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2.3 The Faà di Bruno formula and Bell polynomials 5

2.4 ZTMG in terms of Bell polynomials 6

2.5 The Bell series as a multi-particle generating function 8

3 Bell polynomials and the plethystic exponential 11

4 Explicit counting of multi-particle descendants 13

4.1 Matching of the Bell series 13

4.2 Matching of the full partition function 15

5 A ladder action on ZTMG 16

5.1 Monomiality principle 17

5.2 Ladder action on the Bell polynomials 17

5.3 sl(2) action on the Bell polynomials 18

5.4 Ladder action on the plethystic exponential 19

6 Extension to NMG and higher-spin TMG 21

6.1 Partition function of critical New Massive Gravity 21

6.2 Partition function of critical topologically massive spin-3 gravity 22

7 Conclusion and outlook 24

A Bell polynomials 25

1 Introduction

Three-dimensional gravity has, for quite some time now, served as an interesting setting

in which to test theories of gravity. Pure Einstein gravity in three dimensions is locally

trivial at the classical level, and does not exhibit propagating degrees of freedom. However,

allowing for a negative cosmological constant leads to a theory with black hole solutions [1]

and a careful study of the asymptotics [2] shows the emergence of a Virasoro algebra at

the boundary. One can thus expect a dual 2d CFT description, and this setting can be

thought of as an early example of the AdS/CFT correspondence [3].
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One can also deform pure 3d gravity by adding a gravitational Chern-Simons term.

This theory is known as topologically massive gravity (TMG) and contains a massive

graviton [4, 5]. When both cosmological and Chern-Simons terms are included, the theory

is known as cosmological topologically massive gravity (CTMG). Such theories feature both

gravitons and black holes.

Following Witten’s proposal in 2007 to find a CFT dual to Einstein gravity [6], the

Einstein graviton 1-loop partition function was calculated in [7]. However, discrepancies

were found in the results. In particular, the left- and right-moving contributions did not

factorise, therefore clashing with the proposal of [6].

Soon after, Li, Song and Strominger [8] showed that the situation can be improved

if one replaces Einstein gravity by chiral gravity, which can be viewed as a special case

of topologically massive gravity [4, 5] at a specific tuning of the couplings (µl = 1 in the

notation of [8], where l is the radius of AdS3 while µ is the coefficient of the gravitational

Chern-Simons term), and is asymptotically defined with Brown-Henneaux boundary condi-

tions [2]. A particular feature of the theory was that one of the two central charges vanishes:

cL = 0, while cR 6= 0. This gave an indication that the partition function could factorise.

Soon after the proposal of [8], based on the appearance of a non-trivial Jordan cell in

CTMG at the critical point, the dual CFT at this point was conjectured to be logarith-

mic [9]. Indeed, Jordan cell structures are a salient feature of logarithmic CFTs (see [10],

as well as the very nice introductory notes [11] and [12]). In the case of interest, the bulk

Jordan cell structure arises between the left-moving massless graviton mode and a mas-

sive bulk mode, which become degenerate at the critical point µl = 1. On the dual CFT

side, this corresponds to the situation where the left-moving stress tensor T acquires a

logarithmic partner state t, and we have the relations:

L0 |T 〉 = 2 |T 〉 , L0 |t〉 = 2 |t〉+ |T 〉 , L̄0 |t〉 = T . (1.1)

The proposal of [9] hinged on relaxing the Brown-Henneaux boundary conditions in order

to allow the presence of the logarithmic mode (see [13–16] for discussions of the appropriate

boundary conditions). This mode spoils the chirality of the theory, as well as its unitarity.

However, it opens up the very intriguing possibility of finding bulk duals to logarithmic

CFT’s. A major milestone was the computation of correlation functions [17, 18] in TMG,

which confirmed the existence of logarithmic correlators of the general type 〈T (x)t(y)〉 =

bL/(x − y)4, where bL is often called the logarithmic anomaly. For TMG it takes the

value bL = −3l/GN .

In order to further understand the TMG/LCFT proposal,1 the calculation of the 1-

loop graviton partition function of TMG on the thermal AdS3 background was undertaken

in [19], by means of heat kernel techniques such as in [20, 21]. The partition function was

found to be:2

ZTMG(q, q̄) =
∞∏
n=2

1

|1− qn|2
∞∏

m=2

∞∏
m̄=0

1

1− qmq̄m̄
. (1.2)

1In the rest of this work we will refer to critical CTMG as simply TMG.
2This is not a fully modular invariant partition function, but corresponds to Z0,1 in the notation of [7].
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As shown in [19], the partition function (1.2) is consistent with an explicit counting of

states in the dual LCFT, up to the level of single-particle states in the logarithmic partner

t. This certainly strengthens the case for an LCFT dual of TMG. However, as was also

pointed out in [22], one would still desire a better understanding of the partition function

from the CFT side. In particular, although the multi-particle states encoded in (1.2) were

consistent with those of a dual CFT (in that they have positive multiplicities), it would be

desirable to match them exactly with the combinatorics of the multi-particle excitations of

the logarithmic partner. This is the main question we consider in this work.

The first step in understanding this counting will be to show how the partition func-

tion (1.2) can be recast in terms of Bell polynomials. The latter are very useful in many

areas of mathematics and have enjoyed many applications in physics as well. In our case,

the Bell polynomial reformulation allows us to explicitly match each term in the partition

function to the descendants of multi-particle states of the logarithmic partner. We also

show that the Bell polynomial form of the partition function is perfectly consistent with

plethystic exponential techniques [23, 24]. Finally, we discuss a ladder construction which

generates the n-particle part of the partition function from the n−1-particle part (and the

reverse), which also allows us to uncover an sl(2) symmetry of the partition function.

There also exist other topologically massive gravity theories, such as the non-chiral

New Massive Gravity (NMG) [25], which have been argued to have LCFT duals [26, 27].

The partition function of NMG was also given in [19]. Furthermore, one can extend TMG

by including higher spin fields, which appears to lead to a dual LCFT with W-algebra

symmetry [28]. 1-loop partition functions for these higher-spin theories have been computed

in [29]. We show that the partition functions of NMG and Higher-spin TMG can also be

straightforwardly brought into Bell polynomial form.

This paper is organised as follows: in section 2, the combinatorial properties of ZTMG

are derived in terms of Bell polynomials. In section 3, the connection between the Bell

polynomials and the plethystic exponential is developed. Section 4 illustrates how the

matching of the terms in the partition function to explicitly constructed multi-particle

states in the CFT works. In section 5, we construct ladder-type (raising and lowering)

operators acting on the Bell polynomials and the plethystic exponential. These operators

reveal an sl(2) symmetry acting between the n-particle components of the partition func-

tion. Finally, after briefly discussing the extension of our results to NMG and higher spin

TMG in section 6, we conclude with some open questions.

2 Combinatorial properties of ZTMG

In this section, after briefly reviewing the results of [19] as well as some relevant aspects of

Bell polynomials, we show how ZTMG can be written as a Bell polynomial expansion.

2.1 Matching of the vacuum and single-t states

As shown in [19], the partition function (1.2) has the general structure expected from a

dual logarithmic conformal field theory. In order to see this, one can expand (1.2) in two

– 3 –
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parts:

ZTMG(q, q̄) = Z0
LCFT(q, q̄) +

∑
h,h̄

Nh,h̄q
hq̄h̄

∞∏
n=1

1

|1− qn|2
, (2.1)

with

Z0
LCFT(q, q̄) = ZΩ + Zt =

∞∏
n=2

1

|1− qn|2

(
1 +

q2

|1− q|2

)
, (2.2)

where Ω indicates the vacuum of the holomorphic sector, and t denotes the logarithmic

partner of the energy momentum tensor T .3 The coefficients Nh,h̄ are higher-order in h, h̄

and should correspond to multi-particle states in t. Crucially, although a full understanding

of the combinatorics leading to the multi-particle part of (2.1) was not attempted in [19],

the coefficients Nh,h̄ were shown to be all positive, as should be the case if they are indeed

counting states in a CFT.

The above result was generalised to NMG as [19]:

ZNMG(q, q̄) =

∞∏
n=2

1

|1− qn|2
∞∏

m=2

∞∏
m̄=0

1

1− qmq̄m̄
∞∏
l=0

∞∏
l̄=2

1

1− qlq̄ l̄
. (2.3)

This can also be split into two parts,

ZNMG
LCFT(q, q̄) = Z

(0)NMG
LCFT (q, q̄) +

∑
h,h̄

Nh,h̄q
hq̄h̄

∞∏
n=1

1

|1− qn|2
, (2.4)

with

Z
(0)NMG
LCFT (q, q̄) = ZΩ + Zt + Zt̄ =

∞∏
n=2

1

|1− qn|2

(
1 +

q2 + q̄2

|1− q|2

)
. (2.5)

We see that, as before, the partition function can be written as the descendants of the

vacuum, as well as terms corresponding to the descendants of the left- and right- logarithmic

partners t and t̄.

We recall that the CFT dual to TMG is expected to have logarithmic behaviour in the

holomorphic sector, with cL = 0, with the antiholomorphic sector being non-logarithmic

and with cR 6= 0. On the other hand, for the LCFT dual to NMG both sectors are expected

to be logarithmic, with cL = cR = 0. The bulk mode dual to t results in the single double

product appearing in (1.2), while the bulk modes dual to t and t̄ (the logarithmic partner

of the right-moving CFT stress tensor) lead to the two double products appearing in (2.3).

In what follows, we will be interested in better understanding the structure of such double

products, focusing mainly on the TMG case.

2.2 Multipartite generating functions

Our main tool for the study of the multi-particle terms in ZTMG will be multipartite

generating functions. Following e.g. [30] (see also [31] for a recent summary of the technique

3Note that since the vacuum |Ω 〉 is SL(2) invariant, its descendants start at level 2, i.e. from the state

L−2 |Ω 〉. On the other hand, Zt also includes states such as L−1 |t 〉. The holomorphic dimension of t is

2 (1.1), hence the q2.

– 4 –
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and applications), let us review how multipartite generating functions can be written in

terms of Bell polynomials, a result also known as the Faà di Bruno formula.

For any multipartite (or m-partite) number ~k = (k1, k2, . . . , km), i.e. any ordered m-

tuple of non-negative integers not all zeros, let N (z;m)(~k) = Nm(z; k1, k2, . . . , km) be the

number of partitions of ~k, i.e. the number of distinct representations of (k1, k2, . . . , km) as

a sum of multipartite numbers. The generating function of N (z;m)(~k) is defined as:

G(z;X) =
∏
~k≥0

1

1− zxk1
1 x

k2
2 · · ·x

km
m

=
∑
~k≥0

N (z;m)(~k) xk1
1 x

k2
2 · · ·x

km
m . (2.6)

It follows that:

logG(z;X) = −
∑
~k≥0

log(1− zxk1
1 x

k2
2 · · ·x

km
m ) (2.7)

=
∑
~k≥0

∞∑
n=1

zn

n
xnk1

1 xnk2
2 · · ·xnkmm

=

∞∑
n=1

zn

n

1

1− xn1
1

1− xn2
· · · 1

1− xnm

=

∞∑
n=1

zn

n

m∏
j=1

1

1− xnj
, (2.8)

and finally:

∑
~k≥0

N (z;m)(~k)xk1
1 x

k2
2 · · ·x

km
m = exp

( ∞∑
n=1

zn

n
Fm(n)

)
, (2.9)

with Fm(n) =
m∏
j=1

1
1−xn

j
.

2.3 The Faà di Bruno formula and Bell polynomials

Bell polynomials were defined by E.T. Bell in 1934 [32], but their name is due to Rior-

dan [33] who studied the Faà di Bruno formula [34, 35] expressing the n-th derivative of a

composite function f ◦g in terms of the derivatives of f and g [36]. Defining the shorthand

notation: dnh/dxn = hn, dnf/dgn = fn and dng/dtn = gn, it is easy to see that

h1 = f1 , h2 = f1g2 + f2g
2
1 h3 = f1g3 + 3f2g2g1 + f3g

3
1 , . . . (2.10)

Using mathematical induction, one finds

hn = f1βn1(g1, . . . , gn) + f2βn2(g1, . . . , gn) + . . .+ fnβnn(g1, . . . , gn) (2.11)

where βnj(g1, . . . , gn) is a homogeneous polynomial of degree j in g1, . . . , gn.

– 5 –
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It turns out that the study of hn simply reduces to the study of the Bell polynomials :

Yn(g1, g2, . . . , gn) = βn1(g1, . . . , gn) + βn2(g1, . . . , gn) + . . .+ βnn(g1, . . . , gn) . (2.12)

Beyond multipartite partition problems [30] these well-known polynomials find applications

in other aspects of combinatorics, number theory, analysis, probability and algebra.

A useful recurrence relation for the Bell polynomials Yn(g1, g2, . . . , gn) is [30]:

Yn+1(g1, g2, . . . , gn+1) =

n∑
k=0

(
n

k

)
Yn−k(g1, g2, . . . , gn−k)gk+1, (2.13)

We can also write a generating function G(z):

G(z) =
∞∑
n=0

Ynz
n

n!
⇒ log G(z) =

∞∑
n=0

gnz
n

n!
. (2.14)

From the above, one obtains the following explicit expression for the Bell polynomials (also

referred to as the Faà di Bruno formula):

Yn(g1, g2, . . . , gn) =
∑
~k`n

n!

k1! · · · kn!

n∏
j=1

(
gj
j!

)kj

. (2.15)

Here the notation ~k ` n is defined as:

~k ` n = {~k = (k1, k2, . . . , kn) | k1 + 2k2 + 3k3 + · · ·+ nkn = n}. (2.16)

In appendix A we show how this formula can be expanded to give the explicit Bell poly-

nomials, and also briefly explain their combinatoric meaning.

2.4 ZTMG in terms of Bell polynomials

After these preliminaries, we are ready to show that ZTMG can be rewritten as an (expo-

nential) generating function of Bell polynomials. We start by rewriting eq. (1.2) as:

ZTMG(q, q̄) =
∞∏
n=2

1

|1− qn|2
∞∏

m=0

∞∏
m̄=0

1

1− q2qmq̄m̄
, (2.17)

where we have just specialised z in (2.6) to be q2. Then, if we write:

ZTMG = A(q, q̄)B(q, q̄), (2.18)

with

A(q, q̄) =
∞∏
n=2

1

|1− qn|2
and B(q, q̄) =

∞∏
m=0

∞∏
m̄=0

1

1− q2qmq̄m̄
, (2.19)

– 6 –
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and focus on B(q, q̄), we compute:

logB(q, q̄) = −
∑

m≥0,m̄≥0

log(1− q2qmqm̄)

= −
∑

m≥0,m̄≥0

(
−
∞∑
n=1

(q2)n

n
qnmq̄nm̄

)

=
∑

m≥0,m̄≥0

∞∑
n=1

q2n

n
qnmq̄nm̄

=
∞∑
n=1

q2n

n

( ∑
m≥0,m̄≥0

qnmq̄nm̄

)

=
∞∑
n=1

q2n

n!

[
(n− 1)!

∑
m≥0,m̄≥0

qnmq̄nm̄

]

=

∞∑
n=1

q2n

n!
gn. (2.20)

Hence, we can write:

B(q, q̄) =
∞∑
n=0

Yn
n!
q2n, (2.21)

with Yn(g1, g2, . . . , gn) defined as in (2.15) and

gn = (n− 1)!
∑

m≥0,m̄≥0

qnmq̄nm̄. (2.22)

For easy reference, the first few terms in the expansion (2.21) are given in appendix A.

One finds

B(q, q̄) =
1

0!
Y0

(
q2
)0

+
1

1!
Y1

(
q2
)1

+
1

2!
Y2

(
q2
)2

+
1

3!
Y3

(
q2
)3

+ . . .

= 1 + Y1

(
q2
)

+
1

2!
Y2

(
q2
)2

+
1

3!
Y3

(
q2
)3

+ . . . ,

(2.23)

where

Y1 = g1 =
∑
m≥0

∑
m̄≥0

qmq̄m̄ ,

Y2 = g2
1 + g2 =

(∑
m≥0

∑
m̄≥0

qmq̄m̄

)2

+
∑
m≥0

∑
m̄≥0

q2mq̄2m̄

=
∑
m≥0

∑
m̄≥0

(m+ 1)(m̄+ 1)qmq̄m̄ +
∑
m≥0

∑
m̄≥0

q2mq̄2m̄ ,

Y3 = g3
1 + 3g1g2 + g3

=

(∑
m≥0

∑
m̄≥0

qmq̄m̄

)3

+ 3

(∑
m≥0

∑
m̄≥0

qmq̄m̄

)(∑
m≥0

∑
m̄≥0

q2mq̄2m̄

)
+ 2

∑
m≥0

∑
m̄≥0

q3mq̄3m̄ ,

(2.24)

– 7 –
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and so on. Recalling the form (2.18) of the partition function, we can now write

ZTMG(q, q̄) =

∞∏
n=2

1

|1− qn|2
∞∑
k=0

Yk
k!
q2k . (2.25)

We conclude that the double-product part of ZTMG in (1.2) is an exponential generating

series of Bell polynomials. Expressing these polynomials in terms of the gn functions (2.22),

we can write out the first few terms in the expansion:

ZTMG(q, q̄) =

∞∏
n=2

1

|1− qn|2

[
1 +

g1

1!
q2 +

g2
1 + g2

2!

(
q2
)2

+
g3

1 + 3g1g2 + g3

3!

(
q2
)3

+ · · ·
]
.

(2.26)

As we will explain in the next section, the usefulness of this reformulation is that each term

within the square brackets corresponds to a different n-particle sector of the logarithmic

partner state t. The term arising from Y1 contains the descendants of t, the term arising

from Y2 the descendants of t⊗ t and so on. So re-expressing the partition function as (2.26)

will make it easy to compare it to an explicit construction of the descendants.

2.5 The Bell series as a multi-particle generating function

Let us now provide an interpretation of the above combinatorial results from the LCFT

perspective. In particular, we would like to suggest that in the expansion of B(q, q̄), while

the terms (q2)n correspond to single-particle and multi-particle states (t and t ⊗n t re-

spectively), the terms Yn for n ≥ 1 are character representations of descendants of t when

n = 1, and of t⊗n t for n ≥ 2.

We start by recalling the well-known identity for geometric sums:

∞∑
n=0

qn =
1

1− q
. (2.27)

From the above equation, it is easy to see that:

gn = (n− 1)!
∑

m≥0,m̄≥0

qnmq̄nm̄ = (n− 1)!

( ∞∑
m=0

(qn)m
)( ∞∑

m̄=0

(q̄n)m̄
)

= (n− 1)!

(
1

1− qn

)(
1

1− q̄n

)
= (n− 1)!

1

|1− qn|2
.

(2.28)

This allows us to rewrite (2.26) up to third order in the expansion of
(
q2
)

as:

ZLCFT(q, q̄) =

∞∏
n=2

1

|1− qn|2

{
1 +

(
q2
)1

|1− q|2
+

1

2!

[(
1

|1− q|2

)2

+
1

|1− q2|2

] (
q2
)2

+
1

3!

[(
1

|1− q|2

)3

+ 3
1

|1− q|2
1

|1− q2|2
+

2

|1− q3|2

] (
q2
)3

+ · · ·

}
,

(2.29)

where we now write ZLCFT to emphasise that we would like to interpret it as an LCFT

partition function. One can immediately see that the first two terms in the above expansion

– 8 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
7

are the same as those in (2.2). As explained in [19], the “1” in the braces times the overall

prefactor corresponds to the descendants of the vacuum, where we note that due to SL(2)

invariance we have L−1 |Ω〉 = L̄−1 |Ω〉 = 0, so the descendants encoded in the prefactor

are all the states created by products of the L−k and L̄−k̄, with k, k̄ ≥ 2.

As also shown in [19], the next term, proportional to q2, corresponds to the descendants

of the logarithmic partner t. Let us note that the term inside the braces contains only the

global SL(2)× SL(2) descendants of type Lk
−1 |t〉 and L̄k̄

−1 |t〉, while the prefactor provides

the remaining Virasoro descendants. Although for the single-particle t states this is just

a trivial rewriting, this observation will be crucial in understanding the structure of the

multi-particle states.

Before proceeding to the study of the multi-particle states of t, let us comment on our

expectations regarding such states in the context of the proposed TMG/LCFT correspon-

dence. In a generic CFT, such states correspond to operators appearing in the (iterated)

OPE of t with itself. Identifying these states would then require knowledge of the fusion

rules of the theory, which, lacking a concrete CFT construction, we do not have in this

case. However, here we are assuming that the LCFT has a gravity dual, which, similarly to

the study of [37] for the higher-spin minimal models, implies that the fusion rules should

reduce to just tensor product rules (note that, although in our case cL = 0, the logarithmic

anomaly bL = −3l/GN is large and provides the “large N” parameter). In particular, as

in [37], we will assume that the conformal weights of these tensor product states are addi-

tive, as a minimal requirement for a match to the multiparticle states on the gravity side to

be possible.4 This reasoning implies that a k-particle state of |t〉 with (L0, L̄0) eigenvalues

(2k, 0) exists with multiplicity 1, and we will label it |t〉 ⊗k |t〉. This explains the q2k term

in (2.25)5 and our task in the following will be to understand the combinatorics leading

to the additional contributions coming from Yk/k! and the overall prefactor, which we will

identify with the descendants of |t〉 ⊗k |t〉.
To this end, let us now proceed to consider the third term in the braces in (2.29),

which comes from the Y2 term in the Bell expansion. We claim that this term corresponds

to the descendants of the two-particle state |t〉 ⊗ |t〉, with the term in the braces counting

the contributions of only the global SL(2) × SL(2) (L−1 and L̄−1) descendants, while the

overall prefactor counts the L−k and L̄−k̄ descendants as above. However we see that,

unlike the single-t sector, here the way that the global SL(2) × SL(2) generators create

states appears to be different from that of the remaining Virasoro generators. So in the

following we will study the combinatorics of the L−1 and L̄−1 descendants separately from

the L−k, L̄−k̄ descendants for k, k̄ ≥ 2.

To do this, let us rewrite the two-particle term (suppressing the overall q4 for clarity) as

1

2!
Y2 =

1 + qq̄

(1− q)(1− q2)(1− q̄)(1− q̄2)
= (1 + qq̄)

∑
k=0

∑
k̄=0

p(k, 2)qkp(k̄, 2)q̄k̄

=
∑
k=0

∑
k̄=0

p(k, 2)p(k̄, 2)qkq̄k̄ +
∑
k=1

∑
k̄=1

p(k − 1, 2)p(k̄ − 1, 2)qkq̄k̄ ,
(2.30)

4A potential subtlety, observed in [37], is that the state with additive quantum numbers might actually

be a descendant of the tensor product state, with the tensor product state itself becoming null in the large-N

limit. However, this should have no effect on the counting, which would then start from the additive state.
5Note that Yk/k! = 1 + · · · so in the expansion (2.25) there is a q2k term with coefficient 1 for all k.
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where p(k, 2) denotes the number of partitions of k into 2 parts6 and where in the last line

we have changed the range of summation to more easily see the contributions to any given

term of order (k, k̄). Noting that the value of p(k, 2) =
⌊
k
2 + 1

⌋
, we can easily distinguish

four different cases, depending on whether the levels k and k̄ (or equivalently, the numbers

of L−1 and L̄−1 operators acting on |t〉 ⊗ |t〉) are even or odd. Focusing on a given term

of level qkq̄k̄ (where we are still suppressing the overall q4), we find:

Number of states =



2p(k, 2)p(k̄, 2) if k odd and k̄ odd

2p(k, 2)p(k̄, 2)− p(k, 2) if k odd and k̄ even

2p(k, 2)p(k̄, 2)− p(k̄, 2) if k even and k̄ odd

2p(k, 2)p(k̄, 2)− p(k, 2)− p(k̄, 2) + 1 if k even and k̄ even

(2.31)

The interpretation of this counting is as follows: the number of different states we can

create from k L−1 operators and k̄ L̄−1 operators is naively 2 × p(k, 2) × p(k̄, 2). For

instance, if k = 3 and k̄ = 1 we can partition the three L−1 operators in two ways (since

p(3, 2) = 2): L3
−1⊗1 and L2

−1⊗L−1. Then, we can introduce the single L̄−1 operator (since

p(1, 2) = 1) in two ways (L̄−1 ⊗ 1 and 1⊗ L̄−1), to obtain four different overall operators:

L3
−1L̄−1⊗ 1, L3

−1⊗ L̄−1, L2
−1L̄−1⊗L−1 and L2

−1⊗L−1L̄−1. However, when k̄ is even, this

algorithm overcounts, as one of the partitions will be L̄
k̄
2
−1 ⊗ L̄

k̄
2
−1 which is symmetric. So

one needs to subtract a factor of p(k, 2). Similarly if k̄ is odd and k is even one subtracts

p(k̄, 2). If both k and k̄ are even there are two such symmetric partitions which need to be

subtracted, but then one undercounts by the doubly symmetric state L
k
2
−1L̄

k̄
2
−1 ⊗ L

k
2
−1L̄

k̄
2
−1

which needs to be added.

The outcome of this reasoning is very simple: the Y2 term in (2.25), which led to the

third term in the braces in (2.29), simply counts all the descendants of |t〉 ⊗ |t〉 by the

action of L−1 and L̄−1 in all possible different ways. Bringing back the overall factor of

q4, a given term at absolute level l, l̄ in B(q, q̄) will count all the different states by all

independent permutations of l − 4 L−1 and l̄ L̄−1 generators. (The states will need to be

symmetrised to account for bosonic statistics, but this will not affect the above counting

based on the partitions). After this counting is done, it is straightforward to account for

the overall prefactor, whose combinatorics are precisely the same as in the single-particle

sector. Of course, in explicitly constructing the descendants, instead of e.g. L−k acting on

|t〉 we need to act with the appropriate coproduct ∆(L−k) = L−k⊗1+1⊗L−k on |t〉⊗|t〉.
To illustrate how this works, we work out some explicit examples in section 4.

All the above was for the 2-particle sector, however the same holds for the higher

terms in the Bell expansion as well. For instance, the fourth term in the braces in (2.29)

is equal to

1

3!
Y3 q

6 =
1 + qq̄ + qq̄(q + q̄) + q2q̄2 + q3q̄3

(1− q)(1− q2)(1− q3)(1− q̄)(1− q̄2)(1− q̄3)
q6 (2.32)

6Recall that, in general,
∏k

l=0
1

1−ql
=

∑∞
n=0 p(n, k)qn.
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where in the denominator we recognise the generating function of the partitions p(k, 3) and

p(k̄, 3) of k and k̄ into 3 parts, while the numerator will account for the partitions with

symmetric parts. Although we will not delve into a detailed study of the various cases as

for the two-particle case, we provide examples of how the counting works in the 3-particle

case in section 4. We can thus confirm that the Y3 term in B(q, q̄) correctly counts L−1

and L̄−1 descendants of |t〉 ⊗ |t〉 ⊗ |t〉.
To conclude this section, the splitting of ZTMG into A(q, q̄) and B(q, q̄) and the rewrit-

ing of B(q, q̄) as a Bell generating function allowed us to simply understand the counting of

multi-particle states: each Yn term in B(q, q̄) contains all the L−1 and L̄−1 descendants of

|t〉⊗n |t〉, while the A(q, q̄) prefactor contains the L−k and L−k̄ descendants with k, k̄ ≥ 2.

3 Bell polynomials and the plethystic exponential

In the previous section, we described how reformulating the TMG partition function as a

generating function of Bell polynomials helps to elucidate the counting of multi-particle

states and their descendants. We would now like to draw a parallel between these results

and a mathematical tool known as the plethystic exponential, an exponential generating

function of Hilbert series.

Also called Molien or Poincaré function, the Hilbert series is a generating function

familiar in algebraic geometry for counting the dimension of graded components of the co-

ordinate ring. Its approach has been developed and extensively used in theoretical physics,

particularly in the counting of BPS states in supersymmetric gauge theory, under the

so-called Plethystic Program initiated in [23, 24] (earlier work in the context of duality

appeared in [38]).

The plethystic exponential generates all symmetric combinations of the variables of

the Hilbert series, and in the context of the Plethystic Program is used to obtain the gen-

erating function of multi-trace operators in gauge theory from the generating function of

single-trace operators. This formalism can equally well be applied to our setting of gener-

ating multi-particle states. Following [23, 24] we define the bosonic plethystic exponential

PEB as7

∞∏
n=0

1

(1− νqn)an
= PEB[G1(q)] ≡ exp

( ∞∑
k=1

νk

k
G1

(
qk
))

=

∞∑
N=0

νNGN (q), (3.1)

where

G1(q) =

∞∑
n=0

anq
n . (3.2)

Here the integer an indicates the number of operators with dimension n. The plethystic

exponential takes a certain function G1(q) and, through its exponentiation, generates new

partition functions GN (q) counting all N -tuple symmetric products of the constituents of

G1(q), in accordance with bosonic statistics. Depending on what is being counted, the

7The definition of the plethystic exponential in this specific form appears in [39].
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term ν is sometimes referred to as root coordinates, fugacities or monomials in weight (see

e.g. [40] for a discussion).

The plethystic exponential in one variable q can also be generalised to a set of vari-

ables qi [23]:8

∞∏
p1,...,pm

1

(1− νqp1
1 · · · q

pm
m )

ap1,...,pm
= PEB [G1 (q1, . . . , qm)]

≡ exp

( ∞∑
k=1

νk

k
G1

(
qk1 , . . . , q

k
m

))

=

∞∑
N=0

νNGN (q1, . . . , qm),

(3.3)

with:

G1(q1, . . . , qm) =

∞∑
p1,...,pm=0

ap1,...,pmq
p1
1 · · · q

pm
m . (3.4)

Let us now show that our Bell polynomial results are the same as what one would obtain

by following the plethystic exponential prescription in the case of two variables. We will

make the following specialisation of the variables above:

ap1,p2 = 1 , q1 = q , q2 = q̄ , p1 = m , p2 = m̄ , ν = q2 . (3.5)

We then immediately recover the double product B (q, q̄) in (2.21). In our case, the term

ν is specialised to be a monomial in weight. Then, taking:

G1(q, q̄) =

∞∑
m≥0,m̄≥0

qmq̄m̄, (3.6)

the plethystic exponential of G1(q, q̄) is

PEB [G1(q, q̄)] = exp

( ∞∑
k=1

(
q2
)k
k
G1

(
qk, q̄k

))
. (3.7)

Expanding the exponential, we obtain a series in powers of q2:

B (q, q̄) = PEB [G1(q, q̄)]

= 1 + G1(q, q̄)
(
q2
)

+
G2

1(q, q̄) + G1

(
q2, q̄2

)
2

(
q2
)2

+
G3

1(q, q̄) + 3G1(q, q̄)G1

(
q2, q̄2

)
+ 2G1

(
q3, q̄3

)
6

(
q2
)3

+
G4

1(q, q̄) + 6G2
1(q, q̄)G1

(
q2, q̄2

)
+ 3G2

1

(
q2, q̄2

)
+ 8G1(q, q̄)G1

(
q3, q̄3

)
+ 6G1

(
q4, q̄4

)
24

(q2)4

+ · · ·
(3.8)

8We write the formula for any number of variables to facilitate comparison with [23], however we will

immediately specialise to the case of two variables q1, q2, which will be sufficient for our purposes.

– 12 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
7

Finally, it is easy to see that the coefficients of
(
q2
)N

are equal to the Bell polynomials at

each order, by using the identification:

(k − 1)!G1

(
qk, q̄k

)
= gk (q, q̄) . (3.9)

In analogy with the aforementioned applications, the above derivation shows that the

Hilbert series G1(q, q̄) counts single particles, while the plethystic exponential PEB [G1(q, q̄)]

counts multi-particles, and provides further confirmation that we have reorganized ZTMG

in a way that clearly shows the single particle and multi-particle Hilbert spaces of the

logarithmic states.

We close this section by emphasising that the similarity between our method and the

one of the plethystic exponential is not unexpected. After all, Bell polynomials are a result

of plethysm associated with multipartite exponential generating functions. However, the

Bell polynomial formalism allows us to uncover hidden symmetry actions on the n-particle

terms in the partition function, as we will see in section 5. Before that, however, we will

demonstrate how our results match with an explicit counting of the multi-particle states

and their descendants in the dual LCFT.

4 Explicit counting of multi-particle descendants

To illustrate how each Bell polynomial term in (2.26) counts the descendants of multi-

particle states of the logarithmic partner t, we show how the counting works for some

low-lying states. As indicated at the end of section 2.5, we will follow a two-step procedure

for constructing the multi-particle t states. First, we will focus on the B(q, q̄) part and

identify the states corresponding to the terms in the Bell polynomial formula. As argued,

these are constructed by the symmetrised action of the L−1 and L̄−1 operators on |t〉⊗n |t〉.
Then, we will add the descendants of each of these states by the action of the L−k and L̄−k
operators, with k ≥ 2, which will correspond to the prefactor A(q, q̄) in (2.18).

4.1 Matching of the Bell series

Our claim is that the n-th term in Bell polynomial expansion (the terms inside the square

brackets in (2.26)) counts all the symmetrised (due to bosonic statistics) descendants of

|t〉 ⊗n |t〉 by the action of L−1 and L̄−1.

Recall that the (holomorphic,antiholomorphic) weight of |t〉 ⊗n |t〉 is (2n, 0). So to

construct a descendant at absolute level (l, l̄), we will need to partition l − 2n L−1 and l̄

L̄−1 generators across n copies of t, modulo the action of Sn.

2-particle states. We will start with the expansion of the two-particle component of the

Bell formula. It gives:

1

2!
Y2(q2)2 =

g2
1 + g2

2!
(q2)2 = q4 + (q5 + q4q̄1) + (2q6 + 2q5q̄1 + 2q4q̄2)

+ (2q7 + 3q6q̄1 + 3q5q̄2 + 2q4q̄3) + · · ·
(4.1)
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The descendants of t⊗ t corresponding to the expansion (4.1) are9

(4, 0) : t⊗ t
(5, 0) : L−1t⊗ t
(4, 1) : L̄−1t⊗ t
(6, 0) : L2

−1t⊗ t , L−1t⊗ L−1t

(5, 1) : L−1L̄−1t⊗ t, L−1t⊗ L̄−1t

(4, 2) : L̄2
−1t⊗ t , L̄−1t⊗ L̄−1t

(7, 0) : L3
−1t⊗ t , L2

−1t⊗ L−1t

(6, 1) : L2
−1L̄−1t⊗ t , L2

−1t⊗ L̄−1t , L−1t⊗ L−1L̄−1t

· · ·

(4.2)

Here all states should be understood as completely symmetrised due to bosonic statistics,

e.g. L2
−1t ⊗ L̄−1t → 1

2(L2
−1t ⊗ L̄−1t + L̄−1t ⊗ L2

−1t). We suppress the symmetrisation to

avoid clutter.

It can be seen (also by working out examples at higher levels) that the explicit states

precisely match the expansion (4.1). This is expected, of course, according to the discussion

in section 2.5.

3-particle states. To count the descendants of t⊗ t⊗ t we expand

1

3!
Y3(q2)3 =

g3
1 + 3g1g2 + g3

3!
(q2)3

= q6 + (q7 + q6q̄) + (2q8 + 2q7q̄ + 2q6q̄2)

+ (3q9 + 4q8q̄ + 4q7q̄2 + 3q6q̄3) + · · ·

(4.3)

According to the discussion in section 2.5, these states will be descendants of t⊗ t⊗ t:

(6, 0) : t⊗ t⊗ t
(7, 0) : L−1t⊗ t⊗ t
(6, 1) : L̄−1t⊗ t⊗ t
(8, 0) : L2

−1t⊗ t⊗ t , L−1t⊗ L−1t⊗ t
(7, 1) : L−1L̄−1t⊗ t⊗ t , L−1t⊗ L̄−1t⊗ t
(6, 2) : L̄2

−1t⊗ t⊗ t , L̄−1t⊗ L̄−1t⊗ t
(9, 0) : L3

−1t⊗ t⊗ t , L2
−1t⊗ L−1t⊗ t , L−1t⊗ L−1t⊗ L−1t

(8, 1) : L2
−1L̄−1t⊗ t⊗ t , L2

−1t⊗ L̄−1t⊗ t , L−1L̄−1t⊗ L−1t⊗ t , L−1t⊗ L−1t⊗ L̄−1t

· · · (4.4)

Again, these states should be symmetrised, e.g. L2
−1t⊗ L̄−1t⊗ t actually means:

L2
−1t⊗ L̄−1t⊗ t+ L2

−1t⊗ t⊗ L̄−1t+ t⊗ L2
−1t⊗ L̄−1t+ L̄−1t⊗ L2

−1t⊗ t+ L̄−1t⊗ t⊗ L2
−1t+ t⊗ L̄−1t⊗ L2

−1t

6
.

9From now on we will write t⊗ t as shorthand for |t 〉 ⊗ |t 〉, and similarly for higher tensor products.
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As before, we find agreement with the Bell series (4.3). Similarly, one can confirm that

Yn correctly counts the higher-order descendants of the action of L−1 and L̄−1 on t ⊗n t.

It is important to note that the above way of producing descendants when acting on

multi-particle states cannot be written in terms of the standard Lie-algebraic coproduct

∆(L−1) = L−1⊗1 + 1⊗L−1 (and similarly for L̄−1) acting on t⊗ t. Simply creating states

with powers of the coproduct (∆(Lk
−1) = (∆(L−1))k), as we will do in the next section,

would lead to only one state at each level, and would not match B(q, q̄). The coproduct

structure behind this counting will be the subject of an upcoming publication [41].

4.2 Matching of the full partition function

Having confirmed that each term in the Bell expansion correctly counts the L−1 and L̄−1

descendants of t⊗n t, we now need to ensure that the full partition function ZTMG can be

matched to descendants of t ⊗n t. However, this is immediate to see by considering the

prefactor A(q, q̄) in (2.18). Since each term in the n-particle Bell expansion is multiplied by

the same prefactor A(q, q̄), the counting will be as in the single-particle sector, i.e. through

the combinatorics of the L−k and L̄−k̄ Virasoro generators, with k, k̄ ≥ 2. The only

difference is that to act on the product states t⊗n t one needs to consider the appropriate

combinations of the Lie-algebraic coproduct ∆(L−k) = L−k ⊗ 1 + 1⊗ L−k.

2-particle states. Including the prefactor, we find the following result for the two-

particle spectrum:

Z
(tt)
TMG =

∞∏
n=2

1

|1− qn|2

(
g2

1 + g2

2!

)
q4 (4.5)

= q4 + (q5 + q4q̄) + (3q6 + 2q5q̄ + 3q4q̄2) + (4q7 + 4q6q̄ + 4q5q̄2 + 4q4q̄3) + · · ·

Let us illustrate the counting by way of examples. For instance, at level (7, 0) two states

are already included in (4.2). The additional two states are descendants of states of lower

level in (4.2):

∆(L−2)
L−1t⊗ t+ t⊗ L−1t

2

= (L−2 ⊗ 1 + 1⊗ L−2)
L−1t⊗ t+ t⊗ L−1t

2

=
L−2L−1t⊗ t+ L−2t⊗ L−1t+ L−1t⊗ L−2t+ t⊗ L−2L−1t

2

(4.6)

and

∆(L−3)t⊗ t = (L−3t⊗ t+ t⊗ L−3t) , (4.7)

where we have made the symmetrisation explicit. At level (5, 2), we have 3 states included

in (4.2) along with:

∆(L̄−2)
L−1t⊗ t+ t⊗ L−1t

2

=
(L̄−2L−1t⊗ t+ L̄−2t⊗ L−1t+ L−1t⊗ L̄−2t+ t⊗ L̄−2L−1t

2
. (4.8)

One can similarly understand the counting of higher two-particle terms as well.10

10Note that when considering coproducts of multiple generators one should take into account the com-

patibility of the product and coproduct, e.g. ∆(L2
−2) = (∆(L−2))2 = L2

−2 ⊗ 1 + 2L−2 ⊗ L−2 + 1⊗ L2
−2.
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3-particle states. Here the relevant expansion is

Z
(ttt)
TMG =

∞∏
n=2

1

|1− qn|2

(
g3

1 + 3g1g2 + g3

3!

)
q6

= q6 + (q7 + q6q̄) + (3q8 + 2q7q̄ + 3q6q̄2) + (5q9 + 5q8q̄ + 5q7q̄2 + 4q6q̄3) + · · ·
(4.9)

To construct descendants of the 3-particle states, one needs to consider the appropriate

composition of coproducts of the L−k and L̄−k̄ generators, with k, k̄ ≥ 2, so that it acts on

three copies of the Hilbert space:11

(∆⊗1)∆(L−n) = (∆⊗1)(L−n⊗1+1⊗L−n) = L−n⊗1⊗1+1⊗L−n⊗1+1⊗1⊗L−n . (4.10)

As an example, at level (9, 0), we have already counted 3 states in (4.4) so we require

two more. They are given by

(∆⊗ 1)∆(L−2)
L−1t⊗ t⊗ t+ t⊗ L−1t⊗ t+ t⊗ t⊗ L−1t

3
and

(∆⊗ 1)∆(L−3)t⊗ t⊗ t .
(4.11)

For the (8, 1) states, we already have four so we need to add one more:

(∆⊗ 1)∆(L−2)
L̄−1t⊗ t⊗ t+ t⊗ L̄−1t⊗ t+ t⊗ t⊗ L̄−1t

3
. (4.12)

It is straightforward to proceed to higher levels and construct the explicit states that agree

with the required counting.

We conclude that the t multi-particle states in ZTMG correctly arise from the hybrid

counting we have outlined above. To summarise, one first constructs all possible L−1, L̄−1

descendants of t ⊗n t, where the action of the generators is only constrained by overall

symmetry of the multi-particle wavefunction. This agrees with the corresponding Yn term

in the Bell expansion. Then, one constructs descendants of these states in the standard

way, by acting with the appropriate coproducts of the generators L−k, L̄−k̄ with k, k̄ ≥ 2.

This accounts for the prefactor A(q, q̄).

5 A ladder action on ZTMG

In this section, we return to a more detailed study of the Bell polynomial version of ZTMG,

with the goal of uncovering some additional structure. We will see that the partition

function admits a natural action of ladder (raising/lowering) operators. From these, one

can further construct an sl(2) symmetry of the n-particle terms in ZTMG.

11Associativity of the Lie-algebraic coproduct guarantees that this is equal to the other combination we

could have written, i.e. (1⊗∆)∆(L−n). Similarly, there is a unique coproduct for every n-particle sector.
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5.1 Monomiality principle

The operators we are concerned with will act on B (q, q̄), and we will see that they generate

an sl(2) algebra. In order to motivate the appearance of this action, let us briefly intro-

duce the monomiality principle, which is a useful tool for studying properties of special

polynomials, such as the Bell polynomial.

The idea of monomiality is rooted in the early 1940s, when J.F. Steffensen, in a pa-

per [42] that only recently received attention, suggested the concept of the poweroid. A

resurgence of the theory arose in the work of G. Dattoli et al., who systematically made

use of the principle [43, 44]. In essence, all polynomial families, in particular special poly-

nomials, are identical, as it suffices to transform a basic set of monomials using suitable

(derivative and multiplication) operators to obtain the polynomials. This result, theo-

retically proven in [45] and [46], is closely related to the theory of Umbral Calculus [47],

since the exponent, for instance in the monomial xn, transforms into its “shadow” in the

polynomial pn(x).

Let us consider the Heisenberg-Weyl algebra, i.e. the nilpotent algebra with generators

D̂ and X̂ satisfying the commutation relations:

[D̂, X̂ ] = 1, [D̂, 1] = [X̂ , 1] = 0 . (5.1)

This algebra encodes the structure of raising and lowering operators, which arise in canoni-

cal quantisation. Here we will be interested in its uses in combinatorial physics, in relation

to the monomiality principle, such as in [48].

The monomiality principle is based on the fact that a given family of polynomials

pn(x) can be viewed as quasi-monomial under the action of two operators D̂ and X̂ , called

“derivative” and “multiplicative” operators respectively, if it satisfies the recurrence rela-

tions:

X̂pn(x) = pn+1(x)

D̂pn(x) = npn−1(x) (5.2)

pn(0) = 1.

These operators can immediately be seen as raising and lowering operators acting on the

polynomials pn(x). eqs. (5.2) also imply the eigenproperty of the operator X̂ D̂:

X̂ D̂pn(x) = npn(x). (5.3)

It is interesting to note that the operators D̂ and X̂ satisfy the commutation relation:

[D̂, X̂ ] = D̂X̂ − X̂ D̂ = 1, (5.4)

hence displaying a Weyl algebra structure.

5.2 Ladder action on the Bell polynomials

Let us now focus specifically on the Bell polynomials. Motivated by a construction in [49],

we define an operator X̂ (the concrete version of the abstract X̂ above which is appropriate
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to the Bell polynomials) as:

X̂ = g1 +

∞∑
k=1

gk+1
∂

∂gk
. (5.5)

This operator acts as a multiplication operator on the Bell polynomials in n variables

denoted in the previous section as Y (g1, g2, . . . , gn). For Yn = Y (g1, g2, . . . , gn), we there-

fore have:

X̂Yn = Yn+1. (5.6)

It is now natural to define a second operator D̂ as

D̂ =
∂

∂g1
. (5.7)

This operator acts as derivative operator on Yn:

D̂Yn = nYn−1. (5.8)

Finally, the combined operator X̂D̂ acts on Yn as:

X̂D̂Yn = nYn. (5.9)

It is straightforward to verify that the operators X̂ and D̂ are generators of the Heisenberg-

Weyl algebra. We will next show that these operators can be used to construct a

sl(2) algebra.

5.3 sl(2) action on the Bell polynomials

Let us consider the standard sl(2) algebra basis {f, e, h}, satisfying

[f, e] = h, [h, e] = 2e, [h, f ] = −2f. (5.10)

Now, given a Heisenberg-Weyl algebra with generators X̂ and D̂ as above, it is well

known [50] that one can obtain a standard sl(2) algebra through the definitions:

f =
1

2
X̂2, h = X̂D̂ +

1

2
, e =

1

2
D̂2 . (5.11)

Given the results of the previous section, one can easily verify how these sl(2) generators

act on the Bell polynomials:

eYn =
1

2
n(n− 1)Yn−2 , fYn =

1

2
Yn+2 , hYn =

(
n+

1

2

)
Yn . (5.12)

From this action we can also confirm that the algebra closes acting on the Bell

polynomials:

[e, f ]Yn = (ef − fe)Yn = e

(
1

2
Yn+2

)
− f

(
1

2
n(n− 1)

)
Yn−2

=
1

4
[(n+ 2)(n+ 1)− n(n− 1)]Yn =

(
n+

1

2

)
Yn

= hYn.

(5.13)
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Yi

h

Yi+1

h

Yi+2

h

Yi+3

h

Yi+4

h

· · ·· · ·
X̂ X̂ X̂ X̂

D̂ D̂ D̂ D̂

f f

e e

Figure 1. Ladder operators acting on the Bell polynomials Yi. Note that the sl(2) raising/lowering

action only connects even or odd polynomials, depending on whether the initial i is even or odd.

Similarly, we can check that

[h, f ]Yn = 2fYn and [e, h]Yn = 2eYn. (5.14)

We summarise the action of the Heisenberg-Weyl operators X̂, D̂ and the sl(2) generators

f, e, h in figure 1.

Let us emphasise that the general statements on monomiality ensure that the structures

discussed in this section exist for any polynomial family. What is specific to the Bell

polynomials is the precise form of the X̂ and D̂ operators in (5.5) and (5.7). We emphasise

that this sl(2) action relates the different multi-particle sectors in the partition function

and is not directly related to the SL(2) symmetry generated by the L−1, L0, L1 Virasoro

operators (which can only act within a given multi-particle sector).

Clearly, the raising/lowering and sl(2) actions described above can be used to quickly

produce the right counting of states in a given multi-particle sector given the knowledge of

the single-particle or another multi-particle sector. It would be interesting to understand

whether these actions can be used (for instance) to formulate consistency conditions on

putative multi-particle partition functions.

5.4 Ladder action on the plethystic exponential

For completeness, we now show how from the construction of new operators satisfying

the Heisenberg-Weyl algebra, an sl(2) action can be obtained on successive terms of the

plethystic exponential expansion of PEB [G1(q, q̄)] (where we are of course restricting to the

very special choices in (3.5)). We start by establishing some notation conventions, writing

the plethystic exponential expansion as:

PEB [G1(q, q̄)] = PE(1)

(
q2
)1

+
1

2!
PE(2)

(
q2
)2

+
1

3!
PE(3)

(
q2
)3

+ . . . ,

with:

PE(1) = G1(q, q̄) , PE(2) = G2
1(q, q̄) + G1

(
q2, q̄2

)
,

PE(3) = G3
1(q, q̄) + 3G1(q, q̄)G1

(
q2, q̄2

)
+ 2G1

(
q3, q̄3

)
, · · ·

(5.15)
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PEi

h

PEi+1

h

PEi+2

h

PEi+3

h

PEi+4

h

· · ·· · ·
X̂ X̂ X̂ X̂

D̂ D̂ D̂ D̂

f f

e e

Figure 2. Ladder operators acting between the terms of the plethystic exponential PEi. The sl(2)

raising/lowering action only connects even or odd terms, depending on whether the initial i is even

or odd.

For the sake of clarity, we also write G1

(
qk, q̄k

)
= G1,k. Now, let us introduce an operator

X̂ as:

X̂ = G1,1 +

∞∑
k=1

kG1,k+1
∂

∂G1,k
, (5.16)

it is easy to see that it acts as a multiplication operator on PE(k) such that:

X̂PE(k) = PE(k+1). (5.17)

We then define the operator D̂ as

D̂ =
∂

∂G1,1
, (5.18)

which acts as derivative operator on PE(k):

D̂PE(k) = kPE(k−1), (5.19)

and finally, the operator X̂D̂ that acts on PE(k) as:

X̂D̂PE(k) = kPE(k). (5.20)

It is straightforward to verify that the operators X̂ and D̂ are generators of the Heisenberg-

Weyl algebra. From there, the following set of generators:

f =
1

2
X̂2, h = X̂D̂ +

1

2
, e =

1

2
D̂2 (5.21)

will satisfy an sl(2) algebra on G1,k.

The actions of the Heisenberg-Weyl and sl(2) operators on PE(k) are illustrated in

figure 2.

As in the Bell polynomial picture, we see that the single and multi-article components

of the partition function are all related via the action of ladder (multiplication/derivative,

or raising/lowering) operators.
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6 Extension to NMG and higher-spin TMG

In this section, we show that the partition functions of New Massive Gravity and Topo-

logically Massive Spin-3 Gravity at the critical point can also be expressed in terms of

Bell polynomials.

6.1 Partition function of critical New Massive Gravity

The partition function of New Massive Gravity at the critical point was also obtained

in [19] and is given in (2.3). As NMG is non-chiral (having cL = cR = 0), the partition

function is symmetric in q and q̄. To express (2.3) in terms of Bell polynomials, we start

by rewriting:

ZNMG(q, q̄) =
∞∏
n=2

1

|1− qn|2
∞∏

m=0

∞∏
m̄=0

1

1− q2qmq̄m̄

∞∏
l=0

∞∏
l̄=0

1

1− q̄2qlq̄ l̄

= A(q, q̄)B(q, q̄)B̄(q, q̄).

Following essentially the same methods as for TMG, this expression can be rewritten in

terms of Bell polynomials as:

ZNMG(q, q̄) =
∞∏
n=2

1

|1− qn|2

( ∞∑
l=0

Yl
l!

(
q2
)l)( ∞∑

m=0

Ym
m!

(
q̄2
)m)

. (6.1)

We can further rewrite it in a binomial-type form as:

ZNMG(q, q̄) =

∞∏
n=2

1

|1− qn|2

 ∞∑
k=0

k∑
j=0

Yj
j!

Yk−j
(k − j)!

(q2)j(q̄2)k−j

 . (6.2)

To see how this is in agreement with counting of states in a non-chiral LCFT dual, let us

expand the terms in the square bracket as

B(q, q̄)B̄(q, q̄) = 1 + Y1q
2 + Y1q̄

2 +

(
1

2
Y2q

4 + Y 2
1 q

2q̄2 +
1

2
Y2q̄

4

)
+

(
1

3!
Y3q

6 +
1

2
Y2Y1q

4q̄2 +
1

2
Y1Y2q

2q̄4 +
1

3!
Y3q̄

6

)
+ · · ·

(6.3)

As discussed in [19] and reviewed in section 2.1, the first three terms correspond to the

vacuum sector, the single-particle t sector and the single-particle t̄ sector. These are the

terms contributing to Z
(0)NMG
LCFT in (2.5). The terms of the form 1/n!Ynq

2n and their con-

jugates 1/n!Ynq̄
2n are descendants of t ⊗n t and t̄ ⊗n t̄ and will be counted exactly as for

TMG. So the first term of a new type is

Y 2
1 q

2q̄2 = q2q̄2 + (2q3q̄2 + 2q2q̄3) + (3q4q̄2 + 4q3q̄3 + 3q2q̄4)

+ (4q5q̄2 + 6q4q̄3 + 6q3q̄4 + 4q2q̄5) + · · · (6.4)

– 21 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
7

Clearly, these will be descendants of the two-particle state t⊗ t̄. We find explicitly12

(2, 2) : t⊗ t̄
(3, 2) : L−1t⊗ t̄ , t⊗ L−1t̄

(2, 3) : L̄−1t⊗ t̄ , t⊗ L̄−1t̄

(4, 2) : L2
−1t⊗ t̄ , L−1t⊗ L−1t̄ , t⊗ L2

−1t̄

(3, 3) : L−1L̄−1t⊗ t̄ , L−1t⊗ L̄−1t̄ , L̄−1t⊗ L−1t̄ , t⊗ L−1L̄−1t̄

(2, 4) : L̄2
−1t⊗ t̄ , L̄−1t⊗ L̄−1t̄ , t⊗ L̄2

−1t̄

· · ·

(6.5)

We find that the number of states agrees with the counting in (6.4). Similarly, we can look

at the states arising from

1

2
Y1Y2q

4q̄2 = q4q̄2 + (2q5q̄2 + 2q4q̄3) + (4q6q̄2 + 5q5q̄3 + 4q4q̄4) + · · · (6.6)

which will be three-particle descendants of t⊗ t⊗ t̄. We can write

(4, 2) : t⊗ t⊗ t̄
(5, 2) : L−1t⊗ t⊗ t̄ , t⊗ t⊗ L−1t̄

(4, 3) : L̄−1t⊗ t⊗ t̄ , t⊗ t⊗ L̄−1t̄

(6, 2) : L2
−1t⊗ t⊗ t̄ , L−1t⊗ L−1t⊗ t̄ , L−1t⊗ t⊗ L−1t̄ , t⊗ t⊗ L2

−1t̄

(5, 3) : L−1L̄−1t⊗ t⊗ t̄, L−1t⊗ L̄−1t⊗ t̄, L−1t⊗ t⊗ L̄−1t̄,

L̄−1t⊗ t⊗ L−1t̄, t⊗ t⊗ L−1L̄−1t̄

· · ·

(6.7)

The counting of 4-particle and higher sectors will proceed in a similar manner. As for TMG,

the overall prefactor in (6.2) corresponds to descendants of the above states created by the

appropriate combinations of coproducts ∆(L−k), k ≥ 2. In this way, the Bell polynomial

expansion has led to a better understanding of the multi-particle sector of ZNMG.

6.2 Partition function of critical topologically massive spin-3 gravity

In [51, 52] and separately in [28], critical topologically massive gravity was generalised to

spin-3 as well as higher spins. It was seen that, analogously to the spin-2 case, the spin-3

mode becomes degenerate with a bulk mode at the critical point µl = 1, leading to the

expectation that the dual CFT to higher-spin TMG is logarithmic, and has W-algebra

symmetry.13 A check of this proposal was performed in [29], where the 1-loop partition

12We can of course symmetrise these states, e.g. L−1t ⊗ t̄ → 1
2
(L−1t ⊗ t̄ + t̄ ⊗ L−1t), without affecting

the counting.
13The two proposals differ in their choices of boundary conditions, and as a consequence [51, 52] find a

chiral right-moving CFT, not an LCFT as in [28]. Furthermore, the trace part of the spin-3 field is found

to be pure gauge in [51, 52] and discarded, while in [28] it is found to be physical (and kept).
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function for topologically massive higher spin gravity was calculated (for arbitrary spin).

Focusing on the spin-3 case for concreteness, the result of [29] takes the form:

Z
(3)
TMHSG(q, q̄) =

∞∏
n=2

1

|1− qn|2
∞∏

m=2

∞∏
m̄=0

1

1− qmq̄m̄

×

 ∞∏
n′=3

1

|1− qn′ |2
∞∏
k=3

∞∏
k̄=0

1

1− qkq̄k̄

∞∏
l=4

∞∏
l̄=3

1

1− qlq̄ l̄

 . (6.8)

where we have combined the spin-2 and spin-3 parts. Before writing the expression of

Z
(3)
TMHSG in terms of Bell polynomials, we first note that, starting from an expression

coming from gravity on the left-hand side, one obtains an expression featuring the W-

algebra vacuum characters on the right-hand side. Indeed:

Z
(3)
TMHSG(q, q̄) =

{ ∞∏
n=2

1

|1− qn|2
∞∏

n′=3

1

|1− qn′ |2

} ∞∏
m=2

∞∏
m̄=0

1

1− qmq̄m̄

×

 ∞∏
k=3

∞∏
k̄=0

1

1− qkq̄k̄

∞∏
l=4

∞∏
l̄=3

1

1− qlq̄ l̄


= χ0(W3)× χ0(W3)

∞∏
m=2

∞∏
m̄=0

1

1− qmq̄m̄

×

 ∞∏
k=3

∞∏
k̄=0

1

1− qkq̄k̄

∞∏
l=4

∞∏
l̄=3

1

1− qlq̄ l̄

 , (6.9)

where χ0(W3) and χ0(W3) are the holomorphic and antiholomorphic vacuum characters of

theW3-algebra ([53], see also [54]). This property, as also pointed out in [29], fits perfectly

with the expectation that the dual theory is a W-LCFT.

Following the same procedure as for TMG, we can straightforwardly express the above

partition function in terms of Bell polynomials:

Z
(3)
TMHSG(q, q̄) = χ0(W3)× χ0(W3)×

[ ∞∑
k=0

Yk
k!

(
q2
)k]× [ ∞∑

l=0

Yl
l!

(
q3
)l]

×

[ ∞∑
m=0

Ym
m!

(
q4q̄3

)m]
. (6.10)

The interpretation and counting of the states leading to the first and second square brackets

in the above expression will be very similar to that discussed for TMG: the k-th term in

the first bracket will correspond to states built upon t ⊗k t, the l-th term in the second

bracket will correspond to l-particle states of w, the logarithmic partner of W, while the

mixed terms will be counted similarly to the NMG case above. The counting that leads

to the third bracket is less clear to us, however, and we leave a fuller understanding of the

higher-spin case for future work.14

14Let us note that this term arises from the trace part of the spin-3 field, whose presence (as mentioned

above) depends on the choice of boundary conditions.
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7 Conclusion and outlook

As emphasised in [22], it would be useful to exploit our knowledge of critical gravity

theories to better understand the corresponding dual CFTs. In this paper, we made a step

further towards such an understanding by explicitly showing how ZTMG, derived from the

gravity side in [19], can be usefully recast in a compact form using Bell polynomials. These

polynomials allow us to express at once character representations of single- and multi-

particles. As such, we are able to extend the checks of ZTMG performed in [19] to also

include the multi-particle sector. In this way, one more of the checks of the TMG/LCFT

correspondence formulated in [22] finds a positive answer.

An intriguing result is that the counting needs to be performed in a two-step process,

with the combinatorics of the L−1 and L̄−1 (i.e. the global SL(2)×SL(2)) action on |t〉⊗n |t〉
being non-standard in that it doesn’t arise from the usual Lie-algebraic coproduct ∆(X) =

X⊗1 + 1⊗X. Of course, showing that the counting works in this way does not amount to

an explanation as to why. On the combinatorics side, one could ask what type of coproduct

(and associated algebraic structure) would lead to the counting of the Bell polynomial part.

This is work in progress [41]. More on the physics side, recall that the Bell polynomial

expansion arose from a rewriting of the double-product term in (1.2). In turn, the double-

product term derives from the bulk massive mode, which becomes the logarithmic partner

of the boundary graviton at the critical point, so it is clearly related to the logarithmic

nature of the theory. Given that we found similar expansions for NMG and higher-spin

TMG,15 one could wonder whether this type of multi-particle counting arises generically in

LCFT’s that could potentially be candidates for duals of weakly-coupled 3d gravity/higher

spin theories. We leave a deeper understanding of this question to future work.

In addition, we have also shown explicitly how the Bell polynomials are related to

the plethystic exponential. Although the existence of a relation between the two series is

certainly not unexpected,16 our explicit mapping could prove beneficial in future studies

in other contexts as well. An immediate benefit in our case was that the ladder action and

associated sl(2) structure which we uncovered on the Bell polynomial side could automat-

ically also be applied to the plethystic exponential. It would be interesting to apply the

readily available extensive technology of the plethystic exponential to further study algebro-

geometric properties of the theory, such as the moduli space of the log partners and their

associated orbits, or also the invariant nature of the log partners under group actions.

An important question is whether the TMG/LCFT correspondence can be made even

more precise, in the sense of identifying a concrete Logarithmic CFT dual to TMG. The

fact that we are at cL = 0 might appear to preclude a correspondence at the same level as

the higher-spin/W-algebra CFT duality [37], where c can be tuned to be large. However,

here the logarithmic anomaly bL takes on the role of the large-N parameter, so any LCFT

model which allows bL to become large could be a promising candidate. On the other hand,

even for bL small (which is the case e.g. for logarithmic minimal models [58], see also [59]

15Similar partition functions also arise in generalised massive [55] and tricritical gravity [56] so we expect

the multi-particle counting in those cases to also work out as discussed in the above.
16A comment in this regard can be found, for instance, in [57].

– 24 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
7

for a recent review of LCFT with a focus on models of this type) one could perhaps

still hope for an understanding similar to that in [60], where the partition functions of

some, though not all, c < 1 unitary minimal models were shown to agree with the dual

gravity calculation (after summation over modular images). A successful match was linked

to the uniqueness of the modular invariant partition function of the CFT. One could

similarly hope that a careful study of partition functions for logarithmic minimal models

would provide an indication of the general features of possible bulk duals and lead to a

precise correspondence.
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A Bell polynomials

The Bell polynomials are defined through (2.15), which we repeat here for ease of reference:

Yn(g1, g2, . . . , gn) =
∑
~k`n

n!

k1! · · · kn!

(g1

1!

)k1
(g2

2!

)k2

· · ·
(gn
n!

)kn
, (A.1)

where the definition of ~k ` n was given in (2.16). Let us see how this works up to third

order in n. We actually start at order 2, since order 0 by convention gives Y0 = 1, and

order 1 trivially gives Y1 = g1. At order 2, we have two options: {k1, k2} = {2, 0} or

{k1, k2} = {0, 1}. Clearly, in the first case we have 2 = 2 + 2(0), and in the second case,

2 = 0 + 2(1). This gives:

Y2(g1, g2) =
2!

2!0!

(g1

1!

)2 (g2

2!

)0
+

2!

0!1!

(g1

1!

)0 (g2

2!

)1
= g2

1 + g2.

At order 3, we have three options: {k1, k2, k3} = {3, 0, 0}, {k1, k2, k3} = {1, 1, 0} and

{k1, k2, k3} = {0, 0, 1}. This gives:

Y3(g1, g2, g3) =
3!

3!0!0!

(g1

1!

)3 (g2

2!

)0 (g3

3!

)0
+

3!

1!1!0!

(g1

1!

)1 (g2

2!

)1 (g3

3!

)0

+
3!

0!0!1!

(g1

1!

)0 (g2

2!

)0 (g3

3!

)1

= g3
1 + 3g1g2 + g3.

(A.2)
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Similarly, one finds

Y4(g1, g2, g3, g4) = g4
1 + 6g2

1g2 + 3g2
2 + 4g1g3 + g4 , (A.3)

Y5(g1, g2, g3, g4, g5) = g5
1 + 10g3

1g2 + 15g1g
2
2 + 10g2

1g3 + 10g2g3 + 5g1g4 + g5 (A.4)

and so on (higher Bell polynomials can easily be generated using computer algebra).

Having these explicit expressions it is easy to check the action of the raising and

lowering operators discussed in section 5.3. For instance:

X̂Y3 =

(
g1 + g2

∂

∂g1
+ g3

∂

∂g2
+ g4

∂

∂g3

)
(g3

1 + 3g1g2 + g3)

= g4
1 + 6g2

1g2 + 4g1g3 + 3g2
2 + g4 = Y4,

D̂Y3 =
∂

∂g1
(g3

1 + 3g1g2 + g3) = 3g2
1 + 3g2 = 3Y2 .

(A.5)

Each coefficient in a given Bell polynomial Yn corresponds to the number of partitions

of a set of n distinguishable elements into subsets, whose number is given by the number

of factors in each term. The length of each subset is given by the index of gi. Looking at

Y4, for example, one sees that there is:

• One partition of {ABCD} into a single set of length 4 (the original set),

• 4 partitions into two subsets of lengths 1 and 3: [{A},{BCD}], [{B},{ACD}],
[{C},{ABD}], [{D},{ABC}],

• 3 partitions into two subsets of length 2 and 2: [{AB},{CD}], [{AC},{BD}],
[{AD},{BC}],

• 6 partitions into three subsets of length 1,1, and 2: [{A},{B},{CD}], [{A},{C},{BD}],

[{A},{D},{BC}], [{B},{C},{AD}], [{B},{D},{AC}], [{C},{D},{AB}],

• and finally one partition into four subsets of length 1,1,1,1: [{A},{B},{C},{D}].

So Bell polynomials naturally appear whenever one is counting partitions, and it is not

surprising that they arise in situations like ours where to construct descendants of multi-

particle states one has to essentially partition a certain number of raising operators to act

on the state |t〉 ⊗n |t〉 (which would be a highest-weight state in non-logarithmic theory)

in all possible ways.

For more information on the Bell polynomials, the reader is referred to one of the many

books concerned with the theory of partitions, such as [30, 49].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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