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We relate an /-loop Feynman integral to a sum of phase space integrals, where the integrands are

determined by the spanning trees of the original /-loop graph. Causality requires that the propagators of the

trees have a modified ié prescription, and we present a simple formula for the correct id prescription.
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Introduction.—Relating loop integrals to trees goes back
to Feynman [1]. The Feynman tree theorem allows us to
relate an /-loop Feynman integral with N internal propa-
gators to an [-fold phase space integral with a number of
cuts N, on the original integrand, with N ranging from /
to N. One could argue that a better name for this theorem
would be the Feynman forest theorem, as in general (i.e.,
for N > [) the integrand corresponds to a set of trees, i.e.,
a forest. This is not very convenient: If more than / cuts are
present, each additional cut imposes a nontrivial constraint
on the phase space integration.

What we would like to have is a formula which relates an
[-loop Feynman integral to an /-fold phase space integral
without any additional constraints. The integrand of the
phase space integral then corresponds to a tree, not a forest,
and is obtained from the original integrand by exactly /
cuts. For one-loop integrals this was achieved in Ref. [2].
An important result of Ref. [2] was the statement that the
uncut propagators have a modified i6 prescription. The
usual i6 prescription for a Feynman propagator is

i

2 2 . 9
kj—mj+15

(1)

where 6 >0 is an infinitesimal small quantity. The
modified i0 prescription is a consequence of causality.
We call propagators with a modified ié prescription dual
propagators.

In this Letter we present the generalization to an arbitrary
loop number /. A comment is in order: A generalization
of loop-tree duality to two loops and beyond has already
been considered in Ref. [3]. However, the final formulas
presented there are not particularly elegant and involve
a mixture of Feynman propagators and one-loop dual
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propagators. Our result is more aesthetic: All uncut
propagators are dual propagators, with a simple dual i6
prescription, which reduces in the one-loop case to the one
of Catani et al. [2]. A dual propagator is of the form

i

I —m3 +is;(0)5”

(2)

Only the sign of the function s;(o) is relevant. The function
s;(c) depends on the energy E; and the energies of the cut
propagators E, , ..., E, and will be given in Eq. (27) or
alternatively in Eq. (32) below.

Let us also briefly comment on the difference of the
loop-tree duality approach with the so-called Q-cut
approach [4]: The latter involves propagators linear in
the loop momenta, where the information due to the
infinitesimal imaginary part is lost if all propagators have
the same small imaginary part as in Eq. (1). The i6
prescription is restored by introducing different infinitesi-
mal small imaginary parts for the internal propagators and
averaging over all possible relative orderings. In our
approach, only propagators quadratic in the loop momenta
occur. Furthermore, the modified id prescription of the dual
propagators follows directly from the id prescription of the
Feynman propagators. Our approach applies to massless
and massive particles.

Notation.—Let I be a Feynman graph with [ loops, n
external lines, and N internal edges. We denote by Er =
{e1,..., ey} the set of internal edges. A spanning tree for
the graph I" is a subgraph T of I', which contains all the
vertices of I" and is a connected tree graph [5]. If T is a
spanning tree for I', then it can be obtained from I" by
deleting / internal edges, say, {¢,, . ..., e, }. We denote by
o = {01, ...,0,} the set of indices of the deleted edges and
by Cr the set of all such sets. Thus, |Cr| gives the number of
spanning trees for the graph I'.

Each o € Cr also defines a cut graph T, obtained by
cutting each of the [ internal edges e, into two half-edges.

The 21 half-edges become external lines of T,. The graph
Ty 1s a tree graph with n + 2/ external lines.
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We denote the external momenta of the graph I' by
Pis---» P, and the internal momenta by &, ..., ky. We will
assume that the internal momenta have been labeled such
that the first / internal momenta k4, ..., k; form a basis of
independent loop momenta. For each internal edge we set
We will assume that D; # D; for i # j. Otherwise, we
consider a reduced graph I' with edge e; contracted and a

higher power of the propagator associated to edge e;.
For a function f depending on a D-dimensional momen-

tum variable k = (E, I_c') where the vector k is (D-1)

dimensional, we write either f (k) or f(E, I_é) We would like

to integrate the function f over the hyperboloid k> = m?.

The quantities
dD lk ( >
\Vk K+ m?. k (4)
/(27rD 2V + m?

give the integrals over the forward hyperboloid and
the backward hyperboloid, respectively. As a shorthand
notation, we set

dP'k
/ (27)P- 12V i +m
d’ 'k
:/(Zﬂ)D_IZ\/l_c?—i-m2
X [f(\/l_c?—l—mz,lz) +f(—\//22+m2,12)} (5)

for the integral over the forward and the backward
hyperboloid.

Loop-tree duality.—Let Pr be a polynomial in the loop
momenta. We consider

1=/ (H gjﬁ’)) HPD R

We split each loop integration into an integration over the
energy and the spatial components of the loop momentum:

! :/ (H é;;kl) (zjry

j=1

PrdE; A - A dE;
He GEr J

We perform the energy integrations with the help of the
residue theorem. Let us assume that the polynomial Pr is
such that all energy integrations over half-circles at infinity
vanish. This assumption is always satisfied for scalar
integrals where Pr = 1. If this assumption is not met,
we may enforce it by subtracting local ultraviolet counter-
terms from the integrand [6,7].

(7)

Let £ C C! be the set of points E = (E, ..., E;), where
internal propagators go on shell and removing the corre-
sponding edges gives a spanning tree. We have

€] = 2/|Cr . (8)

This number is easily obtained from the number of
spanning trees and the 2/ solutions per spanmng tree.

For generic values of py, ..., p, and kl, . k, the points of
€ are distinct. Points in £ commde if in addition to the cut
propagators one or more uncut propagators go on shell. We
distinguish the cases of a pinch singularity and a nonpinch
singularity. For a nonpinch singularity we may deform the

integration contour for the spatial variables kl, . k, into
the complex domain. The modified i§ prescription given in
Eq. (27) tells us in which direction we should deform. This
is exactly the purpose of the present Letter. For a pinch
singularity we have an infrared singularity. This singularity
is either regulated by dimensional regularization or can-
celed in the combination with real contributions according
to the Kinoshita-Lee-Nauenberg theorem [8,9].

Let 0 € Cr be a set of indices defining a spanning tree.
For each cut edge we choose an orientation and we may
take the [ independent loop momenta to be the loop
momenta flowing through the edges e, , ..., e, with the
chosen orientation. Let

EY = (E™, ... EX) (9)

be a solution to
D, =---=D, =0. (10)

(1)

In total there are 2/ solutions, E; /, ...,

(8, +mi2, = 6,0\ [ R, + w2, — i6).

Let us denote by n((;“) the number of times the negative root

— /" occurs in EY. We set

Egl), given by

Pr
fotr (12)
HejGErD.l;j

We define the local residue [10] at E by

aniy 4 A

The integration in Eq. (13) is around a small /-torus,

res(f, EY

-AdE;.  (13)

ve ={(Er.....E)) € C'||D, | = e}, (14)
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o

encircling E;’ with orientation

dargD, A dargD, A --- AdargD, >0.  (15)
We consider

21

> (1) res(f. ES). (16)

a=1

Let us make one remark: Equation (16) is not a global
residue for the ideal (D, ..., D", due to the additional

factor ( —1)"5“). The standard definition of the global residue

for <DZ‘1" Y DZ? ) is just the sum over the 2/ local residues,
without any sign factors. This sum vanishes, whereas the
sum in Eq. (16) in general does not.

Proposition 1.—The expression in Eq. (16) is indepen-
dent of the orientation of the edges e, , ..., €.

Proof.—It is sufficient to show this for the case where we
change the orientation of a single edge e, . We may use
partial fraction decomposition in the variable E, . It is

sufficient to show this for the case

re 1
E, —c E, +c’

f(E,,) = (17)
where r, r_ and c are E,, independent, since higher poles
and polynomial terms do not contribute to the residue.

(Polynomial terms are absent due to our assumption that the
integration over half-circles at infinity vanishes.) We have

2
S (LB = — s (18)
a=1

Now let us change the orientation. We set E;, = —E, and

ry T
/ / :
E, +c E; —c

f(E;,) = f(Es,) = = (19)

Then

2
ST (=) res(fL Elol’) = —r_+ry. (20)

a=1

Theorem I.—With f as in Eq. (12), we have

1

S e, o

o€Cr a=1

where the contour of integration on the left-hand side is
along the real axes separating the poles at +,/-- - from the
poles at —/---.

Proof.—We prove Eq. (21) by induction on the number
of loops I. We start with [ = 1. The function f is given in
this case by

Pr
=== (22)
1 D;
Closing the contour below sums up the residues in the
lower complex half-plane and we obtain

;—ﬂ/de——iijl:res(f,\/l_c?—me—w)- (23)

The minus sign comes from the clockwise orientation of the
contour. If, on the other hand, we close the contour above,
we pick up the residues in the upper complex half-plane
and we obtain

%/de:ijﬁ?res(f,—\/m)- (24)

Both Egs. (23) and (24) express the original integral as a
sum of residues, and so does the average of the two:

%/dez%Z[r%(f,\/k?+m12-—i5>

J=1
—res(f,—\//_c)jz-—‘-mjz-—i&)]. (25)

This agrees with Eq. (21) for the case [ = 1.

Let us now assume that Eq. (21) is correct for graphs
with (I — 1) loops. We show that Eq. (21) holds for graphs
with [ loops. Consider a graph I" with / loops and pick a
cycle (i.e., a closed path) in this graph. To this cycle
corresponds an energy integration, and we may take the
residues as we did in the one-loop case and average over the
two cases obtained by closing the contour in the upper
(lower) complex half-plane. Taking a single residue will put
one edge of the cycle on shell and will fix the energy of this
edge. This corresponds to cutting the cycle at this edge, and
we obtain a graph I with (/ — 1) loops. For I we may use
the induction hypothesis, and doing this for every single
residue gives Eq. (21). n

Let us now specialize to the case v; = --- = vy = 1 and
let us work out the i§ prescription for the uncut propagators.

Theorem 2.—Let us assume again that Pr is a poly-
nomial in the loop momenta such that all energy integra-
tions over half-cycles at infinity vanish. If all propagators
occur to power one, we have
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GGCr 277,' 12\ / k +

r
—m5 +is;(0)8]’ (26)

mj2 + i5)

H/&‘a{

where s;(0) is defined as

E_H (27)

sj(o) =
and E| is defined as follows: The seto = {5}, ...,0,} € Cr
defines a tree T, obtained from the graph I" by cutting the
internal edges C, = {e,,, ..., ¢, }. Cutting in addition the
edge e; € Er\C, will give a two-forest (7'}, T,). We orient
the external momenta of 7| such that all momenta are
outgoing. Let z be the set of indices corresponding to the
external edges of T'; which come from cutting the edges C,,
of the graph I'. The set 7 may contain an index twice; this is
the case if both half-edges of a cut edge belong to 7'y. Then
define E| by

1 > L (28)

I ae{jtun Eq

Proof.—Theorem 2 is a specialization of Theorem 1 to
the case where the integrand has only single poles. The
calculation of the residues yields

1

1
res(D—, l_%j—i-m(z,/_—ié):_)—,
g | 2\l +m2,

1
—res <— ,— i
Do,

1
oj +m<27j —i5> =T
2\/k;, +m2,

where we neglected on the right-hand side the infinitesimal
small imaginary part. It remains to work out the sign of the
imaginary part of the uncut propagators. Let us consider D;
and with the notation as above the tree 7. The external
edges of T are given by e;, the set Eq, = {e,.e,,, ...},
and possibly a subset E.,, of the external edges {1, ...,n}
of the original graph I'. Energy conservation relates E; to
minus the sum of the energies of all other external particles
of the tree 7|. The energies corresponding to the edges
from E,; are real; the energies corresponding to the edges
from E_, have an infinitesimal small imaginary part. Taylor
expansion to first order in 6 gives

FIG. 1. A two-loop eight-point function with 11 propagators.

E, = +\/ks +m2 —ib

- 1 10}
— K2 +m2 T Evl—+ O). (29)
\ ky +m>2

By a slight abuse of notation, we denote the O(&°) term
again by E, . Thus, the replacement

(30)

g

makes the infinitesimal imaginary part explicit. Let us now
look at D; and expand to first order in &:
) 24 s 2 _ 12 24
D;=kj —mj+i6=Ej —kj —mj +1i6

- (ZE + ZE;M)Z—E—@ +is

aEr a€E

1
2 2
—>kj—mj+< +E]E 5

agx 4

>15+ o $*).  (31)

For the O(6) term, we have

1 1 E;
=B S )=

E
agx Ta ae{jtur ¢

Although we singled out the tree 7'; from the two-forest
(T, T»), it is easily checked that the definition of s5;(o) is
invariant under the exchange 7| < T,. [

Theorem 2 is the main result of this Letter. It allows us to
express a Feynman integral with no raised propagators as a
sum of phase space integrals. Each phase space integral
corresponds to a spanning tree of the original graph. The
integrand of each phase space integral corresponds to a cut
graph, where exactly [ internal propagators have been cut
and the remaining (N — /) internal propagators have a
modified i6 prescription given by Eq. (27). Theorem 2 is
the specialization of Theorem 1 to Feynman integrals with
no raised propagators. For Feynman integrals with raised
propagators, we may still use Theorem 1. The only change
is that the computation of the residues is more involved.
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FIG. 2. A cut diagram corresponding to ¢ = {3,9}. We also
indicate an orientation for the edges es, es, ¢4, and eq.

Residues of Feynman integrands with raised propagators
have been considered in Ref. [11].

Although we defined the modified i§ prescription in
terms of energies in a specific Lorentz frame, we may easily
formulate it in a Lorentz-covariant way: Let i be a Lorentz
vector with 7 > 0 and > > 0. Then s,(c) is given by

3 k. (32)

si(o) =

! ae{j}ur n k”
Let us look at an example. Figure 1 shows a two-loop eight-
point graph I'. There are 35 spanning trees, and each
spanning tree defines a cut graph. Figure 2 shows an
example of a cut graph corresponding to ¢ = {3,9}. We
also indicate in Fig. 2 an orientation for the edges e3, es, e,
and eg. As an example we consider s5(o) and s¢(o). The
sign of the imaginary part is determined by

E; + E;
sslo) = Z B,
E3E¢ + E3Eg + EgEy
solo) = BEEBD R gy

There are ample applications of our result. Let us give
three examples. First, our result is directly geared
towards numerical methods for higher-order computations
[2,3,6,7,11-33] and paves the way to treat two-loop
amplitudes numerically in an efficient and automated
way. Second, and in a wider context, it sheds new light
on the cancellation of infrared singularities. Our result
allows us to discuss the singularity structure of loop
integrands in terms of on-shell tree diagrams. This will
be helpful at next-to-next-to-leading order and beyond
[34-63]. Third, and on the formal side, our approach also
suggests an extension of the concept of scattering forms
[64-67] from tree level towards loops. This will be
explored in a future publication.
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