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Abstract We simulate the evolution of a dust universe from
z = 1089 to z = 0 by numerically integrating the Einstein’s
equation for a spatially flat Friedmann–Lemaire–Robertson–
Walker (FLRW) background spacetime with scalar pertur-
bations which are derived from the matter power spectrum
produced with the Code for Anisotropies in the Microwave
Background (CAMB). To investigate the effects of primor-
dial gravitational waves (GWs) on the inhomogeneity of the
universe, we add an additional decaying, divergenceless and
traceless primordial tensor perturbation with its initial ampli-
tude being 3 × 10−4 to the above metric. We find that this
primordial tensor perturbation suppresses the matter power
spectrum by about 0.01% at z = 0 for modes with wave
number similar to its. This suppression may be a possible
probe of a GWs background in the future.

1 Introduction

One of the most important predictions by inflation [1,2] is
that there is a stochastic gravitational waves (GWs) back-
ground. So far, people have made every endeavor to detect
such a GWs background and test inflation scenario experi-
mentally: the most promising one is the B-mode polariza-
tion of the cosmic microwave background (CMB) [3–5];
the complementary and even more sensitive one is the 21
cm HI emission from the dark ages [6,7]; some not very
competitive ones including weak lensing shear [8,9] and
other large-scale structure observables [10,11]. The goal
of this paper is to investigate the signatures of primor-
dial GWs in matter power spectrum with numerical rela-
tivity, thereby proposing a possible probe of a GWs back-
ground.

As we known, massive neutrinos will slow the gravita-
tional collapse of halos on scales smaller than their free-
streaming length when they become non-relativistic, which
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will affect the way large-scale cosmological structures form
and lead to a suppression in the galaxy power spectrum
on small scales observed today. Therefore, people can con-
strain the upper limit on the sum of neutrino masses from
the power spectrum of galaxy surveys [12–18]. As for the
matter power spectrum on large scales, it would not be
modified significantly by radiation, neutrinos or baryons.
So the matter power spectrum on large scales can serve
as another handle on the primordial fluctuations and infla-
tion.

So far, the power spectrum data from the Clustering of
the Sloan Digital Sky Survey DR7 Luminous Red Galaxies
ranges from k = 0.02 hMpc−1 to k = 0.2 hMpc−1 [19] and
the power spectrum data from the WiggleZ Dark Energy Sur-
vey ranges from k = 0.01 hMpc−1 to k = 0.5 hMpc−1 [20].
Due to their small k span, these data are not suitable to con-
strain the large-scale primordial fluctuations and inflation.
However, the future high precision lensing and galaxy red-
shift surveys, such as the Large Synoptic Survey Telescope
(LSST) [21,22], will has a large enough k span to confirm the
turnover in the power spectrum and constrain the large-scale
primordial fluctuations. So, in this paper, we will consider
primordial tensor perturbations with comparable wave num-
ber to the scale of turnover.

Here, our work is based on the wide-usedEinstein Toolkit
[23] to integrate Einstein’s equation: the thorn ML_BSSN
[24–26] was used to evolve spacetime using the Baumgarte–
Shapiro–Shibata–Nakamura (BSSN) formalism [27–29] and
the thorn GRHydro was used to evolve the hydrodynamical
system [30–32]. Moreover, we initialize an almost FLRW
Universe with scalar and tensor perturbations as [33,34], and
especially turn to the matter power spectrum as [35].

This paper is organized as follows. In Sect. 2, we give the
initial conditions for background by rescaling the scale factor
and perturbations by analyzing the matter power spectrum.
In Sect. 3, we show the results of simulations. At last, a brief
summary and discussion are included in Sect. 4. In this paper,
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Table 1 The cosmological
parameters predicted by Planck
2018 TT, TE, EE + lowE [36]

�bh2 �ch2 �m H0 [km s−1 Mpc−1] ns 109As z∗ zre

0.02236 0.1202 0.3166 67.27 0.9649 2.101 1089 7.68

Table 2 Three conversions between scale factor and redshift z. aP

follows the usual convention in cosmology. aS is used during our sim-
ulations. aF is a fiducial one which relates the former two

z + 1 = 1090 z + 1 = 10 z + 1 = 1

aP 0.00092 0.1 1

aF 0.0092 1 10

aS 1 109 1090

Table 3 The comoving matter density ρ̄ I
m∗ = ρ̄ I

m(aI )3 for three dif-
ferent universes, where I = P, F, S for our universe, fiducial universe
and simulations respectively

aP = 1 aF = 1 aS = 1

ρ̄ I
m∗ 6.0×10−9×0.3166 6.0×10−6×0.3166 6.0×10−6×0.3166

we adopt the following conventions: Greek indices run in {0,
1, 2, 3}, Latin indices run in {1, 2, 3} and repeated indices
implies summation.

2 Initial conditions

2.1 Initial conditions for background

Since we will perform large-scale cosmological simulations
instead of the simulations of black-hole-binary-like astro-
physical system, we modify the file EOS_Omni_Module.
F90 in Einstein Toolkit to replace the default unit system:
M� = G = c = 1 with the new one: 1 Mpc = G =
c = 1 [35]. Under this new unit system and with the cos-
mological parameters consistent with Planck 2018 results
[36] as shown in Table 1, the matter density of our uni-
verse is ρ̄P

m = 6.0 × 10−9 × 0.3166 at z = 0, hence
ρ̄P
m = 6.0 × 10−6 × 0.3166 at z = 9. Considering a fidu-

cial universe whose matter density ρ̄F
m (z) is equal to ρ̄P

m (z),
the scale factor of this fiducial one aF = 10aP as shown
in Table 2 means that the comoving matter density of it is
ρ̄F
m∗ = 6.0 × 10−6 × 0.3166 as shown in Table 3. Here

we will turn to a blown-up fiducial universe by 109 times
to mimic our universe in simulations: setting the scale fac-
tor used during simulations as aS = 109aF as shown in
Table 2 and keeping the comoving matter density being
ρ̄S
m∗ = 6.0 × 10−6 × 0.3166 as shown in Table 3. That

is to say, simulations with ρ̄S
m∗ = 6.0 × 10−6 × 0.3166 from

aS = 1 to aS = 1090 can give the evolution of our uni-
verse with ρ̄P

m∗ = 6.0 × 10−9 × 0.3166 from aP = 0.00092

to aP = 1 when we analyze the results from simulations
taking this blowing-up by 109 times into consideration and
regardless of the existence of dark energy and radiation.

All in all, we set the initial scale factor and matter back-
ground density for simulations as aSinit = 1 and ρ̄S

m,init =
6.0 × 10−6 × 0.3166 respectively.

2.2 Initial conditions for perturbations

In the conformal Newtonian gauge, the line element that
includes both the scalar and tensor perturbations to a spa-
tially flat FLRW background spacetime is

ds2 = (aS)2[−(1 + 2�)dη2 + (1 − 2�)δi j dx
i dx j

+hi j dx
i dx j ], (1)

where η is the conformal time, δi j is the identity matrix, � is
the Newtonian potential, � the spatial curvature perturbation
and hi j is a divergenceless, traceless and symmetric tensor.
At the beginning of simulations, it’s reasonable to take (1) as
the universe’s metric and rewrite it into the form of (3 + 1)

formalism

ds2 = −α2dt2 + γi j (dx
i + β i dt)(dx j + β j dt), (2)

where α is the lapse function which satisfies the harmonic
slicing here: ∂tα = − 1

3α2K , β i is the shift vector which is
set as β i = 0 here and γi j is the spatial metric which evolves
depending on the extrinsic curvature Ki j as (∂t − Lβ)γi j =
−2αKi j . Therefore, the initial data for thorn ADMBase and
HydroBase can be derived from the solutions at η = 0 to
Einstein’s equation for (1).

Given the energy–momentum tensor of a perfect fluid
without the anisotropic stress tensor Tμν = (ρ + P)uμuν +
Pgμν , we can give the evolutions of aS and ρ̄S

m according to
the dust (P � ρ ≡ ρ̄S

m(1 + δ)) solutions to the zero-order
Einstein equations for (1)

aS = aSinitξ
2,

ρ̄S
m = ρ̄S

m,initξ
−6,

ξ = 1 +
√

2πρ̄S
m∗

3aSinit

η,

ξ =
(√

6πρ̄S
m,init

∫
α(t)dt + 1

)1/3

. (3)

It’s obviously that aS , ρ̄S
m , ξ and η are functions of t for

FLRW background spacetime and they will become space-
dependent in an inhomogeneous spacetime. For the latter
case, we still take them as background quantities by taking
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Fig. 1 Matter power spectrum and the initial conditions derived from
it. There are four curves in the first plot: the black one is the mat-
ter power spectrum at z + 1 = 1090 produced by CAMB [38] with
parameters listed in Table 1; the red, blue and cyan curves are the
matter power spectra drawn from density perturbations δ(xi ) by the
function power_spectrum_1d in c2raytools [37] at 1603, 803 and

403 resolution respectively, while δ(xi ) is generated by the function
make_gaussian_random_field in c2raytools from the black curve.
The second plot is the distribution of δ(xi ) at aS = 1 and 1603 res-
olution. The last two plots are the distribution of vx (xi ) and �(xi ) at
aS = 1 respectively, which are derived from δ(xi ) according to the
Fourier version of (4)

the average of them across the simulation box. Also, we can
give the evolutions of perturbations according to the solutions
to first-order Einstein equations for (1)

� = � = f (xi ),

δ = C1ξ
2∇2 f (xi ) − 2 f (xi ),

vi = C2ξ∂ i f (xi ),

hi j =
∫

d3k

(2π)3 h
s
k(η)εsi j e

ik·x,

(4)

where f (xi ) is an arbitrary function of space, C1 =
aSinit

4πρ̄S
m∗ , C2 = −

√
aSinit

6πρ̄S
m∗ , where εsi j with s = ×,+ are

transverse and traceless polarization tensors and each of
hsk(η) evolves independently and satisfies hsk(η + η0) =
3hsk(0)

sin[k(η+η0)]−[k(η+η0)] cos[k(η+η0)]
[k(η+η0)]3 . According to (3) and

(4), at η = 0 (or ξ = 1), the initial data will dependent on
aSinit , ρ̄S

m,init, f (xi ), hsk(0) and η0.
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The last plot in Fig. 1 shows the distribution of spatial
curvature perturbations �(xi ) (or f (xi )) at aS = 1. In
fact, we use the functionmake_gaussian_random_field in
c2raytools [37] to generate the density perturbations δ(xi )
(the second plot in Fig. 1) from the matter power spec-
trum at z + 1 = 1090 (the first plot in Fig. 1) produced
by the Code for Anisotropies in the Microwave Background
(CAMB) [38] with parameters listed in Table 1 first. And
then we derive f (xi ) from δ(xi ) according to the Fourier
version of (4), hence �(xi ), �(xi ) and vi (xi ) (the third
plot in Fig. 1). As for tensor perturbations, we here only
consider one single mode with k = 2π

L and the space dis-
tribution as cos( 2π

L z), where L = 1000 is the length of
one side of our simulation box with xi in [−500, 500].
And we set its initial amplitude hs2π

L
(0) = 10−3, but it

has crossed inside the horizon and decayed by 70% when

η0 � 2
√

3
8πρ̄S

m,init
.

3 Results

Our simulations are performed at 1603, 803 and 403 resolu-
tion and end at aS = 1090. Due to the coincidence of the
black curve drawn by 3 j1[k(η0+η)]

k(η0+η)
(where j1(z) = sin z−z cos z

z2

is the spherical Bessel functions of order one) and the red
one which is the evolution of γ12(η)

(aS)2 given by simulations

with only tensor perturbations, in Fig. 2, we relate γ12(η)

(aS)2

to the evolution of tensor perturbation h×(η0 + η) in our
simulations. Although, as shown in Fig. 2, there are slight
deviations between the red curve and the green one which
is the evolution of γ12(η)

(aS)2 given by simulations with scalar
and tensor perturbations, we keep this relation standing. For
probing the effects of primordial tensor perturbations on the
inhomogeneity of the universe, it’s naive to compare the dis-
tribution of δ(xi ) at aS = 1090 given by simulations with
scalar and tensor perturbations and their counterparts with
only scalar perturbations directly, as shown in Fig. 3. Here
we will turn to the the matter power spectrum, which is an
important statistical quantity and can be detected by many
experiments [19–22]. In the left plot of Fig. 4, the red, blue
and cyan curves are the matter power spectra drawn from
density perturbations δ(xi ) at aS = 1090 by the function
power_spectrum_1d in c2raytools at 1603, 803 and 403

resolution respectively, where δ(xi ) is given by simulations
with only scalar perturbations. When taking the tensor pertur-
bations into consideration, we can get similar matter power
spectra. Comparing them with the formers, we can find an
obvious suppression of matter power spectra for modes with
wave number similar to the tensor perturbations’, as shown
in the right plot of Fig. 4. And comparing the suppression at
1603, 803 and 403 resolution, we can find this suppression

Fig. 2 The evolution of h×(η0+η)

h×(0)
at the origin of our simulation box.

The black curve is drawn by 3 j1[k(η0+η)]
k(η0+η)

, where j1(z) = sin z−z cos z
z2

is the spherical Bessel functions of order one. The red curve is the
evolution of γ12(η)

(aS )2 in simulations with only tensor perturbations. The

green curve is the evolution of γ12(η)

(aS)2 in simulations with scalar and
tensor perturbations. We can see that the black curve and the red one
are almost coincide and there are slight deviations between the red curve
and the green one. That is to say, we can relate γ12(η)

(aS)2 to the evolution

of tensor perturbation h×(η0 + η) in our simulations

converge to about 0.01% if the initial amplitude of the tensor
perturbations is 3 × 10−4.

Even though the initial conditions derived from the matter
power spectrum at z+1 = 1090 satisfy the perturbed Einstein
equations, it’s still necessary to check that to what extend do
these initial data satisfy the Hamiltonian constraint and the
momentum constraint. Given the 3-Riemann scalar (3)R, the
covariant derivative associated with the 3-metric Dj , and
the matter energy and momentum density as measured by
the Eulerian observer E and pi , we can specify the form
of the Hamiltonian constraint violation and the momentum
constraint violation as

H = 1

2
((3)R + K 2 − Ki j K

i j ) − 8πE (5)

and

Mi = Dj K
j
i − Di K − 8πpi . (6)

Figure 5 shows the evolution of L2 norms of the Hamilto-
nian constraint violation and the x-component of momentum
constraint violation at 1603, 803 and 403 resolution. We can
see that the higher resolution, the larger constraint violation.
The reason for this abnormal behaviour is that the initial δ(xi )
generated by the function make_gaussian_random_field
in c2raytools from the matter power spectrum at z + 1 =
1090 produced by CAMB is resolution-dependent: the higher
resolution leads to δ(xi ) with larger wave number; the scalar
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Fig. 3 The distribution of δ(xi ) without tensor perturbations (left) and
with tensor perturbations (right) at aS = 1090 and 1603 resolution. It’s
hard to distinguish the effects of tensor perturbations from them directly.

Therefore, we will turn to the matter power spectrum here. Moreover
we can see there is a nonlinear web structure

Fig. 4 Matter power spectra and the effects of tensor perturbations
on spectra. The black curve in the left plot is the linear matter power
spectrum at z + 1 = 1 produced by CAMB with parameters listed in
Table 1; the red, blue and cyan curves in the left plot are the matter
power spectra drawn from density perturbations δ(xi ) at aS = 1090
by the function power_spectrum_1d in c2raytools at 1603, 803 and
403 resolution respectively, where δ(xi ) is given by simulations with
only scalar perturbations. It’s worth pointing out that although, at the

beginning of simulations, our initial data is derived from matter power
spectrum at z + 1 = 1090, we ignore the dark energy in our simula-
tions at the late time. So the black curve has a different trend with color
ones in the left plot. The red, blue and cyan curves in the right plot
explicitly show the suppression of matter power spectra for modes with
wave number similar to the tensor perturbations’ at 1603, 803 and 403

resolution respectively. And this suppression converge to about 0.01%
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Fig. 5 L2 norms of the Hamiltonian constraint violation and the x-component of momentum constraint violation at 1603 (red), 803 (blue) and 403

(cyan) resolution

perturbations on smaller scales have larger amplitude. As
pointed out in [35], one can present the convergence of con-
straint violation explicitly by transferring raw constraint vio-
lation to relative one.

4 Summary and discussion

We simulate a dust universe from aS = 1 (or z = 1089)
to aS = 1090 (or z = 0) by numerically integrating the
Einstein’s equation whose solution at aS = 1 is a spatially
flat FLRW metric with scalar perturbations which are derived
from the matter power spectrum produced with CAMB. Then
we add an additional decaying, divergenceless and traceless
primordial tensor perturbation with its initial amplitude being
3×10−4 to the metric as shown in Fig. 2. Simulations at 1603,
803 and 403 resolution converge and show that this primordial
tensor perturbation suppresses the matter power spectrum by
about 0.01% at z = 0 for modes with wave number k ∼ 0.05
as shown in Fig. 4.

In the linear perturbation theory, scalar and tensor pertur-
bations are supposed to be totally decoupled. However, there
are some non-linear coupling terms between scalar and tensor
perturbations for the full Einstein equations which are used
in our simulations. Even though we turn to the first-order per-
turbed Einstein equations for the initial data, they satisfy the
full Einstein constraints of early universe just with tiny devi-
ations. That is to say, Einstein Toolkit takes the all possible
terms of the full Einstein equations into our consideration.
Therefore, this suppression results from the fully relativistic
treatment for Einstein equations. Although there are nonlin-

ear structures formed at the end of simulations (aS = 1090)
as shown in Fig. 3, their scales are smaller than tensor per-
turbations’. So this suppression sown before the tensor per-
turbations died out and amplified with time is still in linear
regime.

There are two caveats. First the production of monochro-
matic single mode gravitational wave seems unrealistic
in cosmology and most inflation models predict a scale-
invariant spectrum of gravitational waves. Here we only
consider a monochromatic gravitational wave because pri-
mordial gravitational waves enter the horizon one by one.
Given the comoving length of one side of our simulation
box L = 1000 and the initial matter density, the modes with
wave length > 1000 are initially outside the simulation box
and will never enter it during simulations. As for modes with
wave length < 1000, they entered the horizon earlier and
almost died out. Therefore, if we want to study scale depen-
dence of the results, we must perform simulations under other
larger L , which results in high computational cost. Here we
just make our results as a first step to more comprehensive
studies. Also it’s necessary to include the dark energy if one
want to compare the results with observations. Because dark
energy is supposed to affect the very late-time growth factor
by about 10%. So far, however, people can’t simulate dark
energy in Einstein Toolkit. Here we just keep it in mind.

This suppression may be a possible probe of a GWs back-
ground in the future only if the matter power spectrum is
measured in high enough precision. Undoubtedly, by the time
LSST is in full operation, the required precision for detection
of such suppression is still far beyond reach. However, this
suppression is an unique signature put by primordial GWs.
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