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1 Introduction

The thermodynamic character of gravity becomes apparent in the context of black hole

physics. When considering the quantum mechanical effects, the thermodynamic signifi-

cance of physical quantities, which were originally considered purely geometrical [1], arises

naturally [2, 3]. This subtle connection between thermodynamics and black hole physics

provides one of the most important features of any proposed theory that attempts to unify

quantum mechanics and general relativity. Particularly, the relation between the black

hole entropy and its event horizon area could be an important clue that the ‘holographic

principle’ [4, 5] is fundamental for constructing such a theory [6].

A black hole in thermal equilibrium with its surroundings is clearly relevant for under-

standing the relation between thermodynamic quantities and their geometric counterparts.

The conventional wisdom is that the asymptotically flat black holes are not thermodynam-

ically stable [3]. This is a direct consequence of the fact that Schwarzschild black hole

in flat spacetime, without imposition of further conditions, has negative specific heat and

can not be in equilibrium with an indefinitely large reservoir of energy. That is, a thermal

fluctuation can break the equilibrium between the rate of absorption of thermal radiation

and rate of emission of Hawking radiation, which in turn will lead to the evaporation of

the black hole or its indefinite growth (depending on whether the initial fluctuation made

the black hole a bit hotter or a bit cooler than the heat bath, respectively). This implies

that the canonical ensemble is not suitable in this special case. The specific heat for an

asymptotically flat neutral black hole can be rendered positive in the canonical ensemble

by giving it an electric charge (or by rotating the black hole), but this does not in itself

ensure full thermodynamic stability as the other response function becomes negative in the

same range of parameters.

In this paper, we shall revisit this issue by investigating black hole solutions in a more

general theory with a scalar field and its non-trivial self-interaction. The advantage of con-

sidering Einstein-Maxwell-dilaton theory with a dilaton potential is that there exist exact

asymptotically flat static hairy black hole solutions [7] and we do not have to rely on nu-

merical methods. The main assumptions for the no-hair theorem proofs are the asymptotic

flatness and nature of the energy-momentum tensor and so, at first sight, the existence of

regular hairy asymptotically flat black hole solutions could be surprising. However, their

existence was conjectured in [8] and some numerical evidence was presented.1 The idea

behind this conjecture is that in a theory with a non-trivial potential of the scalar field, its

parameters can be adjusted so that the effective cosmological constant could cancel out.

The dilaton potential considered in [7], which vanishes at the boundary, is reminiscent of

the general potential that was obtained for a one scalar field truncation of ω-deformed

supergravity [12–14] (see, e.g., [15] for a nice review) and, also, N = 2 gauged supergravity

with an electromagnetic Fayet-Iliopoulos term [16, 17]. We are going to elaborate further

and obtain the relevant thermodynamic quantities by using a relatively recent development,

the so called ‘counterterm method in asymptotically flat spacetime’, which was motivated

by similar work [18–21] in the AdS-CFT duality [22]. Interestingly, we are going to prove

1A different class of (spinning) hairy black holes was found in [9, 10], for a review see, e.g., [11].
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that the self-interaction of the scalar field is the key for obtaining asymptotically flat hairy

black holes, which are thermodynamically stable.

Since a gravitational system is intrinsically non-linear, the conserved quantities are

remarkable analytic tools to investigate its behaviour. However, due to the equivalence

principle, it became clear that a local definition for gravitational energy can not be possible.

Nevertheless, in general relativity, for asymptotically flat spacetimes, conserved quantities

associated with asymptotic symmetries have been defined at spatial and null infinity. Early

work on total energy associated with an asymptotic geometry is due to Arnowitt, Deser,

and Misner (ADM ) [23–26], which led to a well-defined construction of the Hamiltonian

and global definitions of energy, linear and angular momenta. The infinite systems are

idealizations of more realistic physical situations, and it is desirable to have available a

similar analysis in the case of physical systems of finite extent. That is the notion of

‘quasilocal energy’, which is currently the most promising description of energy in the

context of general relativity and it is also relevant for our work. This approach, pioneered

by Brown and York [27], can be characterized simply as follows: the gravitational energy

is associated with closed spacelike two-surfaces in spacetime, not with a point. Once the

closed spacelike surface is pushed to the boundary, the results match the ones obtained by

the ADM formalism.

One obvious problem that appears when computing the action (and quasilocal stress

tensor) at the spatial infinity is the existence of infrared divergences associated with the

infinite volume of the spacetime manifold. The initial approach of dealing with this issue

was to use a background subtraction whose asymptotic geometry matches that of the

solutions. However, such a procedure causes the resulting physical quantities to depend on

the choice of reference background. Furthermore, it is not possible to embed the boundary

surface into a background spacetime even for simple solutions, e.g. when matter fields

are present or for spinning black holes. Unexpectedly, the rescue came by a completely

different route, namely the AdS-CFT duality in string theory. The observation that the

infrared divergencies of the (super)gravity in the bulk are equivalent with the ultraviolet

divergencies of the dual field theory was at the basis of the counterterm method in AdS.

The procedure consists of adding suitable boundary terms (such that the bulk equations of

motion are not altered), referred to as ‘counterterms’, to regularize the action. The duality

imposes the restriction that these counterterms are built up only with curvature invariants

of the boundary metric and not with quantities extrinsic to the boundary like in the case

of the Gibbons-Hawking term. It was observed that, even in flat spacetime, one can obtain

a regularized quasilocal stress tensor [28] and the method was successfully applied to study

the thermodynamics of spinning black holes and black rings (particularly, obtaining the

correct first law including the dipole charge of [29]). This was an important hint that,

indeed, the counterterm method is also suitable for flat spacetimes and, no longer after,

a general covariant method was proposed in [30]. Subsequently, this method was used for

many concrete examples, e.g. [31–36] and, also, to prove that the scalar charges, contrary

to what was claimed before, can not enter in the first law of thermodynamics [37].

The remainder of the paper is organized as follows: in section 2, we present the exact

asymptotically flat hairy charged black hole solutions of [7] and some of their geometric

– 3 –
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properties relevant for the thermodynamic stability analysis. In section 3, we give a short

overview of the quasilocal formalism and counterterm method for asymptotically flat space-

times. We compute the thermodynamic quantities for Reissner-Nordström black hole and

the hairy black holes presented in the previous section. In section 4, we briefly review the

thermodynamic stability conditions in canonical and grand canonical ensembles and study

the Reissner-Nordström black hole, showing explicitly that it is thermodynamically unsta-

ble. We then proceed in section 5 to perform the local thermodynamic stability analysis

of the solutions with γ = 1 presented in section 2 and show that, due to the presence of

the scalar field and its non-trivial self-interaction, they are thermodynamically stable in

some region of the parameter space. We close in section 6 with a detailed discussion and

outlook. We leave a similar analysis for hairy black holes when the scalar self-interaction

is turned off (α = 0) for appendix A and when γ =
√

3, but α 6= 0, for appendix B.

2 Exact hairy black hole solutions

In this section, we describe relevant features of the exact asymptotically flat hairy charged

black hole of interest [7]. We then consider the following action of Einstein-Maxwell-dilaton

theory:2

I [gµν , Aµ, φ] =
1

2κ

∫
M
d4x
√
−g
[
R− eγφF 2 − 1

2
(∂φ)2 − V (φ)

]
(2.1)

where F 2 = FµνF
µν , (∂φ)2 = ∂µφ∂

µφ, V (φ) is the dilaton potential, and c = GN = 4πε0 =

1 such that κ = 8π. With our conventions, the equations of motion are

Rµν −
1

2
gµνR = T φµν + TEM

µν (2.2)

∂µ

(√
−geγφFµν

)
= 0 (2.3)

1√
−g

∂µ
(√
−ggµν∂νφ

)
=
dV (φ)

dφ
+ γeγφF 2 (2.4)

where T φµν ≡ 1
2∂µφ∂νφ−

1
2gµν

[
1
2(∂φ)2 + V (φ)

]
and TEM

µν ≡ 2eγφ
(
FµαF

α
ν − 1

4gµνF
2
)

are the

dilaton and electromagnetic energy-momentum tensors. The non-trivial coupling between

the dilaton and gauge field gives rise to a new contribution in the right hand side of

the equation of motion for the dilaton and that is why the hair is secondary, there is

no independent integration constant associated to the scalar field. The dilaton potential

considered in [7], which vanishes at the boundary, matches the supergravity potential that

was obtained for a one scalar field truncation of N = 2 gauged supergravity with an

electromagnetic Fayet-Iliopoulos term [17], when the cosmological constant vanishes.

In a series of papers [38–42], by using a specific ansatz [38], a new procedure was

developed for obtaining exact regular hairy black hole solutions for a general scalar poten-

tial.3 In flat spacetime, the field equations should be solved by employing a similar special

ansatz for the metric and dilaton. For simplicity and clarity, we are going to focus on two

2We should emphasize that our conventions are slightly different from the ones in [7].
3The properties of these hairy black holes were carefully studied in related work [43–45].
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Figure 1. The dilaton potential for the negative branch (left hand side) and positive branch (right

hand side), both for α = 10.

particular cases for which the exponent coefficient of the dilaton coupling with the gauge

field takes the values γ = 1 and γ =
√

3, but more details about general solutions can be

found in [7].

2.1 Black hole solution for γ = 1

We are interested in a theory with the following scalar field potential:

V (φ) = 2α(2φ+ φ coshφ− 3 sinhφ) (2.5)

where α is an arbitrary parameter. For completness, the behaviour of the scalar field

potential is depicted below, in figure 1, and we note that it vanishes for φ = 0.

The suitable ansatz for the static hairy black hole (the metric4 and gauge field) when

γ = 1 is

ds2 = Ω(x)

[
−f(x)dt2 +

η2dx2

x2f(x)
+ dΣ2

]
(2.6)

F =
1

2
Fµνdx

µ ∧ dxν =
qe−φ

x
dt ∧ dx (2.7)

where η and q are independent parameters of the solution that are going to be related to

the mass and charge of the black hole, the spherical line element is dΣ2 = dθ2 + sin2 θdϕ2,

and the coordinate x is restricted to be positive, x ∈ [0,∞). It can be assumed, without

losing generality, that η > 0.

By choosing a conformal factor of the form

Ω(x) =
x

η2 (x− 1)2 (2.8)

4The ansatz slightly differs from the usual general ansatz [38] by the appearance of 1/x2 in the coefficient

of dx2. The reason is that, to get this solution, one should consider a specific limit procedure for which the

details can be found in [7].

– 5 –



J
H
E
P
0
3
(
2
0
1
9
)
2
0
5

it is straightforward to check that the equations of motion are satisfied by the metric, gauge

potential, and dilaton with the following expressions:

f(x) = α

[
x2 − 1

2x
− ln(x)

]
+
η2(x− 1)2

x

[
1− 2q2(x− 1)

x

]
(2.9)

A =

(
q

x
− q

x+

)
dt , φ = ln(x) (2.10)

where x+ is the location of black hole’s event horizon, given by f(x+) = 0, and the additive

constant in the gauge field is fixed in order to make A = 0 at the horizon.

A detailed analysis reveals that this solution corresponds, in fact, to two disconnected

black hole branches. To understand that, first we note that the conformal factor blows

up in the limit x = 1, which is the boundary where both the scalar field and its potential

vanish. To get a better understanding of this fact, let us provide the change to canonical

coordinates, namely the radial coordinate r. The change of coordinates

Ω(x) = r2 +O(r−2) (2.11)

corresponds asymptotically, near x = 1, to two distinct cases:

x = 1− 1

ηr
+

1

2η2r2
− 1

8η3r3
+O

(
r−5
)

(2.12)

x = 1 +
1

ηr
+

1

2η2r2
+

1

8η3r3
+O

(
r−5
)
. (2.13)

Therefore, the boundary x = 1 can be reached either from left hand side or from right hand

side, which splits the solutions into two branches. The change of coordinate (2.12) restricts

0 < x ≤ 1, while (2.13) restricts 1 ≤ x <∞. Since the former case implies that the scalar

field acquires negative values, this branch is called ‘negative branch’. The latter, following

the same reasoning, is called ‘positive branch’. Since important differences could appear

in their thermodynamic behaviour, each branch must be studied separately. At x = 0 and

x = ∞, the scalar field is blowing up and one can check that these points correspond to

real singularities of the spacetime.

We would also like to point out that the existence of regular black hole solutions

depends on the parameter α. Since we are interested in static solutions for which the

Killing horizon is defined by the Killing vector ξµ = ∂/∂t, by imposing the condition for

the existence of an event horizon, f(x+) = 0, we obtain

α
[
1− x2

+ + 2x+ ln(x+)
]

= 2η2 (x+ − 1)2 [x+ − 2q2(x+ − 1)
]
. (2.14)

For the negative branch, 0 < x+ ≤ 1, the right hand side term is obviously positive. One

can also prove that the combination 1−x2
+ + 2x+ ln(x+) that multiplies α on the left hand

side is a positive defined function. Therefore, for the negative branch, only theories with

α > 0 support black holes. No restriction for α is found within the positive branch.

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
2
0
5

Figure 2. Behaviour of scalar field potential for negative branch (left), and positive branch (right

side), both for α = 10.

2.2 Black hole solution for γ =
√
3

In this subsection, we present another exact hairy black hole solution for a different coupling

of the dilaton with the gauge field, namely γ =
√

3. To obtain exact solutions, we consider

now the following dilaton potential:

V (φ) = α

[
sinh(

√
3φ) + 9 sinh

(
φ√
3

)
− 4
√

3φ cosh

(
φ√
3

)]
(2.15)

that is depicted below in figure 2 and has a similar behaviour as in the case γ = 1.

In this case, we use the usual general ansatz [7]

ds2 = Ω(x)

[
−f(x)dt2 +

η2dx2

f(x)
+ dΣ2

]
(2.16)

and, by peaking the conformal factor

Ω(x) =
4x

η2 (x2 − 1)2 (2.17)

we obtain an exact regular hairy black hole solution with the following expressions for the

metric, gauge potential, and dilaton:

f(x) = α

[
x4

2
− 2x2 +

3

2
+ 2 ln(x)

]
+
η2(x2 − 1)2

4

[
1− q2(x2 − 1)

x2

]
(2.18)

A =

(
q

2x2
− q

2x2
+

)
dt , φ =

√
3 ln(x) (2.19)

where x+ is the location of black hole’s event horizon, given by f(x+) = 0, and the additive

constant in the gauge potential is again fixed in order to make A = 0 at the horizon.

As before, we can also prove that, in fact, there are two distinct family of solutions

labeled by a scalar field that has positive values for the first branch and negative val-

ues for the second one, respectively. The corresponding changes of coordinates near the

boundary are

x = 1− 1

ηr
+

1

8η3r3
+

1

8η4r4
+O(r−5) (2.20)

x = 1 +
1

ηr
− 1

8η3r3
+

1

8η4r4
+O(r−5). (2.21)

– 7 –
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As in the previous case, we can make a discussion on the existence of the regular solu-

tions when the parameter α takes positive or negative values. At the horizon, f(x+) = 0

implies that

α

[
−

(1− x2
+)(3− x2

+)

2
− 2 ln(x+)

]
=

η2

4x2
+

[
x2

+ − (x2
+ − 1) q2

]
(x2

+ − 1)2 (2.22)

and so the restriction imposed on the parameter α for the existence of regular hairy black

holes within the negative branch is again α > 0. Instead, no restriction on α for the positive

branch is found.

3 Counterterm method

In this section, we present a brief review of quasilocal formalism and counterterm method

for asymptotically flat spacetimes. Then, we are going to compute the thermodynamic

quantities for the Reissner-Nordström (RN) black hole and hairy black holes presented in

section 2 and prove that the first law of thermodynamics and quantum statistical relation

are satisfied.

We consider four-dimensional asymptotically flat static black hole solutions and so the

spatial infinity, which is the part of infinity reached along spacelike geodesics, is the one

relevant for our analysis. Brown and York proposed a surface stress-energy-momentum

tensor, referred to as the ‘quasilocal stress tensor’ in what follows, for the gravitational

field [27] that is obtained by varying the action with respect to the induced metric on

the boundary of the quasilocal region. The quasilocal energy obtained in this way has

the correct Newtonian limit and matches the value of the Hamiltonian that generates

unit magnitude proper-time translations on the boundary. A concrete expression for the

regularized boundary stress-energy tensor when the spatial boundary is pushed to infinity

was given in [28]:

τab =
2√
−h

δI

δhab
=

1

κ

[
Kab − habK −Ψ

(
R(3)
ab −R

(3)hab

)
− hab�Ψ + Ψ;ab

]
(3.1)

where Ψ =
√

2/R(3). It was obtained from varying the action supplemented with the

gravitational counterterm [46–48] in four dimensions:

I = Ibulk + IGH + Ict = Ibulk +
1

κ

∫
∂M

d3x
√
−hK − 1

κ

∫
∂M

d3x
√
−h
√

2R(3) (3.2)

where K is the trace of extrinsic curvature Kab, hab is the induced metric on the bound-

ary hypersurface ∂M, and R(3) is the trace of the Ricci tensor R(3)
ab of the metric hab.

Also, with our notation, Ibulk is the action in the bulk (2.1), the next term, IGH, is the

Gibbons-Hawking boundary term, and the last one, Ict, is the gravitational counterterm

for asymptotically flat spacetime. In this way, the difficulties associated with the choice of

a reference background are avoided.

Once the quasilocal stress tensor is known, the conserved quantities can be obtained

provided the quasilocal surface has an isometry generated by a Killing vector ξµ. If the

– 8 –
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Killing vector is ξ = ∂/∂t, the energy of the gravitational system is [27]

E =

∮
s2∞

d2σ
√
σnaξbτab (3.3)

where na is the unit normal to the t = constant surface, s2
∞, at spatial infinity, ξa is the

time Killing vector due to the time translational symmetry of the metric tensor, and σ is

the determinant of the induced metric on s2
∞. From a physical point of view, the existence

of the isometry of the hypersurface with the induced metric hab means that a collection of

observers on that hypersurface, all measure the same value for the quasilocal energy.

Before presented concrete examples, we would like to emphasize that the quasilocal

stress tensor can be computed on the Lorentzian section. On the other hand, since we need

a finite range for the time coordinate to get a regularized action, the computation of the

action is always done on the Euclidean section. Its definition differs from the usual action

by changed signs of the kinetic terms, which are bilinear in time derivatives, and the overall

sign. The temperature is computed by eliminating the conical singularity of the Euclidean

instanton and the Euclidean action, IE , is related to the thermodinamic potential of the

grand canonical ensemble, which corresponds to Φ = constant, by the quantum statistical

relation

G(T,Φ) =
IE

β
= M − TS − ΦQ , dG = −SdT −QdΦ (3.4)

where β is the periodicity of the Euclidean time τ = it and Φ is the conjugate potential

of the electric charge Q. The last observation is that the thermodynamic potential of the

canonical ensemble (Q = constant) can be obtained by a Legendre transform of (3.4):

F(T,Q) =
IE

β
= M − TS , dF(T,Q) = −SdT + ΦdQ . (3.5)

Geometrically, it corresponds to adding an extra boundary term to the action of the

form [49]

IA =
2

κ

∫
∂M

d3x
√
−hnνFµνAν (3.6)

for RN black hole. We found that for the hairy black holes of interest, a similar term

(though, depending also of the scalar field) should be added to correctly define the canonical

ensemble:

IA =
2

κ

∫
∂M

d3x
√
−heγφ nνFµνAν . (3.7)

3.1 Reissner-Nordström black hole

As a warm-up exercise, we are going to obtain the regularized Euclidean action, quasilocal

stress tensor, and conserved charges for the RN black hole. With our conventions, the

metric and gauge potential are

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(3.8)

A =

(
q

r
− q

r+

)
dt (3.9)

– 9 –
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with f(r) = 1 − 2m/r + q2/r2 and the radius of black hole outer horizon, r+, satis-

fies f(r+) = 0.

The gauge field is F = dA and its equation of motion is d(?F ) = 0. The electric charge

is obtained by the standard Gauss law considering the sphere s2
∞ at the boundary:

Q =
1

4π

∮
s2∞

?F =
1

4π

∮
s2∞

1

4

√
−gεµναβFµνdxα ∧ dxβ = q (3.10)

where ε is the totally antisymmetric Levi-Civita symbol, with εtrθϕ = 1.

The thermodynamic quantities associated with the RN black hole are the temperature

T , entropy S, and chemical potential Φ:

T =
f ′(r+)

4π
=

1

4πr+

(
1− q2

r2
+

)
, S =

A
4

= πr2
+, Φ =

Q

r+
(3.11)

where A is the area of the black hole horizon.

We choose the spacetime foliation with spherical hypersurfaces r = constant. The unit

normal to these hypersurfaces, extrinsic curvature, and its trace are

nµ =
δrµ√
grr

, Kµν = ∇µnν , K = gµνKµν . (3.12)

Then, we obtain the following non-trivial components of the quasilocal stress tensor:

τtt = −2M

κr2
+

3M2 + q2

κr3
+O(r−4) (3.13)

τθθ =
τφφ

sin2 θ
= −M

2 − q2

2κr
− M(M2 − q2)

κr2
+O(r−3) (3.14)

and is a straightforward computation to check that it is, indeed, covariantly conserved.

In order to compute the energy (3.3), which is the conserved quantity associated to the

Killing vector ξ = ∂/∂t, we note that σab = r2(dθ + sin2 θdϕ2), and the (time-like) normal

to the surface t = constant is na = δta/
√
−gtt. We obtain

E =
8πM

κ
+O

(
r−1
)

= M +O
(
r−1
)

(3.15)

that matches the ADM mass of the black hole computed by expanding the gtt component

of the metric at spatial infinity. Using the thermodynamic quantities (3.11), quasilocal

mass (3.15), and horizon equation, f(r+) = 0, one can prove the first law of thermody-

namics for the RN black hole:

dM = TdS + Φ dQ . (3.16)

For the grand canonical ensemble the conjugate potential is fixed, Φ = constant, and

the Euclidean action, computed on-shell, satisfies the quantum statistical relation

G =
IE

β
= − Q2

2r+
+

1

2
M = M − TS − ΦQ . (3.17)

Similarly, one can compute on-shell the Euclidean action for the canonical ensemble that

corresponds to a fixed charge, Q = constant. However, in this case, there is an extra con-

tribution (3.6) that provides the right Legendre transform of the thermodynamic potential:

F =
IE

β
= − Q2

2r+
+

1

2
M +

Q2

r+
= M − TS . (3.18)
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3.2 Hairy black holes

In what follows, we use the counterterm method to obtain the thermodynamic quantities

for the hairy black holes in the theories with γ = 1 and γ =
√

3 and prove that the first

law of thermodynamics and quantum statistical relation are satisfied.

We study the hairy black hole solution given by (2.9) and (2.10). The conserved charge

can be obtained by integrating the equation of motion d(?eφF ) = 0,

Q =
1

4π

∮
s2∞

?eφF =
1

4π

∮
s2∞

eφ
(

1

4

√
−gεµναβFµνdxα ∧ dxβ

)
=
q

η
(3.19)

and the other thermodynamic quantities associated to this solution, the Hawking temper-

ature T , entropy S, and conjugate potential Φ are

T =
x+

4πη
f ′(x+) =

(x+ − 1)2

8πηx+

[
α− 4η2q2(x+ + 2)

x+
+ 2η2

(
x+ + 1

x+ − 1

)]
S = πΩ(x+) =

πx+

η2(x+ − 1)2
, Φ = At(x+)−At(x = 1) = −Qη(x+ − 1)

x+
. (3.20)

In order to compute the quasilocal stress tensor and Euclidean action, we should consider

the foliation x = constant with the induced metric

ds2 = hab dx
adxb = Ω(x)

[
−f(x)dt2 + dθ2 + sin2 θdϕ2

]
(3.21)

and using the equation (3.1) we obtain

τtt =
12η2q2 − α

6ηκ
(x− 1)2 +O

[
(x− 1)3

]
(3.22)

τθθ =
τθθ

sin2 θ
=

(
α− 12η2q2

)2 − 36η4
(
4q2 − 1

)
288κ η5

(x− 1) +O[(x− 1)2] . (3.23)

The quasilocal stress tensor is covariantly conserved, which also hints that the solution is

regular [50]. To compute the quasilocal energy, we should use the eq. (3.3) and the Killing

vector ξ = ∂/∂t. To check that this is the correct normalized Killing vector we have to

use, let us expand asymptotically the metric near the boundary x = 1,

ds2 = gttdt
2 + gxxdx

2 + gθθdΣ2

= −dt2 +
dx2

η2(x− 1)4
+

x dΣ2

η2(x− 1)2
+O(x− 1)dt2 +O

[
(x− 1)−3

]
dx2 . (3.24)

Now, by changing the coordinates

dx2

η2(x− 1)4
= dr2 =⇒ r = ± 1

η(x− 1)
(3.25)

at the boundary, in the limit r → ∞ one can see that the metric becomes Minkowski

spacetime in spherical coordinates ds2 = −dt2 + dr2 + r2dΣ2, with the time coordinate

proper properly normalized. We obtain the following expression for the quasilocal energy:

E =
α− 12η2q2

12η3
+O (x− 1) = M +O (x− 1) . (3.26)
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The ADM mass can be read off as the monopole in the expansion of gtt component of the

metric in the canonical coordinates, with r given in the eq. (2.11),

− gtt = 1− 2M

r
+O

(
r−2
)

= 1− 2

r

(
α− 12η2q2

12η3

)
+O

(
r−2
)

(3.27)

and matches the quasilocal energy. Using the thermodynamic quantities (3.19), (3.20),

quasilocal mass (3.26), and the horizon eq. f(x+) = 0, one can verify that, indeed, the first

law of thermodynamics is satisfied.

The last step in our analysis is to also verify the quantum statistical relation. For

that, we have to compute the Euclidean action. The bulk and Gibbons-Hawking contribu-

tions are

IEbulk + IEGH = β(−TS − ΦQ) +
4πβ

κ

(
−xfΩ

′

η

)∣∣∣∣
x→1

(3.28)

= β(−TS − ΦQ) +
4πβ

κ

[
2

η(x− 1)
+
α− 12η2q2 + 3η2

3η3
+O(x− 1)

]
and contain a divergent term of order O

[
(x− 1)−1

]
. This divergence is canceled by the

gravitational counterterm

IEct =
4πβ

κ

(
2Ω
√
f
) ∣∣∣∣

x→1

=
4πβ

κ

[
− 2

η(x− 1)
− α− 12η2q2 + 6η2

6η3
+O(x− 1)

]
(3.29)

that contributes also with a finite part. Adding (3.28) and (3.29), we obtain the following

expression for the (finite) Euclidean action at the limit x = 1:

IE = IEbulk + IEGH + IEct = β(−TS − ΦQ) + β

(
α− 12η2q2

12η3

)
(3.30)

where the last term is exactly the quasilocal energy multiplied by the periodicity of the Eu-

clidean time. Therefore, the finite on-shell action satisfies the quantum statistical relation

for the grand canonical ensemble. Now, in order to obtain the thermodynamic potential for

the canonical ensemble, we should also consider the Euclidean contribution of the boundary

term IA given by the eq. (3.7),

IEA = −2

κ

∫
∂M

d3x
√
−heφnµFµνAν = βΦQ (3.31)

and so the on-shell action for the canonical ensemble is IE = β(M − TS), which is again

consistent with the corresponding quantum statistical relation.

Let us now perform the same analysis for the theory γ =
√

3. Since the procedure is

basically the same than the one done before, we present here the equivalent results without

other details.

The electric charge is

Q =
1

4π

∮
s2∞

?e
√

3φF =
q

η
(3.32)
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and the remaining relevant thermodynamic quantities are

T =
f ′(x+)

4πη
=

(x2
+ − 1)2

2πη x+

[
α−

η2q2(2x2
+ + 1)

4x2
+

+
η2x2

+

2(x2
+ − 1)

]
(3.33)

S = πΩ(x+) =
4πxh

η2(x2
h − 1)2

, Φ = At(x+)−At(x = 1) = −
Qη(x2

+ − 1)

2x2
+

. (3.34)

The quasilocal energy matches the ADM mass and has the following expression:

E =
8α+ 3

(
1− 2q2

)
η2

6η3
(3.35)

and, as expected, satisfies the first law of thermodynamics.

The regularized Euclidean action is

IEbulk + IEGH + IEct = β(−TS − ΦQ) +
4πβ

κ

(
2Ω
√
f − fΩ

′

η

)∣∣∣∣∣
x→1

(3.36)

= β(−TS − ΦQ) +
4πβ

κ

[
8α+ 3

(
1− 2q2

)
η2

3η3

]
+O(x− 1)

and, since with our conventions κ = 8π, we obtain the quantum statistical relation in the

grand canonical ensemble IE = β(M − TS − ΦQ). A similar analysis can be done for the

canonical ensemble, but we do not present the details here.

4 Thermodynamic stability

In the previous section, we have provided a thermodynamic description of various hairy

black holes. The key idea of our analysis was to consider boundary conditions for construct-

ing the appropriate ensemble. However, black hole thermodynamics as deduced above will

only make sense if a black hole can be in locally stable equilibrium in the corresponding

ensemble.

Thermal stability in an ensemble with a black hole must apply to the entire system,

because such systems obviously cannot be subdivided into spatially separate parts as is

usually done in treating questions of thermodynamic stability. The response functions

relevant to the thermal stability of a given type of ensemble, therefore, are those which

can be obtained by variation of the thermodynamic parameters that are not fixed by the

boundary conditions defining the given ensemble. In the canonical ensemble description of

an asymptotically flat neutral black hole, the specific heat can be made positive if the black

hole is put into a box. The boundary conditions must be specified, i.e. in the Schwarzschild

case one can fix the temperature of the box and its radius. It follows then that stability can

be achieved only for a sufficiently small cavity, leading to a well-defined canonical ensemble.

After a review of the thermodynamic stability conditions, the first model that we shall

briefly describe is the case of RN black hole.

– 13 –
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4.1 Thermodynamic stability conditions

In order to analyse the thermodynanic stability of the solutions presented so far, it is

important to distinguish between local and global stability. The former is related with

how an equilibrium configuration responds under a small fluctuation in thermodynamic

variables, while the later is related with a global maximum in the entropy (or global

minimum in the energy). We shall briefly describe the local stability below, however more

details can be found in [51] (see, also, [52]).

Stationary black holes are localized thermal equilibrium states of the quantum gravita-

tional field and so should respect the ordinary laws of thermodynamics. We are interested

in a static charged black hole with the conserved charges M and Q for which the first law

of thermodynamics can be written as

dM = TdS + ΦdQ =⇒ T =

(
∂M

∂S

)
Q

, Φ =

(
∂M

∂Q

)
S

. (4.1)

All irreversible processes in isolated system which lead to equilibrium are governed by

an increase in entropy and the equilibrium will be reestablished only when the entropy

will assume its maximum value. This is the second law of thermodynamics, dS > 0.

Since first we work in the grand canonical ensemble, it is more convenient to use the

corresponding thermodynamic potential to study local stability and not the condition of

maximum entropy.

In the grand canonical ensemble for which the electrostatic potential Φ is constant, we

have at equilibrium

Ge(Te,Φe) = M − TeS − ΦeQ , dGe = −(SdT +QdΦ)e = 0 (4.2)

where the subscript ‘e’ indicates the values at the thermodynamic equilibrium. Consider

now a small deviation, then the conditions for stable local equilibrium are(
∂2M

∂Q2

)
S

(
∂2M

∂S2

)
Q

−

[(
∂

∂S

)
Q

(
∂M

∂Q

)
S

]2

=
T

CQ

(
1

εS
−
Tα2

Q

CQ

)
> 0 (4.3)

and (
∂2M

∂S2

)
Q

=
T

CQ
> 0 or

(
∂2M

∂Q2

)
S

=
1

εS
> 0 . (4.4)

The expressions above were also written in terms of the usual physical thermodynamic

quantities, the heat capacity (CQ), electric permittivity (εS), and αQ ≡ (∂Φ/∂T )Q (see,

e.g., [53]).

We would like to obtain similar relations for the fluctuations in grand canonical and

canonical ensembles, but using the second derivatives of the corresponding thermodynamic

potential. For that, we have to use the following relations between thermodynamic quan-

tities of interest:

CΦ = CQ + TεTα
2
Q, εS = εT −

Tα2
Φ

CΦ
, αΦ = −εTαQ . (4.5)

– 14 –



J
H
E
P
0
3
(
2
0
1
9
)
2
0
5

Without presenting the details here, we can write the conditions for local stability in grand

canonical in canonical ensembles in the following compact form:

εS > 0, CΦ > 0 grand canonical ensemble (4.6)

εT > 0, CQ > 0 canonical ensemble . (4.7)

These relations are consistent with the general stability criterion that states that the ther-

modynamic potentials are convex functions of their extensive variables and concave func-

tions of their intensive variables (see, e.g., [52]).

4.2 Reissner-Nordström black hole

If a black hole is to be in thermodynamic equilibrium at some temperature T , then it must

be surrounded by a heat bath at the same temperature. The Schwarzschild black hole,

the simplest static spherically symmetric solution of Einstein equations, is thermodynam-

ically unstable. This can be easily obtained by observing that the temperature is inverse

proportional with respect to the black hole mass:

T =
1

8π

~c3

kBG

1

M
, S =

kBc
3

4~G
Ah =

4πkBG

~c
M2 =⇒ C = T

∂S

∂T
= −8πkBG

~c
M2 . (4.8)

Since the heat capacity is negative, the black hole heats up as it radiates energy. The

immediate consequence is that the canonical ensemble is not well defined, e.g. the root-

mean-square energy fluctuations are imaginary: 〈(∆E)2〉 = CT 2. One way to go around

this problem was proposed by York in [54], namely to consider the black hole in a box of

radius rB. The principle of equivalence requires that the temperature measured locally by

a static observer is blue-shifted with respect to the usual temperature that is determined

at asymptotically flat spatial infinity:

T (rB) = T∞|gtt(rB)|−1/2 =
~

8πGM

(
1− 2GM

rB

)−1/2

(4.9)

where, as in [54], we have used the conventions in which c = kB = 1. The heat capacity at

a fixed value of rB can now be computed using the temperature (4.9) and the result is

C = T
∂S

∂T
=

8πGM2

~

(
1− 2GM

rB

)(
3GM

rB
− 1

)−1

. (4.10)

It is clear now that, when 2M ≤ rB < 3M , the heat capacity is positive (the energy

fluctuations are real) and so the canonical ensemble is well defined.

A natural question is if can it be possible to obtain a positive heat capacity when

the electromagnetic field is added in the problem without embedding the system in box?

We are going to see that the answer is negative. However, as a warm-up exercise, we are

also going to present in this section the thermodynamic stability of the RN asymptotically

flat black hole. The metric and gauge potential that solve the corresponding equations of

motion are given in (3.8) and (3.9), and the thermodynamic quantities are given in (3.11).

The existence of the black hole is conditioned by the inequality Q ≤ M , otherwise the
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Figure 3. Left Hand Side: equation of state of RN black hole. Horizontal (blue) curve at Φ = 1

represents extremal charged black holes. Right Hand Side: Isentropic curves.

solution is a naked singularity. In the extremal case, M = Q, the temperature vanishes

and the horizon radius becomes r+ = M = Q. This is going to impose a restriction on the

values of the electrostatic potential, Φ = Q/r+ ≤ 1.

The electric permittivity is a measure of the electric fluctuations. The black holes will

be electrically unstable under electric fluctuations if the electrical permittivity is negative.

This happens if the potential of the black hole decreases as a result of placing more charge

on it. The potential should of course increase, in an attempt to make it harder to move the

system from equilibrium. The equation of state gives important information on stability

against fluctuation of either electric charge Q or conjugate potential Φ, at a fixed temper-

ature. By combining the first and the last equation in (3.11) to eliminate r+, we obtain

the equation of state of a RN black hole,

4πTQ+ Φ
(
Φ2 − 1

)
= 0 (4.11)

from where the electric permittivity at fixed temperature can be read off. By combining

the first two equations in (3.11) instead, we obtain πQ2−SΦ2 = 0, from where the electric

permittivity at fixed entropy can be read off. These equations are depicted in figure 3. It

can be easily proven that only black holes with Φ < 1/
√

3 are electrically stable, since by

differenciating eq. (4.11) with respect to Φ at fixed T , one gets

εT =

(
∂Q

∂Φ

)
T

=
1− 3Φ2

4πT
. (4.12)

Let us now briefly present the stability under the mixed fluctuations, according to the

discussion in the previous subsection. In grand canonical ensemble, the thermodynamic

stability is guaranteed by the simultaneous positivity of the response functions CΦ and εS .

It is clear that

εS =
1− Φ2

4πT
> 0 (4.13)

because Φ ≤ 1. On the other hand, we can obtain

G(r+,Φ) =

(
1− Φ2

)
r+

4
, T (r+,Φ) =

1− Φ2

4πr+
=⇒ G(T,Φ) =

(
1− Φ2

)2
16πT

(4.14)
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and so the heat capacity

CΦ = − 1

8π

(
1− Φ2

T

)2

< 0 . (4.15)

In other words, G(T,Φ) does not change its concavity with respect to T , at Φ fixed. This

result implies that there is no thermodynamic stable configuration in this ensemble.

In the canonical ensemble, we shall investigate if CQ and εT can be simultaneously

positive definite. The electric permittivity at fixed T can be expressed as

εT =

(
r2

+ − 3Q2
)
r+

r2
+ −Q2

. (4.16)

Note that, since r2
+ − Q2 is a positive quantity, the region where εT > 0 corresponds to

those configurations satisfying r2
+ − 3Q2 > 0 (this is equivalent to Φ < 1/

√
3). On the

other hand, the thermodynamic potential and temperature can be written as

F(r+, Q) =
r2

+ + 3Q2

4r+
, T (r+, Q) =

r2
+ −Q2

4πr3
+

(4.17)

and thus the heat capacity,

CQ = −
2πr2

+

(
r2

+ −Q2
)

r2
+ − 3Q2

(4.18)

has positive values only if r2
+ − 3Q2 < 0. Then, CQ and εT are not both positive, which

confirms that there are also no thermodynamic stable configurations in canonical ensemble.

5 Thermodynamic stability of hairy black holes

In this section, we are going to obtain our main result, namely that the asymptotically flat

hairy black holes in theories with a non-trivial self interaction for the scalar field can be

thermodynamically stable and so the embedding in a box is not necessary. We would like

to point out that, when α = 0, there also exist exact asymptotically flat regular hairy black

hole solutions, but they are not thermodynamically stable. The case of interest is when

the dilaton potential is non-trivial, but for completeness we also present the case without

potential in appendix A. For simplicity, we are going to include in this section only the

case γ = 1 with both branches, positive and negative, but in appendix B we are going

to explicitly show that the results are very similar for the case γ =
√

3, which hints to a

general conclusion on the local stability of hairy black holes. That is, the self-interaction of

the scalar field plays a similar role as the one played by the ‘box’ for non-hairy black holes

and, therefore, it is the key ingredient for the thermodynamic stability of asymptotically

flat hairy black holes.

5.1 Positive branch with γ = 1 and α 6= 0

In what follows, we investigate the local thermodynamic stability of the black holes pre-

sented in section 2 in the positive branch, when φ > 0 or, equivalently, x ∈ (1,+∞), for

γ = 1 and α > 0.
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5.1.1 Grand canonical ensemble

In this case, it is not possible to isolate x+ from the horizon eq. (2.9) and we shall work

with parametric equations. In order to obtain the equation of state, (Q,Φ) at fixed T , it is

necessary to express both the electric charge Q and conjugate potential Φ as functions of

(x+, T ). To complete this plan, let us first isolate the negative root5 of q from the horizon

equation,

q = −

√
x+

(
2 η2x2

+ − 2αx+ lnx+ + αx+
2 − 4 η2x+ + 2η2 − α

)
2η (x+ − 1)3/2

. (5.1)

Next, let us replace q in the expression of the temperature (3.20) to get

T (x+, η) =
(x+ − 1) η

4πx+
−
(
2x2

+ lnx+ + 4x+ lnx+ − 5x2
+ + 4x+ + 1

)
α

8πx+ (x+ − 1) η
(5.2)

and

η(x+, T ) =
4πTx+ + w(x+, T )

2(1− x+)
(5.3)

where w(x+, T ) =
√

16π2T 2x2
+ + α(4x2

+ lnx+ + 8x+ lnx+ − 10x2
+ + 8x+ + 2). Finally, by

replacing (5.3) back into (5.1) to obtain q = q(x+, T ), it is straightforward to get the

concrete expressions for Q = Q(x+, T ) and Φ = Φ(x+, T ), by using (3.19) and (3.20). We

obtain the following results:

Φ =

√
x+ − 1

√
32π2T 2x2

+ + 16πTx+w − 8αx+ lnx+ + 4αx2
+ + 2w2 − 4α

2
√
x+ (4πx+T + w)

(5.4)

Q =

√
x+(x+ − 1)

√
32π2T 2x2

+ + 16πTx+w − 8αx+ lnx+ + 4αx2
+ + 2w2 − 4α

(4πx+T + w)2 . (5.5)

A similar procedure can be used to obtain the expressions for Φ(x+, S) and Q(x+, S),

Φ =

√
x+ − 1

√
αS
(
x2

+ − 1− 2x+ lnx+

)
+ 2πx+

2π
√
x+

(5.6)

Q =

√
(x+ − 1)S

√
αS
(
x2

+ − 1− 2x+ lnx+

)
+ 2πx+

2π
√
x+

. (5.7)

In figures 4 and 5 it is shown Φ vs. Q at fixed temperature and entropy, for two different

order of magnitude values of α. From this graphic representation, one can simply conclude

that the isentropic permittivity is positive, εS > 0. However, this result can also be

obtained by computing it explicitly

εS =
αS
(
2x3

+ − 2x2
+ lnx+ − 3x2

+ + 2x+ − 1
)

+ 2πx2
+

αS
(
x3

+ − 2x+ lnx+ − 2x2
+ + 3x+ − 2

)
+ 2πx+

(
Sx+

π

) 1
2

(5.8)

5In this way we work with positive definite Q and Φ.
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Figure 4. Left Hand Side: isotherm curves Q–Φ. Right Hand Side: isentropic curves Q–Φ. γ = 1

and α = 10.

Figure 5. Isotherms and isentropic curves Q–Φ, for γ = 1 and α = 100. By comparing with the

case α = 10, we observe that the general behaviour does not depend on α.

and by noticing that both expressions, the ones at the numerator and denominator, are

positive definite in the positive branch. The positiveness of this response function is directly

related with the stability in grand canonical ensemble. If some configurations with εS > 0

were also characterized by CΦ > 0, then those ones would represent thermodynamic stable

black holes, according with the discussion in the previous section.

The equation of state, depicted on the left hand sides in figures 4 and 5, reveals

two separated regions where εT > 0. Also, notice that extremal black holes are electrically

stable in this case. These two features are different compared with RN black hole. Another

interesting aspect of the equation of state is that all isotherms start at Q = 0, Φ = 0 (like

RN black hole) but end at Q = 0, Φ = 1/
√

2 < 1. To understand why, we observe that the

physical charge is Q = −q/η (we consider q negative in our analysis) and it vanishes not

only when q = 0, but also in the limit when η → ∞ for a finite q. When considering the

horizon equation (2.9), the term proportional with η2 is going to be the relevant one and

so we obtain the horizon value as:

η2(x+ − 1)2

x+

[
1− 2q2(x+ − 1)

x+

]
= 0 =⇒ x+

x+ − 1
= 2q2 . (5.9)
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Figure 6. Zoom in the equation of state, near Q = 0 for Φ = −1/2q. Temperature ranges from

T = 0 to T = 1.

By replacing this result in the expression of the electric potential (3.20)

Φ = At(x+)−At(x = 1) = −Qη(x+ − 1)

x+
=⇒ Φ = − 1

2q
. (5.10)

So, it seems that, indeed, we can consider a zero physical charge for two distinct values

of the conjugate electric potential Φ. We would like then to obtain the isotherm curves

for any temperature given by the equation (5.2), which it is not possible when the horizon

value x+ is very small. In this case, for large values of η we obtain large temperatures.

However, we can get a full range of values for the temperatures when the horizon value is

large (that means, small black holes, because x is inverse proportional with the canonical

normal coordinate r), which in turn implies that q = −1/
√

2 in this limit (as can be seen

in the figures 4, 5, and 6.).

Let us then examine the other relevant response function, the heat capacity at fixed

Φ, by means of the thermodynamic potential. By solving η = η(x+,Φ) from the horizon

equation, we get the following parametric expressions

M = − α

12η3
+

x2
+Φ2

η(x+ − 1)2
, Q =

x+Φ

η(x+ − 1)
, S =

πx+

η2(x+ − 1)2
, (5.11)

T =
(x+ − 1)2

8πη x+

[
−α+ 4Φ2η2x+

x+ + 2

(x+ − 1)2
− 2η2 x+ + 1

x+ − 1

]
(5.12)

and the thermodynamic potential

G(x+,Φ) =
α

24η3
−

Φ2x2
+

2η(x+ − 1)2
+

x+ + 1

4η(x+ − 1)
. (5.13)

The heat capacity CΦ can now be directly computed by obtaining the corresponding second

derivative of the thermodynamic potential. Concretely, the conditions for stable local
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Figure 7. Response functions in terms of the second derivatives of the thermodynamic potential,

for γ = 1 and α = 10. Three different values of the conjugate potential Φ is considered.

equilibrium in grand canonical ensemble are

−
(
∂2G
∂T 2

)
Φ

> 0 (5.14)(
∂2G
∂T 2

)
Φ

(
∂2G
∂Φ2

)
T

−
[(

∂

∂Φ

)
T

(
∂G
∂T

)
Φ

]2

> 0 (5.15)

−
(
∂2G
∂T 2

)
Φ

{(
∂2G
∂T 2

)
Φ

(
∂2G
∂Φ2

)
T

−
[(

∂

∂Φ

)
T

(
∂G
∂T

)
Φ

]2
}
> 0 . (5.16)

According to the discussion in section 4.1, it is consistent that only two of them are required,

since the other one automatically holds. To be more explicit, inequalities (5.14) and (5.16)

are equivalent to the statements CΦ > 0 and εS > 0, respectively, while (5.15) is equivalent

to CΦεS > 0.

Below, in figure 7, it is shown that the stability criteria hold for a set of black hole

configurations. Concretely, we plot the following quantities (up to a constant factor chosen

by convenience)

C1 := −
(
∂2G
∂T 2

)
Φ

, C2 := −
(
∂2G
∂Φ2

)
T

(5.17)

C3 := −
(
∂2G
∂T 2

)
Φ

{(
∂2G
∂T 2

)
Φ

(
∂2G
∂Φ2

)
T

−
[(

∂

∂Φ

)
T

(
∂G
∂T

)
Φ

]2
}
. (5.18)

As commented, C1 > 0 and C3 > 0 are sufficient for full stability, however, for completeness,

we additionally plot C2 to show explicitly that everything is consistent.6

In figure 7, we observe that, for a given Φ > 1/
√

2 (the second and third graphs), C1,

C2 and C3 develop a divergence and are simultaneously positive inside the physical region

6Since, for stability, the second derivative of the free energy with respect to intensive variables (such as

Φ and T ) is negative.
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Figure 8. Thermodynamic potential G vs. T in positive branch, for γ = 1 and α = 10. Given a

Φ > 1/
√

2, it develops a sector with negative concavity, that is, CΦ > 0.

ranging from T = 0 to T = Tmax (the location of those divergences). This novel region

is characterized by both εS > 0 and CΦ > 0. In figure 8, below, it can be observed that

these stable black holes appear provided Φ > 1/
√

2 and are characterized by G < 0 and by(
∂2G/∂T 2

)
Φ
< 0, as expected for CΦ > 0. We would like to emphasize that, in the case of

RN black hole, there are no physical configuration with positive heat capacity at Φ fixed.

A detailed discussion on the physical interpretation of these results and comparison

with the AdS stable black hole is going to be presented in Discussion, section 6.

5.1.2 Canonical ensemble

Let us now present a similar analysis for the canonical ensemble. In order to make explicit

the dependence of the relevant thermodynamic quantities on Q, we are going to use the

equation q = −ηQ to eliminate q from the horizon equation f(x+) = 0 and then to solve

for the positive root η = η(x+, Q). This allows to write down the following parametric

expressions:

M =
12η4Q2 − α

12η3
, Φ =

η (x+ − 1)Q

x+
, S =

πx+

η2(x+ − 1)2
, (5.19)

T =
(x+ − 1)2

8πηx+

(
−α− 2η2 x+ + 1

x+ − 1
+ 4η4Q2 x+ + 2

x+

)
. (5.20)

Consequently, the corresponding thermodynamic potential can be parametrically expressed

in the following compact form:

F(x+, Q) =
α

24η3
+Q2η

x+ − 2

2x+
+

1

4η

x+ + 1

x+ − 1
. (5.21)

To investigate the local thermodynamic stability, we shall verify the inequalities εT > 0 and

CQ > 0, which, in terms of the second derivative of the F , are equivalent to the conditions

F1 := (∂2F/∂Q2)T > 0, F2 := −(∂2F/∂T 2)Q > 0 (5.22)
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Figure 9. Second derivatives of the thermodynamic potential, given by F1 and F2, for γ = 1,

α = 10 and the charge was fixed to Q = 1. Black dotted line represents temperature. The region

for thermodynamic stability starts at T = 0 and finishes at the zero of F1 (εT = 0).

respectively.7 The graphics on the right hand side of the figures 9 and 10 show a zoomed-

in region in parameter spacer for which the black holes are stable. The thermdoynamic

stability occurs in the sector εT > 0 located in the for which 1√
2
< Φ (but below the

corresponding value for the extremal black hole, otherwise it is a naked singularity), as can

be seen from the equation of state depicted in figure 4 and, therefore, in agreement with

our results in grand canonical ensemble. In figure 11, it was depicted the thermodynamic

potential as a function of temperature, indicating that there are black holes with CQ > 0 for

any Q. This is, again, consistent with the fact that, when 1√
2
< Φ, it includes configurations

for all Q (figure 4). However, the stable black hole, as can be seen, exists provided both

εT > 0 and CQ > 0, therefore, not all the black holes with CQ > 0 in figure 11 are

thermodynamically stable.

5.2 Negative branch with γ = 1 and α 6= 0

We turn now to the negative branch and investigate the local thermodynamic stability

when φ < 0 or, equivalently, x ∈ (0, 1) and with γ = 1 and α > 0, presented in section 2.

We show, without presenting all the details (the steps are basically the same like for the

analysis of the positive branch), that no thermodynamically stable black holes exist in

this case.

5.2.1 Grand canonical ensemble

Below, in figure 12 it is shown the equation of state Q–Φ at T and S fixed, respectively.

Compared with the positive branch, the upper part of the graphic does not contain a region

where εT > 0.

7The third condition for stability against mixed fluctuations, εTCQ > 0, follows from εT > 0 and CQ > 0

and thus does not need to be imposed as a independent condition.
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Figure 10. Second derivatives of the thermodynamic potential for γ = 1, α = 10 and Q = 10. The

region for thermodynamic stability exists for any Q.

Figure 11. Thermodynamic potential F vs. T , for γ = 1 and α = 10. The sector with negative

concavity (that is, CQ > 0) exists for any Q.

Figure 12. Left Hand Side: equation of state in negative branch, for γ = 1 and α = 10. Right

Hand Side: isentropic curves Φ–Q.
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Figure 13. Response functions in terms of derivatives of G, for negative branch in grand canonical

ensemble, γ = 1 and α = 10. Black dotted line represents temperature, the red curve represents

10−5C1, the green one represents 10−4C2 and blue curve 10−8C3.

Figure 14. The concavity of free energy is positive definite and thus the heat capacity in grand

canonical ensemble is negative, for γ = 1 and α = 10.

The equation of state is rather similar with the one of RN black hole, in the sense that

there is only one region with εT > 0 corresponding to the lower part of the graphic. On

the other hand, one can explicitly show that, as in the previous section for positive branch,

the permittivity at S = const. is always positive, εS > 0. It turns out that the response

functions do not share positive values in any physical region, that is, CΦ < 0, as shown in

figure 13 — we use the same conventions as in the case of the grand canonical in positive

branch, namely the definitions (5.17) and (5.18). Despite εS > 0 (blue curve), as we know

from isentropic curves in figure 12, there is no physical region where CΦ > 0. Therefore,

no thermodynamically stable black holes are found in negative branch. Notice that for

Φ ≈ 1/
√

3, εT becomes negative, as clearly seen from equation of state in figure 12.

The fact that CΦ is always negative (in physical region) can be observed in the plot of

the free energy vs. temperature, in figure 14.
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Figure 15. Second derivatives of thermodynamic potential in negative branch in canonical en-

semble, for γ = 1 and α = 10. Black dotted line represents the temperature; blue one represents

F1 := (∂2F/∂Q2)T and the red one F2 := −(∂2F/∂T 2)Q. The simultaneous positivity of F1 and

F2 indicates thermodynamic stability, but in negative branch they have opposite sign when T > 0.

5.2.2 Canonical ensemble

The response functions are depicted in figure 15, where we observe that, in agreement with

the grand canonical in negative branch, there is no physical region where simultaneously

εT > 0 and CQ > 0. Instead, the product CQεT is negative inside for T > 0.

As expected from the analysis in grand canonical ensemble, there are no thermody-

namically stable black holes in canonical ensemble for the negative branch; the zero of

(∂2F/∂Q2)T is located in the T < 0 region or, in other words, the extremal black hole is

unstable and, thus, εT does not take positive values inside the region where CQ > 0.

6 Discussion

Scalar fields play a central role in cosmology and particle physics and arise naturally in

the high energy physics unification theories. It is then important to understand generic

properties of gravity theories coupled to scalars (and other matter fields), particularly

the role played by the scalars to black hole physics.8 In this work, we have considered

thermodynamic properties of a family of exact asymptotically flat hairy black holes, with

the goal of shedding light on their thermodynamic stability. In our investigations, we have

been directly motivated by the results of [8], where it was conjectured the existence of

such black hole solutions in theories with a non-trivial scalar potential that vanishes at the

boundary9 and [7] where exact regular hairy black hole solutions were obtained.

8Some recent interesting applications can be found in, e.g., [59–64].
9The scalar potential is blowing up at the singularity, x = {0,∞}, but this should not be a matter of

concern because the singularity is shielded by a horizon. At the singularity one expects that the quantum
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Due to its intimate connection with the partition function, the Euclidean path integral

formalism of quantum gravity is widely used when studying black hole thermodynamics.

We have presented a complete analysis using the boundary terms required in the action

functional of general relativity and prove that, for some values of the parameters, these

black holes are thermodynamically stable in both, canonical and grand canonical ensembles.

This result could come as a surprise because generally, in flat spacetime of different dimen-

sions, it is known that the black holes/rings are not thermodynamically stable [3, 55–57].10

It is possible to make a black hole thermodynamically stable by introducing a negative

cosmological constant Λ and considering asymptotically AdS black holes or they can also

be stabilized by putting them in a finite volume cavity. However, when scalar fields are

present in the theory, it seems that the existence of the scalar field self-interaction is the

key ingredient for the thermodynamic stability.

It is known that, when the dilaton potential vanishes, one can also vary the asymptotic

value of the scalar field, φ∞. In this case, it was claimed that the first law of thermodynam-

ics should be modified by adding a contribution coming from the scalar charge [58] that

can be explicitly verified for the exact hairy black hole solutions [68–70]. Recently in [37],

by considering the correct variational principle, it was shown that the quasilocal energy

does not match the ADM mass (obtained from expanding the gtt component of the met-

ric). Once the correct definition of (quasilocal) gravitational energy is used, it was shown

in [37] that the first law preserves its usual form without including the extra contribution

coming from the variation of the asymptotic value of the dilaton (see, also, [71, 72]). We

should contrast this case with the hairy black holes in theories with a dilaton potential.

Particularly, to obtain an asymptotically flat spacetime there should be imposed an im-

portant constraint on the scalar potential, namely to vanish at the boundary. That is, the

asymptotic value of the dilaton should be fixed, otherwise its variation is going to change

the asymptotics of the spacetime. Therefore, the issue of the appearance of the scalar

charge in the first law does not appear in our case.

In the work of Brown and York [27], it was shown that the quasilocal stress tensor

is covariantly conserved only if the asymptotic fall-off of the matter fields is fast enough,

which is also our case: at the boundary when x = 1, the scalar field is φ→ 0, which implies

that the potential vanishes. For example, the hairy black hole in the theory with γ =
√

3

has the following quasilocal stress tensor

τtt = −
8α+ 3

(
1− 2q2

)
η2

3ηκ
(x− 1)2 +O

[
(x− 1)3

]
(6.1)

τθθ =
τφφ

sin2 θ
=

[
8α+ 3

(
1− 2q2

)
η2
]2 − 9η4(4q2 − 3)

72κη5
(x− 1) +O[(x− 1)2] (6.2)

which is, indeed, covariantly conserved. This contrasts with the situation when the solution

is not regular due to the presence of conical singularity in the boundary [50].

gravity effects become important and so the theory we have considered should be interpreted as an effective

theory.
10However, there exist examples of thermodynamically stable black holes in theories with higher derivative

terms [65–67].
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Another important observation is about the ground state of the theory. Remarkably,

the counterterm method provides a regularization method that yields an intrinsic defini-

tion of the action without the necessity of using a reference background. However, it is

important to obtain the soliton-like solutions (at zero temperature). We leave a detailed

analysis of this point for future work, but, as in the case of charged black holes in AdS [73],

one can, in principle, consider the existence of the extremal black hole in the canonical

ensemble (at fixed Q) as the reference background. The problem that appears for hairy

black holes is that the extremal limit is not always well defined like in the case of RN black

hole. This is related to the attractor mechanism [74–76] and we would like to comment

now on this subtle aspect of the theory. There are two different methods to study the near

horizon data of an extremal black hole, the effective potential [77] and entropy function

method [78, 79]. When the dilaton potential vanishes, in theories with one electric field,

the effective potential can not have an extremum at the horizon, which indicates that the

extremal black hole does not exist. This can be also obtained directly by computing the

geometric invariants at the inner horizon and prove that some of them are blowing up.

However, there is a drastic change when the dilaton potential is non-trivial. That is, due

to the competition between the effective potential and dilaton potential, there could exist a

well defined extremal limit (on the Lorentzian section) for some values of the parameters of

the dilaton potential. In this case the effective potential method fails to work, but, instead,

one can use the entropy function formalism. An analysis of the case we are interested in

was done in [7] (see, also, [40]) and, indeed, since there exist regular extremal hairy black

hole solutions and so the canonical ensemble is well defined.

Now, we would like to discuss in more detail our main result from section 5.1. Let us

compare the thermodynamically stable black holes in flat space, which exist for 1√
2
< Φ

(the value of the conjugate potential is smaller than 1 for the extremal hairy black holes, but

whenΦ→ 1 the extremal RN is recovered), with the stable black holes in AdS. In figure 16,

we plot S vs. T and G vs. T for asymptotically flat hairy black holes in order to identify, for

a given T , which thermodynamic configuration is preferred. From the first plot in figure 16,

we observe that stable black holes, for which CΦ = T (∂S/∂T )Φ > 0, correspond to the

configuration indicated as 1. This black hole has less entropy than the other one at the

same temperature, thus, since S = −(∂G/∂T )Φ, this can be identified in the second plot

as the one with lower absolute value of the slope (indicated as 1, too). Another way to

understand this is by investigating the second derivative of the thermodynamic potential.

Since (
∂S

∂T

)
Φ

= −
(
∂2G
∂T 2

)
Φ

(6.3)

the stable black hole, for which (∂S/∂T )Φ > 0, should appear in the first plot as

(∂2G/∂T 2)Φ < 0, which corresponds to the configuration 1, because it has negative con-

cavity. The identification has now been completed.

Let us now turn our attention to Schwarzschild-AdS solution, when there also exist two

black holes for the same temperature, so that we can compare with our results. In figure 17,

we depict the free energy F = M −TS vs. T and S vs. T . To identify the stable black hole

note that, in the plot S vs. T , the positive slope correspond to the configuration 1 at a
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Figure 16. Plot for Φ = 0.75 and T = 0.06 (vertical red doted line) to illustrate which configuration

is stable. It turns out that the configuration 1, as indicated on the plot, is the stable one.

fixed temperature. From the eq. (6.3), this one should be the one having negative concavity

for the thermodynamic potential. Thus, in the second plot in figure 17 it corresponds to

the one with less free energy, indicated as the configuration 1 too. At first sight, it could

be strange that in AdS the large black holes are stable and in flat space the small ones

(comparing the black holes at the same temperature). However, there is a nice physical

interpretation of this result. It is by now well known [80] that AdS spacetime acts like

a box and so, when the black hole horizon radius is comparable with the AdS radius L,

they can be in stable thermal equilibrium. For hairy black holes in flat spacetime, the

self-interaction of the scalar field plays the role of the ‘box’. When the horizon radius is

large, the dilaton potential takes smaller values (it vanishes at the boundary) and so the

large black holes are not stable, while for small ones, the self interaction becomes relevant

acting like a box allowing configurations in stable thermal equilibrium.

Consider the equation of state, shown once again in figure 18 and electric stability

condition in canonical ensemble, εT > 0, now one can distinguish the relevant regions, as

shown explicitly below. The novel result, compared with RN black hole, is the existence

of the Region I, where εT > 0. To be more specific, let us compare the hairy black holes in

the positive branch with the RN asymptotically flat black holes and, also, with the hairy

solutions in the negative branch. Region II in all these cases is characterized by both εT < 0

and CQ > 0. However, only for the positive branch, the equation of state develops a new

region (Region I) where the electric permittivity changes its sign, while CQ preserves the

positivity, which is the region with stable black holes.

As a consistency check that we have performed the computations correctly, let us

discuss this result from a different prospective. Since

dG = −SdT −QdΦ (6.4)

by fixing then T , we have dG = −QdΦ. Now, by integrating, one gets

∆G = −
∫
QdΦ = −

∫ Φ=Φm

Φ= 1√
2

QdΦ−
∫ Φ=0

Φ=Φm

QdΦ (6.5)
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Figure 17. For Schwarzschild-AdS, the stable black hole is indicated as 1. In this case, the large

black hole is the stable configurationm, contrary to the hairy case.

Figure 18. Region I : here are plotted and isolated the stable configurations with εT > 0 and also

CQ > 0. The relevant region, where these black holes exist, is bounded by the dashed black curve

and extremal limit (Φ < 1 for the hairy case). Region II : this region for electrically unstable black

holes, εT < 0, is bounded by the dashed curve and the dotted one (along which εT = 0). Region III :

electrically stable, εT > 0, but thermally unstable CQ < 0. In Reissner-Nordström, dotted curve

appears as an horizontal line Φ = 1/
√

3 (this limit is recovered here only by large values of Q,

namely Q� α−1/2). For this plot, we have fixed α = 10.

where Φm is the maximum value that Φ reaches for a given fixed T 6= 0. Therefore, figure 18

provides information, up to a constant factor, of the free energy as a function of Φ and the

comparison is made in figure 19. As mentioned before, electrical stability means negative

concavity of the Gibbs free energy as a function of Φ that may be visualized in figure 19.

The red dots indicate εT = 0 and εT → ∞. Between Φ = 0 and the first red dot, the

concavity G is negative (which means εT > 0). Between the red dots, εT < 0 and the

concavity is positive. Finally, between the second red dot and Φ = 1/
√

2, the concavity
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Figure 19. Plots Q vs. Φ (left hand side) and G vs. Φ (right hand side) for the isotherm T = 0.012.

Red points indicates εT = 0 (the point at the left side in the plots) and εT →∞.

turns positive again and εT > 0. Therefore, the plot of G vs. Φ is consistent with the

behaviour of the solution obtained from the equation of state.

The existence of thermodynamically stable asymptotically flat hairy black holes opens

the possibility of investigating not only the phase diagram and possible phase transitions,

but also to check the classical stability (see, e.g., [81–87]) in this new context.

Acknowledgments

This work has been funded by the Fondecyt Regular Grant 1161418. The work of DC is

supported by Fondecyt Postdoc Grant 3180185. RR was supported by the national Ph.D.

scholarship Conicyt 21140024.

A Hairy black holes with α = 0

In this section, we briefly discuss the static solution of Einstein-Maxwell-dilaton theories

with vanishing dilaton potential, for both values of the coupling coefficients, γ = 1 and

γ =
√

3. They are obtained by taking the limit α = 0 in theories described in section 2 for

which only the positive branch supports black hole configurations.

A.1 γ = 1

From the horizon eq. (2.9) with α = 0, x+ can be isolated and the thermodynamic quantities

can be written as follows:

M =
1

8πT
, S =

1− 32π2Q2T 2

16πT 2
, Φ = 4πQT . (A.1)

They satisfy the first law dM = TdS+ΦdQ and the third equation is, in fact, the equation

of state from which we can check that εT > 0.
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Grand canonical. The electric permittivity at fixed entropy can be analytically ob-

tained,

εS =
1

4πT (1− 2Φ2)
(A.2)

and it is positive for 1− 2Φ2 > 0. The free energy and temperature can be expressed as

G(T,Φ) =
1− 2Φ2

16πT 2
, T =

√
1− 2Φ2

16πS
(A.3)

and we observed that Φ is restricted as Φ ≤ 1/
√

2 for the existence of regular solutions.

This, in turn, implies that εS > 0. However, the heat capacity

CΦ = −(1− 2Φ2)

8πT 2
(A.4)

is always negative that implies that there are no thermodynamically stable configurations

in grand canonical ensemble.

Canonical ensemble. The electric permittivity at fixed T can be directly obtained and

it is positive,

εT =
1

4πT
. (A.5)

On the other hand, the thermodynamic potential is

F(T,Q) =
1 + 32π2Q2T 2

16πT 2
(A.6)

and so the heat capacity is always negative,

CQ = − 1

8πT 2
(A.7)

indicating the thermodynamic instability for all configurations.

Therefore, there are no stable configuration in theory γ = 1 when the self-interaction

of the scalar field is turned off.

A.2 γ =
√
3

In this theory, it is also straightforward to write down in a simple manner the thermody-

namic quantities, by eliminating x+ from the horizon eq. (2.18),

S =
2π
√

2
(
M2 +M

√
M2 + 2Q2 −Q2

)3/2

M +
√
M2 + 2Q2

, T =

√
2

8π

√
M2 +M

√
M2 + 2Q2 −Q2

,

Φ =
Q

M +
√
M2 + 2Q2

(A.8)

which satisfy the first law. In this case, the chemical potential is also restricted as 0 < Φ <

1/
√

2. This can be seen by solving Q from Φ = Φ(Q,M) in the third equation in (A.8),

Q =
2MΦ

1− 2Φ2
. (A.9)
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The equation of state can be obtained by using (A.9) to eliminate M in the equation for

the temperature,

4
√
−4 Φ2 + 1Qπ T − Φ = 0 . (A.10)

One then gets that the electric permittivity at fixed temperature is

εT =
Q

Φ (1− 4Φ2)
(A.11)

that is positive. By inserting M from (A.9) into the expression for entropy, we can obtained

the electric permittivity at fixed S,

S =

(
1− 4Φ2

)3/2
Φ2

πQ2, εS =

(
1 + 2Φ2

)
Q

1− 4Φ2
(A.12)

which is also positive. Let us now complete our analysis by computing the heat capacities

in both ensembles.

Grand canonical. The thermodynamic potential is

G(T,Φ) =

√
1− 4Φ2

16πT
(A.13)

and then, heat capacity is

CΦ = −
√

1− 4Φ2

8πT 2
(A.14)

indicating that there is no stable configuration in grand canonical ensemble.

Canonical ensemble. The thermodynamic potential is

F(T,Q) =

√
1 + 64π2Q2T 2

16πT
(A.15)

from which the following heat capacity at fixed Q can be obtained:

CQ = − 1 + 96π2Q2T 2

8πT 2 (1 + 64π2Q2T 2)3/2
. (A.16)

This is always negative and, as expected, there also are no stable configurations in canonical

ensemble.

We conclude that the existence of the stable equilibrium configurations is related to

the scalar field has self-interaction and when α = 0, the thermodynamically stable hairy

black holes do not exist. Even if the coupling of a scalar field to the electromagnetic

field improves electrical stability of black holes, the heat capacity is negative and they are

thermally unstable.

B Hairy black holes, γ =
√
3, with α 6= 0

In this appendix, for completeness, we investigate the thermodynamic local stability of the

solution γ =
√

3 presented in section 2. Since the procedure is completely equivalent to that

presented in section 5, here we shall only write down the expressions of thermodynamic

quantities and present the relevant results.
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Figure 20. Left Hand Side: equation of state, isotherms curves Q–Φ, γ =
√

3 and α = 10, in

negative branch. Right Hand Side: isentropic curves Q–Φ.

B.1 Grand canonical (negative branch)

The dilaton potential for which we have obtained the exact solutions for γ =
√

3 is (2.15).

The equation of state can be studied parametrically by using the dependence of the radius

of horizon and temperature, Q = Q(x+, T ) and Φ = Φ(x+, T ). It is useful to also have

Q = Q(x+, S) and Φ = Φ(x+, S) so that we can get εS . In figure 20, they are graphically

represented and have a similar behaviour as the one of γ = 1.

Next, we use q = 2x2
+Φ/(1− x2

+) from eq. (3.33) into the horizon equation f(x+) = 0

in order to get the positive root of η = η(x+,Φ). Once done, we are able to express all the

thermodynamic quantities as function of x+ and Φ. The thermodynamic potential

G(x+,Φ) = − 2α

3η3
+

2Φ2x4
+

η
(
x2

+ − 1
)2 +

1 + x2
+

2η(1− x2
+)

(B.1)

and heat capacity CΦ are plotted below, in figure 21.

Since there is no region in parameter space where both εS and CΦ are simultaneously

positive, the thermodynamically stable hairy black holes do no exist in the negative branch.

The response functions have the same skematic behaviour than the RN black hole, they

have opposite sign for every configuration.

B.2 Grand canonical (positive branch)

The equation of state and also Φ–Q at S fixed are represented graphically in figure 22.

The relevant response functions are plotted in figure 23.

The thermodynamic potential can be expressed as

G(x+,Φ) =
2α

3η3
−

2x4
+Φ4(

x2
+ − 1

)2
η

+
x2

+ + 1

2η(x2
+ − 1)

(B.2)

where, as usual, η = η(x+,Φ) is obtained from horizon equation.

One interesting aspect of this theory in positive branch is that each isotherm starts at

Q = 0 and Φ = 0 and stops at Q = 1/
√
α and Φ = 1/

√
2 (this can be proven in the same

way as in the case γ = 1).
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Figure 21. Response functions in terms of derivatives of G, for negative branch in grand canonical

ensemble, γ =
√

3. It was considered α = 10. Black dotted line represents T , the red curve

represents 10−5C1; the green one represents 10−2C2 and blue curve 10−6C3.

Figure 22. Left Hand Side: equation of state in the positive branch, γ =
√

3 and α = 10. Right

Hand Side: Φ vs. Q at entropy fixed.

Just as in the case γ = 1, there exist thermodynamically stable black holes only when

1√
2
< Φ . (B.3)

Also, these stable black holes have negative free energy, as can be seen in figure 24.

B.3 Canonical ensemble (negative branch)

The thermodynamic potential can be written as

F(x+, Q) = − 2α

3η3
+
ηQ2

2x2
+

+
x2

+ + 1

2η(1− x2
+)

(B.4)

from which we can get all the response functions. From figure 25, it can be observed that

CQ and εT are not simultaneously postive definite in any physical region. In fact, the
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Figure 23. Response functions in terms of derivatives of G, for positive branch in grand canonical

ensemble, γ =
√

3 and α = 10.

Figure 24. Free energy G vs. T , for γ =
√

3 and α = 10, in positive branch.

extremal black hole is electrically unstable
(
∂2F/∂Q2

)
T
< 0 and thus, between T = 0 and

Tmax, for a given Q, the response functions have opposite signs. This result is expected

because of the lack of thermodynamic stability in grand canonical ensemble.

B.4 Canonical ensemble (positive branch)

Finally, we show that there exist thermodynamically stable hairy black holes in the positive

branch, which is consistent with our findings for the grand canonical ensemble. After a Leg-

endre transform, the thermodynamic potential in canonical ensemble can be expressed as

F(x+, Q) =
2α

3η3
− ηQ2

2x2
+

+
x2

+ + 1

2η
(
x2

+ − 1
) (B.5)

where η = η(x+, Q) is obtained from horizon equation. The response function in terms

of the second derivatives are graphically represented in figure 26. For completeness, the

behaviour of the thermodynamic potential as a function of temperature is graphically

represented in figure 27. As can be seen, only black holes with Q > 1/
√
α can be thermo-

dynamically stable, since εT > 0 and CQ > 0.
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Figure 25. Second derivatives for negative branch in canonical ensemble, γ =
√

3 and α = 10.

Black dotted line represents temperature, while F1 :=
(
∂2F/∂Q2

)
T

and F2 :=
(
∂2F/∂T 2

)
Q

.

Figure 26. Second derivatives for positive branch in canonical ensemble, γ =
√

3 and α = 10.

Black dotted line represents temperature, while F1 :=
(
∂2F/∂Q2

)
T

and F2 :=
(
∂2F/∂T 2

)
Q

.
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Figure 27. Thermodynamic potential F vs. T , for γ =
√

3. The sector with negative concavity

(CQ > 0) exists for Q > 1/
√
α. For the particular case considered here, α = 10, stable black holes

appear for Q & 0.316, as shown.

The main conclusion is that, even for the case γ =
√

3, the self-interaction of the scalar

field thermodynamically stabilizes the hairy black holes.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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