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We explicitly analyze Oðα0Þ corrections to heterotic supergravity on toroidal orbifolds and their
resolutions, which play important roles in string phenomenology as well as moduli stabilization. Using a
conformal factor ansatz that is valid only for four-dimensional geometries, we obtain a closed expression
for the Oðα0Þmetric corrections in the case of several orbifold limits of K3, namely T4=Zn where n ¼ 2, 3,
4, 6. However, we find that nonstandard embedding requires the inclusion of five-branes on such orbifolds.
We also numerically investigate the behavior around orbifold fixed points by considering the metric
correction on the resolution of a C2=Z2 singularity. In this case, a nontrivial conformal factor can be
obtained in nonstandard embedding even without five-branes. In the same manner, we generalize our
analysis to study metric corrections on T6=Z3 and its resolution described by a complex line bundle over
CP2. Further prospects of utilizing these Oðα0Þ corrected metrics as a novel approach in obtaining realistic
or semirealistic Yukawa couplings are discussed.
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I. INTRODUCTION

String theory as a promising candidate of quantum
gravity predicts higher-derivative corrections known as
α0 corrections in the low-energy effective action. It appears
as an expansion parameter in supergravity as a low-energy
effective field theory of the superstring, and characterizes
the degree to which stringy effects appear in low-energy
scales relative to the string scale. In essence, α0 terms in
supergravity provide quantum stringy corrections to the
base theory.
The presence of α0 corrections is significant in string

cosmology and phenomenology. In particular, α0 correc-
tions play an important role in moduli stabilization repre-
sented by the large volume scenario [1], where such
corrections appear in the Kähler potential. This is known
to occur at Oðα03Þ for type IIB compactifications [2], and at
Oðα02Þ for heterotic compactifications [3]. Thus, heterotic
compactifications receive nontrivial α0 corrections “earlier”
than their type IIB counterpart. The mechanism by which
such nontrivial contributions to the Kähler potential appear
is due to the breaking of no-scale structure of the potential
[3]. In the heterotic case, although no-scale structure is

preserved at Oðα0Þ, and hence no corrections are generated,
it is done so at the cost of shifting the Kähler moduli
themselves by an Oðα0Þ term [3]. Such considerations
motivate the study of heterotic α0 corrections. Indeed, the
results obtained in this paper correspond to explicit
expressions for this Oðα0Þ shift to the Kähler moduli.
On the phenomenological side, models based on toroidal

orbifolds and their blowups in the context of heterotic
compactifications have been well studied [4–15], and
physical quantities such as 4D effective Yukawa couplings
have subsequently been calculated from them.1 This
attraction to toroidal orbifolds and their blowups can be
traced to the fact that their conformal field theories (CFTs)
are exact. However, α0 and gs corrections have not been
fully considered so far, and thus calls their derived physical
quantities into question. In this regard, by calculating
explicit forms of Oðα0Þ corrections for toroidal orbifolds
and their resolutions, the impact these corrections have on
the physical quantities of these models can be further
investigated.
Additionally, in considering heterotic α0 corrections, it

turns out that Oðα0Þ corrections to most 10D heterotic
supergravity fields can be expressed in terms of the Oðα0Þ
correction for the metric, hij̄ [3,19]. It thus follows that
calculating the metric correction hij̄ is enough to analyze
the effects of Oðα0Þ corrections. The metric corrections
calculated in this paper provide an extension to the usual
toroidal orbifold geometries used in model building, and
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could give rise to new ways to generate 4D effective
physical quantities such as the Yukawa coupling.
This paper will be structured as follows: In Sec. II, we

will review the equations governing the Oðα0Þ metric
corrections and field corrections. A conformal factor ansatz
first found in [19] that is only valid in four real dimensions
will then be introduced. In Sec. III, we revisit the analysis
of this ansatz on several orbifold limits of the K3 surface in
detail. By considering fluxes and curvatures localized at
orbifold fixed points, an analytic expression for the
conformal factor can be found. However, it is argued that
the conformal factor at Oðα0Þ must necessarily be a
constant, otherwise a background torsion must be consid-
ered. In Sec. IV, we will take this one step further and relax
the orbifold limit in order to study metric corrections on
resolutions of the C2=Z2 singularity. In this case, a
numerical solution is obtained and is shown that a non-
constant conformal factor can be obtained without the need
for five-branes. In Sec. V, the same analysis for the
conformal factor will be performed in the full six dimen-
sions for the trace of the metric correction h, as the previous
ansatz is no longer valid. We will find that for the resolution
of the C3=Z3 singularity, h obeys the 6D version of the
equation of motion for the conformal factor, and behaves
similarly with its four-dimensional counterpart with the
exception that h itself takes negative values due to different
boundary conditions. This is however not a problem as the
physical meaning of h is the trace of the metric correction,
and the trace of the full metric after taking on such a
correction remains positive. In Sec. VI, we summarize and
discuss our findings, giving an outlook on several direc-
tions to take our results in.

II. Oðα0Þ CORRECTIONS TO 10D HETEROTIC
SUPERGRAVITY FIELDS

A. The Oðα0Þ metric correction

We begin this section by briefly reviewing the Oðα0Þ
corrections to 10D heterotic supergravity fields, following
the exposition given in [3]. We will be working in the same
theoretical setting and adopt the following convention for
the heterotic effective action in the string frame

S ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffiffi
−G

p
e−2Φ

×

�
RðωÞ þ 4ð∂MΦÞ2 − 1

12
HMNPHMNP

−
α0

8
½trFMNFMN −RMNABðωþÞRMNABðωþÞ�

þOðα03Þ
�
; ð1Þ

with indices M;N;… running from 0 to 9, and tr denoting
the trace in the fundamental representation of SO(32). This

is related to the trace Tr in the adjoint representation of the
SO(32) and E8 × E8 gauge groups by (see e.g., [20,21])

trFMNFMN ¼ 1

30
TrFMNFMN: ð2Þ

The 10D fields appearing in Eq. (1) are the metric G, the
dilaton Φ, the Neveu-Schwarz (NS) flux H, and the Yang-
Mills field strength F . The Ricci scalar RðωÞ is evaluated
with respect to the Levi-Civita connection formed by the
metricG, whilst the Riemann curvature tensorRMNABðωþÞ
is evaluated with respect to the torsion-shifted spin
connection

ωþ ¼ ωþ 1

2
H; ð3Þ

where the torsion is induced by the H flux. This H flux
satisfies the following Bianchi identity coming from the
Green-Schwarz anomaly cancellation mechanism [3,22]

dH ¼ α0

4
½trðRþ ∧ RþÞ − trðF ∧ F Þ�: ð4Þ

Here, F is the flux 2-form, andRþ is the curvature 2-form
evaluated with respect to the torsion-shifted spin connec-
tion Eq. (3).
Rather than working with a warped product geometry

with respect to the Einstein frame, going to the string frame
allows the 10D spacetime to be expressed as a direct
product of a 4D spacetime with a 6D compact manifold
R1;3 ×M even in the presence of nontrivial H flux [23].
Here we make the assumption that the H flux is trivial to
leading order and only enters as an Oðα0Þ correction. This
ensures that the background geometry is Kähler, and hence
Calabi-Yau to leading order [19]. Let us also take M to be
Calabi-Yau with a holomorphic vector bundle E → M to
accommodate gauge fields. The Oðα0Þ corrections to the
10D heterotic supergravity fields in a complex basis take
the following forms [3,24]

Gij̄ ¼ gij̄ þ α0hij̄; ð5Þ

Φ ¼ ϕ0 − α0ξhii; ð6Þ

Hijk̄ ¼ α0ð−∇ihjk̄ þ∇jhik̄Þ; ð7Þ

Ai ¼ Að0Þ
i þ α0Að1Þ

i ; ð8Þ

F ij̄ ¼ Fij̄ þ α0Fð1Þ
ij̄ : ð9Þ

The ξ appearing in the dilaton correction Eq. (6) is a gauge
parameter that will be fixed momentarily. The background
metric gij̄ is used to raise and lower indices, and the
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covariant derivatives ∇i appearing in Eq. (7) are defined
with respect to gij̄ as well.
From the above, it is obvious that all fields except the

gauge field and its field strength can be expressed in terms
of the metric correction hij̄. Calculating hij̄ for certain flux
and curvature backgrounds will thus be the prime target of
this paper. The equations of motion for hij̄ can be obtained
by substituting Eqs. (5)–(7) into the equations of motion for
the total metric GMN obtained from Eq. (1) and collecting
terms at Oðα0Þ,

RMN þ 2∇M∇NΦ −
1

4
HMABHN

AB

−
α0

4
½trFMPFN

P −RMPABRN
PAB� ¼ Oðα03Þ: ð10Þ

This gives us a sourced Lichnerowicz equation for the
metric correction, which in a real basis is

ΔLhmn þ ξ∇m∇nh ¼ 1

4
½trðFmpFn

nÞ − RmpqrRn
pqr�; ð11Þ

where the Lichnerowicz operator ΔL is given by

ΔLhmn ¼ −
1

2
∇2hmn − Rmpnqhpq þ∇ðm∇phnÞp

þ Rpðmh
p
nÞ −

1

2
∇m∇nh; ð12Þ

and h is the trace of the metric correction defined as

h≡ hmm ¼ 2hii: ð13Þ

Note that R is constructed using the full metric G, while R
is constructed using the background metric g.
Using the fact that we are working on a Ricci-flat

manifold, we can set Rmn ¼ 0. We also gauge away ξ
by imposing the following gauge fixing condition2

∇nhmn ¼
�
1

2
− ξ

�
∇mh: ð14Þ

The resulting equation for hmn is the Lichnerowicz equation
on a Ricci-flat manifold sourced by background curvatures
and fluxes [23],

−ð∇2δpmδ
q
n þ 2Rp

m
q
nÞhpq ¼

1

2
½trðFmpFn

pÞ − RmpqrRn
pqr�:
ð15Þ

Furthermore, as a consequence of the Killing spinor
equation for the gluino, the flux F appearing in the source

is also required to satisfy the Hermitian Yang-Mills
equations in order for N ¼ 1 supersymmetry to be pre-
served [3]

Fij ¼ Fī j̄ ¼ gij̄Fij̄ ¼ 0: ð16Þ

In general, Eq. (15) has at most 21 components to solve for
in the case of a three-dimensional complex manifold.
Though it is in principle possible to solve such a system
of equations, it remains difficult since there are no known
analytical expressions for metrics of Calabi-Yau 3-folds.

B. The conformal factor ansatz

In searching for exact solutions, we turn to the conformal
factor ansatz first studied in [19] in the construction of
supersymmetric vacua with nonvanishing torsion. Under
this ansatz, the full metric takes the following form

Gij̄ ¼ Ω2gij̄: ð17Þ

In this way, a conformally Calabi-Yau geometry can be
induced by stringy quantum corrections at Oðα0Þ. Such an
ansatz was shown to give nonconstant conformal factors
only in the case of two-dimensional complex manifolds
[19]. We shall see shortly that the ansatz Eq. (17) allows us
to, in a sense, bypass the sourced Lichnerowicz equation
Eq. (15), and work with a simple Poisson equation.
To obtain the equation of motion for the conformal factor

Ω2, we use the fact that the NS H flux satisfies the Bianchi
identity Eq. (4). Truncating to Oðα0Þ, we find that we can
replace Rþ and F with R and F respectively. This is
possible because H only enters the torsion-shifted spin
connection Eq. (3) at Oðα0Þ, and so will result in Oðα02Þ
terms in Eq. (4), namely

dH ¼ α0

4
½trðR ∧ RÞ − trðF ∧ FÞ� þOðα02Þ: ð18Þ

In this case, a solution for H can be written in terms of the
Kähler form J of the internal manifold [19]

H ¼ ið∂ − ∂̄ÞJ: ð19Þ

Generically, such a nontrivial torsionH is induced atOðα0Þ.
Using the fact that on a complex manifold, 2∂∂̄ ¼
−dð∂ − ∂̄Þ, we can turn Eq. (18) into a differential equation
for J, and hence for g,

−i∂∂̄J ¼ α0

8
½trðR ∧ RÞ − trðF ∧ FÞ�: ð20Þ

Substituting Eq. (17) into Eq. (20) and taking the Hodge
dual with respect to the background metric g, we obtain a
Poisson equation for Ω2 sourced by flux and curvature
terms

2Note that for ξ ¼ 0, this is simply the de Donder gauge
condition that appears in the analysis of gravitational waves (see
e.g., [25]).
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∇2Ω2 ¼ α0

8
½trðRmnRmnÞ − trðFmnFmnÞ�: ð21Þ

Thus, in exchange for considering a restricted class of
solutions, one obtains a drastic simplification of Eq. (15).
Note that we can expand the conformal factor like
Ω2 ¼ 1þ α0f þOðα02Þ. As a result, the Oðα0Þ term fg
in the full metric Eq. (17) turns out to be exactly the shift in
the Kähler form that is responsible for the breaking of no-
scale structure [3].
It is important to note that the conformal factor ansatz

Eq. (17) is valid only in four real dimensions; it was shown
that only constantΩ2 can be obtained for d ≠ 4 dimensions
[19]. This naturally leads to the K3 surface being chosen as
the background geometry, as it is the only nontrivial
example of a simply connected, compact Calabi-Yau 2-
fold. We thus have to further separate our internal manifold
into M ¼ M4 ×M2, and work with M4 as the K3
surface. The remaining M2 is fixed to be a 2-torus T2

for concreteness.
Several conditions must be satisfied in order for Eq. (21)

to have solutions [19]. In addition to requiring that the
gauge field strength F satisfies the Hermitian Yang-Mills
equations Eq. (16), we also need to respect the following
integrability condition3

Z
C4
½c2ðFÞ − c2ðRÞ� ¼ 0; ð22Þ

where C4 denotes a 4-cycle. In this way, Eqs. (16) and (22)
place constraints on what fluxes and curvatures can source
such a conformal factor deformation. Note that the source
terms trivially vanish in the standard embedding scenario
F ¼ R as mentioned in [3,19]. This means that there are no
Oðα0Þ corrections to the metric.
We would like to mention here that coincidentally, the

trace of the metric correction equation Eq. (15) can be taken
to give [3]

∇2h ¼ 1

2
½RmnpqRmnpq − trðFmnFmnÞ�

¼ Rij̄pqR
ij̄pq − trðFij̄F

ij̄Þ: ð23Þ

Though the equations of motion take the same form, the
exact relation between the trace of the metric correction h
and the conformal factor Ω2 is not clear at this stage. The
only obvious difference is that Eq. (23) holds for any
dimension whilst Eq. (21) only has nontrivial solutions
only in four dimensions.

III. METRIC CORRECTIONS
TO T4=Zn ORBIFOLDS

Having now established that the background geometry of
M4 is the K3 surface, we will proceed to outline its
construction. We will be looking at the conformal factor
ansatz for the K3 in the orbifold limit in this section. We
would like to stress that this section revisits the general
comments made in [19] regarding the feasibility of a
nontrivial conformal factor on T4=Zn. For a discussion
on a more nontrivial geometry, see Sec. IV where we
analyze the conformal factor on the resolution of a T4=Z2

singularity.

A. Orbifold limits of K3

The K3 surface can be realized as several different
orbifolds T4=Zn, where n ¼ 2, 3, 4, 6 [26]. Each of these
orbifolds is obtained by further identifying points on T4

with rotations corresponding to the discrete symmetry
group Zn. Let us begin by considering the 4-torus as T4 ¼
T2
1 × T2

2 with complex coordinates4 z ¼ ðz1; z2Þ. For n ¼ 2,
4, the tori are given by the complex plane C identified by
zi ≃ zi þ 1 ≃ zi þ i, i ¼ 1, 2, resulting in a square funda-
mental region. On the other hand, for n ¼ 3, 6 the tori are
formed by the identification zi ≃ zi þ 1 ≃ zi þ eπi=3, i ¼ 1,
2, giving a parallelogram for the fundamental region. In all
cases above, the corresponding discrete symmetry group
then acts on T2

1 as a rotation by e2πi=n, and on T2
2 as a

rotation by e−2πi=n, where n is the order of Zn. This
generates 16 fixed points for the T4=Z2 orbifold, 9 for
the T4=Z3 orbifold, 16 for the T4=Z4 orbifold, and 24 for
the T4=Z6 orbifold [26].
At this stage, the orbifolds are singular due to the fixed

points, and surgery must be performed to remove such
singularities. This is done by removing the neighborhood
around each fixed point, and replacing it with an appro-
priate geometry. In our case, we need a smooth, non-
compact Calabi-Yau manifold with S3=Zn as its boundary
at ∞. For the n ¼ 2 case, this manifold is known as an
Eguchi-Hanson space, and analogues for other n have been
shown to exist [23,26]. For the purposes of this paper,
we will denote them collectively as EHn, Eguchi-
Hanson spaces of order n. Finally, the orbifold limit of
K3 is obtained when the radius of all EHn is shrunken
to zero.

B. Equation of motion and solution

Having constructed the orbifold limits of K3, we will
now proceed to deriving and solving the equation of motion

3In general, the right-hand side is nonzero due to contributions
from the presence of five-branes. Here the right-hand side is zero
as we are considering vanishing background torsion and we do
not consider the existence of five-branes.

4Although we start with two factorizable 2-tori, the discrete
group action renders them inseparable; hence the final object is a
single, four-dimensional geometry expressed in the complex
coordinates of two factorizable 2-tori.
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for the conformal factor on them. In the following, we will
focus on the case of U(1) flux insertions for concreteness.
Solutions to Eq. (21) consistent with the orbifold limit
must respect the Hermitian Yang-Mills equations Eq. (16)
and the integrability condition Eq. (22). In accordance
with [19], we thus must take the gauge field strength
and the Kähler form to only be linear combinations of
harmonic (1,1)-forms on the Eguchi-Hanson geometries.
In the orbifold limit, the fluxes and curvature thus
become localized at the fixed points located at zk and
we have

∇2Ω2 ¼ α0π2
Xkn
k¼1

qkδð4Þðz − zkÞ: ð24Þ

Here, kn denotes the total number of fixed points for the
T4=Zn orbifold, and the qk are “charges” corresponding to
the localized fluxes and curvatures on each fixed point.
This charge denotes the total contribution of flux and
curvature located at each fixed point. The Hermitian Yang-
Mills equations (16) are satisfied by construction, and the
remaining integrability condition Eq. (22) acts as a con-
straint on the charges. To see this, note that each qk can be
thought of as an integral of c2ðRÞ − c2ðFÞ over a small
neighborhood of the fixed point at zk [19]. Integrating over
the whole T4=Zn, Eq. (22) becomes the following con-
straint on the qk:

Xkn
k¼1

qk ¼ 0: ð25Þ

In the following we shall consider two possible configu-
rations satisfying the above constraint: qk ≠ 0 and qk ¼ 0.
We find that, as discussed below, the qk ≠ 0 case is much
harder to treat, requiring higher order α0 corrections as
Eq. (24) is insufficient.

1. Nontrivial charges: qk ≠ 0

The solution to Eq. (24) takes advantage of the fact that
the source is a sum of delta functions located at each
orbifold fixed point. Setting aside the constraint Eq. (25)
for now, let us consider the case of a single delta
function source in order to better demonstrate our method.
We begin with the following Poisson equation defined on
T4=Zn:

∇2Ω2 ¼ α0π2qkδð4Þðz − zkÞ: ð26Þ

This is solved by the Green’s function for the Laplacian
defined on T4=Zn. The final solution will thus be a sum of
kn Green’s functions each centred at zk and weighted by
their respective charge qk. Now, since the geometry is flat
apart from the orbifold singularities, instead of working on
the fundamental region of T4=Zn, we can project onto C2

by rewriting the single delta function source as a lattice of
delta functions5 spanning all of C2,

∇2Ω2 ¼ α0π2qk
X
r;s∈Z

δð4Þðz − ðzk þ rþ sτÞÞ; ð27Þ

where τ ¼ i for n ¼ 2, 4 generates a square lattice, and
τ ¼ eπi=3 for n ¼ 3, 6 generates a parallelogram lattice,
corresponding to the fundamental region of each orbifold.
Since the Green’s function for the Laplacian on C2 is
known to be6

GC2ðz; z̄; z0; z̄0Þ ¼ −
1

4π2
1

jz − z0j2 ; ð28Þ

we can apply the Green’s function method for a delta
function lattice source to obtain the desired solution

Ω2ðz; z̄Þ ¼ α0π2qk

Z
C2

d4z0GC2ðz; z̄; z0; z̄0Þ

×
X
r;s∈Z

δð4Þðz0 − ðzk þ rþ sτÞÞ: ð29Þ

Evaluating this integral, we obtain

Ω2ðz; z̄Þ ¼ −
α0

4

X
r;s∈Z

qk
jz − ðzk þ rþ sτÞj2 : ð30Þ

As previously mentioned, the sum of kn of Eq. (30) each
weighted by qk yields the full solution to Eq. (24)

Ω2ðz; z̄Þ ¼ −
α0

4

Xkn
k¼1

X
r;s∈Z

qk
jz − ðzk þ rþ sτÞj2 : ð31Þ

Justification for the above method is necessary. It is well
known that Green’s functions on compact spaces in fact
require an extra constant source term to be consistent
[27–29]. An intuitive way to understand this is in the
context of electrostatics. The electric field due to a point
charge on a torus must start and end at distinct points;
because it lacks a boundary, the field lines cannot simply
extend to infinity. There are two ways in which this is
possible: either have a constant background source to
absorb whatever comes out of the point charge, or have
other charges on the torus cancel it out. In our case, it
sufficed to use the ordinary Green’s function defined on C2

instead of one with an extra term because the integrability
condition Eq. (22) automatically ensures that all charges

5The following procedure used to find the Green’s function on
T4 is a four-dimensional generalization of that used in [27,28] to
find the Green’s function on T2.

6The following is written in compact notation where z ¼
ðz1; z2Þ is a vector of the complex variables.
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cancel out in the form of Eq. (25). It is also easy to see that
the solution Eq. (31) satisfies periodic and Zn twisted
boundary conditions by construction due to the lattice
structure of the source being taken into account when
applying the Green’s function method.
That being said, the solution Eq. (31) reveals a rather

unsettling result. Because Eq. (25) must be satisfied, we
necessarily must have a combination of both positive and
negative qk’s. However, when a qk is positive, the con-
formal factor takes negative values in the neighborhood of
the corresponding fixed point. This effectively means that
there will be regions around the fixed point that transition
from having a positive metric to a negative metric, giving
rise to an unphysical region that pinches itself off from the
rest of the manifold. In fact, the torsion due to such a
conformal factor can be attributed to the presence of five-
branes located at these fixed points, in accordance with
[30]. The nontrivial torsion generated by such a configu-
ration must be taken into account when analyzing Eq. (18),
which would result in a nonlinear equation of motion for
the conformal factor. As such a system is difficult to work
with, for now the qk ¼ 0 case appears to be a more viable
alternative.

2. Trivial charges: qk = 0

The simplest way to satisfy Eq. (25) is to set all qk ¼ 0 as
with the case of standard embedding. This gives us a trivial,
i.e., constant conformal factor as the only harmonic
functions on a compact manifold are constant. One might
wonder whether setting qk ¼ 0 is the only possible solution
neglecting torsion. One option is to include bulk fluxes
only, or in addition to localized fluxes. These would have to
cancel out the localized curvature contributions to the
source which is positive, since c2ðRÞ ¼ 24 for the whole
K3, implying that each fixed point has an individual
contribution of 3=2 to c2ðRÞ. As a result, the source for
the equation of motion even in the presence of bulk fluxes
would include a positive delta function term. From the
above argument, it is straightforward to see that we will still
end up with negative metric or unphysical regions even if
overall fluxes cancel out the localized curvatures; a finite
number of bulk fluxes is not enough to “lift” an infinitely
deep well due to the positive delta function.
Thus we conclude that the conformal factor in the

orbifold limit of K3 must either be a constant due to
vanishing charges qk ¼ 0 in standard embedding, or it
needs to be calculated using a nonstandard embedding with
five-brane configuration which necessarily generates a
nonvanishing torsion and gives a nonlinear equation of
motion. At first glance this result seems to limit model
building possibilities using the conformal factor ansatz as
an Oðα0Þ correction; however there is another 4D geometry
to be considered which may yield fruitful results. This is the
resolution of the fixed points of T4=Zn, and is the subject of
the following section.

IV. METRIC CORRECTION TO THE
RESOLUTION OF A C2=Z2 SINGULARITY

The next step in our analysis is to consider relaxing the
orbifold limit to approach a smooth K3 by taking the
Eguchi-Hanson geometries to have finite size, in other
words blowing up the fixed points. As a consequence,
information about the metric away from the fixed points is
lost, and an analysis can only be carried out on local
patches around each fixed point. Fortunately, as the metric
on such a blowup is known, we can look at the metric
correction on the resolution of a single fixed point. In
accordance with the previous section, we will also specify
to the case of a U(1) flux, but will also discuss the
differences when more U(1)’s are included. The key
difference between this and the previous geometry is that
the delta function source seen on the right-hand side of
Eq. (24) now splits into distinct flux and curvature parts as
they can now be separately defined on the resolution. We
will find that it is precisely the clear distinction of
contributions to the source that allow for a nontrivial
conformal factor to arise even though the anomaly can-
cellation condition Eq. (22) is obeyed. This allows us to
forego considering the five-brane system in favor of a
simple localized flux and curvature configuration.

A. Resolution of orbifold singularities

The explicit metrics of such Eguchi-Hanson spaces were
first constructed as self-dual solutions to the Euclidean
Einstein’s equations and are well known [23,31,32]. In this
paper, we will be using a parametrization of the resolution
discussed in [11,12]. The construction chosen here
describes resolutions of Cn=Zn singularities as complex
line bundles over CPn−1 [33] and are uniquely determined
by requiring the holonomy to be SUðnÞ. Following the
notation of [11], we denote these resolutions by Mn. This
particular parametrization of blowups readily allows for the
inclusion of U(1) fluxes, and is easily generalizable to
higher-dimensional orbifolds. In this section, we will be
looking at the n ¼ 2 case as it corresponds to the blowup of
T4=Z2 orbifold singularities, though the case of T6=Z3 is
also interesting and will be dealt with in the next section.7

Unfortunately, this parametrization of the resolution is only
valid for Cn=Zn orbifolds, and adopting it means that we
are restricted to looking at only the blowup of the T4=Z2

orbifold; this analysis does not carry over to orbifolds
of other orders. It should also be noted that, this con-
struction is required to be Ricci flat and thus ensures that

7Although C2=Z2 is noncompact and we are interested in the
compact T4=Z2, the results on the C2=Z2 resolution can be
directly applied to T4=Z2 resolutions as we are only considering
neighborhoods around the fixed points, and both are thus
indistinguishable.
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the blowup provides the correct Eguchi-Hanson geometry,
i.e., M2 ¼ EH2.
We begin by giving the explicit forms of quantities of

interest on the resolution M2, which is described by a
complex line bundle over CP1. In the following, all
quantities are written in terms of the complex coordinates
z and x. These coordinates are inherited from different
coordinate patches on the original C2=Z2 orbifold during
the blowup process and correspond to coordinates para-
metrizing the base CP1, and the fiber C respectively [12].
The parameter r is used to denote the size of the blowup;
the orbifold limit corresponds to the case when r → 0.
The Kähler metric of the resolution is explicitly written

as

g ¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p
 2ðrþXÞ

χ2
þ 2jxj2jzj2 χxz̄

χx̄z χ2

2

!
; ð32Þ

where X ¼ χ2jxj2, χ ¼ 1þ jzj2. The metric components in
a complex basis are given by g ¼ gij̄dz

idz̄j̄ for i ¼ ðz; xÞ
and j̄ ¼ ðz̄; x̄Þ in that order. This is the new background
metric in our analysis, and is the local coordinate patch
describing the resolution of a fixed point. It should be
stressed that this metric does not describe the region around
the singularity itself, but rather an extra geometry that is
surgically placed at the neighborhood around the fixed
point in order to achieve an overall smooth geometry.
Without loss of generality, let us consider this resolution to
be centered around the origin. From the spin connection ω
given in Appendix A, one can construct the curvature
2-form from R ¼ dωþ ω ∧ ω ¼ Ra

bij̄dz
i ∧ dz̄j̄. The full

form is written as

R ¼ r
rþ X

" 2
χ2
− 2jxj2jzj2

rþX − 2χ−1x̄zffiffiffiffiffiffiffi
rþX

p

− 2χ−1xz̄ffiffiffiffiffiffiffi
rþX

p − 2
χ2
þ 2jxj2jzj2

rþX

!
dz ∧ dz̄

þ
 
− χxz̄

rþX − 1ffiffiffiffiffiffiffi
rþX

p

0 χxz̄
rþX

!
dz ∧ dx̄

þ
 

− χx̄z
rþX 0

− 1ffiffiffiffiffiffiffi
rþX

p χx̄z
rþX

!
dx ∧ dz̄

þ
 
− 1

2
χ2

rþX 0

0 1
2

χ2

rþX

!
dx ∧ dx̄

#
: ð33Þ

Though lengthy, the individual components of R will be
needed to compute the curvature contribution to the source
on the right-hand side of Eq. (21). It is easy to check
that Eq. (33) is traceless in accordance with the SU(2)
holonomy of M2 [11].
The final ingredient needed for the equation of motion is

the background U(1) flux. SO(32) and E8 × E8 each admits
up to 16 U(1) fluxes given by the following expression

iFV ¼ iFVIHI; ð34Þ

where VI and HI for I ¼ 1;…; 16 are the gauge shift
vectors and generators of the Cartan subgroup respectively.
The shift vectors VI can contain only integer or only half-
integer entries. The U(1) field strength F is conveniently
constructed by taking an already existing U(1) connection
1-form on the base CP1 and extending it to satisfy the
Hermitian Yang-Mills equations, i.e., to preserve N ¼ 1
supersymmetry. F is defined by this extended U(1) con-
nection and takes the following form

iF ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
r

rþX

r ��
1

χ2
−
jxj2jzj2
rþX

�
dz ∧ dz̄−

1

2

χx̄z
rþX

dx ∧ dz̄

−
1

2

χxz̄
rþX

dz ∧ dx̄−
1

4

χ2

rþX
dx ∧ dx̄

�
; ð35Þ

where the components of iF can be read off from
iF ¼ iFij̄dz

i ∧ dz̄j̄. By a simple calculation, it can be
checked that Eq. (35) satisfies the Hermitian Yang-Mills
equations (16).
As with Sec. III however, we still have to make sure the

integrability condition Eq. (22) is satisfied by both the
curvature and background fluxes, i.e., that the integrated
Bianchi identity vanishes on M2. Let us start by working
out the second Chern classes c2ðFÞ and c2ðRÞ. For
concreteness, we will work with SO(32) in the following.
To extend this analysis to E8 × E8, see Appendix A. Using
the normalization trðHIHJÞ ¼ δIJ, we find that

trðiFV ∧ iFVÞ ¼ ðiF ∧ iFÞVIVJtrðHIHJÞ
¼ ðVIÞ2iF ∧ iF: ð36Þ

The second Chern classes on M2 can then be worked out
straightforwardly to give

c2ðFÞ ¼ −
1

2

1

ð2πiÞ2 trðiFV ∧ iFVÞ

¼ 1

ð2πiÞ2
ðVIÞ2r

4ðrþ XÞ2 dz ∧ dz̄ ∧ dx ∧ dx̄; ð37Þ

c2ðRÞ ¼ −
1

2

1

ð2πiÞ2 trðR ∧ RÞ

¼ 1

ð2πiÞ2
3r2

ðrþ XÞ3 dz ∧ dz̄ ∧ dx ∧ dx̄: ð38Þ

By using the following identity on M2,

1

ð2πiÞ2
Z
M2

dz ∧ dz̄ ∧ dx ∧ dx̄
ðrþ XÞp ¼ 1

p − 1

1

rp−1
; ð39Þ

which holds for p > 1, we can show that
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Z
M2

c2ðFÞ ¼
ðVIÞ2
4

; ð40Þ

Z
M2

c2ðRÞ ¼
3

2
: ð41Þ

Thus, for the integrated Bianchi identity to vanish, we must
have

X16
I¼1

ðVIÞ2 ¼ 6: ð42Þ

In this way, the integrability condition Eq. (22) has yet
again manifested in the form of a constraint characterizing
allowed source configurations, this time on the possible
values the gauge shift vectors VI can take. Though in
general we can consider up to 16 shift vectors at once in
Eq. (42), for concreteness we will consider a single back-
ground U(1) flux, and thus require a single shift vector to
satisfy V2 ¼ 6. We will later see that Eq. (42) allows us to
ensure that the anomaly cancellation condition is satisfied
without having to use five-branes or consider bulk fluxes, at
the same time giving us some degree of freedom in
choosing the flux configuration.

B. Equation of motion and solution

Armed with the background metric g, the curvature 2-
form R, and the U(1) flux F, we are now ready to compute
the equation of motion Eq. (21) for the conformal factor on
the resolution of the orbifold singularity. The Laplacian on
M2 is highly nontrivial compared to the orbifold case.
Using the metric above, it is calculated to be

∇2Ω2 ¼
�

χ2ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p ∂z∂ z̄ −
2χzx̄ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p ∂z∂ x̄ −
2χz̄xffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p ∂ z̄∂x

þ
�
4
ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p

χ2
þ 4jxj2jzj2ffiffiffiffiffiffiffiffiffiffiffiffi

rþ X
p

�
∂x∂ x̄

�
Ω2: ð43Þ

Similarly, the source can be calculated by taking the trace of
the curvature and flux 2-forms to give

ρðjzj; jxjÞ ¼ α0

8

�
−

12r
ðrþ XÞ2 þ

24r2

ðrþ XÞ3
�
; ð44Þ

where the first and second terms are the flux and curvature
contributions respectively.
It should be pointed out here that the sources can be

expressed in terms of orbifold delta functions defined on
M2 for the curvature and flux; using Eqs. (40) and (41) one
is able to construct top forms that exhibit delta functionlike
behavior from the curvature and flux 2-forms. These
are [11,12]

δr;Rðjzj; jxjÞdz ∧ dz̄ ∧ dx ∧ dx̄

¼ 1

12π2
trðR ∧ RÞ

¼ −
1

2π2
r2

ðrþ XÞ3 dz ∧ dz̄ ∧ dx ∧ dx̄; ð45Þ

δr;Fðjzj; jxjÞdz ∧ dz̄ ∧ dx ∧ dx̄

¼ −
1

12π2
trðiFV ∧ iFVÞ

¼ −
1

4π2
r

ðrþ XÞ2 dz ∧ dz̄ ∧ dx ∧ dx̄: ð46Þ

These orbifold delta functions become increasingly peaked
around the origin in the limit r → 0, and are equal to 1
when integrated over the resolution M2,Z

M2

δr;Rðjzj; jxjÞdz ∧ dz̄ ∧ dx ∧ dx̄

¼
Z
M2

δr;Fðjzj; jxjÞdz ∧ dz̄ ∧ dx ∧ dx̄ ¼ 1: ð47Þ

We can now rewrite our sources in terms of these delta
functions as

ρðjzj; jxjÞ ¼ −48α0π2½δr;Fðjzj; jxjÞ − δr;Rðjzj; jxjÞ�: ð48Þ

Thus we see how in the blowup limit, the contributions to
the delta function sources in Eq. (24) can be separated into
distinct curvature and flux contributions, each in terms of
their respectively defined orbifold delta functions. This is
analogous to the delta function sources in the orbifold limit,
except for the fact that information about curvature and flux
contributions is combined into the qk in the r → 0 limit.
Because the equation of motion comes from taking the
Hodge dual of the Bianchi identity Eq. (20), we expect that
the source Eq. (48) integrated overM2 also vanishes due to
the vanishing integrated Bianchi identity Eq. (22). It is
straightforward to demonstrate this as a consistency check
now that the source is written in terms of the orbifold delta
functions δr;R and δr;F; integrating Eq. (48) over M2

immediately gives zero. We would like to emphasize here
that Eq. (48) tells us that the source consists of localized
fluxes and curvatures just like in the orbifold limit; it is not
necessary to consider bulk fluxes in such a setting.
The full equation of motion currently looks as such

�
χ2ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p ∂z∂ z̄ −
2χzx̄ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p ∂z∂ x̄ −
2χz̄xffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p ∂ z̄∂x

þ
�
4
ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p

χ2
þ 4jxj2jzj2ffiffiffiffiffiffiffiffiffiffiffiffi

rþ X
p

�
∂x∂ x̄

�
Ω2

¼ α0

8

�
−

12r
ðrþ XÞ2 þ

24r2

ðrþ XÞ3
�
: ð49Þ

POMPEY LEUNG and HAJIME OTSUKA PHYS. REV. D 99, 126011 (2019)

126011-8



At first glance it would appear to be rather difficult to solve
a Poisson equation with such a complicated Laplacian
operator. The problem at hand however can actually be
reduced to a 2D Poisson equation by taking advantage of
the fact that M2 possesses a Uð1ÞCP1 × Uð1ÞC symmetry;
i.e., it is invariant with respect to separate rotations on the

base CP1 and the fiber C. This is easily seen by rewriting
Eq. (32) in polar coordinates for z and x:

z ¼ jzjeiθz ; x ¼ jxjeiθx : ð50Þ

In this basis, the resulting real metric of M2 is

g ¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffi
rþ X

p

0
BBBBBB@

2ðrþXÞ
χ2

þ 2jxj2jzj2 0 χjxjjzj 0

0
h
2ðrþXÞ

χ2
þ 2jxj2jzj2

i
jzj2 0 χjxj2jzj2

χjxjjzj 0 χ2

2
0

0 χjxj2jzj2 0
χ2jxj2
2

1
CCCCCCA
; ð51Þ

where the metric components in polar coordinates are given
by g ¼ gmndxmdxn with indices running in the order m,
n ¼ ðjzj; θz; jxj; θxÞ. It is then obvious by inspection that
the real metric Eq. (51) is independent of the angular
variables θz and θx since χ ¼ χðjzjÞ and X ¼ Xðjzj; jxjÞ. We
can immediately conclude thatM2 has a Uð1ÞCP1 × Uð1ÞC
isometry generated by the Killing vectors ∂θz and ∂θx .
Apart from the metric, notice also from the right-hand side
of Eq. (49) that the source is rotationally symmetric as it
depends only on X. The angular independence of both the
metric and source suggests that we should seek out a
rotationally invariant solution8 to Eq. (49). Neglecting ∂θz
and ∂θx terms results in the reduced form of the equation of
motion for the conformal factor on M2:

�
χ2ffiffiffiffiffiffiffiffiffiffiffi
rþX

p
�
∂2
jzj þ

1

jzj∂ jzj

�
−
4χjzjjxjffiffiffiffiffiffiffiffiffiffiffi
rþX

p ∂ jzj∂ jxj

þ
�
4
ffiffiffiffiffiffiffiffiffiffiffi
rþX

p

χ2
þ 4jxj2jzj2ffiffiffiffiffiffiffiffiffiffiffi

rþX
p

��
∂2
jxj þ

1

jxj∂ jxj

��
Ω2ðjzj; jxjÞ

¼ α0

8

�
−

12r
ðrþXÞ2 þ

24r2

ðrþXÞ3
�
: ð52Þ

Though we have managed to reduce the original 4D
problem to a 2D one, the mixed derivative between the jzj
and jxj coordinates still makes it difficult to find an
analytical solution. We will thus numerically solve this
differential equation using MATHEMATICA in order to study
the behavior of the conformal factor for different values of
the blowup parameter r.
Let us now deduce the boundary conditions for both jzj

and jxj appropriate for our problem. Recall that z is the
local complex coordinate describing CP1 ≃ S2. Let us take
the origin of z to be at one of the poles, say the south pole of
CP1. For our solution to be a continuous function onCP1 it

must join together smoothly at the poles; thus it is easy to
see that we should prescribe Neumann boundary conditions
at jzj ¼ 0 and jzj ¼ ∞ which correspond to the south and
north poles respectively. For jzj ¼ ∞, one can also under-
stand this condition by flipping the poles via the coordinate
transformation w ¼ 1=z. Since continuity implies the
Neumann condition must hold at jwj ¼ 0, it must also
hold at jzj ¼ ∞. From these considerations, we adopt the
following Neumann boundary conditions for jzj:

∂Ω2

∂jzj
				
jzj¼0

¼ ∂Ω2

∂jzj
				
jzj¼∞

¼ 0: ð53Þ

As for the coordinate x which parametrizes the complex
line overCP1, the Neumann boundary conditions at jxj ¼ 0
are also due to the continuity requirement, this time arising
from the choice of polar coordinates. Since M2 is asymp-
totically flat as jxj → ∞, this corresponds to being far away
from the singularity. From the construction of the orbifold
limits of K3, this means that the resolutionM2 is surgically
connected to the bulk K3 in the region jxj → ∞. Because
the curvature and flux source terms are localized around the
fixed point even in the blowup [see the right-hand side of
Eq. (52)], we assume that the effects of the source cannot be
felt far away from the fixed point. Thus we assume that the
deformation due to the conformal factor Ω2 at jxj → ∞ is
trivial; hence we arrive at the following boundary con-
ditions for jxj:

∂Ω2

∂jxj
				
jxj¼0

¼ 0; Ω2ðjzj; jxj → ∞Þ ¼ 1: ð54Þ

For computational purposes however, we impose boundary
conditions for jzj and jxj along a sufficiently large, but finite
radius L instead of at infinity to obtain a numerical
approximation. This can be justified by the fact that the
source is localized around the origin and tends to 0 as both
jzj, jxj → ∞.8See Appendix B for more details.
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Figure 1 represents plots for the numerical solution to
Eq. (52) for blowup parameters r ¼ 5, 1, and 0.1, with
α0 ¼ 1=2 as in the orbifold limit case. Due to computational
limitations, here we have set L ¼ 10 as the asymptotically
faraway “boundary.” We can see from Fig. 1 that the
conformal factor Ω2 is 1 far away from the origin, but
gradually decreases as we approach the origin. The
conformal factor at the origin takes a minimum value
somewhere between 0.9 and 1 for all r plotted in Fig. 1,
with this minimum getting smaller as r decreases, resulting
in a steeper slope in the neighborhood of the origin for
decreasing r. This is reflected in the appearance of more
contour lines for smaller r, and suggests that the warping of
the background metric is negligible far away from the
origin, but is scaled down to around 0.9 times the back-
ground metric near the center of the fixed point where the
flux and curvature sources are localized.
Based on this numerical solution, we can conclude

that on the resolution of a T4=Z2 orbifold fixed point,
namely M2, a nonconstant conformal factor can be
achieved even in the nonstandard embedding scenario
without five-branes given that the integrated Bianchi
identity Eq. (42) is satisfied. This is in stark contrast to
the T4=Zn orbifold limits of K3 which require the inclusion
of five-branes in the analysis when considering nonstand-
ard embedding.

V. METRIC CORRECTION TO THE RESOLUTION
OF A C3=Z3 SINGULARITY

Compared to the T4=Z2 orbifold, 6D toroidal orbifold
models are more phenomenologically attractive to derive
the spectra of the Standard Model. To understand Oðα0Þ
corrections to 6D orbifold models, in this section, we focus
on the T6=Z3 orbifold and its resolution described by the
resolution of a C3=Z3 singularity as a complex line bundle
over CP2. Note that as shown in Eq. (23), the trace of the
generic (not the conformal factor ansatz) metric correction
given in [3] has the same equation of motion as the

conformal factor, but is not restricted to four real dimen-
sions. This means that as a first step to considering more
general forms of the correction, we can study the 6D case
but only for the trace of the metric.9 In the following
section, we analyze the α0 corrections to the metric of the
resolution of a T6=Z3 orbifold. Let us briefly comment on
the correction in the case of the orbifold limit of T6=Z3.
This orbifold limit has 27 fixed points and the correction to
the trace of the metric h of the T6=Z3 orbifold has the same
form as Eq. (31). However, we need to take care to use the
C3 Green’s function in solving over T6=Z3 which behaves
like −1=jzj4,

GC3ðz; z̄; z0; z̄0Þ ¼ −
1

4π3
1

jz − z0j4 ; ð55Þ

and to replace zk with the 27 fixed points of T6=Z3,

hðz; z̄Þ ¼ −
1

4π3
X27
k¼1

X
r;s∈Z

qk
jz − ðzk þ rþ sτÞj4 : ð56Þ

In this case then, we also see the same issue that plagued the
T4=Z2 orbifold in the nonstandard embedding scenario—
that positive qk will lead to a negative metric correction
around certain fixed points that cannot be lifted because
they diverge to −∞ towards the center of the fixed point.

A. Resolution of orbifold singularities

As discussed in Sec. IV, the resolution of T6=Z3 is
described by the resolution of a C3=Z3 singularity as
complex line bundle overCP2, where the Kähler metric has
the following form [11]

FIG. 1. Numerical solution for the conformal factorΩ2 on the resolutionM2 on the ðjzj; jxjÞ plane,where the blowup parameter is chosen
as r ¼ 5, 1, 0.1 from left to right. In all panels, the solid, dashed, dot-dashed, and dotted curves denoteΩ2 ¼ 1, 0.99, 0.98, 0.95, respectively.

9It is straightforward to analyze all the elements of the
deformed metric employing the following method, because we
know the background metric itself. The difficulty lies in the fact
that we will have to solve a system of 21 coupled partial
differential equations in order to understand these generic
deformations.
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g ¼ 1

ðrþ XÞ2=3

0
BBB@

ðrþXÞð1þjz2j2Þþjxj2jz1j2χ3
χ2

− z1 z̄2ðrþX−jxj2χ3Þ
χ2

χ2x̄z1
3

− z̄1z2ðrþX−jxj2χ3Þ
χ2

ðrþXÞð1þjz1j2Þþjxj2jz2j2χ3
χ2

χ2x̄z2
3

χ2xz̄1
3

χ2xz̄2
3

χ3

9

1
CCCA; ð57Þ

with X ¼ χ3jxj2 and χ ¼ 1þ jz1j2 þ jz2j2. Here, z1, z2, and
x denote the coordinates of base CP2 and the fiber C
respectively and r parametrizes the size of the blowup.
Using the above Kähler metric gij̄ in a complex basis i ¼
ðz1; z2; xÞ and j̄ ¼ ðz̄1; z̄2; x̄Þ, one can calculate the curva-
ture 2-form R ¼ dωþ ω ∧ ω ¼ Ra

bij̄dz
i ∧ dz̄j̄ as shown

in Appendix A. In a similar manner to the resolution of a
C2=Z2 singularity, this curvature tensor is also traceless due
to the SU(3) holonomy of M3.

To satisfy the anomaly cancellation condition Eq. (22),
we require the existence of a background field strength. In
our 6D case, the 4-cycle M in Eq. (22) corresponds to the
base CP2 and the submanifold M2 formed by setting
z1 ¼ 0. To simplify our analysis, we consider a background
U(1) gauge flux, where the U(1) connection 1-form is
obtained by taking the trace10 of a U(2) 1-form onCP2. The
U(1) gauge flux satisfying the Hermitian Yang-Mills
equations takes the following form

iF ¼ −
�

r
rþ X

�
2=3
��

1þ jz2j2
χ2

−
2χ3jxj2jz1j2

rþ X

�
dz1 ∧ dz̄1 −

z1z̄2
χ2

�
1þ 2χ3jxj2

rþ X

�
dz2 ∧ dz̄1:

−
z1z̄2
χ2

�
1þ 2χ3jxj2

rþ X

�
dz1 ∧ dz̄2 þ

�
1þ jz1j2

χ2
−
2χ3jxj2jz2j2

rþ X

�
dz2 ∧ dz̄2 −

2χ2xz̄1
3ðrþ XÞ dz1 ∧ dx̄

−
2χ2xz̄2
3ðrþ XÞ dz2 ∧ dx̄ −

2χ2z1x̄
3ðrþ XÞ dx ∧ dz̄1 −

2χ2z2x̄
3ðrþ XÞ dx ∧ dz̄2 −

2χ3

9ðrþ XÞ dx ∧ dx̄

�
; ð58Þ

which is quantized on 2-cycles ofM3 and inserted into the
Cartan direction HI of E8 × E8 or SO(32) as with Eq. (34).
The components are again read from iFij̄dz

i ∧ dz̄j̄ as in the
M2 case. We note that the anomaly cancellation condition
Eq. (22) constrains the orbifold shift vector in a similar
manner to the M2 case by [11]

X16
I¼1

ðVIÞ2 ¼ 12: ð59Þ

In the following analysis, we again specify to one back-
ground U(1) flux and impose the constraint V2 ¼ 12.

B. Equation of motion and solution

Let us compute the Oðα0Þ correction to the trace of the
metric which obeys the same equation of motion as the
conformal factor, namely

gij̄∂i∂ j̄h ¼ ρFðjz1j; jz2j; jxjÞ þ ρRðjz1j; jz2j; jxjÞ; ð60Þ

where

g−1 ¼ 1

ðrþXÞ1=3

0
BB@
ð1þjz1j2Þχ z1z̄2χ −3x̄z1χ

z1z2χ ð1þjz2j2Þχ −3x̄z2χ

−3xz̄1χ −3xz̄2χ 9jxj2ðjz1j2þjz2j2Þþ 9ðrþXÞ
χ3

1
CCA ð61Þ

and

ρFðjz1j; jz2j; jxjÞ ¼ −
1

2
trFmnFmn ¼ −

72r4=3

ðrþ XÞ2 ; ð62Þ

10See Appendix A for the detailed construction of the background U(1) flux.
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ρRðjz1j; jz2j; jxjÞ ¼
1

2
RmnpqRmnpq ¼ 120r2

ðrþ XÞ8=3 : ð63Þ

Note that the source is no longer proportional to α0 as h is
not dependent on α0 unlike Ω2. In a similar fashion to the
resolution of a C2=Z2 singularity, the delta functions are
defined by employing an identity on M2 Eq. (39), corre-
sponding to M3 with z1 ¼ 0,

δRðjz1j; jz2j; jxjÞdz2 ∧ dz̄2 ∧ dx̄ ∧ dx

¼ −
5

12π2
r5=3

ðrþ XÞ8=3 dz2 ∧ dz̄2 ∧ dx̄ ∧ dx;

δFðjz1j; jz2j; jxjÞdz̄2 ∧ dz2 ∧ dx̄ ∧ dx

¼ −
1

4π2
r

ðrþ XÞ2 dz2 ∧ dz̄2 ∧ dx̄ ∧ dx; ð64Þ

and the sources can be rewritten in terms of these delta
functions,

ρFðjz1j; jz2j; jxjÞþρRðjz1j;jz2j;jxjÞ
¼−288π2r1=3½δRðjz1j;jz2j;jxjÞ−δFðjz1j; jz2j; jxjÞ�: ð65Þ

Since the integral of these source terms over 4-cycles on
M3 vanishes, it is consistent with the anomaly cancellation
condition Eq. (22). Both the background curvature R and
gauge flux F are localized around the resolution of a fixed
point and diverge at the origin in the limit r, jxj → 0, where
jxj ¼ 0 corresponds to a CP2. Such localized sources will
deform the background geometry through Eq. (20).
To analyze the deformation of the background geometry,

we rewrite the equation of motion in terms of polar
coordinates for z1;2 and x in a manner similar to Sec. IV,

z1 ¼ jz1jeiθz1 ; z2 ¼ jz2jeiθz2 ; x ¼ jxjeiθx : ð66Þ

The resulting metric of M3 is independent of the angular
variables θz1 , θz2 , θx, respecting the U(1) symmetries of the
base CP2 and the fiber C analogous to the symmetries seen
inM2. Since the source terms are also independent of these
angular variables, we are again allowed to neglect them.
The equation of motion is then reduced to

χ

ðrþ XÞ1=3
�
ð1þ jz1j2Þ

�
∂2
jz1j þ

1

jz1j
∂ jz1j

�
þ 2jz1jjz2j∂ jz1j∂ jz2j þ ð1þ jz2j2Þ

�
∂2
jz2j þ

1

jz2j
∂ jz2j

�

− 6jxjðjz1j∂ jz1j∂ jxj þ jz2j∂ jz2j∂ jxjÞ þ 9
jxj2ðjz1j2 þ jz2j2Þχ3 þ ðrþ XÞ

χ4

�
∂2
jxj þ

1

jxj ∂ jxj

��
hðjz1j; jz2j; jxjÞ

¼ −288π2r1=3½δRðjz1j; jz2j; jxjÞ − δFðjz1j; jz2j; jxjÞ�; ð67Þ

which is still difficult to solve analytically. Following
Sec. IV, we will again use MATHEMATICA to obtain
numerical solutions of h for different values of the blowup
parameter r. The boundary conditions for jz1;2j and jxj are
generalizations of those taken for the analysis of M2, with
CP2 having the following boundary conditions

∂h
∂jz1j

				
jz1j¼0

¼ ∂h
∂jz2j

				
jz2j¼0

¼ ∂h
∂jz1j

				
jz1j¼∞

¼ ∂h
∂jz2j

				
jz2j¼∞

¼ 0;

ð68Þ

and the complex line over CP2 having the following
boundary conditions

∂h
∂jxj

				
jxj¼0

¼ 0; hðjz1j; jz2j; jxj → ∞Þ ¼ 0; ð69Þ

where the Dirichlet boundary condition is now set to 0 to
recover the background metric far away from the resolution
M3 as we are working with the trace of the metric instead

of a conformal factor. Again, for computational purposes,
we impose boundary conditions for jz1;2j and jxj along a
sufficiently large, but finite radius L instead of at infinity to
obtain a numerical approximation. Figures 2 and 3 below
show plots for the numerical solution of h and the trace of
the background metric g for blowup parameters r ¼ 3
and 1. In both cases, we have set11 L ¼ 5.
From Figs. 2 and 3, we see that the behavior of h on the

ðjz1;2j; jxjÞ planes forM3 is similar to that found for Ω2 on
the ðjzj; jxjÞ plane of M2, and that the solution h is
symmetrical on the ðjz1j; jz2jÞ plane. On closer inspection,
we note that h actually takes negative values as compared to
the M2 case. This can be attributed to the change in
boundary conditions [cf. Eqs. (54) and (69)] and does not
mean that we have encountered negative metrics for both
the six-dimensional toroidal orbifold and its resolution.
Recall that h represents the trace of the metric correction,
not a conformal factor that scales the background metric.

11The reduction in L here is due to limitations in computing
power.

POMPEY LEUNG and HAJIME OTSUKA PHYS. REV. D 99, 126011 (2019)

126011-12



This means that a negative h is admissible provided that the
trace of the full metricG is positive. This is indeed the case as
the trace of the backgroundmetric g is positive and of a larger
magnitude than the metric correction h. Like its four-
dimensional counterpart, the metric correction h is localized
around the origin and is small in magnitude. This suggests
that at the Oðα0Þ level, the trace of the background metric is
only deformed by a small fraction, with themajority happen-
ing near the center of the fixed point. The same statement as
M2 holds—nonstandard embedding at Oðα0Þ is tractable
given that the integratedBianchi identity Eq. (59) is satisfied.

VI. CONCLUSION AND DISCUSSION

In this paper, we studied Oðα0Þ corrections to the
compact space metric of 10D heterotic supergravity. We
adopted a conformal factor ansatz for orbifold limits of K3

and the resolution of a T4=Z2 orbifold singularity. In the
former case, we explicitly found that the conformal factor
becomes negative around certain fixed points in the
nonstandard embedding scenario, leading to the need to
consider higher order α0 corrections and/or background
torsion. We also briefly discussed possible bulk flux
configurations that may alleviate the negativity of the
metric, but showed that ultimately it was to no avail.
This left us with a constant conformal factor in the standard
embedding scenario on the orbifold limits of K3 as the only
viable option at Oðα0Þ. This observation is in accordance
with those made in [19]. In contrast, the resolution M2

allows for nonstandard embedding without NS5-branes as
the anomaly cancellation condition can be satisfied without
generating a negative conformal factor. This means that we
can obtain a nonconstant conformal factor at Oðα0Þ for the
case of M2 being the background geometry. We note that

FIG. 2. Numerical solution for the trace of the metric correction h and background metric g on the resolution M3 with blowup
parameter r ¼ 3. h and g are drawn in red and black curves in all panels. The left panel shows the ðjz1j; jz2jÞ plane with jxj ¼ 0. Red
(black) solid, dashed, dot-dashed curves denote h ¼ −0.1, −0.3, −0.5, [trðgÞ ¼ 140, 80, 20] respectively. In the middle (ðjz1j; jxjÞ plane
with jz2j ¼ 0) and right panels (ðjz2j; jxjÞ plane with jz1j ¼ 0), the red (black) solid, dashed, dot-dashed curves denote h ¼ −0.1, −0.3,
−0.5, [trðgÞ ¼ 20, 10, 5] respectively.

FIG. 3. Numerical solution for the trace of the metric correction h and background metric g on the resolution M3 with blowup
parameter r ¼ 1. h and g are drawn in red and black curves in all panels. The left panel shows the ðjz1j; jz2jÞ plane with jxj ¼ 0. Red
(black) solid, dashed, dot-dashed curves denote h ¼ −0.1, −0.4, −0.8, [trðgÞ ¼ 300, 150, 50] respectively. In the middle (ðjz1j; jxjÞ
plane with jz2j ¼ 0) and right panels (ðjz2j; jxjÞ plane with jz1j ¼ 0), the red (black) solid, dashed, dot-dashed curves denote h ¼ −0.05,
−0.1, −0.2, [trðgÞ ¼ 20, 10, 5] respectively.
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the full metric in this case corresponds exactly to the shift in
the Kähler form required to stabilize Kähler moduli. The
numerical solution to the conformal factor on M2 also
shows that the effects of the deformation are rather
localized around the center of the fixed point. This is
attributed to the localized nature of the curvature and flux
which sources the deformation. We also generalized these
results to the T6 orbifold by considering the trace of the
metric correction instead of a conformal factor as the ansatz
is known to not hold in dimensions other than four. We
obtained results that behave analogously to the four-
dimensional case, and similarly saw that the deformation
to the trace of the background metric at Oðα0Þ is small and
mostly localized towards the origin. We cannot use this
result to deduce the behavior of the separate components of
the metric correction as h corresponds to a part of the
corrections to the metric.
There are several implications that can be garnered from

the results in this paper. First of all, it would be interesting
to consider deformations to not just the geometry, but the
CFTs of toroidal orbifold models or their resolutions,
where the CFTs can be calculated exactly. It would also
be instructive to study the stabilization of Kähler moduli as
it is possible to explicitly construct the potential for these
moduli. In particular, this entertains the possibility of
applying the M2 geometry in moduli stabilization and
exploring scenarios similar to Ref. [34]. We can also apply
these results to the generation of 4D effective Yukawa
couplings and perhaps reconstruct realistic or semirealistic
Standard Model parameters. It is known that the presence
of fluxes on internal manifolds can act to localize wave
functions around such sources. In the context of the K3
geometries considered in this paper, this would suggest that
for the orbifold limit of K3, the wave functions are
unaffected at Oðα0Þ for the standard embedding scenario,
whilst for the resolution M2 the wave functions could
localize around the center due to the nontrivial conformal
factor in the nonstandard embedding scenario. It will be
interesting to investigate how these zero modes are shifted
or localized compared to their uncorrected counterparts. By
calculating these wave functions using well-known tech-
niques (see [35,36]) it should be possible in principle to
determine the Yukawa coupling via their triple intersection
integrals, and compare how the Oðα0Þ correction affects
them. This allows for a more diverse class of geometries for
string model building and is a novel approach to the
generation of certain Standard Model parameters. The
negative metric problem from the nonstandard embedding
scenario of T4=Zn remains to be explored, and the
inclusion of a background torsion in our analysis should
provide some answers.
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APPENDIX A: BACKGROUND CURVATURE
AND U(1) FLUX ON RESOLUTIONS

OF Cn=Zn ORBIFOLDS

Here, we will briefly summarize the construction of
background curvature and U(1) flux 2-forms on resolutions
of Cn=Zn orbifolds, Mn along the lines of [11]. As
mentioned previously, Mn is constructed as the complex
line bundle over CPn−1. Let x be the coordinate that
parametrizes the complex line over CPn−1, and z be the
vector that contains the local coordinates of CPn−1,

z ¼

0
BB@

z1

..

.

zn−1

1
CCA: ðA1Þ

The Kähler potential reproducing the Cn=Zn orbifold in the
blowdown limit is given by

KðXÞ ¼ 1

n

Z
X

1

dX0

X0 ðrþ X0Þ1n; ðA2Þ

as a function of X ¼ x̄χnx with χ ¼ 1þ z̄z, from which the
Kähler metric is obtained as in Eq. (32) for n ¼ 2 and
Eq. (57) for n ¼ 3. For the sake of defining the gauge
bundle on this resolution space, we introduce a vector e of
(n − 1) 1-forms containing the holomorphic vielbeins of
CPn−1 and the 1-form ϵ associated with a complex line
bundle,

e ¼ χ−
1
2χ̃−

1
2dz; ϵ ¼ dyþ niBy; ðA3Þ

written in terms of a convenient coordinate y ¼ χ
n
2x para-

metrizing the complex line over CPn−1. Here, χ̃ is an
n − 1 × n − 1 matrix 1n−1 þ zz̄ and iB denotes a U(1)
connection originating from the trace of the Uðn − 1Þ
1-form iB̃ on CPn−1,

iB ¼ −trðiB̃Þ ¼ 1

2
ðz̄e − ēzÞ; ðA4Þ

iB̃ ¼ χ̃−
1
2∂̄ðχ̃1

2Þ − ∂ðχ̃1
2Þχ̃−1

2: ðA5Þ

The Kähler metric is then expressed as

g ¼ Ē ⊗ E; ðA6Þ

where
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E ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ XÞ1n

q
e

1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ XÞ1n−1

q
ϵ

1
CCA ðA7Þ

is the holomorphic vielbein 1-form. In component form,
Eq. (A6) reads

gīj ¼ Ēā
ī E

b
jδāb: ðA8Þ

This statement indicates the fact that our manifold is locally
Kähler.
By solving the Cartan structure equation dEþω∧E¼0,

the spin connection ω can be obtained as

ω ¼
 
iB̃ − iB þ 1

2n
ȳϵ−ϵ̄y
rþX

ȳϵffiffiffiffiffiffiffi
rþX

p

− ēyffiffiffiffiffiffiffi
rþX

p niB − n−1
2n

ȳϵ−ϵ̄y
rþX

!
: ðA9Þ

From this expression, the curvature 2-form R can be
calculated using R ¼ dωþ ω ∧ ω to give

R ¼ r
rþ X

 
e ∧ ē − ē ∧ eþ 1

n
ϵ̄∧ϵ
rþX

ϵ̄∧effiffiffiffiffiffiffi
rþX

p

ē∧ϵffiffiffiffiffiffiffi
rþX

p nē ∧ e − n−1
n

ϵ̄∧ϵ
rþX

!
;

ðA10Þ

which is traceless, reflecting the SUðnÞ holonomy of Mn.
In addition, the U(1) gauge connection and supersym-

metric flux can be constructed as

iA ¼ iB þ 1

2nX

�
1 −

�
r

rþ X

�
1−1

n
�
ðϵ̄y − ȳϵÞ; ðA11Þ

and

iF ¼
�

r
rþ X

�
1−1

n
�
ē ∧ e −

n − 1

n2
ϵ̄ ∧ ϵ

rþ X

�
: ðA12Þ

The embedding of U(1)s into SO(32) or E8 × E8 is
defined by

iFV ¼ iFVIHI; ðA13Þ

where VI and HI are the shift vector and Cartan generator
of the subgroup corresponding to the Ith U(1) for
I ¼ 1;…; 16. The U(1) flux iFV is quantized on the
CP1 at x ¼ 0 on Mn. The normalization adopted for the
trace of the Cartan generators is

trðHIHJÞ ¼ δIJ: ðA14Þ

The traces in the SO(32) and E8 × E8 gauge groups are
related by

trðiFV ∧ iFVÞ ¼
1

30
TrðiFV ∧ iFVÞ; ðA15Þ

where tr denotes the trace in the fundamental representation
of SO(32) and Tr denotes the trace in the adjoint repre-
sentation of SO(32) and E8 × E8 [18].

APPENDIX B: SYMMETRY OF DIFFERENTIAL
EQUATIONS ON M2

Using a bit of rigor, one can show that the differential
equation (49) also inherits the symmetries of M2. We can
express the Laplacian in polar coordinates using Eq. (51),
and rewrite Eq. (49) as

�
χ2ffiffiffiffiffiffiffiffiffiffiffi
rþX

p
�
∂2
jzj þ

1

jzj∂ jzj þ
1

jzj2∂
2
θz

�

−
4χffiffiffiffiffiffiffiffiffiffiffi
rþX

p ðjzjjxj∂ jzj∂ jxj þ∂θz∂θxÞ

þ
�
4
ffiffiffiffiffiffiffiffiffiffiffi
rþX

p

χ2
þ4jxj2jzj2ffiffiffiffiffiffiffiffiffiffiffi

rþX
p

��
∂2
jxj þ

1

jxj∂ jxj þ
1

jxj2∂
2
θx

��
Ω2

¼ α0

8

�
−

12r
ðrþXÞ2þ

24r2

ðrþXÞ3
�
: ðB1Þ

A partial differential equation has a symmetry group G if,
given a solution uðxÞ, for any element g ∈ G, the trans-
formed solution ũðx̃Þ ¼ g · uðxÞ is also a solution [37].
To demonstrate this for Eq. (B1), we will take G ¼
Uð1ÞCP1 × Uð1ÞC and let g act on the coordinates as

g∶ ðjzj; θz; jxj; θxÞ → ðjzj0; θ0z; jxj0; θ0xÞ
¼ ðjzj; θz þ ε; jxj; θx þ ηÞ; ε; η ∈ R: ðB2Þ

The transformed solution is then

Ω02ðjzj0; θ0z; jxj0; θ0xÞ ¼ g ·Ω2ðjzj; θz; jxj; θxÞ: ðB3Þ

To see whether this is a solution to the Poisson equation
Eq. (B1), simply apply the Laplace operator on the left-
hand side of Eq. (B1) to the transformed solution above. In
compact notation, we have

∇2½g · Ω2� ¼ ∇02Ω02

¼ g · ½∇2Ω2�
¼ g · ρðjzj; jxjÞ
¼ ρðjzj; jxjÞ: ðB4Þ

The argument is as follows. By straightforward application
of the chain rule, partial derivatives appearing in the rotated
coordinates can be shown to be equivalent to those before
rotation, i.e., ∂ 0

m ¼ ∂m form ¼ jzj, θz, jxj, θx. This is easily
understood from the fact that the transformation parameters
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ε and η are real constants. Additionally, the coefficients of
the Laplacian are unaffected by the shift due to g since they
do not depend on θz and θx. This leaves us with a Laplacian
that is invariant under rotations, which is to be expected
given the metric itself has the same invariance. This allows
us to write the first equality. The second equality then
comes from the fact that we can view ∇02Ω02 as the whole
left-hand side of Eq. (B1) being rotated by g. Using
Poisson’s equation, we can rewrite ∇2Ω2 as the source
ρ, giving us the third line. Since the source is rotationally
invariant, the action of g on it is trivial. The crux of the
argument then lies in the fact that our source is rotationally
invariant, and this coupled with a rotationally invariant
geometry tells us that our differential equation
Eq. (B1) possesses the same Uð1ÞCP1 × Uð1ÞC symmetry.
Accordingly, it is reasonable to find solutions that respect
the same symmetry in the underlying system, and are

independent of the angular variables θz and θx. This allows
us to neglect any terms in the equation of motion Eq. (B1)
containing ∂θz or ∂θx. The result is Eq. (52), the reduced
form of the equation of motion for the conformal factor
on M2.
More technically, in general, although symmetries

can be used to reduce the number of independent variables
of a differential equation, the form of the reduced
equation depends on group invariants, rather than simply
ignoring certain variables. The solutions to the reduced
equations are then functions of these group invariants. In
our case, the two-parameter transformation group G lets
us get rid of two independent variables. The group
invariants are then any function of jzj and jxj as they
are unaffected by g. This allows us to ignore the angular
variables in our reduced equation. For more details,
see [37,38].
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