄α

aðxÞγαβ5 q0βaðxÞÞðQ̄κ
bðxÞγκρi qρbðxÞÞ: ð10Þ

When Q ≠ Q0, a second local flavor antisymmetric,
JP ¼ 1þ meson-meson-like combination can also be con-
structed. Suppressing the spin indices, the two possible
“meson-meson” interpolating operators in this case are

M1ðxÞ ¼ ðQ̄aγ5qaÞðQ̄0
bγiq0bÞ − ðQ̄aγ5q0aÞðQ̄0

bγiqbÞ;
M2ðxÞ ¼ ðQ̄0

aγ5qaÞðQ̄bγiq0bÞ − ðQ̄0
aγ5q0aÞðQ̄bγiqbÞ: ð11Þ

With these interpolating operators, there are several
options to study the ground state energies of the proposed
tetraquarks channels. One is to form the so-called binding
correlator, the ratio of tetraquark correlation functions to
the product of correlation functions, CPPðtÞ and CVVðtÞ,
of the pseudoscalar and vector mesons making up the
corresponding noninteracting two-meson threshold in the
channel in question:

GO1O2
ðtÞ ¼ CO1O2

ðtÞ
CPPðtÞCVVðtÞ

: ð12Þ

This definition is beneficial in the present study as the
additive mass renormalization for NRQCD quarks explic-
itly cancels.
The binding correlator behaves, for large t, as ∼e−ΔEt,

with ΔE ¼ m0 −mV −mP, where m0 is the ground state
mass in the channel. Observing a binding correlator
increasing with increasing t thus signals the existence of
a ground state lighter than the corresponding two-meson
threshold and provides compelling evidence for a bound
tetraquark state. The exponential nature of this growth,
which will become evident for large enough t, will appear
linear for t significantly smaller than 1=jΔEj.
In the binding correlator one might also gain a signal

through cancellations between the two-meson and tetra-
quark fluctuations. At the same time, however, forming the
binding correlator may introduce a difficult-to-control
systematic through contamination of the tetraquark signal
with residual excited state effects originating from the two-
meson correlators. The potential problem is that ground
state saturation might occur at different lattice times for
each of the three different correlation functions entering the
binding correlator. The binding correlator plateau will then
depend on the slowest plateauing of the three constituent
correlators.
To handle (and quantify, if present) this effect, we also

compute the individual correlation functions and effective
energies for the tetraquark candidates and two-meson
threshold combination(s). This is especially important,
since we expect a significantly smaller binding energy
for udc̄ b̄ tetraquarks than was observed for the udb̄ b̄
channel. An unambiguous determination of the ground
state energies is thus essential. To combine the two mesons
we compute the product CPPðtÞCVVðtÞ. The resulting mass
from a single-exponential fit to this combination for the
case of the D̄B� threshold is given in Table IV. Note,

TABLE III. Lowest two-meson thresholds for each of the flavor
antisymmetric, JP ¼ 1þ tetraquark channels.

Tetraquark Threshold Om ¼ PðxÞ Om ¼ VðxÞ
udb̄b̄ BB� b̄αaðxÞγαβ5 uβaðxÞ b̄αaðxÞγαβi dβaðxÞ
lsb̄b̄ BsB� b̄αaðxÞγαβ5 sβaðxÞ b̄αaðxÞγαβi dβaðxÞ
udc̄b̄ D̄B� c̄αaðxÞγαβ5 uβaðxÞ b̄αaðxÞγαβi dβaðxÞ
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however, that in this case the NRQCD additive mass
renormalization does not drop out and the results are given
in lattice units with this shift included.

A. Variational analysis

With access to several operators with the same quantum
numbers, a variational analysis can be used to determine the
ground and excited state energies. In the case Q̄ ¼ Q̄0, this
analysis involves the 2 × 2 matrix

FðtÞ ¼
�
GDDðtÞ GDMðtÞ
GMDðtÞ GMMðtÞ

�
: ð13Þ

When Q̄ ≠ Q̄0, there are now two meson-meson inter-
polating operators, allowing the use of the 3 × 3 matrix

FðtÞ ¼

0
B@

GDDðtÞ GDM1
ðtÞ GDM2

ðtÞ
GM1DðtÞ GM1M1

ðtÞ GM1M2
ðtÞ

GM2DðtÞ GM2M1
ðtÞ GM2M2

ðtÞ

1
CA: ð14Þ

Given the matrix FðtÞ, one can solve the GEVP for some
reference time t0,

1

FðtÞνðt; t0Þ ¼ λiðtÞFðt0Þνðt; t0Þ; ð15Þ

where ν are the (generalized) eigenvectors and λiðtÞ the
eigenvalues. The solution of the GEVP gives independent
eigenvalues corresponding to different states in the system,

λiðtÞ ¼ Aie−ΔEiðt−t0Þ: ð16Þ
In this work the aim will be to determine the ground state of
the system (λ1). As such, a 2 × 2 or 3 × 3 matrix should
suffice, so long as the chosen operators have good overlap
with the desired ground state.

IV. NUMERICAL SETUP

Throughout this work the calculations are performed on
three nf ¼ 2þ 1, clover-improved [55], Iwasaki gauge
[56], PACS-CS ensembles introduced in [54] and which
we label by EH, EM, and EL. The lattice spacing is [52]
a−1 ¼ 2.194ð10Þ GeV (a ¼ 0.090 fm) for all three ensem-
bles. We use a partially quenched strange quark tuned to the
(connected) ϕ meson [57], which gives a near-physical
kaon mass in the chiral limit. The labeling (and pion
masses) of the ensembles are consistent with those used in
our previous work [29,51,53]. In the valence sector we use
Coulomb gauge-fixed wall sources using the fourier accel-
erated conjugate gradient (FACG) algorithm [58], as
before. We put sources at multiple time positions and
compute propagators for light, strange, and charm quarks
using a modified deflated schwartz alternating procedure
(SAP) solver [59]. An overview of the lattice parameters
and ensemble properties can be found in Table IV.
To reliably handle charm quarks on these lattices we

employ a relativistic heavy quark (RHQ) action [60–63], in
particular, the “Tsukuba” formulation [61]:

Dx;y ¼ δxy − κf½ð1− γtÞUx;tδxþt̂;y þ ð1þ γtÞUx;tδxþt̂;y�
− κf

X
i

½ðrs − νsγiÞUx;tδxþî;y þ ðrs þ νsγiÞUx;tδxþî;y�

− κf

�
cE
X
i

FitðxÞσit þ cB
X
i;j

FijðxÞσij
�
: ð17Þ

The common approach of RHQ actions is to re-interpret the
discretization effects and to retune the fully relativistic
lattice action by introducing anisotropy in the valence
sector to reproduce the correct dispersion relation, i.e., the
equivalence between rest and kinetic mass, and physical
spectrum. For our RHQ action, the tuning parameters have
previously been computed for the ensembles studied here.
The values of the parameters κf, rs, νs, cE, and cB can be
found in [64]. Meson masses using quark propagators
computed from our implementation of this action are seen
to be within ∼1% of the experimentally observed values,
with splittings between, for example, D and D� mesons
equally well behaved.
For bottom quarks, as noted above, we employ the

NRQCD action, as detailed in Appendix A. Overall, the
NRQCD action is known to capture the relevant heavy-
light quark physics and account for relativistic effects at the
few percent level [65–67].

TABLE IV. Overview of our ensemble parameters (see also
[29,51,53]). These configurations [54] use the Iwasaki gauge
action with β ¼ 1.9 and nonperturbatively tuned clover coefficient
cSW ¼ 1.715. The D̄B� threshold is extracted from a single-
exponential fit to the product of the two relevant D̄- and
B�-meson correlators. Due to NRQCD’s additive mass renorm-
alization, these values have not been converted into physical units.

Ensemble parameters

Label EH EM EL

Extent 323 × 64 323 × 64 323 × 64

a−1 [GeV] [52] 2.194(10) 2.194(10) 2.194(10)
κl 0.13754 0.13770 0.13781
κs 0.13640 0.13640 0.13640
amπ 0.18928(36) 0.13618(46) 0.07459(54)
mπL 6.1 4.4 2.4
aED̄B� 1.3588(17) 1.3367(9) 1.3095(12)
MJ=Ψ [GeV] 3.0862(2) 3.0847(2) 3.0685(11)
Mϒ [GeV] 9.528(79) 9.488(71) 9.443(76)
Configurations 400 800 195
Measurements 4000 6400 9360

1We monitor t0 to make sure our ground state mass evaluation
is stable. We find t0=a ¼ 4 to be a reasonable choice.
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A list of the bare quark masses used in this study and the
ratios of kinetic masses compared to the physical bottom
quark is provided in Table V.

V. INDICATIONS OF A BOUND udc̄ b̄
TETRAQUARK IN NATURE

The successful phenomenological description of the
heavy-quark mass dependence of JP ¼ 1þ tetraquark bind-
ing energies described earlier identifies the udc̄ b̄ channel
as the only such channel containing at least one charm
antiquark likely to support a strong-interaction-stable
bound tetraquark state. Given this insight, in this section,
we focus our attention and resources on this channel and
present results for the direct calculation of the mass of an
IðJPÞ ¼ 0ð1þÞ udc̄ b̄ tetraquark.
Our lattice results for the ground (red) and first excited

(blue) state binding energies, obtained from the 3 × 3
GEVPs, are shown in Fig. 2. Results obtained using the
corresponding 2 × 2 GEVPs, in which the local operator
with D̄�B discrete structure has been omitted, are shown for
comparison in green, offset slightly in t for presentational
clarity.
Results shown in the left-hand panels are those obtained

using the binding correlators Eq. (12). The results for EH
show no evidence of the existence of a bound tetraquark
state. For the EM and EL ensembles, however, one observes
a clear rising behavior in both the 3 × 3 and 2 × 2 GEVP
results, indicating the presence of a bound udc̄ b̄ tetraquark
ground state for these ensembles.2

The right-hand panels of Fig. 2 focus on the binding
energies themselves, which are shown in log-effective

form, ΔEeffðtÞ, and given in physical units. The choice
of log-effective form is for presentational purposes only;
the binding energies shown by the shaded bands in the
right-hand panels are those obtained through fits to the
eigenvalues in the left-hand panels. The log-effective
tetraquark energies to which these binding energies corre-
spond have also been obtained directly from fits to the
tetraquark correlation functions rather than to the binding
correlators. The results of these fits are presented in Fig. 5
in Appendix C.
The data allow the first two binding correlator eigen-

values to be clearly resolved for each ensemble, with a
signal that can be followed to t=a ∼ 16. The overlaps with
the chosen multiquark interpolating operators therefore
seem good. The log-effective energies of the states corre-
sponding to these eigenvalues, shown in the right panels of
Fig. 5 in Appendix C, confirm that the signal is strong
enough to reach the plateau regions of aEeffðtÞ. A com-
parison of the binding and tetraquark correlator results
shows that the possibility anticipated above is, in fact,
realized: the plateaus of the binding correlator are, in
general, reached later than those of the tetraquark corre-
lators. The binding correlator plateaus are therefore also
shorter since the point of signal deterioration is the same for
both the binding and tetraquark correlators. This is a sign of
unwanted contamination from excited states in the meson
denominator of the binding correlator ratio, as discussed in
Sec. III. The longer plateaus for aEeffðtÞ in Fig. 5, however,
confirm that, in spite of the shorter plateaus in the right-
hand panels of Fig. 2, the ground state plateau regions have
been reached.
In all cases the third eigenvalue of the 3 × 3 GEVP (not

shown here) is found to lie significantly higher than the first
two, a fact confirmed by the eigenvalue plots in the left-
hand panels of Fig. 5 in Appendix C.
Note that the results for the ground state eigenvalues

obtained from the smaller 2 × 2 GEVP defined in Eq. (13),
shown by the green vertical dashes in Fig. 2, agree very
well with those obtained from the corresponding 3 × 3
GEVP. In contrast, the 2 × 2 results for the second
eigenvalues, denoted by the green diagonal crosses, lie
lower than those of the 3 × 3 analysis, and hence corre-
spond to higher energies. This is as expected for analyses
employing interpolating fields having a good overlap with
the ground state, where both the 2 × 2 and 3 × 3 analyses
should provide good access to the ground state energy, but
the 2 × 2 analysis, where the second eigenvalue will have to
represent not just the effects of the actual first excited state
but also those of all higher excited states should yield
results corresponding to higher energies than those
obtained from the 3 × 3 analysis.
For the heavy pion ensemble, EH, with mπ ¼ 415 MeV,

the ground state plateaus at the D̄B� threshold, whereas
already for EM, with mπ ¼ 299 MeV, the second eigen-
value is consistent with the threshold and the first

TABLE V. Unphysical heavy quarkmasses used in our variable-
mass heavy anti-diquark investigation. Values are given divided by
the physical bottom quark mass. For the definition of the entries in
the two columns see Appendix A. The calculations were per-
formed using the ensemble EM with one source position.

am0
Q m0

Q=mQ mb0=mb

0.9 0.466 0.594(3)
1.0 0.518 0.636(2)
1.2 0.622 0.680(5)
1.6 0.829 0.846(7)
3.0 1.554 1.463(12)
4.0 2.073 1.928(17)
8.0 4.145 4.395(35)
10.0 5.181 6.287(48)

2The apparent approximately linear rising behavior of the
eigenvalues for EM and EL is a consequence of the weakness of
the binding. For t0 ¼ 4, the central values of the ground state EM
and EL binding energies (quoted below) correspond to maximum
values 0.16 and 0.37, respectively, of the argument, jΔEjðt − t0Þ,
of the exponential in Eq. (16) over the range of t shown in the
figure.
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eigenvalue with a bound tetraquark interpretation. Finally,
for EL, with mπ ¼ 164 MeV, both the first and second
eigenvalues have central values corresponding to states
below threshold. In light of the error bars, we suspect that,
in this case, the second eigenvalue corresponds to a

scattering state affected by the finite lattice volume rather
than a genuine bound state. A more detailed investigation
of this question must, however, await a future study
involving sufficiently high-statistics ensembles with larger
volumes for near-physical mπ .

FIG. 2. udc̄b̄ tetraquark results for binding correlator eigenvalues (left panels) and binding energies (right panels) on EH (top), EM
(center), and EL (bottom). Red squares and blue circles denote 3 × 3 GEVP ground and first excited state results, respectively, green
vertical dashes and green diagonal crosses ground and first excited state 2 × 2 GEVP results. The grey bands depict the final binding
energies, derived from single-exponential fits to the first eigenvalues. Further details may be found in the text, and supplementary
material in Appendix C. The 2 × 2 GEVP results are offset slightly in t for visual clarity.
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To estimate the binding energies we have performed
(uncorrelated) single-exponential fits Eq. (16) to the
individual eigenvalues and accepted results satisfying
χ2=d:o:f:≲ 1. We emphasize that we perform fits to the
eigenvalues of both the tetraquark correlators and binding
correlators. In the former case, we subtract the sum of the
threshold two-meson state masses to obtain the binding
energy. All accepted results are compared and a result that
is representative of both procedures is chosen. The final fit
ranges are t=a ∈ ½10∶23� for EL, t=a ∈ ½14∶20� for EM, and
t=a ∈ ½17∶21� for EH. Further details of this procedure, as
well as the resulting fit stabilities, are given in Appendix C.
The final results obtained in this manner are listed in
Table VI and plotted as the grey shaded bands in the right-
hand panels of Fig. 2.
Although further control of the dominant systematic

uncertainties is necessary before an accurate prediction can
be made, the results of our direct simulation provide good
evidence for the existence of a strong-interaction-stable
JP ¼ 1þ udc̄ b̄ tetraquark state at physical mπ . We take the
upper bound of the EM result and the lower bound of the EL
result as providing the best assessment of the likely range of
binding, leading to the expectation

−61 MeV < ΔEudc̄ b̄ < −15 MeV ð18Þ

for the binding energy of the udc̄ b̄ tetraquark ground state
relative to the D̄B� threshold. For presentational simplicity
in what follows, we will also quote this result in the
equivalent compact form ΔEudc̄ b̄ ¼ −38ð23Þ MeV, using
the midpoint of the range in Eq. (18) as the central value
and half the width as the error estimate. This strategy for
estimating the binding energy implied by our results
appears plausible, given the ensembles currently available
to us, since we expect both some deepening of the binding
in going from EM to EL (as a consequence of the increasing
spin-dependent, good-light-diquark attraction with decreas-
ing light quark mass) and also potentially non-negligible
finite-volume effects due to the small mπL of the EL
ensemble. It thus seems reasonable to expect the true,
infinite volume binding for physical mπ to lie somewhere
between the two bounds noted above. Our finite-volume
systematic uncertainty, at present, clearly dwarfs the
statistical errors on the individual measurements and only
a careful finite-volume study will allow for a more accurate
prediction. We are currently in the process of generating

ensembles with larger volumes at near-physical mπ , and,
once this is completed, we will report on the results
obtained using these ensembles to more fully quantify
the impact of finite-volume effects on the estimated
physical-mπ binding in a future work.
Taking PDG [68] values for the physical D and B�

masses,3 the binding energy estimate obtained above
corresponds to a tetraquark mass of ≈7154ð23Þ MeV.
For completeness, we also quote here the energy

differences between the first excited state (corresponding
to the second eigenvalue) and the D̄B� threshold, which are
18(6) MeV for EH, 8(8)MeV for EM, and −26ð7Þ MeV for
EL. These are compatible with our interpretation of the
second eigenvalue as corresponding to the D̄B� threshold
for the EM and EL ensembles, with potentially non-
negligible finite-volume effects present in the EL case.
One should, however, also bear in mind that the limited size
of our basis of operators may impact how reliably we can
extract the energy of the first excited state, particularly if
this state corresponds to an infinite-volume scattering state
and, as is likely, finite-volume effects are not negligible for
the EL ensemble. A larger basis of operators and finite-
volume analysis are thus desirable for a more robust study
of the nature of this state.

A. Discussion of systematic uncertainties

In this calculation, the systematic error originating from
the uncertainty of the lattice spacing in Table IV is
negligible in comparison to the statistical error of the final
result.
As noted above, we believe the dominant source of

uncertainty in our result comes from finite-volume effects.
The light-quark-mass dependence of the udc̄ b̄ masses
covers multiple mπL and appears to support the interpre-
tation of the ground states for the EM and EL ensembles as
corresponding to genuine bound tetraquark states and the
expectation that such a bound tetraquark state will therefore
also exist at physical mπ . However, without additional
ensembles with larger lattice volumes, a direct study of the
scaling of the binding with mπL, and a full extrapolation to
infinite volume and physical mπ , is not feasible at present
and must be left for future study.
Aside from general terms ∼ expð−mπLÞ, the finite lattice

volume may affect particle energies in two ways. First, a
bound state receives corrections proportional to expð−jpjLÞ,
where jpj is the binding momentum, defined via the energy-
momentum relation −ΔE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ p2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 þ p2

p
−

E1 − E2, where E1 and E2 are the energies of the threshold
particles. Second, a state which becomes a scattering state in
the infinite-volume limit, but which lies below threshold at

TABLE VI. Final estimated udc̄b̄ binding energies. A negative
value signals binding with respect to the D̄B� threshold.

Ensemble mπ [MeV] mπL ΔEudc̄b̄ [MeV]

EH 415 6.1 −4ð9Þ
EM 299 4.4 −22ð7Þ
EL 164 2.4 −50ð11Þ

3As the ensembles we use have identical u and d quark masses,
and hence exact isospin symmetry, we use the average of the Dþ
and D0 masses for mD.
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finite volume, may receive power-law corrections in 1=L,
which for the n ¼ 0 states depend on a0=L, where a0 is the
scattering length of the particles that define the two-meson
threshold in the channel in question [69,70].
Unlike the case of the udb̄ b̄ and lsb̄ b̄ channels, where

binding energies much larger than expected finite-volume
effects were found [29], finite-volume effects may play a
more important qualitative role in the udc̄ b̄ channel, where
the expected binding and overall energy scale are lower.
Even though a rigorous finite-volume study must be left for
future work, we observe that, if the ground state energies for
the EM and EL ensembles do, indeed, as the evidence above
suggests, correspond to bound udc̄ b̄ tetraquark states, the
binding momenta for these states would be ðjpjÞL ¼
373ð171Þ MeV and ðjpjÞM ¼ 245ð140Þ MeV, respectively,
implying a strong suppression of the finite-volume effects on
the determined bound-state energies. Finite-volume studies
with larger lattice volumes, however, remain desirable to
more strongly test the bound-state interpretation of the
ground states for the EM and EL ensembles.

VI. POSSIBLE EXPERIMENTAL DETECTION

With a predicted binding of between 15 and 61 MeV
below the D̄B� threshold, it is unclear whether the JP ¼
1þ udc̄ b̄ tetraquark predicted by our results should, as its
udb̄ b̄ and lsb̄ b̄ analogues, be both strong- and electro-
magnetic-interaction stable, or be able to decay electro-
magnetically, to D̄Bγ, whose threshold lies ∼45 MeV
below D̄B�. In either case, such a state, with a mass
mudcb ≃ 7154ð23Þ MeV, should be much more accessible
to current experimental programs than are the correspond-
ing doubly bottom states.4

Should the binding be greater than ∼45 MeV, the udc̄ b̄
tetraquark will decay only weakly and suffer from the
experimental disadvantage of having a large number of
exclusive decay modes, each with a relatively small
branching fraction. Such decay modes would, however,
have the compensating advantage of being accompanied by

secondary heavy-meson decays with displaced vertices.
The left and center panels of Fig. 3 show examples of such
decays. Two- or three-meson decays such as those to
ðD̄0D̄0Þ or πþD̄0D− might then serve as useful potential
experimental signatures. Another three-body mode poten-
tially suitable for detection, produced if the Wþ material-
izes as a cs̄ rather than a ud̄ pair, is J=ψD̄0K0.
In contrast, should the udc̄ b̄ binding energy be less than

∼45 MeV, the state should decay electromagnetically
essentially 100% of the time to D̄Bγ, as in the rightmost
panel of Fig. 3.
With (given the predicted binding energy) less than

∼20 MeV of phase space available to the electromagnetic
decay, such a tetraquark, produced with a reasonable
momentum in the lab frame, will decay to produce a
mixed-heavy-flavor DþB− or D̄0B0 meson pair highly
collimated in the lab frame.

VII. CONCLUSIONS

The study of heavy tetraquarks of the qq0Q̄0Q̄ type
continues to yield insight into the binding of exotic
hadrons. This paper provides evidence of a strong-
interaction-stable IðJPÞ ¼ 0ð1þÞ udc̄ b̄ tetraquark which
we estimate to lie 15–61 MeV below the corresponding
noninteracting, two-meson (D̄B�) threshold. The predicted
mass range, ≈7154ð23Þ MeV, thus straddles the electro-
magnetic D̄Bγ decay threshold, making it impossible,
at present, to predict whether it will decay electromagneti-
cally or only weakly. With Bc production, and hence the
simultaneous production of bb̄ and cc̄ pairs, already
established experimentally, these results clearly motivate
a search for this state at LHCb.
The results of the direct computation above further

strengthen the argument that this class of tetraquarks
becomes more strongly bound as the light-quark compo-
nent becomes lighter. The variable, unphysical heavy-quark
mass study also confirms the expectation that such tetra-
quarks become less bound as the heavy anti-diquark
reduced mass decreases.
Complementary to the direct computation of the binding

of the IðJPÞ ¼ 0ð1þÞ udc̄ b̄ tetraquark, the NRQCD study
of the udb̄0b̄0, udb̄0b̄, lsb̄0b̄0, and lsb̄0b̄ channels with
variable heavy quark mass, mb0 , extending down to 0.60mb

FIG. 3. Examples of potentially observable udc̄ b̄ tetraquark decay channels. Channels accessible if only weak decays are possible:
(left) into two mesons (e.g., to D̄0D̄0), and (center) into three mesons (e.g., to πþD̄0D−). Right: decay to D̄Bγ, expected to dominate if
electromagnetic decay is possible.

4It is worth mentioning that, even for the more experimentally
challenging doubly bottom tetraquarks, a recent study of possible
branching fractions came to a positive conclusion regarding their
discovery potential in current experiments [71].
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confirms our qualitative understanding of the basic physics
responsible for the observed tetraquark binding. This study
also suggests that strong-interaction-stable udc̄ c̄, lsc̄ b̄,
and lsc̄ c̄ tetraquarks are unlikely to exist (see also [40]),
though direct computations using a relativistic charm action
at almost physical light quark masses have yet to be carried
out for these channels.
Our prediction for the udc̄ b̄ binding has an error domi-

nated by what we believe to be a conservative estimate of the
finite-volume systematic. While statistics does not appear to
be a problem, having more operators and/or crafting sources
and sinks that better overlap with our desired ground states
should provide longer plateaus. In the future, futher inves-
tigations of the udc̄ b̄ channel using ensembles with addi-
tional near-physical light pion masses and larger spatial
volumes will allow us to obtain better quantitative control
of the extrapolation to physicalmπ and finite-volume effects.
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APPENDIX A: OUR IMPLEMENTATION
OF THE NRQCD FRAMEWORK

We use the NRQCD Hamiltonian [72–74]

H0 ¼ −c0
Δð2Þ

2mQ
;

δH ¼ −c1
ðΔð2ÞÞ2
8m3

Q
þ c2
U4

0

ig
8m2

Q
ðΔ̃ · Ẽ − Ẽ · Δ̃Þ

−
c3
U4

0

g
8m2

Q
σ · ðΔ̃ × Ẽ − Ẽ × Δ̃Þ

−
c4
U4

0

g
2mQ

σ · B̃þ c5
a2Δð4Þ

24mQ
− c6

aðΔð2ÞÞ2
16nm2

Q
; ðA1Þ

where Ẽ, B̃, and Δ̃ denote theOðaÞ-improved color electric
field, color magnetic field, and spatial lattice derivative,
respectively. Δð2Þ is the lattice Laplacian, g is the bare
gauge coupling, and n is a mode number used in the
evolution equation [see Eq. (A4) below]. We find n ¼ 4 to
be a reasonable value for this stability parameter.
Here, the tadpole-improvement coefficient U0 is set via

the fourth root of the plaquette, and the coefficients ci are
assigned their tree-level values of 1. This leaves one free
parameter, mQ, to be tuned to give the desired heavy-quark
physics. This tuning is achieved by measuring the slope of
the dispersion relation, and hence the “kinetic”mass, of the
spin-averaged ϒ and ηb on Fourier-transformed local-local
current correlators. Explicitly, with

ηbðM0; p2Þ ¼ ηbðM0Þ þ
p2

2mb
η
;

ϒðM0; p2Þ ¼ ϒðM0Þ þ
p2

2mb
ϒ

; ðA2Þ

we take

mb ¼ 1

4
ðmb

η þ 3mb
ϒÞ: ðA3Þ

With the parameters of the NRQCD action all fixed, the
evolution equation,

Gðx; tþ 1Þ ¼
�
1 −

H0

2n

�
n
�
1 −

δH
2

�
U†

t ðxÞ
U0

�
1 −

δH
2

�

×

�
1 −

H0

2n

�
n
Gðx; tÞ; ðA4Þ

where Ut denotes a gauge link in the temporal direction, is
used to compute our heavy quark propagators. Static heavy
quark propagators can be realized by setting all the
coefficients ci in this action to 0.
The NRQCD action can be organized as an expansion in

1=mQ, and naively its regime of validity is limited to the
region mQ ≳ 1 in lattice units.

APPENDIX B: DETAILS OF THE
VARIABLE-HEAVY-MASS STUDY

This study focuses on unphysical bottom quarks using
the ensemble EM of Table IV with a single source position.
Visible effects due to violations of the condition amQ ≳ 1

are e.g., the increase of the hyperfine splitting. While
tunings of the parameters ci beyond tree level, as well as the
inclusion of additional terms in the action, and/or an
increase in the stability parameter n, could be considered
to expand the region of validity of the NRQCD approxi-
mation, here we choose to work with tree-level values and
the form of the NRQCD Hamiltonian detailed in
Appendix A. Monitoring the hyperfine splitting, we find
that mQ ≃ 0.594mb appears to be the lowest acceptable
value for our calculation. From extrapolation of our heavy-
quark data, the charm quark lies at around mc ≃ 0.33mb
and is thus beyond our reach in the NRQCD approach.
The binding energies of the udb̄0b̄0, udb̄0b̄, lsb̄0b̄0,

and lsb̄0b̄ tetraquark states on the EM ensemble are
extracted by fitting the smallest eigenvalue of the respective
GEVPs to a single-exponential ansatz. All fit results with
χ2=d:o:f: ≤ 1 are kept for further analysis. The fit pro-
cedure does not take into account correlations in the data.
The final numbers are chosen as representative results with
the longest fit window possible.
The resulting data and fits are shown in the left panels of

Fig. 4. We observe positive exponential growth of the first
eigenvalues determined from the binding correlator with
Euclidean time t. This growth becomes steeper as the heavy
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FIG. 4. Binding correlators (left) and effective energies (right) for the four channels lsb̄0b̄, udb̄0b̄, lsb̄0b̄0, and udb̄0b̄0 (top to bottom).
Fit results are given as shaded bands (left) or boxes (right).
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quark mass is increased in all four tetraquark channels
(especially so for the equal-heavy-mass case, where the
binding energy is unbounded as mb0 → ∞). The shaded
bands denote the corresponding fits and are seen to describe
the data well. We also determine the effective binding
energies and show these results (data), together with the
corresponding binding energy fits (shaded boxes) in the
right panels of Fig. 4. The success of the phenomenological

fit forms detailed in Sec. II in reproducing these lattice data
confirms our understanding of the basic bindingmechanism.

APPENDIX C: FURTHER DETAILS
OF THE udc̄ b̄ ANALYSIS

In addition to the direct determination of our tetraquark
binding energies from fits to binding correlator data, we
have also estimated the binding energies via (uncorrelated)

FIG. 5. udc̄ b̄ tetraquark results on EH (top), EM (center), and EL (bottom). The left panels show the GEVP eigenvalues, and the right
panels the corresponding energies. The red and blue symbols show, respectively, the ground and first excited state results obtained from
the 3 × 3 GEVP analyses. The green vertical dashes and green diagonal crosses similarly denote the ground and first excited state results
obtained from the 2 × 2 GEVP analyses. The two-meson D̄B� thresholds, shown for comparison, are given by the brown bands in the
right-hand panels. The grey bands in those same panels depict the final energies obtained from the single exponential fits to the
eigenvalues described above. Further details are given in the text. The 2 × 2 GEVP results have been offset in t for visual clarity.
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single-exponential fits of the ground-state tetraquark ener-
gies to the eigenvalue data for the tetraquark correlation
functions. The tetraquark eigenvalue data are shown in
the left-hand panels of Fig. 5 and the corresponding

log-effective energies in the right-hand panels. Through-
out, the first, second, and third eigenvalues obtained from
the 3 × 3 GEVP are given in red, blue, and magenta,
respectively, while the results obtained from the 2 × 2

FIG. 6. Fit window dependence for fitting the binding correlator GEVP solutions and those obtained from the particle correlators for
the ensembles EH (top), EM (center), and EL (bottom). We obtain our final results from this selection of accepted fits in the stable region
that is representative of both procedures.
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GEVP are specified using green vertical dashes and green
diagonal crosses.
The same fit strategy is employed to extract the binding

energies from the binding correlator data and the tetraquark
energies themselves from the tetraquark correlator data.
Explicitly, we select fit windows in Euclidean t extending
from tleft to tright ¼ tleft þ Δt whose results satisfy
χ2=d:o:f:≲ 1. In the case of the binding correlator, the
fit immediately gives the binding energy. In the case of the
four-quark “diquark-diquark” and “meson-meson” corre-
lators, the two meson threshold mass sum is subtracted
from the resulting tetraquark mass. The accepted results

obtained in this way are shown as a function of tleft in the
right panels of Fig. 6, and the corresponding results
obtained using the binding correlator GEVPs in the
corresponding left panels. The multiple points plotted for
each tleft are those corresponding to different choices of Δt.
From this selection of results the final, quoted numbers
(corresponding to the grey bands in Fig. 5) are chosen in
such a way that they lie in the stable regions of the plots,
and are representative of both procedures. The final fit
ranges used are t=a ∈ ½10∶23� for EL, t=a ∈ ½14∶20� for
EM, obtained from the left panels, and t=a ∈ ½17∶21� for
EH chosen from the right panels.
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