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Departamento de F́ısica Teórica e Historia de la Ciencia, Universidad del Páıs Vasco UPV/EHU,
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1 Introduction

The fact that Einstein static universe is unstable was explicitly shown by Lemâıtre [21, 22]

and Eddington [8] many years ago. This is an old and well-known story which makes us

wonder why Einstein did not realize this fact — based on very basic physical arguments

— when confronted with Friedman’s evolving solutions.1

In a similar vein, and as a present to Stephen Hawking’s 60th birthday, Penrose ar-

gued in 2002 that spatial compact extra-dimensions are likely to be unstable [28]. He first

recounted the “wildly in excess” number of degrees of freedom in higher-dimensional theo-

ries in comparison to what is perceived in ordinary physics.2 He argued that the quantum

numbers involved are large so that the proper way to approach the stability of compact

1Curiously enough, when he eventually acknowledged the feasibility of these dynamical models is when

he famously dismissed the cosmological constant as superfluous and probably unjustified [9].
2He actually put forward a refined reasoning criticizing the “usual string theorist’s argument” that

the energy needed to excite the extra-space modes (particles) would be enormously large — and thus

experimentally inaccessible to us.
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extra dimensions is classically. Then, the bulk of his argument to prove instability of

extra compact dimensions was based on the fundamental singularity theorems proven by

himself [27], and later also with Hawking [16], in the 1960’s, see [15, 31, 32].

He ended up asserting [28]:

“(. . . a (4 + n)-dimensional product spacetime) M4 × Y is highly unstable

against small perturbations. If Y is compact and of Planck-scale size, then

spacetime singularities are to be expected within a tiny fraction of a second!”

To understand the reasoning behind this surprising claim, let us recall the classical

Hawking-Penrose singularity theorem [16].

Theorem 1.1 (Hawking and Penrose 1970). If the convergence, causality and generic

conditions hold and if there is one of the following:

• a compact achronal set without edge,

• a closed trapped surface,

• a point with re-converging light cone,

then the space time is causal geodesically incomplete.

Here, and for later use, we recall that the convergence condition is simply the require-

ment that

Rµνv
µvν ≥ 0, (1.1)

for arbitrary causal vectors vµ. If this is required only for null vectors then it is called the

null convergence condition. The causality condition is the assumption that the spacetime

is free from closed future-directed timelike curves. And the genericity condition implies

that the geodesic deviation, ruled by

Rαβµνu
βuµ, (1.2)

is non-zero at least at a point of any causal curve with tangent vector uµ. As usual, Rαβµν
and Rµν are the Riemann and Ricci tensors of the spacetime.

More importantly for our purposes is to understand the boundary condition require-

ment, that comes on three flavors. The first is simply a compact spacelike hypersurface

without boundary (and without timelike related points). The third can be understood as

the existence of a point whose future light cone [28] ‘curls around and meets itself in all

directions’. The second one will be further analyzed later in section 2, when we discuss the

concept of closed trapped submanifold in general.

1.1 Penrose’s argument

But let us come back to Penrose’s reasoning. To use the singularity theorems, he starts

with a (4 + n)-dimensional direct product M4 × Y = R× R3 × Y with metric as in e.g.

g = −dt2 + dx2 + dy2 + dz2 + gY , (1.3)
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and perturbs initial data given on a slice R3 × Y (say t = 0) such that they do not ‘leak

out’ into the R3-part: they only disturb the Y-geometry. Letting aside the 3-dimensional

typical large space represented by R3 one can consider a (1 + n)-dimensional “reduced

spacetime” (Z, gred) whose metric gred is the evolution (for instance, a Ricci-flat solution)

of perturbed initial data specified at Y (t = 0). The full spacetime would be given by

R3 ×Z with direct product metric

gpert = gred + dx2 + dy2 + dz2. (1.4)

But then, theorem 1.1 applies to (Z, gred) as it contains a compact slice and satisfies the

convergence condition (because Rµν = 0). He concluded that

“if we wish to have a chance of perturbing Y in a finite generic way so that

we obtain a non-singular perturbation of the full (4 + n)-spacetimes M4 × Y,

then we must turn to consideration of disturbances that significantly spill over

into the M4 part of the spacetime”.

However, he claimed that such general disturbances are even more dangerous due to the

large approaching Planck-scale curvatures that are likely to be present in Y. He defended

that there is good reason to believe that these general perturbations will also result in

spacetime singularities, based again on theorem 1.1, but now using the third possibility:

existence of a point with reconverging light cone. In the exact, unperturbed, models this of

course fails as the models are non-singular, but adapting Penrose’s writing

“. . . it just fails. Only a ‘tiny’ 2-dimensional subfamily of null geodesics

generating the cone fail to wander into the Y-part and back — thus curling

into the interior of the cone.

(. . . )

I believe that it is possible to show that with a generic but small perturbation

(. . . ) this saving property will be destroyed, so that the (. . . ) singularity

theorem will indeed apply, but a fully rigorous demonstration (. . . ) is lacking

at the moment. Details of this argument will be presented elsewhere in the

event that it can be succinctly completed”.

These words were, mutatis mutandis, repeated in [29]. However, there has been no

publication completing this argument since then.

1.2 Other arguments

Almost simultaneously Carroll et al. [4] argued that (large) extra dimensions must be dy-

namically governed by classical General Relativity, and then showed that achieving static

extra dimensions which are dynamically stable to small perturbations tends to be extremely

difficult. They used a combination of the arguments based on singularity theorems with

the existence of the stationary (or static) symmetry. Under the assumption of the mere null

convergence condition the conclusion was that only cases with strictly positive Ricci curva-

ture in all possible extra directions are feasible. In particular, flat extra-dimensional spaces
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are unstable, and even the addition of a cosmological constant does not seem to remedy

this problem. Homogenous extra dimensions were assumed. This type of instabilities was

further analyzed in [14], where some arguments based on the weak cosmic censorship were

put forward proving the existence of singularities — which nevertheless might be hidden

inside a black string.

Since then, there have been several works analyzing this potential problem. For in-

stance, in [33] how accelerated expansion imposes strong constraints on compact extra

dimensions was discussed, implying either (i) that both the gravitational constant G and

the equation of state parameter w depend on time, or (ii) violation of the null conver-

gence condition (1.1) in an inhomogenous way across the extra dimensions together with

a sinchronyzed variation with the observable matter and “dark energy”. Their conclusions

were nevertheless criticized in [20], where one can find references to many other no-go and

instability theorems [20].

1.3 This paper

There are other physically motivated ways of probing the stability of spacetimes with

extra dimensions, a classical key early result was given in [37], and rigorous PDE works

on stability of product manifolds as solutions to the higher-dimensional Einstein equations

under symmetry restrictions are given in [2, 39], see also [7]. In this paper, however, we want

to concentrate on the arguments based on singularity, that is, incompleteness theorems —

these were actually mentioned in [4] too. Penrose’s reasoning is appealing, and whether or

not it can be completed, or up to what extent used, is certainly intriguing. Our purpose is

to, at least partly, provide an answer to this question.

To that end, the difficulties to be confronted are of several kinds. First of all, as we have

seen, the original argument by Penrose needed — apart from underlying field equations to

solve for the evolution — some ad-hoc splittings. The reason behind is that the classical

singularity theorem [16] is valid only for initial/boundary conditions placed on submanifolds

of co-dimension 1, 2 or D (here D is the spacetime dimension). To address this problem we

will use modern singularity theorems based on boundary conditions placed at submanifolds

of any possible co-dimension derived some years ago in [12], see also [32]. Section 2 is

devoted to explaining these theorems and their underlying ideas, in particular the concept

of trapped submanifold of arbitrary dimension, including closed trapped surfaces, will be

studied.

A second major difficulty to be resolved is how to characterize generic but simple

geometrical perturbations of a given stationary product spacetime M4 ×Y . In this paper,

we will consider the simplest geometrical perturbation one can think of: warping. Thus, the

perturbed spacetime will be taken as a warped product with Lorentzian base M4, fiber Y
and warping function f : M4 → R. One could also consider a second possibility, taking Y as

base and a warping function f : Y → R (this seems to be actually the case called “warped”

within the string community). However, using a direct calculation, or general mathematical

theorems on warped products, it is easy to prove that this kind of warping deformation is

innocuous from our perspective. If the extra dimensional Riemannian part Y is compact

then the whole spacetime is geodesically incomplete if and only if the Lorentzian M4 part
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is incomplete by itself [30], see also [3]. In simpler words, compact extra dimensions do not

change the (in)completeness of a given M4 — at least in this warped-product situation.

We will then concentrate on the mentioned possibility with M4 as Lorentzian base,

which contains in particular the cases with dynamical perturbations of the original direct-

product manifold as then the function f can depend on time. These are sometimes called

extra-dimension, or higher dimension, evolution in the string community e.g. [19]. In

section 3, we will adapt the theorems in [12] to this situation and present singularity

theorems applicable to general warped-product spacetimes. The essential assumptions of

the theorems will be written in terms of properties of the Riemannian extra-dimensional

space Y and of the Hessian of the warping function.

An analysis of the conditions of the theorems is then performed in section 4. In par-

ticular, one can first of all derive some necessary condition on the sign of the Hessian of

the warping function acting on particular timelike, or null, directions of the M4-part. As-

suming they hold, one can then rewrite the main condition in the theorems in the form of

an inequality with quantities relative to the extra-dimensional space Y exclusively on one

side, and objects relative to the large 4-dimensional M4 exclusively on the other side —

formula (3.25) below. The former side has a controllable sign in many situations of physical

interest. The importance of this particular form resides in that it provides a direct require-

ment to any thinkable extra space Y that one may wish to add to the visible 4-dimensional

spacetime, discarding many a priori desirable possibilities. However, requirement (3.25) is

too crude, and one can find an averaged condition of wider applicability and without the

use of trapped submanifolds. This is the condition in theorem 3.2, or better its negation

given in (4.6). Again the righthand side in (4.6) depends on the large 4-dimensional space-

time M4 exclusively, and the lefthand side is an integral of a quantity essentially dependent

of the extra-dimensional space Y — apart from a positive factor f−4. The outcome is that

dynamical perturbations — ruled by a warping function with timelike gradient — of extra-

dimensional spaces may be dangerous under some basic, physically motivated, assumptions

— in the sense that incomplete null geodesics may develop.

As a possible “positive” application of the theorems herein presented, and of condi-

tions (3.25) and (4.6), one can argue that they may help in finding the stable possibilities.

We stress that the results are valid both for compact and non-compact extra-dimensions,

though the conditions must be placed on compact submanifolds of the extra-dimensional

space, and thus the restrictions are stronger in the former case.

Some conclusions are gathered in section 5. We have added an appendix of independent

interest with results needed for the paper, where we solve the equations for parallel propa-

gation in a warped-product semi-Riemannian manifold in terms of the projected equations

to the base and the fiber. As far as we know, these results were not previously known.

2 Singularity theorems based on submanifolds of arbitrary co-dimension

In 1965, the first modern singularity theorem was presented in [27]. It was an important

breakthrough in the field of Gravitation using for the first time the concept of geodesic

incompleteness as indication of singular behaviour, and introducing the fundamental con-
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cept of closed trapped surface, see [32] for a recent review. We will use generalizations of

this theorem below, so let us briefly remind how it goes.

Theorem 2.1 (the 1965 Penrose singularity theorem). If the spacetime contains a

non-compact Cauchy hypersurface and a closed trapped surface, and if the null convergence

condition holds, then there exist incomplete null geodesics.

A Cauchy hypersurface is a spacelike hypersurface where good initial conditions can

be placed, so that the whole future evolution can be determined from those given on it,

basically because it is crossed once and only once by every causal curve [15, 31, 36].

In this theorem, the germinal and very fruitful notion of closed trapped surface was

introduced. These are closed spacelike surfaces (that is, compact without boundary co-

dimension 2 spacelike submanifolds) such that their “area” ((D − 2)-volume in general)

tends to decrease locally along any possible future direction. There is of course a dual

definition to the past.

As explained in the introduction, this concept was later used in the Hawking-Penrose

theorem 1.1, together with the two other possibilities. The reasons why one needs to place

the boundary condition of the singularity theorems on submanifolds of only co-dimension

1, 2 and D were never explained, and seem at first sight unclear, especially taking into

account that the property of being trapped can be trivially attached to submanifolds of

arbitrary co-dimension m: it is enough to demand that its (D−m)-volume decreases locally

along any possible future direction.

This question was addressed and clarified in [12], where both theorem 1.1 and the-

orem 2.1 were generalized in a neat way, allowing for trapped submanifolds of any co-

dimension m. Let us briefly remind how these must be mathematically defined.

2.1 Trapped submanifolds of arbitrary dimension

To fix the notation, let (M, g) be a D-dimensional Lorentzian manifold with metric tensor

gµν of signature (−,+, . . . ,+). Consider an embedded spacelike submanifold ζ of any co-

dimension m and choose a basis {~eA} of vector fields tangent to ζ (A,B, · · · = m+1, . . . , D).

Denote by γAB the components of the (positive-definite) first fundamental form in the given

basis: γAB = gµν |ζeµAeνB. Decomposing the derivatives of tangent vector fields {~eA} into

its parts tangent and normal to ζ we have

eρA∇ρe
µ
B = Γ

C
ABe

µ
C −K

µ
AB, (2.1)

where Γ
C
AB provides the Levi-Civita connection of γAB and Kµ

AB is called the shape tensor

or second fundamental form vector of ζ in M . It is symmetric in AB and normal to ζ in

its index µ by definition.

The mean curvature vector is defined simply as

Hµ ≡ γABKµ
AB. (2.2)

Notice that Hµ is normal to ζ. Therefore, it has m independent components. These are

usually called expansions of ζ relative to a chosen normal vector field ~n and are denoted
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and defined by

θ(~n) := nµH
µ. (2.3)

If these expansions correspond to (future) null normals ~n (for the case with m > 1), they

are called (future) null expansions.

Definition 1 (trapped submanifold). A spacelike submanifold ζ is said to be future

trapped3 if the mean curvature vector ~H is timelike and future-pointing everywhere on ζ,

and similarly for past trapped.

This is obviously equivalent to the statement that the expansions are negative θ(~n) < 0

for every future pointing normal ~n.

2.2 The parallel propagated projector Pµν

To present the generalized singularity theorems some notation is needed. This is better

understood on a picture, and thus explained in figure 1. From now on, nµ will denote

a future-pointing normal vector to ζ at an arbitrary point q ∈ ζ. Then γ is the unique

geodesic curve tangent to nµ at q ∈ ζ with affine parameter u along γ, we set u = 0 at

q, and denote by Nµ the vector field tangent to γ (thus, Nµ|u=0 = nµ). As above, {~eA}
is a basis of vectors tangent to ζ at q and ~EA denote the vector fields defined by parallel

propagating ~eA along γ. Again, ~EA|u=0 = ~eA.

By construction gµνE
µ
AE

ν
B are independent of u, so that

gµνE
µ
AE

ν
B = gµνe

µ
Ae

ν
B = γAB (2.4)

all along γ. Then, along γ, we define the tensor field

P νσ := γABEνAE
σ
B, P νσ = P σν , P νν = D −m. (2.5)

Observe that, at u = 0, this is simply the projector to ζ. Hence, P νσ is nothing but the

parallel propagation of the ζ-projector along γ.

2.3 Generalized Penrose singularity theorems

Armed with the presented notation, in [12] the following theorem was proven.

Theorem 2.2 (generalized Penrose singularity theorem). If (M, g) contains a non-

compact Cauchy hypersurface and a closed f-trapped submanifold ζ of arbitrary co-dimen-

sion m ≥ 2, and if

RµνρσN
µNρP νσ ≥ 0 (2.6)

holds along every future-directed null geodesic emanating orthogonally from ζ, then (M, g)

is future null geodesically incomplete.

In [12] the generalization of theorem 1.1 was also achieved allowing for a closed set of

arbitrary co-dimension by simply adding the condition (2.6). It must be remarked, in this

sense, that

3In what follows, we will occasionally use the abbreviation f-trapped for future-trapped.

– 7 –



J
H
E
P
0
4
(
2
0
1
9
)
1
7
5

ζ
~n

γ

~N
~EA

~eA
q

Figure 1. Notation on a picture: let the circle in red represent the closed spacelike submanifold

ζ. Then, pick up any future-pointing vector ~n orthogonal to ζ at a given point q ∈ ζ and launch

the unique geodesic γ tangent to ~n at q, represented here by the blue dotted line. The geodesic

vector field tangent to γ is then represented by ~N . If {~eA} is a basis of vectors tangent to ζ at q,
~EA denote the vector fields defined by parallel propagating ~eA along γ. For further details, refer to

the main text and [12].

1. For spacelike hypersurfaces, co-dimension m = 1, there is a unique timelike orthogo-

nal direction nµ initially. Then, letting Nµ denote its geodesic extension as explained

in figure 1, Pµν = gµν − (NρN
ρ)−1NµNν and (2.6) reduces simply to

RµνN
µNν ≥ 0, (2.7)

that is, the timelike convergence condition along γ. Thus, nothing was added to

theorem 1.1 in this case.

2. For spacelike ‘surfaces’, co-dimension m = 2, there are two independent null normals

on ζ, say nµ and `µ. Define Lµ parallelly propagating `µ along γ. Then, it is easily

seen that Pµν = gµν − (NρL
ρ)−1(NµLν +NνLµ) and again (2.6) reduces to

RµνN
µNν ≥ 0, (2.8)

that is to say, the null convergence condition along γ. Again, nothing has been

added to theorem 1.1 in this case. And for theorem 2.2 observe that (2.6) is simply

equivalent to the null convergence condition in this case.

– 8 –
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3. For points, co-dimension m = D, the situation is a little more involved. However, one

can use a reformulation in terms of Jacobi tensors [1, proposition 12.46] to put (2.6)

in relation with a ‘genericity’ condition RµνρσN
µNρ 6= 0.

These three cases cover the original Hawking-Penrose theorem 1.1. The physical and

mathematical interpretation of condition (2.6) for co-dimensions other than 1, 2 or D is

given in terms of tidal forces, or equivalently in terms of sectional curvatures, and can be

consulted in [12].

The curvature condition (2.6) can in fact be substantially weakened, and it is sufficient

that it holds on the average along γ in a certain sense. This is remarkable, because it

permits to prove singularity theorems without any trapped submanifold! Specifically, the

conclusion of theorem 2.2 remains valid if the curvature condition (2.6) and the trapping

condition ζ assumed there are jointly replaced by∫ a

0
RµνρσN

µNρP νσdu > θ(~n) (2.9)

along each future inextendible null geodesic γ : [0, a) → M emanating orthogonally from

ζ with initial tangent nµ. This was explicitly proven in [12]. Here, we present a different

but equivalent version, so that one does not need to assume anything along inextendible

but incomplete null geodesics.

Theorem 2.3. If (M, g) contains a non-compact Cauchy hypersurface and is null geodesi-

cally complete, then for every closed spacelike submanifold ζ of co-dimension m > 1 there

exists at least one null geodesic γ with initial tangent nµ orthogonal to ζ along which∫ ∞
0

RµνρσN
µNρP νσdu ≤ θ(~n) . (2.10)

Observe that there is no restriction on the sign of θ(~n), and thus this theorem can

be applied to minimal submanifolds, or even to other cases with some positive initial

expansions.

3 Singularity theorems for warped-product spacetimes

Consider a direct product (4 +n)-dimensional spacetime M = M4×Y with direct product

metric

gµνdx
µdxν = ĝab(x

c)dxadxb + ḡij(x
k)dxidxj (3.1)

where xµ = (xa, xi) are local coordinates, those with indices a, b, . . . , h relative to the 4-

dimensional M4, and those with indices i, j, k, l relative to the n-dimensional Y. Note that

the total dimension is D := 4+n. Assume, of course, that the metric ĝ on M4 is Lorentzian

and the metric ḡ on Y is positive definite.

– 9 –
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3.1 Perturbation: warped products

To make sense of the instability arguments presented in the introduction, we want to

perturb these spacetimes geometrically. The simplest way to do this is by breaking the

direct product structure and letting one of the two pieces influence the other via a warp-

ing function f . Now, there are two inequivalent ways of doing this. One could let the

extra-dimensional part influence the large visible spacetime M4 by placing a factor f2(xi)

in front of the Lorentzian metric ĝab(x
c)dxadxb. However, it is easily seen that this cannot

lead to any incompleteness of geodesics. This follows for instance from a known mathe-

matical theorem stating that if the Riemannian base of a warped product is complete —

in particular, this is always the case for a compact base — and the warping function is

bounded away from zero by a positive constant then the entire manifold is geodesically

complete if and only if the fiber so is [3, 30].4 Hence, the influence of the extra dimensions

via a warping function can never render the 4-dimensional visible spacetime incomplete:

either (M4, ĝ) is incomplete by itself or not.

The other possibility is more interesting, as it includes dynamical perturbations of

the extra dimensions. Thus, to fix ideas, let the warped product M4 ×f Y spacetime have

Lorentzian base M4, fiber Y and warping function f : M4 → R, thus perturbing the original

spacetime in the following manner:

gµνdx
µdxν = ĝab(x

c)dxadxb + f2(xc)ḡij(x
k)dxidxj . (3.2)

This type of metrics are able to describe “higher-dimension evolutionary” cases and have

been considered in the literature to analyze the possibility of viable cosmological models

with extra dimensions [10, 11], and also in connection with stability issues e.g. [14, 23],

especially for functions f depending on time, see also [19].

The components of the curvature tensor are readily computed (for instance from (A.3)–

(A.4) in the appendix) leading to

Raijk = 0, Riabc = 0, Rijab = 0, (3.3)

Raibj = −f∇̂b∇̂af ḡij , (3.4)

Rijkl = R
i
jkl − ∇̂af∇̂af

(
δikḡjl − δil ḡjk

)
, (3.5)

Rabcd = R̂abcd (3.6)

where R
i
jkl is the Riemann tensor of (Y, ḡ), while ∇̂ and R̂abcd are the connection and

curvature tensor, respectively, of (M4, ĝ). From here it is easy to get the Ricci tensor

Rab = R̂ab − n
1

f
∇̂a∇̂bf, (3.7)

Rai = 0, (3.8)

Rij = R̄ij − ḡij
(
f∇̂b∇̂bf + (n− 1)∇̂bf∇̂bf

)
(3.9)

where R̂ab and Rij are the respective Ricci tensors on the hat and bar parts.

4Notice that the condition f ≥ ε > 0 for a complete but non-compact base (Y, ḡ) is quite acceptable,

even logical, in the given setting as we are perturbing the product case with f = 1; furthermore, this

assumption can be substantially relaxed, see remark 3.11 in [30].
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3.2 Warped products: null geodesics

The way geodesics behave in warped products, in relation with the projected curves, is

well known, see for instance [26]. We recall here the results needed to apply theorem 2.2

and theorem 2.3 to the metric (3.2). Let γ : xµ = xµ(u) be an affinely parametrized

null geodesic with tangent vector dxµ/du := Nµ = (N̂a, N̄ i), so that N̂a := dxa/du and

N̄ i := dxi/du are the vectors tangent to the respective projections of γ into M4 and Y. Then

N̄ j∇jN̄ i = −2N̂a∂a(ln f) N̄ i = −2
d ln f |γ
du

N̄ i, (3.10)

which actually states that the curve projected to Y is itself a geodesic though non-affinely

parametrized. From this one deduces that

ḡijN̄
iN̄ j =

C

f4
, C = const., (3.11)

where C ≥ 0 is a non-negative constant. In particular, if the Y-initial velocity vanishes

N̄ i(0) = ni = 0, then N̄ i(u) = 0 for all u. Hence, clearly C = 0 means that the null

geodesic γ lives exclusively in the Lorentzian part (M4, ĝ) of the warped product.

For the other projected curve, one has on using that γ is null

N̂ b∇̂bN̂a = −(ĝbcN̂
bN̂ c) ∇̂a(ln f). (3.12)

This tells us that the acceleration of the M4-projected curve is always parallel to the

gradient of f . Such curves are called subgeodesics with respect to ∇f . Observe that this

equation involves only quantities of the (M4, ĝ) part, and thus its solutions are well-defined

by giving initial conditions on that part: it is a good, well defined, transport equation.

By using gµνN
µNν = 0 and (3.11) it is immediate to show that

ĝabN̂
aN̂ b = − C

f2
, (3.13)

which permits to rewrite (3.12) simply as

N̂ b∇̂bN̂a =
C

f3
∇̂af = −C

2
∇̂a
(

1

f2

)
. (3.14)

This equation can be analyzed as that of a particle moving on a potential V (x̂) = C
2f2(x̂)

and then (3.13) is a first integral stating that the particle has “vanishing total energy”.

To get the information contained in these formulas one can proceed as follows: given

that (3.12) — or equivalently (3.14) — is a good transport equation one starts by solving

it with given initial conditions. The solution provides the part of the geodesic projected

to M4, that is γ̂ : x̂b(u). As x̂b(u) are then known explicitly, the function f is also known

along γ, given by f(x̂b(u)). The next step is simply to solve the geodesic equation (3.10).

A convenient way of expressing the solution is

N̄ i = f−2|γN i, N i(0) = f2(0)ni, (3.15)
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where N i is the affinely parametrized geodesic vector field in (Y, ḡ) with initial condition

as stated. Note that

C = ḡijN i(0)N j(0) (= f4(0)ḡijn
inj) (3.16)

so that, whenever C 6= 0, it can be set equal to 1 by choosing the initial ni appropriately.

Furthermore, observe that the relation of the affine parameter ū of the projected geodesic

γ̄ with the affine parameter u of the spacetime geodesic γ is given by

du = f2|γdū. (3.17)

3.3 Parallel transport along null geodesics orthogonal to ζ

As (M4, ĝ) is Lorentzian, we are going to choose our test submanifolds “living” on the

extra-dimensional part Y, that is to say, they will be the lifts to the spacetime of a given

submanifold ζ ⊂ Y which is compact and with total co-dimension m. In other words, our

submanifolds will have constant values of the coordinates xb. In order to fix ideas, some

notation must be used. We will denote by Yp any “copy” of Y in the manifold: more

precisely, let p ∈ M4 be any point of the Lorentzian 4-dimensional manifold, say given by

coordinates xa(p) = x̂ap. Then, the submanifold Yp ⊂M is defined by

Yp := {xa = x̂ap}, (3.18)

which as a topological manifold is simply Yp = {p}×Y . Now, any given submanifold ζ ⊂ Y
automatically defines a submanifold ζp ⊂ Yp for any p ∈M4 in the straightforward way.

Let {~eA} denote an ON basis of vector fields tangent to ζp: eµA = (0, ēiA). Using

the general results in the appendix, one can easily obtain that along any null geodesic

orthogonal to ζp we have

EµA = (0, ĒiA‖/f) (3.19)

where ĒiA‖ are the parallel transports of f |pēiA along the curve projected to Yp given by

γ : xi(u). Explicitly

N̄ j∇jĒiA‖ = 0, ĒiA‖(0) = f |pēiA. (3.20)

From this expression, or alternatively recalling that parallel transportation respects

scalar products, one also deduces

gµνN
µEνA = 0 =⇒ ḡijN̄

iĒjA‖ = 0,

gµνE
µ
BE

ν
A = δBA =⇒ ḡijĒ

i
A‖Ē

j
B‖ = δAB.

It follows that the tensor Pµν = γABEµAE
ν
B becomes simply along γ

P ab = 0, P ia = 0, P ij =
1

f2
δABĒiA‖Ē

j
B‖. (3.21)

Introducing this into the lefthand side of condition (2.6) of theorem 2.2 and using (3.3)–

(3.6) for the Riemann tensor, a little calculation leads to [6]

RµνρσN
µNρP νσ = δABR̄ijklN̄

iN̄kĒjA‖Ē
l
B‖ − (D −m)

1

f
N̂a∇̂a(N̂ b∇̂bf)|γ . (3.22)
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The last summand here is proportional to the second derivative of the warping function

f |γ along γ with respect to the affine parameter u:

N̂a∇̂a(N̂ b∇̂bf)|γ =
d2f |γ
du2

. (3.23)

The first summand can be alternatively expressed in terms of the affine geodesic vector

field N i defined in (3.15), rendering the expression in the form

RµνρσN
µNρP νσ =

1

f4
δABR̄ijklN iN kĒjA‖Ē

l
B‖ − (D −m)

1

f

d2f

du2

∣∣∣∣
γ

. (3.24)

3.4 The singularity theorems adapted to warped products

Expression (3.24) is all that we need to produce new singularity theorems as corollaries of

theorem 2.2 and theorem 2.3 adapted to the warped product situation (3.2).5 With the

above notation at hand and starting with theorem 2.2, use of (3.24) allows one to derive

the following theorem.

Theorem 3.1. Let (M, g) be a warped product M = M4 ×f Y with metric (3.2) that

possesses a non-compact Cauchy hypersurface and a closed f-trapped submanifold ζp ⊂ Yp
(p ∈M4) of co-dimension m. For any normal vector ni ∈ TqYp orthogonal to ζp (including

the zero vector) let γ̄(ū) be the affinely parametrized geodesic in (Yp, ḡ) tangent to ni at

q ∈ ζp with tangent vector field N i and affine parameter ū. Let also ĒiA‖ denote the parallel

transports in (Yp, ḡ) along γ̄(ū) of the elements of an orthonormal basis {eiA} of vectors

tangent to ζp at q ∈ ζp.
Let γ̂(u) : xa(u) with N̂a = dxa(u)/du denote any solution of the equation (3.14) with

initial condition N̂a|p = na, where na is such that ĝab|pnanb = −f2|pḡijninj and future

pointing. If the following inequality (of functions of ū)

δABR̄ijklN iN kĒjA‖Ē
l
B‖ > −(D −m)f2d

2f−1

dū2

∣∣∣∣
γ̂

(3.25)

holds for each ni at all q ∈ ζp, and for all possible choices of na accordingly, then (M, g) is

future null geodesically incomplete.

Proof. We only have to check that this is equivalent to theorem 2.2. Obviously, the as-

sumptions are the same, so that only the equivalence of (2.6) with (3.25) must be justified.

And this follows from the analysis in subsection 3.3, specifically from expression (3.24)

(times f4), which gives immediately the lefthand side of (3.25) together with the following

straightforward calculation for the remaining term in (3.24), containing derivatives of f

along γ̂, on using (3.17)

d2f

du2
=

1

f4

d2f

dū2
− 2

f5

(
df

dū

)2

= − 1

f2

d2f−1

dū2
. (3.26)

5Singularity theorems applicable to warped-product spacetimes with Lorentzian base have been previ-

ously found in e.g. [5, 38]. Our theorems are of a different nature, as they assume non-compact Cauchy hy-

persurfaces, and more importantly, they use as boundary condition submanifolds of arbitrary co-dimension.
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Remark 3.1. We have chosen to express the main condition in the above theorem in the

form (3.25) because the lefthand side involves a quantity intrinsic to the extra dimensional

space (Y, ḡ), while the righthand side depends exclusively on the behaviour of the warping

function along the timelike subgeodesics (or null geodesics if ni = 0 = C) defined by (3.14).

Thus, the righthand side depends exclusively on the Lorentzian manifold (M4, ĝ) — and f .

Remark 3.2. The above theorem requires that the condition holds also for the null geodesics

with ni = 0, which is equivalent to C = 0. As explained previously, these are the null

geodesics with no component in (or trivial projection to) the extra-dimensional space Y,

N i = 0. In this situation there is no need, and actually it makes no sense, to define the

parameter ū, so that the condition should be written in terms of the null geodesic affine

parameter u and reads simply from (3.24)

d2f

du2
< 0 if C = 0. (3.27)

This must hold for all such null geodesics orthogonal to ζp. Given that such null geodesics

always exist (there is actually a 3-parameter family of them), this must be considered as a

necessary condition for theorem 3.1 to hold.

An analysis of the above conditions (3.25) and (3.27) is left for the next section. Let us

turn to the stronger theorem 2.3. The condition in the theorem involves an integral along

the spacetime null geodesic and this is compared to the initial expansion. Therefore, we

need to compute this initial expansion for any closed ζp ∈ Yp. A simple direct computation

gives, for the initial expansion along ~n:

θ(~n) = θ̄n̄ + (D −m)
1

f
na∂af

∣∣∣∣
p

, (3.28)

where θ̄n̄ is the “expansion of ζp as submanifold of (Yp, ḡ)”: compute the mean curvature

vector H̄ i of ζp as a submanifold of Yp, and then θ̄n̄ := ḡ(H̄, n̄) = ḡijH̄
inj . The above

displayed expression gives the righthand side of the condition (2.10) in theorem 2.3. To

find the lefthand side, it is enough to use (3.24). We thus have

Theorem 3.2. Let (M, g) be a warped product M = M4 ×f Y with metric (3.2) that

possesses a non-compact Cauchy hypersurface and is null geodesically complete. Let ζp ⊂ Yp
(p ∈ M4) denote a closed submanifold of co-dimension m, and for any normal vector

ni ∈ TqYp orthogonal to ζp (including the zero vector) let γ̄(ū) be the affinely parametrized

geodesic in (Yp, ḡ) tangent to ni at q ∈ ζp with tangent vector field N i and affine parameter

ū. Let also ĒiA‖ be the parallel transports along γ̄(ū) in (Yp, ḡ) of the elements of an

orthonormal basis {eiA} of vectors tangent to ζp at q ∈ ζp.
Let γ̂(u) : x̂a(u) with N̂a = dx̂a(u)/du denote any solution of the equation (3.14) with

initial condition N̂a|p = na, where na is such that ĝab|pnanb = −f2|pḡijninj and future

pointing. To relate both curves γ̄(ū) and γ̂(u) — so that they provide a null geodesic in the

spacetime — set, as in (3.17), du = f2|γ̂dū.
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Then, for every such closed ζp ⊂ Yp there exists at least one choice of ni and na at

some q ∈ ζp such that the following inequality holds

∫ ∞
0

1

f4
δABRijklN iN kĒjA‖Ē

l
B‖du− θ̄n̄ ≤ (D −m)

(∫ ∞
0

1

f

d2f

du2

∣∣∣∣
γ̂

du+
1

f(p)
na∂af |p

)
.

Proof. This is just a corollary of theorem 2.3 by using (3.24), (3.28) and rearranging,

together with the results in subsections 3.2 and 3.3.

Again the condition is written in a form that is considered optimal. The righthand

side involves only quantities of the large 4-dimensional spacetime (M4, ĝ) and the warping

function f : M4 → R. The lefthand side is not completely intrinsic to the extra-dimensional

space (Y, ḡ) due to the factor 1/f4. Still, this factor is strictly positive in all cases, which

allows one to control its influence up to some degree, and concentrate on the analysis of the

main integrand term δABRijklN iN kĒjA‖Ē
l
B‖, which is a quantity intrinsic to (Y, ḡ). Ob-

serve that there are several ways to write the integral on the lefthand side of the theorem’s

condition, viz.∫ ∞
0

1

f4
δABRijklN iN kĒjA‖Ē

l
B‖du =

∫ ∞
0

δABRijklN
iNkĒjA‖Ē

l
B‖du (3.29)

=

∫ ū∞

0

1

f2
δABRijklN iN kĒjA‖Ē

l
B‖dū (3.30)

=

∫ ū∞

0
δABRijklN iN kĒjAĒ

l
Bdū, (3.31)

where ū∞ is the value of ū as u→∞. Still, none of them is intrinsic to (Y, ḡ). In (3.29) the

warping function has disappeared explicitly but it remains there implicitly as it is necessary

to construct the vector field N i along γ̄ by means of (3.10), or directly from (3.15). A similar

comment applies to (3.31), as f is needed to compute the vector fields ĒiA, and we also

need to know f to compute ū∞ via (3.17). This also happens in (3.30) where, in addition,

f appears explicitly.

To end this subsection we wish to remark that all of the above has been done to the

future, but one can also derive the correspoding dual versions to the past: it is enough to

choose na past-directed — and, in the case of theorem 3.1, that ζp is past-trapped.

3.5 Null geodesic incompleteness manifestation

The theorems of the previous subsection prove null geodesic incompleteness under some

conditions to be analyzed later in the next section. Before that, we want to understand

how this incompleteness can arise for a metric of type (3.2). The answer is that such

incompleteness can only happen if either the warping function f or its inverse 1/f approach

zero somewhere on the Lorentzian base (M4, ĝ).

This can be deduced from a combination of some interesting results in [3, 30]. In

particular, adapted to our situation, we have
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Theorem 3.3 ([3, 30]). If 0 < ε ≤ f ≤ A for constants ε and A, then the warped

product (3.2) with Lorentzian base (M4, ĝ) and fiber (Y, ḡ) is null geodesically complete if

and only if (M4, ĝ) is null geodesically complete by itself.

Proof. According to [30, theorem 3.19(2)], if f ≥ ε > 0 it is enough that ĝ/f2 be null

geodesically complete to render the entire warped product (3.2) null geodesically complete

too. If in addition f ≤ A, then application of [3, theorem 2.2(i)] with Ω = 1/f2 implies

ĝ/f2 is null geodesically complete if ĝ is null geodesically complete.

4 Analysis of the conditions in the theorems

Let us analyze the meaning and applicability of the main conditions in theorem 3.1 and

theorem 3.2. First of all, observe that for any ζp ⊂ Yp, there are always ζp-orthogonal

null geodesics with ni = 0 and thus with N̄ i(u) = 0 = N i (those with C = 0). These

are null geodesics belonging to the 4-dimensional Lorentzian manifold (M4, ĝ). For these

geodesics, the condition in theorem 3.1 simplifies to (3.27) as explained in remark 3.2,

while the negation of the condition in theorem 3.2 (so that the spacetime cannot be null

geodesically complete) reduces to

(C = 0) =⇒
∫
γ̂

1

f

d2f

du2
du+

1

f(p)
na∂af |p < 0. (4.1)

It is obvious that (4.1) supersedes (3.27), as the latter obviously implies the former if ζp
is future trapped (which means 1

f(p)n
a∂af |p < 0 for any na). Thus, we can concentrate

on (4.1), which becomes a necessary condition for the theorems to apply leading to null

geodesic incompleteness. In more geometrical terms, taking into account that (with C = 0)

N̂ b∇̂bN̂a = 0, (4.1) reads

(C = 0) =⇒ −
∫
γ̂

1

f
N̂aN̂ b∇̂a∇̂bf >

1

f
N̂a∇̂af

∣∣∣∣
p

. (4.2)

Hence, if some extra dimensions start, say, contracting — otherwise, one could similarly use

the past version of the theorems — along M4-null directions (i.e. N̂a∇̂af |p = na∂af |p < 0)

then it is enough that the Hessian of f be non-positive on the corresponding null geodesics

on average.

If condition (4.2) actually holds for all null geodesics starting at a given Yp (i.e. for a

choice of xa = x̂ap) and if Y is compact, then this very Yp acts as the submanifold leading

to null geodesic incompleteness via the previous theorems.

Observe that, from the expression of the Ricci tensor (3.7)–(3.9) and as Nµ = (N̂a, 0)

for these null geodesics with C = 0, one has

(C = 0) =⇒ 1

n

(
RµνN

µNν − R̂abN̂aN̂ b
)

= − 1

f
N̂aN̂ b∇̂a∇̂bf (4.3)

which can be further simplified in this situation to

(C = 0) =⇒ 1

n

(
Rab − R̂ab

)
N̂aN̂ b = − 1

f
N̂aN̂ b∇̂a∇̂bf (4.4)
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so that (4.2) can be rewritten in terms of the Ricci tensors

(C = 0) =⇒ 1

n

∫
γ̂

(
Rab − R̂ab

)
N̂aN̂ b >

1

f
N̂a∇̂af

∣∣∣∣
p

. (4.5)

This permits to analyze in greater detail when the necessary condition will hold (easy for

instance if R̂ab = Λĝab on (M4, ĝ)). It is noticeable that the analysis can be performed

in terms of the null convergence condition for the visible large 4-dimensional spacetime

(R̂abN̂
aN̂ b ≥ 0) in comparison to that of the full spacetime on null directions of the large

4-dimensional part (RµνN
µNν = RabN

aN b ≥ 0 when C = 0). Another remarkable fact

is that, even if some of the extra dimensions stay stationary, or expand while the others

contract, there may be many situations where (4.5) also holds.

Consider, then, the case that the above necessary condition (4.5), or equivalently (4.1),

does not hold for all possible null geodesics orthogonal to any choice of Yp. Still, the

condition can be satisfied by an appropriate subset of null geodesics with C = 0, so that

null geodesic incompleteness can still be derived from the theorems if those null geodesics

are orthogonal to particular closed submanifolds ζp ⊂ Yp. In this case, one still needs

to check that the found inequality condition in the stronger theorem 3.2 holds for the

remaining null geodesics orthogonal to ζp, those with C > 0, and thus with N̄ i(u) 6= 0.

In order to use again the negation of the condition in theorem 3.2:∫
γ

1

f4
δABRijklN iN kĒjA‖Ē

l
B‖ − θ̄n̄ > (D −m)

(∫
γ̂

1

f
N̂ b∇̂b(N̂a∇̂af) +

1

f(p)
na∂af |p

)
,

(4.6)

an analysis of the behaviour of N̂ b∇̂b(N̂a∇̂af) along these null geodesics with C > 0 is

needed. The general expression for this second derivative is, on using (3.14)

N̂ b∇̂b(N̂a∇̂af) = (C/f3)∇̂bf∇̂bf + N̂aN̂ b∇̂a∇̂bf. (4.7)

The first summand on the righthand side favors the singularity if the gradient of f is non-

spacelike: this is the case if the perturbation is truly dynamical, that is, if the dynamical

part dominates over other possible accompanying perturbations. This should be assumed in

what follows because, actually, in string theory keeping the values of the coupling constants

and the Planck mass independent of position in space (to within experimental limits)

requires that f should essentially depend only on a time coordinate [17], or in other words,

that ∇̂f is timelike and thus ∇̂bf∇̂bf < 0. Of course, there are also constraints in the time

variation of such constants, but this is more easily accommodated within observational

limits [13, 18, 24], see [35] for a review.

The last summand in (4.7) can be analyzed as before, but taking into account that N̂a

are now timelike due to (3.13) with C > 0. For instance, it is sufficient that the Hessian

of f be non-positive on the timelike curves γ̂(u) of (M4, ĝ) on average — in fact, it would

be enough to assume just that such Hessian is not too much positive on those timelike

directions. A simple way to achieve this is to consider that −∇̂a∇̂bf , seen as a 2-index

tensor, satisfies the averaged timelike convergence condition — but again, much less is

necessary. If such a condition is assumed, then the necessary condition studied before for

the C = 0 geodesics will automatically follow by continuity.
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An important remark is that one only needs that the combination of the two summands

in (4.7) is non-negative, or not too much positive in comparison with the lefthand side

in (4.6), on average.

Consider then the lefthand side in (4.6). As explained above, apart from the positive

factor f−4 this expression is an integral relative to the extra-dimensional space (Y, ḡ)

exclusively — and of course, θ̄n̄ is a quantity relative to the extra-dimensional space too.

We remark that it is enough to find just one compact submanifold ζp with the required

property, and that the submanifold can have any dimension. Therefore, there are plenty

of possibilities to play with, leading to a wider application of the singularity theorems. A

few outstanding examples are

• If the co-dimension is 5, that is dimension n − 1 so that ζp has co-dimension one as

a submanifold of Yp, then δABĒjA‖Ē
i
B‖ = ḡij −N iN j/ḡ(N ,N ) hence

δABR̄ijklN iN kĒjA‖Ē
l
B‖ = R̄ijN iN j (4.8)

and the condition (4.7) simplifies accordingly involving the integral of f−4R̄ijN iN j .

In particular, the cases with Ricci-flat extra-dimensional space will be geodesically

incomplete whenever the righthand side in (4.7) is negative, as argued above, and if

for instance θ̄n̄ ≤ 0. Compact minimal hypersurfaces in Ricci flat (Y, ḡ) are thus not

compatible with geodesic completeness when dynamical warping functions (pertur-

bations) have a negative righthand side in (4.7).

• The other extreme case, if dim ζp = 1, i.e. a circle, are such that there is only one

tangent vector and

δABR̄ijklN iN kĒjA‖Ē
l
B‖ = R̄ijklN iN kĒj‖Ē

l
‖ (4.9)

is just the sectional curvature K(N , Ē‖) within (Yp, ḡ) along the projected γ̄. There-

fore, the existence of non-negative sectional curvatures on average can lead again to

the inequality (4.7) and therefore, to null geodesic incompleteness, under the same

condition as in the previous case.

• For other co-dimensions, the integral on the lefthand side of (4.7) is a sum of sectional

curvatures along γ̄, and therefore similar comments apply: existence of non-negative

sectional curvatures on average is again the requirement.

In consequence, for dynamical perturbations with a timelike ∇̂af the righthand side of (4.7)

will be negative in a large class of reasonable situations, and then one can find many

Riemannian manifolds that, when attached to the spacetime via a warped product of

type (3.2), will lead to null geodesic incompleteness, rendering the total spacetime unstable

against these dynamical perturbations. Of particular interest may be examples where some

field equations are fixed (observe that, hitherto, no field equations have ever been used so

that all our results apply to generic theories based on a Lorentzian manifold). As happened

with the Einstein static universe [8, 21, 22], in which case one uses Einstein’s field equations
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for pressure-free matter to derive its dynamical instability, using field equations in the

above setting may force the warping function to necessarily satisfy the conditions leading

to singularities.

5 Concluding remarks

We have substantiated, at least partially, the idea that extra spatial dimensions (compact

or not) can be unstable in the sense that singularity theorems will apply and lead to null

geodesic incompleteness. Allowing for dynamical perturbations — functions f with timelike

gradient, for instance — may not be safe. Hence, the analysis of the exact “destroying

power” of such functions f is of physical interest.

An important conclusion is that the generalized singularity theorems considerably

broaden the situations where null geodesic incompleteness arises, providing support to

arguments in [4] and indirectly to Penrose’s [28, 29].

Here we have concentrated on the case where the dynamical perturbations cause the

extra dimensions to start collapsing. The other case, when the extra dimensions start

expanding, can be treated similarly, but to the past. It might then be argued that such a

past geodesic incompleteness is not important, in the sense that we anyway expect some-

thing funny happening classically somewhere in the past — the big bang. However, one

should bear in mind that the expansion tends to endure, and thus the extra dimensions

may eventually become very large, or even infinite, see also [4].

On a positive side, the condition of the theorems, as given involving quantities of only

the extra-dimensional space in comparison with well controllable quantities depending on

f and its derivatives, may help in finding the stable possibilities, providing information on

which classes of extra-dimensional spaces (Y, ḡ) may be viable and why — and for which

warping functions f .
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A Warped products: parallel transport

In this appendix we provide the general formulas for the parallel transport of vector fields

in general warped product semi-Riemannian manifolds M̂ ×f Y

gµνdx
µdxν = ĝab(x

c)dxadxb + f2(xc)ḡij(x
k)dxidxj , (A.1)

for the general case with arbitrary signatures and dimensions of the fiber and the base. As

far as we know these results were first presented in [6].

Let γ : xµ = xµ(u) be any parametrized curve (not necessarily a geodesic) with tangent

vector Nµ := dxµ(u)/du = (N̂a, N̄ i). By definition, the parallel transport ~E(u) of any

vector ~e along γ is the vector field satisfying Nµ∇µEν = 0 along γ which coincides with ~e

initially, and therefore it is given by the unique solution to the system of ODEs

dEµ

du
+ ΓµρσN

ρEσ = 0, Eµ(0) = eµ. (A.2)

In the coordinate system (A.1) the connection symbols can be easily found to be

Γaib = 0, Γiab = 0, Γabc = Γ̂abc, Γijk = Γ
i
jk, (A.3)

Γaij = −fĝab∂bfḡij , Γiaj = δij
∂af

f
, (A.4)

where Γ̂abc and Γ
i
jk denote the connection symbols corresponding to (M̂, ĝ) and (Y, ḡ) re-

spectively. Hence, (A.2) splits into

dEa

du
+ Γ̂abcN̂

bEc − fĝad∂dfḡijN̄ iEj = 0,

dEi

du
+ Γ̄ijkN̄

jEk + δij
1

f

(
N̄ jEa∂af + EjN̂a∂af

)
= 0,

which can be appropriately rewritten as

N̂a∇̂aEb = ḡ(N̄ , Ē)f(gradf)b, (A.5)

N̄ i∇iEj = − 1

f

(
EjN̂a∂af + N̄ jEa∂af

)
. (A.6)

Here and in what follows the notation Ê and Ē will refer to the respective projections

of ~E(u).

The case when γ is a geodesic. Assume now that γ is an affinely parametrized

geodesic, so that Nρ∇ρNµ = 0. Then, the scalar product g(N,E) remains constant along

γ for any vector field ~E(u) which is parallel transported along γ. Thus, we can write

g( ~N, ~E) = g(N(0), e) := a, (A.7)

and using (A.1)

g( ~N, ~E) = ĝ(N̂ , Ê) + f2ḡ(N̄ , Ē) = a (A.8)
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so that equation (A.5) becomes in this situation

N̂a∇̂aEb =
(
a− ĝ(N̂ , Ê)

) 1

f
(gradf)b. (A.9)

The importance of this equation is that this is a good transport equation relative to the

base manifold (M̂, ĝ) exclusively. Thus, in order to find the parallel transported vector field
~E one can start by solving (A.9) with initial condition Eb(0) = eb and, once its solution

Eb(u) is known, this can be inserted into (A.6) which can then be solved to provide the

remaining projection Ei(u).

Of particular interest to this paper is the case when furthermore the tangent vector ~e

is initially orthogonal to nµ := Nµ(0). Then ~E(u) will be orthogonal to ~N all along γ so

that a = 0. Hence, (A.9) reduces now to

N̂ b∇̂bÊa = −(ĝbcN̂
bÊc) ∇̂a(ln f) (A.10)

which, as before, is a well-defined transport equation along the projected curve γ̂ within

(M̂, ĝ). Notice, in particular, that if the initial condition entails Ea(0) = ea = 0 then the

unique solution is given by Ea(u) = 0 for all u.

Once the solution of (A.10) is explicitly known, one can solve the remaining sys-

tem (A.6). In the present case, this can be done fully explicitly and the solution is given by

Ēi = fhN̄ i +
1

f
Ēi‖, (A.11)

where Ēi‖ is the parallel transport of f(0)ei in (Y, ḡ) along the projected curve γ defined

by xi(u):

N̄ j∇jĒi‖ = 0, Ēi‖(0) = f(0)ei, (A.12)

while h(u) is the unique solution of

dh

du
= Êa∂a(1/f), h(0) = 0. (A.13)

To end this appendix, let us consider two special cases of prominent interest, depending

on whether the initial vector ~e has vanishing projection to either the base or the fiber —

while keeping the orthogonality condition g(~n,~e ) = 0.

• Case with eµ = (0, ei), so that ea = 0. In this case, as explained above, the unique

solution to (A.10) is Ea(u) = 0. Hence, equation (A.13) becomes trivial with unique

solution h(u) = 0 and thus the final solution for the parallel transport vector field is

Eµ(u) = (0, Ēi‖/f). (A.14)

This is the solution used in the main text.

• Case with eµ = (ea, 0), so that ei = 0. In this case Ēi‖ = 0 along γ and (A.11)

simplifies to

Ēi = fhN̄ i (A.15)
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with h the solution of (A.13). Using this, the orthogonality condition along γ becomes

0 = g( ~N, ~E) = ĝ(N̂ , Ê) + f2ḡ(N̄ , fhN̄) = ĝ(N̂ , Ê) + f3hḡ(N̄ , N̄), (A.16)

which can be introduced into (A.10) to get

N̂ b∇̂bÊa = hḡ(N̄ , N̄)f2∇̂af. (A.17)

But along any geodesic (not necessarily null) formula (3.11) holds [26] where now C

can have any sign, so that the previous equation reads

N̂ b∇̂bÊa = C
h

f2
∇̂af = −Ch∇̂a(1/f). (A.18)

From these calculations follows in particular that (b is a constant)

b := g(~e,~e ) = g( ~E, ~E) = ĝ(Ê, Ê) + f2ḡ(Ē, Ē) = ĝ(Ê, Ê) + Ch2, (A.19)

as well as

ĝ(N̂ , Ê) = −Ch
f
. (A.20)

In the case that γ is a null geodesic so that g( ~N, ~N) = 0 then (3.13) also holds and

all the above suggests to define

Êa := Êa − fhN̂a, (A.21)

which is a vector field along the null γ satisfying

ĝ(Ê , Ê) = b, ĝ(N̂ , Ê) = 0, N̂ b∇̂bÊa = − d

du
(hf)N̂a, Êa(0) = ea. (A.22)

From this, a straightforward calculation allows one to show that, whenever C 6= 0 so

that the projected curve γ̂ is non-null in (M̂, ĝ), the vector field Ê is Fermi-Walker

transported [25] along the projected curve γ̂. We believe this is a new result.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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