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Abstract We study the optical properties of the Kehagias–
Sfetsos (KS) compact objects, characterized by the “Hořava”
parameter ωK S , in the presence of plasma, considering its
homogeneous or power-law density distribution. The strong
effects of both “Hořava” parameter ωK S and plasma on the
shadow cast by the KS compact objects are demonstrated.
Using the weak field approximation, we investigate the grav-
itational lensing effect. Strong dependence of the deflection
angle of the light on both the “Hořava” and plasma param-
eter is explicitly shown. The magnification of image source
due to the weak gravitational lensing is given for both the
homogeneous and inhomogeneous plasma.

1 Introduction

Hořava proposed a field-theory approach to quantum gravity
inspired by Lifshitz’s ideas of solid state physics, based on an
anisotropic scaling of space and time [1,2]. The Lagrangian
of the Hořava theory is Lorentz invariant at low energies, but
the invariance is violated at high energies. Later, within a
slightly modified theory, the spherically symmetric, asymp-
totically flat solution has been found by Kehagias and Sfetsos
[3]. The Kehagias–Sfetsos (KS) solution is compatible with
the Minkowski vacuum and includes an extra new param-
eter ωK S reflecting the quantum effects. It coincides with
the Schwarzschild solution in the limit of large values of
ωK S M

2, for the source with total gravitational mass M . Con-
sidering ωK S as an universal constant, one may consider the
spacetime to be regulated only by the mass of the object.

a e-mails: f170656@fpf.slu.cz; sudiptahensh2009@gmail.com
b e-mail: ahmadjon@astrin.uz
c e-mail: jan.schee@fpf.slu.cz
d e-mail: zdenek.stuchlik@fpf.slu.cz

For the case ωK S M
2 ≥ 1/2, the solution describes a black

hole with an event horizon, while for ωK S M
2 < 1/2 it

describes a naked singularity. The limits/constraints on ωK S

obtained by using the observational tests do not exclude the
existence of the compact objects described by KS solution
[4–6]. For example, the Solar system test gives the limit of
ωK S > 3.2 × 10−20 cm−2 and implies that the total mass of
the object cannot exceed 2.6 × 104M� [3,6]. In the present
paper, we are motivated to consider possibility of testing the
KS solution using optical properties of the spacetime. The
properties of the KS spacetime have been studied by vari-
ous authors, see, e.g. [7–10]. The particle motion around KS
spacetime have been studied in [11–14].

One of the basic features of the metric theories of gravity
is the gravitational lensing or light deflection effect due to
gravitational interaction. It was first discovered by Einstein
within the General Relativity and now it is considered as
an useful tool to study either source or lens system. The
effect of gravitational lensing is reviewed in [15–20]. Beside
the gravitational force, the plasma surrounding the compact
object may also significantly affect the photon motion. The
effect of plasma on photon motion in various spacetimes and
plasma configurations has been studied by number of authors
[21–43].

Recently, image of supermassive black hole in the cen-
ter of galaxy M87 has been disclosed [44–49]. This obser-
vation is due to the Event Horizon Telescope (EHT) based
on the very large interferometry (VLBI) technique promise
to get deep understanding of the strong gravitational field
regime around supermassive black hole (SMBH) and to test
the theories of gravity. The image of the SMBH or so-called
shadow of the black hole has been theoretically studied by
many authors [8,28,37,50–77]. Here we study the effect of
the “Hořava” parameter on the image of the shadow of the
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KS compact objects and in the weak-field limit its influence
on the gravitational lensing, both in the presence of plasma.

The paper is organized as follows. In Sect. 2 we intro-
duce the notion of the shadow of the KS compact object in
vacuum. In Sect. 3 we investigate the influence of plasma
on the shadow of the KS compact object. Then in Sect. 4
we review the photon motion around compact object in the
presence of plasma. We apply the general formalism to KS
spacetime and study the gravitational lensing effect around
KS compact object in the presence of plasma. In the next
Sect. 5 we consider the magnification of image source due
to lensing in the presence of plasma. Finally, in Sect. 6 we
summarize our results. Throughout the paper we use space-
like signature (−,+,+,+), the geometric system of units
in which G = 1 = c and we restore them when we need to
compare our results with observational data. Greek indices
run from 0 to 3, Latin indices from 1 to 3.

2 Shadow of black hole in vacuum

2.1 Kehagias–Sfetsos spacetime

The metric of the Kehagias–Sfetsos (KS) spacetime, expre-
ssed in the standard Boyer–Lindquist coordinates and geo-
metric units can be written as [3]

ds2 =− f (r)dt2+ f −1(r)dr2+r2(dθ2 + sin2 θdϕ2), (1)

where the lapse function reads

f (r) = 1 + r2ωK S

[
1 −

(
1 + 4M

ωK Sr
3

)1/2
]

, (2)

and ωK S is the “Hořava” parameter which comes from mod-
ification of “Hořava” gravity in infrared regime.

2.2 Equations of geodesic motion

We treat the equations of motion by following the Hamilton–
Jacobi formalism. The Hamilton–Jacobi equation reads

∂S

∂λ
= 1

2
gμν ∂S

∂xμ

∂S

∂xν
, (3)

where S is the Hamilton–Jacobi action, and λ is the
affine parameter that changes along the geodesic. The four
momentum of a test particle is related with the action as
pα = ∂S/∂xα . Because of the symmetries of the KS space-
time, we can apply separation of the variables and the action
can be written as

S = −1

2
m2λ − Et + Lφ + Sr (r) + Sθ (θ), (4)

Fig. 1 Demonstration of celestial coordinates

where m is the mass of the test particle (m = 0 in the case
we are dealing with, i.e. for photons), E is the energy of
the particle (photon), L is the axial angular momentum of
the particle (photon), Sr (r) is a function of r and Sθ (θ) is a
function of θ .

Considering the metric of KS spacetime given in Eq. (1),
we put the Hamilton–Jacobi action given in expression (4)
into Eq. (3). Due to the separation of variables, one can find
easily the equations of motion of photons in the KS spacetime
in the integrated and separated form (see also [8]),

dt

dλ
= E f −1(r), (5)

dr

dλ
= ±√

R(r), (6)

dθ

dλ
= ±

√
Q − L2

sin2 θ

r2 , (7)

dφ

dλ
= L

r2 sin2 θ
, (8)

where, R(r) = [
E2 − Q f (r)/r2

]
, Q is the separation

“Carter” constant [78] having in the spherically symmet-
ric spacetime direct meaning of square of the total angu-
lar momentum, and f (r) is given by Eq. (2). We intro-
duce two dimensionless impact parameters ξ = L/E and
η = Q/E2. To obtain the expressions of the impact
parameters of the photon circular orbit (being the bound-
ary of unstable circular orbits), we have to solve simul-
taneously equations R(r) = 0 = dR(r)/dr . We get
that the dimensionless impact parameter η correspond-
ing to the photon circular orbit is determined by the
relation

η = r2 f −1(r). (9)
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2.3 Circular geodesics

We calculate the radius, energy and axial angular momentum
of circular geodesics at the equatorial plane (θ = π/2 and
pθ = 0) by solving the Hamiltonian–Jacobi equation (3). Let
us consider that the test particle has unit mass. In this case
the Hamilton–Jacobi equation (3) takes the form

− E2

f (r)
+ L2

f 2(r)
+ f (r)

(
∂S

∂r

)2

= −1,

�⇒ p2
r =

(
∂S

∂r

)2

= D, (10)

where, D = f −2(r)
[
E2 − f (r)(L2/r2 + 1)

]
. Using the

condition giving the circular orbits, pr = 0 = ṗr , we get
from Eq. (10) the expressions for the energy (E), and the
axial angular momentum (L) in the form

E2 = 2 f 2(r)

2 f (r) − f ′(r)
, (11)

L2 = f ′(r)r3

2 f (r) − f ′(r)
. (12)

Photon circular orbit can be defined as the orbit where energy
and angular momentum diverge. We can calculate the radius
of photon circular orbit by solving the equation

2 f (r) − f ′(r) = 0. (13)

2.4 Radius of the black hole shadow

In order to analyse the apparent shape of black hole’s shadow
for distant observers, it is useful to introduce the celestial
coordinates (see [79–81] for reference) defined by the rela-
tions

ζ = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

)
, (14)

γ = lim
r0→∞

(
r2

0
dθ

dr

)
, (15)

where r0 is the distance between the observer and the black
hole and θ0 is the inclination angle between the normal of
observer’s sky plane and observer-lens axis. We demonstrate
definition of the celestial coordinates in Fig. 1.

The celestial coordinates can be expressed in terms of
the impact parameters determining the photon equations of
motion (6)–(8) by the relations

ζ = − ξ

sin θ0
, (16)

γ =
√

η − ξ2

sin2 θ0
. (17)

We have to plot ‘γ ’ vs ‘ζ ’ in order to visualize the apparent
shape of the image – we can see from expressions (16) and

(17) that ζ 2 +γ 2 = η, which implies that the apparent shape
of the image is a circle of radius

√
η. After solving Eq. (13),

plugging the value of radius of photon circular orbit into
expression of η in (9) and calculating the square root of η, one
can get the radius of apparent shape of black hole’s shadow.
The plot at the top left corner of Fig. 2 depicts the apparent
shape of the black hole’s shadow in vacuum, given for typical
values of the “Hořava” parameter (Tables 1, 2).

3 Shadow of black hole in plasma

We consider a static distribution of plasma with refractive
index n, which dependence on the photon frequency ω(xi )
is given by the relation

n2 = 1 − ω2
e

ω2(xi )
, ω2

e = 4πe2N

m
= KeN . (18)

Frequency of a photon (ω(xi )) depends on the spatial coordi-
nates (xi ). as a result of the gravitational redshift. In Eq. (18),
N = N (xi ) is the electron number density in plasma, m is
the electron mass and e is the electron charge. Here we con-
sider the electron number density in plasma N = 10−4/cm3

which is astrophysically relevant around SMBH. In our case
we are considering that Frequency of a photon (ω(xi )) and
the electron number density in plasma (N = N (xi )) depend
only on radial (r ) coordinate. As a result of it the refractive
index of plasma depends only on radial coordinate which
guarantees existence of ‘Carter’ constant [28,82].

3.1 Photon motion in plasma

The Hamilton–Jacobi equation in a static distribution of
plasma background having refractive index ‘n’ is given by
the relation [21,83,84]

∂S

∂λ
= 1

2

[
gμν ∂S

∂xμ

∂S

∂xν
− (n2 − 1)

(
pt√−gtt

)2
]

. (19)

Again, considering the general form of metric (1), we put
the Jacobi action (m = 0 in the case of photon) as given
by Eq. (4) into Hamilton–Jacobi equation (19). Due to the
possibility of separation of variables, one can easily arrive at
the equations of photon motion in presence of plasma in the
integrated and separated form

dt

dλ
= n2E f −1(r), (20)

dr

dλ
= ±√

G(r), (21)

dθ

dλ
= ±

√
J − L2

sin2 θ

r2 , (22)
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Fig. 2 Shadows KS black holes. The top left corner image is for vacuum/homogeneous case and rest of the figures are plotted for various
combinations of the “Hořava” parameter and the plasma parameter for inhomogeneous distribution of plasma

Table 1 In this table, the radius of the shadow for upper three images
in Fig. 2 is written for different combinations of ωK S and κin

ωK S = ∞ ωK S = 1.2 ωK S = 0.6

Vacuum 4.8031 5.0213 5.1961

κin = 0.6 4.8333 5.0391 5.2091

κin = 1 4.9625 5.0976 5.2479

Table 2 In this table, the radius of the shadow for lower three images
in Fig. 2 is written for different combinations of ωK S and κin

κin = 0.2 κin = 1 κin = 1.2

ωK S = 0.6 4.8053 4.9625 5.1994

ωK S = 1.5 4.9842 5.0069 5.0420

ωK S = 10,000 5.1972 5.2479 5.2894

dφ

dλ
= L

r2 sin2 θ
, (23)

where, G(r) = [
n2E2 − J f (r)/r2

]
, J is the separation

“Carter” constant [78], keeping the meaning of the total angu-
lar momentum in spherically symmetric backgrounds, and
the lapse function f (r) is given by Eq. (1). We follow the
same treatment as in the vacuum case, i.e., solving simultane-
ously equations G(r) = 0 = dG(r)/dr to obtain the impact
parameter η of photon circular orbit given by the relation

η = n2r2

f (r)
. (24)

3.2 Radius of photon circular geodesic

Following the same procedure as in the vacuum case, we
use the Hamiltonian-Jacobi equation (19) for photons and
Eq. (21) of their radial motion that gives the conditions of the
circular photon motion G(r) = 0, dG(r)/dr = 0 implying
the relations determining the radius of photon circular orbit

2n f (r) + 2n′r f (r) − nr f ′(r) = 0. (25)

3.3 Radius of the black hole shadow

Using the equations of motion (21)–(23), we can get the rela-
tions giving the celestial coordinates (16) and (17) of the
black hole shadow in terms of the photon impact parameters

ζ = − ξ

n sin θ0
, (26)

γ = 1

n

√
η − ξ2

sin2 θ0
. (27)

To visualize the apparent shape of the shadow image, we need
to plot ‘γ ’ vs ‘ζ ’. In this case, we can see from Eqs. (26) and
(27) that ζ 2 + γ 2 = η/n2, which implies that the apparent
shape of the black hole shadow in plasma is a circle of radius√

η/n. After solving Eq. (25), plugging the value of radius
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of the photon circular orbit into expression of η in (23) and
calculating

√
η/n, one can get the radius of apparent shape

of black hole’s shadow in the plasma. Figure 2 depicts the
apparent shape of image of black hole’s shadow in plasma in
various cases discussed below.

3.4 Homogeneous distribution of plasma

In this case the electron number density is constant through-
out the plasma distribution, i.e.

N = Nh = constant. (28)

So, from Eq. (18) we get

n2 = 1 − KeNh

ω2(xi )
= 1 − κh (29)

where, κh = KeNh/ω
2(xi ). We call κh as plasma parameter

for homogeneous plasma distribution. Therefore, the refrac-
tive index ‘n of the plasma is also constant and Eq. (25) is
reduced to Eq. (13). This means that the radius of photon
circular orbit remains the same as in the vacuum case. We
also see that the radius of apparent image of black hole is
the same as in the case of vacuum, i.e.

√
η/n = √

r2 f −1(r).
This case is similar as vacuum case.

3.5 Inhomogeneous power-law distribution of plasma

Here we consider that the number density of electrons in
plasma is given by the relation

N = Ninr0

r
(30)

where Nin is the number density of electrons at r = r0.
According to Eq. (18), the refractive index of the medium (n)
depends on position (r ) as

n = n(r) = 1 − KeNinr0

ω2(xi )r
= 1 − κin

r
, (31)

where a new plasma parameter κin = KeNinr0/ω
2(xi ) is

introduced. We call κin as plasma parameter for inhomoge-
neous distribution of plasma.

Using Eq. (31), we can calculate the radius of photon cir-
cular orbit by solving Eq. (25). Plugging the value of radius
of photon circular orbit into Eq. (24), we find the radius of
the black hole shadow to be given by

√
η/n = √

r2 f −1(r).
In Fig. 2, we plot the ‘γ ’ vs ‘ζ ’ relations giving the black

hole shadow for various combinations of the plasma coeffi-
cient κin , and the dimensionless “Hořava” parameter. We use
‘Schw’ abbreviation to refer the case of Schwarzschild limit.
From top left corner plot and the second row plots, we see

that the radius of the shadow is increasing with increasing
plasma coefficient and it coincides with the Schwarzschild
case for large values of the plasma coefficient. We also see
from the figures of third and fourth row that radius of shadow
is increasing with increasing dimensionless “Hořava” param-
eter.

4 Deflection of light near massive body surrounded by
plasma in the weak field limit

In Ref. [32] the authors introduced a special formalism for
treating the gravitational lensing in the weak-field limit, for
compact objects surrounded by plasma. In the present paper
we use this formalism for calculation of the deflection angle
of photons in weak gravitational field around KS black holes.

We consider a static space-time with a metric

ds2 = gαβdx
αdxβ = g00(dx

0)2 + gi j dx
i dx j . (32)

Assuming the weak-filed limit, we are allowed to write
the metric as

gαβ = ηαβ + hαβ, (33)

here ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric of
the flat spacetime, and hαβ is a small perturbation satisfying
conditions

∣∣hαβ

∣∣ 
 1 and hαβ → 0 for
∣∣xi ∣∣ → ∞. There is

ηαβ = ηαβ and hαβ = hαβ .
We can express the deflection angle as [32]

α̂i = 1

2

∫ +∞

−∞

(
h33,i + ω2

ω2 − ω2
0

h00,i − Ke

ω2 − ω2
0

N,i

)
dz,

(34)

where i = 1, 2 and ω0 = ωe(∞). Using the definition of the
deflection angle,

α̂ = e(+∞) − e(−∞), (35)

we obtain the relation

dei
dz

= 1

2

(
h33,i + 1

n2
0

h00,i − 1

n2
0ω

2
KeN,i

)
, (36)

for i = 1, 2. We can express the deflection angle given by
Eq. (34) in terms of the impact parameter b as

α̂b = 1

2

∫ +∞
−∞

b

r

(
dh33

dr
+ ω2

ω2 − ω2
0

dh00

dr
− Ke

ω2 − ω2
0

dN

dr

)
dz,

(37)
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where r = √
b2 + z2. For detailed exploration of this section,

see [32].
Now, we calculate the deflection angle of photon by using

the binomial approximation for the KS metric (1). we can
write(

1 + 4M

ωK Sr
3

) 1
2 = 1 + 2M

ωK Sr
3 − 2M2

ω2
K S
r6 + 4M3

ω3
K S
r9 − · · · ,

[
if,

M

ωK Sr
3 
 1

]
.

Considering the binomial approximation and neglecting the
higher order terms, the temporal and radial metric compo-
nents can be written as

− gtt = f (r),

= 1 + r2ωK S

[
2M2

ω2
K S
r6 − 2M

ωK Sr
3 − 4M3

ω3
K S
r9

]
,

= 1 − 2M

r
+ 2M2

ωK Sr
4 − 4M3

ω2
K S
r7 , (38)

and

grr = f (r)−1,

=
[

1 +
(

2M2

ωK Sr
4 − 2M

r
− 4M3

ω2
K S
r7

)]−1

,

= 1 + 2M

r
− 2M2

ωK Sr
4 + 4M3

ω2
K S
r7 ,

[
if,

M

r

 1 and

M

ωK Sr
3 
 1

]
. (39)

Considering the weak-field approximation (33), the compo-
nent of the metric tensor hαβ in the Cartesian coordinates
have the following form:

h00 = 2M

r
− 2M2

ωK Sr
4 + 4M3

ω2
K S
r7 , (40)

hik =
(

2M

r
− 2M2

ωK Sr
4 + 4M3

ω2
K S
r7

)
si sk, (41)

where si correspond to the unit vectors along the coordinate
axes: s1 = x1/r , s2 = x2/r , and s3 = z/r = z/(z2 +
b2)1/2 = cos θ .

4.1 Deflection angle in vacuum

Now, we get the expression for the deflection angle of photon
in vacuum by inserting the electron plasma frequency (ω0)
and the electron number density (N (xi )) equal to zero in
Eq. (37). We then arrive to

αb = 1

2

∫ +∞

−∞
b

r

(
dh33

dr
+ dh00

dr

)
dz, (42)

Fig. 3 The dependence of the deflection angle of photon on the dimen-
sionless impact parameter (b/M) for various values of the dimension-
less “Hořava” parameter (ω̃K S ) : 10,000 (solid line), 1 (dashed line),
0.6 (dotted line)

where r = √
b2 + z2. Introducing the metric approximation

and performing the above integral, we get

αb = −4M

b
+ 15π

8

M2

b4ωK S

− 512

35

M3

b7ω2
K S

. (43)

We can see that the result expressed by Eq. (43) is in agree-
ment with the deflection angle in the Schwarzschild geome-
try, i.e., αb = −4M/b when ωK S → ∞.

In Fig. 3, we plot dependence of the photon deflection
angle on the dimensionless impact parameter for typical val-
ues of the dimensionless “Hořava” parameter. We can see
that the “Hořava” parameter notably influences the photon
deflection, if the impact parameter is low enough to allow
motion close enough to the compact object. We see that the
deflection angle coincides with the Schwarzschild case far
from the compact object.

4.2 Deflection angle in homogeneous distribution of plasma

Now we consider simple case when plasma distribution fol-
lows Eq. (28). Using Eq. (37), we get

αb = 1

2

∫ +∞

−∞
b

r

(
dh33

dr
+ ω2

ω2 − ω2
0

dh00

dr

)
dz, (44)

Performing the above integral in the approximate form of the
metric, we arrive at

αb = −2M

b

(
1 + ω2

ω2 − ω2
0

)
+ 3πM2

2b4ωK S

(
1

4
+ ω2

ω2 − ω2
0

)

− 64M3

5b7ω2
K S

(
2

15
+ ω2

ω2 − ω2
0

)
. (45)
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Fig. 4 Homogeneous case: In the first two rows, we show the depen-
dence of the deflection angle of photon with dimensionless impact
parameter (b/M) for various combinations of dimensionless “Hořava”
parameter (ω̃K S ) and plasma parameter. In the third row, the dependence

of the deflection angle of photon with plasma parameter for various
combinations of dimensionless “Hořava parameter” (ω̃K S ) and dimen-
sionless impact parameter (b/M)

Using Eq. (29), we can write the above expression as

αb = −2M

b

(
1 + 1

1 − κh

)
+ 3πM2

2b4ωK S

(
1

4
+ 1

1 − κh

)

− 64M3

5b7ω2
K S

(
2

15
+ 1

1 − κh

)
, (46)

here we are neglecting the redshift of photon.
In the first and second rows of Fig. 4, we demon-

strate that the deflection angle is increasing as a result of

increasing plasma parameter. We can see that this phe-
nomenon is significant near the KS compact object, and the
deflection is increasing with increasing “Hořava” parame-
ter. In the third row of Fig. 4, we demonstrate that plasma
parameter has significant influence near the compact object;
increasing of the plasma parameter implies increasing of the
deflection angle. The effect of the plasma parameter becomes
weaker far from the KS compact object. So, if the plasma den-
sity near KS compact object increases, the deflection angle
increases.
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Fig. 5 Inhomogeneous case: In the first two rows, we show the depen-
dence of the deflection angle of photon with dimensionless impact
parameter (b/M) for various combinations of dimensionless “Hořava”
parameter (ω̃K S ) and plasma parameter. In the third row, the dependence

of the deflection angle of photon with plasma parameter for various
combinations of dimensionless “Hořava parameter” (ω̃K S ) and dimen-
sionless impact parameter (b/M)

4.3 Deflection angle in inhomogeneous distribution of
plasma(N = N0/r )

We assume that the number density of electrons in plasma
varies with position due to Eq. (30). Using Eq. (37) with the
metric coefficient in the approximate form, and performing
the integral, we get the deflection angle

αb = −2M

b

(
1 + ω2

ω2 − ω2
0

)
+ 3πM2

2b4ωK S

(
1

4
+ ω2

ω2 − ω2
0

)

− 64M3

5b7ω2
K S

(
2

15
+ ω2

ω2 − ω2
0

)
+ NinKer0

b(ω2 − ω2
0)

. (47)

Taking into account ω0 = ωe(∞) = 0, and by using (31),
we rewrite the above expression as

αb = −4M

b
+ 15πM2

8b4ωK S

− 1088M3

75b7ω2
K S

+ κin

b
. (48)

In Fig. 5, we show how the deflection angle is influ-
enced by the plasma distribution near the compact object.
In this case, deflection angle is significantly lower than in the
case of homogeneous plasma distribution. Deflection angle
decreases monotonically with increasing plasma parameter.
This behaviour is opposite to the homogeneous case.
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Fig. 6 Schematic plot of source-observer-lens system

5 The magnification of the source image

In this section, we consider magnification of the brightness
of the source image due to the weak gravitational lensing.
We start from well known lens equation given in [85]

θDs = βDs + αbDls, (49)

where β and θ are the source angle and the image angle,
respectively, being related to the observer-lens axis, Ds is
the distance between the source and the observer, and Dls is
the distance between the lens and the source. Manipulating
the lens equation (49), we obtain

β = θ − Dls

Ds

F(θ)

Dl

1

θ
, (50)

where F(θ) = |αb| b = |αb(θ)| Dlθ , Dl is the distance
between the lens and the observer. In Fig. 6, we present a
schematic plot of the source-observer-lens system. Positions
of images (θd ) formed due to the lensing can be found by
solving Eq. (50), where d is the number of the image. Radius
of the Einstein ring is defined by R0 = Dlθ0, where θ0 is the
solution of Eq. (50) when the source is located on the line of
sight i.e. β = 0, and θ0 is defined as the Einstein angle.

The magnification of the image brightness is defined by
the formula

μtot = Itot
I

=
∑
d

∣∣∣∣
(

θd

β

)(
dθd

dβ

)∣∣∣∣ , d = 1, 2, . . . , f,

(51)

where f is the number of images, Itot is the total brightness
of images, I is the brightness of the source and d is the index
of a concrete image.

5.1 Image magnification in vacuum

Using Eq. (43) and neglecting terms involving ω2, Eq. (50)
takes the form

β = θ − 4M

Dl

Dls

Ds

(
1

θ
− 15π

32

M

D3
l ωK S

1

θ3

)
,

= θ −
(

4M

Dl

Dls

Ds

)
1

θ

+
(

15π

32

M

D3
l ωK S

) (
4M

Dl

Dls

Ds

)
1

θ3 . (52)

Introducing parameters,

θ2
E = 4M

Dl

Dls

Ds
, (53)

θF =
(

15π

32

M

D3
l ωK S

) (
4M

Dl

Dls

Ds

)
,

=
(

15π

32

M

D3
l ωK S

)
θ2
E , (54)

Eq. (52) takes the form

θ5 − βθ4 − θ2
Eθ3 + θF = 0. (55)

The above equation has three real roots depicting positions
of the images. The solutions are given by

θ1 = 1

2

[
β + B − 16θF

B(β + B)3

]
, (56)

θ2 = 1

2

[
β − B + 16θF

B(β − B)3

]
, (57)

θ3 =
(

θF

θ2
E

) 1
3

, (58)

where B =
√

β2 + 4θ2
E .

Now we can calculate expressions for the Einstein angle
by putting β = 0 into Eqs. (56)–(58). We get the relations
for the three images in the form

θ
(1)
0 = θE − θF

2θ4
E

, (59)

θ
(2)
0 = −θE − θF

2θ4
E

, (60)
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Fig. 7 Vacuum case: On the left panel, we plot dependence of three
Einstein angles (θ0) with dimensionless “Hořava parameter” (ωK S ). On
the right panel, we plot the total magnification of image brightness with
dimensionless “Hořava parameter” (ωK S ) for different values of angle

of source from observer-lens axis(β): 0.01 (solid line), 0.001 (dashed
line), 0.0005 (dotted line). Both plots are considering M/Dl = 10 and
Dls/Ds = 1/200

Fig. 8 On the left panel, we show the dependence of Einstein angle (θ0)
for homogeneous distribution of plasma with dimensionless “Hořava
parameter” (ωK S ) for different values of θE : 0.5164 (solid line),
0.4472 (dashed line), 0.3162 (dotted line). On the right panel, we show

the dependence of Einstein angle (θ0) for inhomogeneous distribution
of plasma with dimensionless “Hořava parameter” (ωK S ) for different
values of θE : 0.5164 (solid line), 0.4472 (dashed line), 0.3162 (dotted
line)

θ
(3)
0 =

(
θF

θ2
E

) 1
3

. (61)

The total magnification of the image brightness can be
calculated by using Eq. (51). In Fig. 7, on the left panel, we
demonstrate for the three Einstein angles their dependence on
the dimensionless “Hořava” parameter. At the Schwarzschild
limit (at high values of ωK S ), the upper two Einstein angles
coincide to one, and lower one goes to zero. In Fig. 7, on the
right panel, we demonstrate variation of the total magnifica-
tion of the image brightness with the dimensionless “Hořava
parameter”, for various values of the inclination angle of

source from the observer-lens axis (β). We see that the mag-
nification is increasing with the inclination angle decreasing.

5.2 Image magnification in homogeneous plasma

By using Eqs. (46) and (50), neglecting the terms involv-
ing ω2

K S
, we obtain the lens equation in the case of homoge-

neous distribution of plasma in the form

θ5 − βθ4 − 1

2

(
1 + 1

1 − κh

)
θ2
Eθ3

+ 4

5

(
1

4
+ 1

1 − κh

)
θF = 0, (62)
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Fig. 9 Homogeneous case: In the first row, the variation of total mag-
nification (μtot ) for homogeneous distribution of plasma with dimen-
sionless “Hořava” parameter (ω̃K S ) for different combinations of angle
of source from observer-lens axis (β) and plasma parameter keeping
θE = 0.4472 constant. In the second row, the variation of total mag-

nification (μtot ) for homogeneous distribution of plasma with plasma
parameter for different combinations of angle of source from observer-
lens axis (β) and dimensionless “Hořava” parameter (ω̃K S ) keeping
θE = 0.4472 constant

where, θE and θF are given by Eqs. (53) and (54), respec-
tively. We get three real roots corresponding to three different
image positions by solving Eq. (62). The solutions are given
by

θ1 = 1

2

[
β + C + 16(−5 + κh)θF

5(1 − κh)C(β + C)3

]
, (63)

θ2 = 1

2

[
β − C − 16(−5 + κh)θF

5(1 − κh)C(β − C)3

]
, (64)

θ3 =
[

8( 1
4 + 1

1−κh
)θF

5(1 + 1
1−κh

)θ2
E

] 1
3

, (65)

where, C =
√

β2 + 2θ2
E (1 + 1

1−κh
).

We can obtain the expressions for the Einstein angle in
similar way as in the vacuum case, by putting β = 0 in the
above expressions.

In the left panel of Fig. 8, we present for homogeneous dis-
tribution of plasma the dependence of the Einstein angle(θ0)
on dimensionless “Hořava” parameter for different values of
θE . We can see three Einstein rings for each value of θE ,
when the dimensionless “Hořava” parameter is low enough.
As in the vacuum case, we obtain only one Einstein ring in

the Schwarzschild limit (at large values of ω̃K S ). The total
magnification of the image brightness can be calculated by
using the Eq. (51). In the first row of Fig. 9, we present
the variation of the total magnification of the image bright-
ness with the dimensionless “Hořava” parameter, and with
the plasma parameter, for various values of β. From these
plots we observe that the total magnification is decreasing if
we increase plasma parameter, and the total magnification is
increasing if we decrease β. This means, the total magnifica-
tion decreases if plasma concentration gets denser. From the
second row of Fig. 9, we can conclude that the total magnifi-
cation is increasing if the dimensionless “Hořava” parameter
decreases. So, the total magnification increases with strength
of the KS spacetime.

5.3 Image magnification in inhomogeneous plasma

We get the lens equation by using Eqs. (48) and (50)—
neglecting terms involving ω2

K S
) we arrive at

θ5 − βθ4 −
[
θ2
E − θ2

Eκin

4M

]
θ3 + θF = 0. (66)
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Fig. 10 Inhomogeneous: In the first row, the variation of total mag-
nification (μtot ) for inhomogeneous distribution (1/r ) of plasma with
dimensionless “Hořava” parameter (ω̃K S ) for different combinations of
angle of source from observer-lens axis (β) and plasma parameter keep-
ing θE = 0.4472 constant. In the second row, the variation of total mag-

nification (μtot ) for inhomogeneous distribution (1/r ) of plasma with
plasma parameter for different combinations of angle of source from
observer-lens axis (β) and dimensionless “Hořava” parameter (ω̃K S )
keeping θE = 0.4472 constant

We get three images whose positions are given by

θ1 = 1

2

[
β + H − 16θF

H(β + H)3

]
, (67)

θ2 = 1

2

[
β − H + 16θF

H(β − H)3

]
, (68)

θ3 =
⎡
⎣ 4θF

4θ2
E − θ2

Eκin
M

⎤
⎦

1
3

, (69)

where H =
√

β2 + 4θ2
E − θ2

Eκin
M .

We can obtain the Einstein angles by setting β = 0 in
the above expressions. In the left panel of Fig. 8, we show
for inhomogeneous distribution of plasma the dependence
of the Einstein angle (θ0) on the dimensionless “Hořava”
parameter for different values of θE . This case is similar to
the case of homogeneous distribution of plasma. We can see
three Einstein rings for each value of θE , if the dimensionless
“Hořava” parameter is low enough, and we see only one
Einstein ring at the Schwarzschild limit (for large values of
ω̃K S ).

The total magnification of the image brightness can be cal-
culated by using Eq. (51). In the Fig. 10, we demonstrate the

variations of total magnification of the image brightness with
the dimensionless “Hořava parameter” and with the plasma
parameter, for various values of β. In this case, the profile
has similar character as in the homogeneous case, but the
magnification increases significantly due to inhomogeneity
in the plasma distribution.

6 Conclusion

In this work we explore the optical properties of the KS black
holes in the presence of plasma. We have studied the photon
motion using the Hamilton–Jacobi equation, modified due to
the presence of plasma.

The radius of the shadow of the black hole is increasing
when both the “Hořava” parameter and the plasma param-
eter increase. It was shown that “Hořava” parameter and
the plasma parameter have significant influence on photons
deflected near the compact object. In case of inhomogeneous
distribution of plasma, the deflection angle is lower than in
the homogeneous case, and it decreases monotonically with
increase of plasma parameter.
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We also see that the image magnification is increasing
when both the inclination angle of the source from the
observer-lens axis and the dimensionless “Hořava” param-
eter decrease. We can also conclude that if plasma concen-
tration gets denser, the total magnification decreases. In case
of injection of an inhomogeneity in the plasma distribution,
the magnification increases.

Now we have the observational data of the Event Hori-
zon Telescope (EHT) [44–49] which we could use to verify
results of our theoretical models with the observational data.
If this or any future observation will match with our theoret-
ical findings of deflection angle, magnification, number of
image, radius of shadow then we can comment that the com-
pact object is a Kehagias–Sfetsos black hole, and we could
put limit on the “Hořava” parameter. We could also be able
to distinguish the effects of “Hořava” parameter and plasma
on the optical phenomena. Next, we plan to study the effect
of “Hořava” parameter on the optical phenomena as gravi-
tational lensing in strong gravitational field with anisotropic
distribution of plasma.
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Kluźniak, M. Abramowicz, Gen. Relativ. Gravit. 47, 132 (2015).
arXiv:1511.01345 [gr-qc]

11. A. Abdujabbarov, B. Ahmedov, A. Hakimov, Phys. Rev. D 83,
044053 (2011). arXiv:1101.4741 [gr-qc]

12. V. Enolskii, B. Hartmann, V. Kagramanova, J. Kunz, C. Läm-
merzahl, P. Sirimachan, Phys. Rev. D 84, 084011 (2011).
arXiv:1106.4913 [gr-qc]

13. Z. Stuchlík, J. Schee, A. Abdujabbarov, Phys. Rev. D 89, 104048
(2014)

14. R.A. Konoplya, Phys. Lett. B 679, 499 (2009). https://doi.org/10.
1016/j.physletb.2009.07.073

15. J.L. Synge, Relativity: The General Theory (North-Holland, Ams-
terdam, 1960)

16. P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses, XIV, 560
pp. 112 figs. Springer-Verlag Berlin Heidelberg New York. Also
Astronomy and Astrophysics Library (1999)

17. V. Perlick, Ray Optics, Fermat’s Principle, and Applications to
General Relativity, by Volker Perlick. Lecture Notes in Physics,
Monographs Series, v.61. Published by Springer-Verlag (Berlin
Heidelberg New York), 2000 (Springer, Berlin, 2000)

18. V. Perlick, Living Rev. Relativ. 7, 9 (2004)
19. A.K. Mishra, S. Chakraborty, S. Sarkar, Phys. Rev. D

99(10), 104080 (2019). https://doi.org/10.1103/PhysRevD.99.
104080. arXiv:1903.06376 [gr-qc]

20. S. Chakraborty, S. SenGupta, JCAP 7, 045 (2017).
arXiv:1611.06936 [gr-qc]

21. A. Rogers, Mon. Not. R. Astron. Soc. 451, 17 (2015).
arXiv:1505.06790 [gr-qc]

22. A. Rogers, Universe 3, 3 (2017). arXiv:1701.05693 [gr-qc]
23. X. Er, A. Rogers, Mon. Not. R. Astron. Soc. 475, 867 (2018).

arXiv:1712.06900
24. A. Rogers, Mon. Not. R. Astron. Soc. 465, 2151 (2017).

arXiv:1611.01269 [gr-qc]
25. A. Broderick, R. Blandford, Mon. Not. R. Astron. Soc. 342, 1280

(2003). arXiv:astro-ph/0302190
26. J. Bicak, P. Hadrava, Astron. Astrophys. 44, 389 (1975)
27. S. Kichenassamy, R.A. Krikorian, Phys. Rev. D 32, 1866 (1985)
28. V. Perlick, O.Y. Tsupko, Phys. Rev. D 95, 104003 (2017).

arXiv:1702.08768 [gr-qc]
29. V. Perlick, O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Phys. Rev. D 92,

104031 (2015). arXiv:1507.04217 [grqc]
30. A. Abdujabbarov, B. Toshmatov, J. Schee, Z. Stuchlík, B. Ahme-

dov, Int. J. Mod. Phys. D 26, 1741011–187 (2017)
31. E.F. Eiroa, C.M. Sendra, Phys. Rev. D 86, 083009 (2012).

arXiv:1207.5502 [gr-qc]
32. G.S. Bisnovatyi-Kogan, O.Y. Tsupko, Mon. Not. R. Astron. Soc.

404, 1790 (2010). arXiv:1006.2321 [astro-ph.CO]
33. O.Y. Tsupko, G.S. Bisnovatyi-Kogan, in American Institute of

Physics Conference Series, American Institute of Physics Confer-
ence Series, vol. 1206, ed. by S.K. Chakrabarti, A.I. Zhuk, G.S.
Bisnovatyi-Kogan (2010), pp. 180–187

34. O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Gravit. Cosmol. 18, 117
(2012)

35. V.S. Morozova, B.J. Ahmedov, A.A. Tursunov, Astrophys. Space
Sci. 346, 513 (2013)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0902.3657
http://arxiv.org/abs/1007.2410
http://arxiv.org/abs/0905.0477
http://arxiv.org/abs/0909.2562
http://arxiv.org/abs/1010.6149
http://arxiv.org/abs/1012.2822
http://arxiv.org/abs/1412.4149
http://arxiv.org/abs/1402.2891
http://arxiv.org/abs/1311.5820
http://arxiv.org/abs/1511.01345
http://arxiv.org/abs/1101.4741
http://arxiv.org/abs/1106.4913
https://doi.org/10.1016/j.physletb.2009.07.073
https://doi.org/10.1016/j.physletb.2009.07.073
https://doi.org/10.1103/PhysRevD.99.104080
https://doi.org/10.1103/PhysRevD.99.104080
http://arxiv.org/abs/1903.06376
http://arxiv.org/abs/1611.06936
http://arxiv.org/abs/1505.06790
http://arxiv.org/abs/1701.05693
http://arxiv.org/abs/1712.06900
http://arxiv.org/abs/1611.01269
http://arxiv.org/abs/astro-ph/0302190
http://arxiv.org/abs/1702.08768
http://arxiv.org/abs/1507.04217
http://arxiv.org/abs/1207.5502
http://arxiv.org/abs/1006.2321


533 Page 14 of 14 Eur. Phys. J. C (2019) 79 :533

36. O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Gravit. Cosmol. 20, 220
(2014)

37. G. Bisnovatyi-Kogan, O. Tsupko, Universe 3, 57 (2017)
38. A. Hakimov, F. Atamurotov, Astrophys. Space Sci. 361, 112 (2016)
39. B. Turimov, B. Ahmedov, A. Abdujabbarov, C. Bambi, 1802, 03293

(2018). arXiv e-prints: gr-qc. arXiv:1802.03293 [gr-qc]
40. C.A. Benavides, A. Cárdenas-Avendaño, A. Larranaga, Int. J.

Theor. Phys. 55, 2219 (2016)
41. G.V. Kraniotis, Gen. Relativ. Gravit. 46, 1818 (2014).

arXiv:1401.7118 [gr-qc]
42. H. Chakrabarty, A.B. Abdikamalov, A.A. Abdujabbarov, C. Bambi,

Phys. Rev. D 98, 024022 (2018). arXiv:1804.00461 [gr-qc]
43. C.A. Benavides-Gallego, A.A. Abdujabbarov, C. Bambi, Eur. Phys.

J. C 78, 694 (2018). arXiv:1804.09434 [gr-qc]
44. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi,

W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković,
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