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Abstract: It was recently discovered that for a boundary system in the presence of a

background magnetic field, the quantum fluctuation of the vacuum would create a non-

uniform magnetization density for the vacuum and a magnetization current is induced in

the vacuum [1]. It was also shown that this “magnetic Casimir effect” of the vacuum is

closely related to another quantum effect of the vacuum, the Weyl anomaly. Furthermore,

the phenomena can be understood in terms of the holography of the boundary system [2].

In this paper, we generalize this four dimensional effect to six dimensions. We use the

AdS/BCFT holography to show that in the presence of a 3-form magnetic field strength

H, a string current is induced in a six dimensional boundary conformal field theory. This

allows us to determine the gauge field contribution to the Weyl anomaly in six dimensional

conformal field theory in a H-flux background. For the (2,0) superconformal field theory of

N M5-branes, the current has a magnitude proportional to N3 for large N . This suggests

that the degree of freedoms scales as N3 in the (2,0) superconformal theory of N multiple

M5-branes. The prediction we have for the Weyl anomaly is a new criteria that the (2,0)

theory should satisfy.
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1 Introduction

The decoupling limit of N coincident M5-branes is given by an interacting (2,0) super-

conformal theory in 6 dimensions [3]. For a single M5-brane, the low energy theory is

known and is given by a free theory of tensor multiplet [4–9]. The multiple M5-branes

theory is much more complicated and it is not expected to have a fundamental in terms of

a local Lagrangian description.1 There exists a number of proposals for the fundamental

formulation of the six dimensional (2,0) theory: most notably, these include the Discrete

Light-Cone Quantisation definition based on quantum mechanics on the moduli space of

instantons [16, 17], a definition based on deconstruction from four dimensional supercon-

formal, quiver field theories [18], and the conjecture that the (2,0) theory compactified on

a circle is equivalent to the five dimensional maximally supersymmetric Yang-Mills the-

ory [19, 20]. And despite an extensive amount of work on this topic, see for example, [21–

38], the field theoretic description of the multiple M5-branes system remains mysterious.

In addition to consistency and symmetry requirement, the fundamental theory, no matter

how it is defined, should reproduce properties that are expected of the multiple M5-branes

system. For example, it should describe a non-trivial interacting theory of (2,0) super-

conformal multiplets. It should contain BPS states of self-dual strings which corresponds

to boundaries of M2-branes ending on the stack of M5-branes [39, 40]. It should explain

1However just like in supergravity or hydrodynamics, it is perfectly sensible to look for a classical

Lagrangian description for the effective dynamics of the (2,0) fields in the long wavelength limit. In this

context, see for example [10] where a set of non-Abelian self-dual equation has been constructed and

proposed as the classical equation of motion for the self-dual tensor gauge field in the low energy effective

theory of the multiple M5-branes theory, with various supporting evidences obtained in [10–15]. We remark

however that supersymmetry is missing in this construction.
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the S duality of the N = 4 supersymmetric Yang-Mills theory [41]. It should also make

apparent the N3 entropy behaviour [42]. In particular it should explain whether this is

due to novel degrees of freedom of the (2,0) theory or not. One of the motivations of this

work has been to add new criteria to the list by uncovering new physical properties of the

multiple M5-branes system.

To this end, we recall an useful approach that has been known to work very well

in the past is to introduce a boundary to the system. For example, the form of the

noncommutative geometry, including the relation between closed string and open string

metric, on D-branes worldvolume can be derived by considering open strings ending on

the D-branes [43, 44]. Therefore we are motivated to consider a M5-branes system with

boundary. The resulting low energy theory is a boundary conformal field theory (BCFT),

which is a very interesting class of theories by itself.

Boundary conformal field theory [45, 47] describes the fixed point of renormalization

group (RG) flow in boundary quantum field theory and has important applications in

quantum field theory, string theory and condensed matter system such as, for example,

renormalization group flows and critical phenomena [45] or the topological insulator [46].

For general shape of the boundary, traditional perturbative analysis of BCFT becomes

exceedingly complicated. In addition to traditional field theory techniques, see, e.g. [48–

55], the need of a non-perturbative approach using symmetries or dualities is evident. A

non-perturbative holographic dual description to BCFT was initiated by Takayanagi in [56]

and later developed for general shape of boundary geometry in [57, 58]. The duality has

been extensively studied in the literature, with many interesting results obtained. See, for

example [59–69].

The Casimir effect is one of the most well known manifestation of the quantum fluc-

tuation of vacuum in the presence of boundary [70–72]. Recently the Casimir effects has

been analyzed in full generality for arbitrary shape of boundary and for arbitrary space-

time metric. Universal relations between the Casimir coefficients which determine the near

boundary behaviour of the renormalized stress tensor and the boundary central charge in

a boundary conformal field theory have been discovered [50]. The analysis has also been

extended to U(1) current in BCFT [1]. It was found that when an external magnetic field is

applied, the vacuum of BCFT will get magnetized and a magnetization current get induced

in the vicinity of the boundary. In analogous to the standard Casimir effect which is a man-

ifestation of the mechanical property of the vacuum, this effect is a manifestation of the

magnetic property of the quantum vacuum and may be refereed to as a magnetic Casimir

effect. The generalization of this effect to higher dimensions was another motivation of

this work.

The above described effects for the stress tensor and the U(1) current can be derived

from the AdS/BCFT holography [2, 50]. From the field theory point of view, they can also

be derived from the Weyl anomaly of the BCFT [1, 50]. Consider a CFT with partition

function Z[gµν ] and the effective action W [gµν ] = lnZ[gµν ]. The scaling symmetry of

CFT is generally broken due to quantum effects and the breaking is measured by the

Weyl anomaly

A := ∂ϕW [e2ϕgµν ]
∣∣
ϕ=0

=

∫
M
〈Tµµ 〉. (1.1)
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The metric contribution to the Weyl anomaly is well understood. For example in even

dimensions, the bulk part of the Weyl anomaly takes the form [73]

〈Tµµ 〉 =
1

(4π)d/2

(∑
j

cdjI
(d)
j − (−1)

d
2 adEd

)
. (1.2)

Here Ed is the Euler density in d dimensions, I
(d)
j are independent Weyl invariants of

weight −d and the subscript j labels the Weyl invariants. The boundary terms of the Weyl

anomaly has also been studied and classified recently in [49]. In general, in addition to a

nontrivial background metric, one may also turn on a gauge field background and the loops

of matter fields will give a Weyl anomaly. For example in 4 dimensions, vector gauge field

(Abelian or non-Abelian) is classically conformal and there is a Weyl anomaly [74]

〈Tµµ 〉 = b trF 2. (1.3)

Here b = β(g)/2g3 and β(g) is the beta function of the theory S = −1/(4g2)
∫

trF 2. For

higher d = 2n even dimensions, a n-form gauge field H is conformal invariant classically.

One can expect a background of H-flux will give rises to a Weyl anomaly. However since

we do not even know what the higher rank gauge field couple to and how, let alone the

quantisation, nothing is known about the possible form of this anomaly. The wish to say

something about this Weyl anomaly from background of higher form gauge field has been

another major motivation of this work.

That this goal can be achieved follows from the observation in [1] that the gauge

part of the Weyl anomaly is intimately related with the induced current, see (4.1) for

4-dimensions. Similar anomaly-current relation can be straightforwardly established for

higher dimensions. In the case of six dimensions where we are interested in, we can in-

troduce a boundary to the CFT and first use AdS/BCFT to compute the induced string

current, and then use this result and the anomaly-current relation to determine the gauge

field contribution to the Weyl anomaly in 6-dimensional CFT.

The plan of this paper is as follows. In section 2, we first review the phenomena of

induced current in 4 dimensions. We then generalize it to six dimensions. We show that

the use of symmetries and conservation law of the theory allows us to fix, up to a few

numerical coefficients, the form of the one point function of a conserved current in the

presence of a background of 3-form flux. In section 3, we use AdS/BCFT holography to

determine the form of the induced current. The result is consistent with the form obtained

by the field theory analysis. In section 4, we generalize the relation between Weyl anomaly

and the conserved current to six dimensional BCFT. Using this relation and the result of

the induced current from AdS/BCFT as input, we obtain the contribution of the 3-form

field strength to the Weyl anomaly in six dimensional CFT. For the system of maximal

(2,0) supersymmetric multiple N M5-branes, the current and the Weyl anomaly are found

to be proportional to N3.2 This provides some evidence that the fundamental degree of

freedoms of the (2,0) theory of N M5-branes scales like N3.

2The N3 dependence has also been found for the gravitational contribution to the conformal anomaly

in the Coulomb branch of the (2, 0) theory by relating the Coulomb branch interactions in six dimensions

to interactions in four dimensions using supersymmetry [30, 75–77].
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2 Boundary string current

Consider a boundary conformal field theory (BCFT) defined on a manifold M with bound-

ary P . In [1], we have shown that for 4-dimensions, the vacuum expectation value of the

renormalized current Jµ has the asymptotic expansion near the boundary at x = 0,

〈Jµ〉 =
α1

x
Fµλn

λ + · · · , (2.1)

when a background gauge field strength Fµν is turned on. Here · · · denotes terms that are

less singular. It was shown that the current (2.1) is related to the Weyl anomaly (1.3) and

the coefficient α1 is completely determined in terms of the beta function of the theory. It

was also understood that the current (2.1) is a consequence of the magnetization of the

vacuum which arises from the quantum fluctuation of the vacuum in the presence of the

boundary. Here we are interested in generalizing this phenomena of near boundary current

to higher dimensional BCFT in the presence of a higher form gauge field background.

Let us consider a 6-dimensional BCFT with gauge symmetry defined on a manifold

M . Yang-Mills gauge field is not conformal invariant in six dimensions, instead a 2-form

gauge field Bµν is. For simplicity, we consider Abelian gauge field here. The 2-form gauge

potential is naturally coupled to the worldsheet Σ of a string with the minimal coupling

IB =

∫
Σ
B =

∫
M
JµνBµν (2.2)

where

Jµν = λεαβ
∂Xµ

∂σα
∂Xν

∂σβ
δ(4)(X −X(σa)) (2.3)

is a two-form string current that arises from the motion of the string and λ is the string

charge density. Next let us introduce a boundary P = ∂M . This breaks the bulk conformal

symmetry and the one point function of the current can become nontrivial now. As the

current Jµν has a mass dimension 4, the vacuum expectation value of the renormalized

current generally takes the form

〈Jµν〉 =
1

x
J (1)
µν + log xJ (0)

µν + · · · (2.4)

near the boundary. Here we have used gauge invariance and the conservation law

DµJ
µν = 0 (2.5)

to rule out terms like J
(4)
µν /x4, J

(3)
µν /x3, J

(2)
µν /x2. In (2.4), · · · denotes terms that are regular

at x = 0, and J
(1)
µν and J

(0)
µν are functions of dimension 3 and 4 respectively. Their form are

constrained by (2.5) and the Lorentz and gauge symmetries of the theory. For example,

one can easily determine that

J (1)
µν = α1Hµνλn

λ + α2D[µDν]k + α3D[µDλkλν] + α4DλD[µk
λ
ν], (2.6)

where Hµνλ, nµ,Dµ, kµν are respectively the background 3-form field strength, normal vec-

tor to the boundary, induced covariant derivative and the extrinsic curvature of the bound-

ary. The coefficients αi are arbitrary and contain important physical information of the

– 4 –
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Figure 1. BCFT on M and its dual N .

theory. In [1] it was shown that, for four dimensions, the near boundary asymptotic form of

the standard current Jµ is completely determined by the background field strength of the

Weyl anomaly. It was also shown in [2] that the near boundary current can also be deter-

mined using the AdS/BCFT holography. For six dimensions, the background gauge field

part of the Weyl anomaly is unknown. Therefore let us proceed first with the holographic

analysis and determine the near boundary current using boundary holography.

3 Holographic boundary current

Holographic dual of BCFT was originally introduced by Takayanagi [56]. The idea is

to extend the d dimensional manifold M to a (d + 1)-dimensional asymptotically AdS

space N such that ∂N = M ∪ Q, where Q is a d dimensional manifold with boundary

∂Q = ∂M = P . According to the standard AdS/CFT arguments, the asymptotic boundary

behaviour of a bulk field φ in AdS generates the expectation value of local operator Q in

the CFT. In our case, let us consider a 2-form tensor gauge field in the bulk described by

the gravitational action

I =
1

16πGN

∫
N

(
R− 2Λ− 1

6q2
H2
LMN

)
. (3.1)

Here GN is the Newton constant in 7 dimensions, 1/q2 is a dimensional constant of length

dimension 4, and H = dB. B is the bulk gauge field whose boundary value is given by

the gauge field B on the boundary M . Note that B is completely arbitrary and does

not need to satisfy any equation of motion. The bulk indices are denoted by the capital

Roman letters L,M,N = 0, 1, · · · , 6 and the indices of the 6-dimensional manifolds M

and Q are denoted by Greek letters µ, ν etc. It should be clear from the context whether

we are referring to the manifold M or Q. The existence of the tensor gauge field in the

bulk dictate the presence of a 2-form current Jµν in the CFT whose expectation value is

determined by the generating relation,

Zstring[Bµν ] =
〈
e
∫
M JµνBµν

〉
. (3.2)
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In field theory, the current is constructed as the Noether current of some global Abelian

symmetry. In this paper, we will be interested in the SUGRA limit where the string

partition function is given by the SUGRA action (3.1).

The new ingredient in AdS/BCFT is that the SUGRA action isn’t defined until the

shape Q is known. According to Takayanagai [56], Q is determined as an extremal config-

uration of the supergravity action with respect to change of Q:

16πGNI =

∫
N

(
R− 2Λ− 1

6q2
H2
LMN

)
+ 2

∫
M
K + 2

∫
Q

(K − T ) + 2

∫
P
θ. (3.3)

Here the constant parameter T is a measure of the boundary degree of freedom of the BCFT.

To specific the variational principle, one needs to fix the boundary condition for Q. As

N is of codimension one, the location of Q is determined by a single function. A consistent

model of holographic BCFT was found by considering a mixed BC on Q and the following

trace condition [57, 58]

K =
d

d− 1
T (3.4)

was obtained. The employment of a mixed BC is a reasonable assumption if one think of

Q as a brane and then there should be a single embedding equation for it.3 In addition,

we impose a Neumann boundary condition for the gauge field,

HLMN nLQΠM
αΠN

β = 0. (3.5)

Here nQ is the inward-pointing normal vector on Q, the beginning Greek letters α, β etc

denote indices on Q, and Π is the projection operator which gives the vector field and

metric on Q: B̄αβ = ΠM
αΠN

βBMN and γαβ = ΠM
αΠN

βGMN . We note that [50] the manifold

N is actually singular since the normal of N is discontinuous at the junction P . Due to this

discontinuity, an expansion in small z in the form of Fefferman-Graham (FG) asymptotic

expansion [78] would not be sufficient, and one needs to have a full analytic control of the

metric near P , i.e. near z = 0 = x. The need of a non-FG expanded bulk metric was

already anticipated in [60]. The general form of this non-FG expanded bulk metric that is

analytic near P was successfully constructed in [50] by considering an expansion in small

exterior curvature of the boundary surface P . Moreover it was found that by using the

non-FG expansion of the metric in the bulk, the tensor embedding equation

Kαβ − (K − T )γαβ = 0 (3.6)

for Q as proposed originally by Takayanagai [56] is also consistent [50]: with the tensor

model (3.6) considered as a special case of the scalar model (3.4).

Now back to our system and let us solve for the shape Q and the gauge field configu-

ration. Let us denote the 7-dimensional bulk indices by S = (z, µ), and the 6-dimensional

field theory indices by µ = (x, a) with a = 0, 1, · · · , 4. For simplicity, let us consider the

case of a flat half space x ≥ 0. The bulk metric reads

ds2 = R2dz
2 + dx2 + δabdy

adyb

z2
, (3.7)

3We thank Juan Maldacena for suggesting this interpretation.
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where R is the AdS7 radius. In this case, (3.6) reduces to (3.4), and Q is given by [56]

x = −z sinh
ρ

R
, (3.8)

where we have re-parametrized T = 5
R tanh ρ

R .

As for the solution for the gauge field, we will consider the situation of having a constant

field strength in the BCFT. Due to the planar symmetry of the boundary, we consider

BMN that depends only on the coordinates z and x. The field equations ∇LHLMN = 0 can

be solved with non-vanishing components Bza = Bza(z), Bxa = Bxa(x), Bab = Bab(z, x),

and with Bab satisfying,

z∂2
zBab + z∂2

xBab − ∂zBab = 0. (3.9)

To solve this, let us take the ansatz

Bab =
∑
n=0

xnfn(
z

x
)B

(n)
ab , (3.10)

where fn(0) = 1 so that Bab reduces to the gauge field Bab at the AdS boundary z = 0.

Here the constants B
(n)
ab ’s are the expansion coefficients of Bab about the boundary x = 0:

Bab =
∑
n=0

xnB
(n)
ab . (3.11)

Considering the case of a constant field strength Hxab in BCFT. In this case, we have a

non-vanishing B
(1)
ab given by

B
(1)
ab = Hxab (3.12)

and the equation of motion (3.9) has the solution Bab = xf( zx)Hxab with f(s) = (1− c1) +

c1

√
1 + s2. The boundary condition (3.5) then imposes that c1 = 1 and

Bab = Hxab

√
x2 + z2. (3.13)

This give rises to the non-vanishing components

Hzab = Hxab
z√

x2 + z2
, Hxab = Hxab

x√
x2 + z2

(3.14)

for the bulk field strength. From the gravitational action (3.1), one then derive the holo-

graphic current

〈Jab〉 = lim
z→0

δI

δBab
= b

Hxab

x
, (3.15)

where

b = − R

16πGNq2
(3.16)

is a constant. It is remarkable that the current (3.15) is independent of the parameter T ,

showing that the boundary current in 6d BCFT is independent of boundary conditions.

– 7 –
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4 Weyl anomaly from boundary current

Recall that for 4-dimensional BCFT, the following relation can be established [1]

(δA)∂M =

(∫
Mε

JµδAµ

)
log 1

ε

. (4.1)

Here ε > 0 is a UV regulator and Mε is the regulated manifold with x ≥ ε. The relation (4.1)

relates the boundary term of the variation of the Weyl anomaly under an arbitrary variation

of the vector gauge field δAµ with the coefficient of the logarithmic divergent term of the

regulated integral on the right hand side. In general the Weyl anomaly can be computed

from the quantum effects of matter loops on the path integral with external gauge fields.

The relation (4.1) then allows one to determine the form of the current [1] (and also

the stress tensor [50]) near the boundary. Vice versa, one may also use the current as

determined by holography as input and use it to determine the Weyl anomaly. The results

are of course all consistent with each other.

In higher dimensions, the gauge field contribution to the Weyl anomaly is unknown.

Nevertheless, even without any knowledge of the path integral or how the higher rank

gauge field, one can easily generalize the analysis of [1] and establish a similar relation (4.1)

between the Weyl anomaly and the boundary current. couples to the other fields of the

system. To be concrete, let us consider d = 6. In this case, for a conserved 2-form current

Jµν , ∂µJ
µν = 0 coupled to an external 2-form tensor gauge field Bµν with the coupling (2.2),

we have the relation

(δA)∂Mε =

(∫
Mε

JµνδBµν

)
log 1

ε

. (4.2)

For completeness, we give a proof of (4.2) in the appendix of the paper. Using the holo-

graphic result (3.15), and for a generic field strength, one can verify that (4.1) is satisfied

with A given by

A =

∫
M

b

6
H2
µνλ (4.3)

We remark that one can also use the AdS/BCFT to compute the holographic stress tensor

and the Weyl anomaly [57, 58]. The same result is obtained. This is our prediction for the

form of the gauge field contribution in the Weyl anomaly in 6d CFT with tensor gauge field.

An interesting application is in the theory of multiple M5-branes in M-theory. Consider

a system of N coincident M5-branes in flat space. Although the field theoretic description of

the six-dimensional (2,0) superconformal field theory is unknown, nevertheless it is possible

to give a holographic description of the system by M-theory on an AdS7×S4 background.

The supergravity background is given by a constant 4-form field strength and the metric

ds2 = R2dz
2 + dx2

6

z2
+R′2dΩ2

4 (4.4)

where R = 2(πN)1/3l11 is the AdS radius, R′ = R/2 and l11 is the 11-dimensional Planck

length. We note that4 the spectrum of KK reduction of the eleven-dimensional supergravity

4We thank the referee for this comment.

– 8 –



J
H
E
P
0
7
(
2
0
1
9
)
1
5
1

on S4 contains a massive three-form gauge fields which obeys an “odd dimensional self-

duality” condition, or equivalently, two massless two-form gauge fields under a Hodge

duality [79]. Therefore, at least in the large N limit, AdS/CFT predicts the existence of

two global Abelian 2-form currents and corespondingly two Abelian global symmetries in

the (2,0) superconformal field theory. It is intriguing to note that there are indeed two

U(1) global symmetries within the symmeries of the non-abelian tensor gauge fields in the

U(N) × U(N) construction of [23]. Such a gauge symmetry in the (2,0) theory has been

predicted to arise from the U(N) × U(N) Kac-Moody symmetry of the multiple self-dual

strings worldsheet on the M5-branes [22].

The existence of these global currents is interesting and one can exploit their properties

to learn something about the (2,0) theory. To do this, let us introduce a boundary in the

M5-branes system. Our AdS/CFT analysis as performed in the previous section predicts

a holographic boundary current (3.15) in the (2,0) theory in the presence of an external

3-form flux H. As the supergravity is maximally supersymmetric, the constant 1/q2 in the

supergravity action is not an independent scale, but is related to the AdS radius

1/q2 ∼ R4 (4.5)

up to a dimensionless numerical constant. Since the 7-dimensional Newton constant GN =

G
(11)
N /Vol(S4) and G

(11)
N = 16π7l911, we obtain

b ∼ −(R/l11)9 ∼ −N3 (4.6)

for the two Abelian 2-form currents in the (2,0) theory that are dual to the two massless

KK 2-form gauge fields in the 7-dimensional bulk supergravity.

We notice that in 4-dimensions, the coefficient b of the boundary current is given by

the beta function of the theory and it is proportional to the number of degree of freedom

that couple to the U(1) gauge field. Here we expect that b to be proportional to the degrees

of freedom that couple to the 2-form gauge field. Our result (4.6) suggests that an order of

N3 degree of freedom couples to the external Bµν field and the number of degree of freedom

in the (2,0) theory is proportional to N3 for large N . We note that a scaling dependence

of N3 also appear in the entropy of a system of coincident near extremal black 5-branes

solution [42]. However we emphasis that the associated physical mechanism is different:

here there is no horizon in the geometry and a different observable, a conserved current,

is considered.

5 Discussion

In this paper we have derived the existence and the form of a boundary two-form current in

the presence of a background 3-form flux in a 6-dimensional CFT. The background 3-form

flux also induces a Weyl anomaly in the theory. We derived these results using holographic

principle. An interesting question is whether and how one may understand these results in

terms of field theory directly.

In 4-dimensions, the induced boundary current aroused from the magnetization effect

of the renormalized vacuum near the boundary. Both the current and the Weyl anomaly

– 9 –
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came from the quantum loop effects of matter fields in the presence of an external gauge

field background. The current (3.15) and the Weyl-anomaly (4.3) for 6-dimensions should

have a similar origin. Note that there is no obvious way to couple a point particle to a

tensor gauge field Bµν in 6-dimensions. However there is a natural way to couple B to

a string. To see this, let us recall that in 4-dimensions, the coupling of matter field to

external gauge field Aµ can be obtained by gauging the global symmetry of the theory. For

example, the U(1) gauge symmetry of a Dirac fermion field

ψ(x)→ eiαψ(x). (5.1)

gives rise to the covariant derivative Dµψ = (∂µ − iAµ)ψ and the current Jµ = ψ̄γµψ.

In the same way there is a natural way to construct a covariant derivative for a tensor

gauge potential if it is represented on a functional Ψ(C) of string/loop. First we define the

loop derivative

∂µνΨ :=
∂Ψ(C)

∂σµν
:= lim

δσµν→0

Ψ(C + δC)−Ψ(C)

δσµν
, (5.2)

where δσµν is the infinitesimal area element caused by the infinitesimal change in the loop.

The derivative exists whenever the limit is well defined. ∂µν is antisymmetric in the indices

µ, ν. In general, an arbitrary change in the phase of the string functional takes the form

Ψ(C)→ Ψ(C) exp

(
i

∫
C
α

)
, (5.3)

where α = αµdx
µ is an arbitrary 1-form. It is easy to check that the derivative defined by

DµνΨ := (∂µν − iBµν)Ψ (5.4)

transforms covariantly if Bµν transforms as

Bµν → Bµν + ∂µαν − ∂ναµ. (5.5)

Using the covariant derivative (5.4), one may consider the string field action

S =

∫
[Dx(σ)]

(
DµνΦDµνΦ + iΨ̄γµνDµνΨ

)
, (5.6)

where Φ is a real string field, Ψ is a Weyl spinor string field and the integration is over all

possible closed loops. The action processes a global U(1) symmetry which gives the Noether

current Jµν = Ψ̄γµνΨ. Our prediction is that the Weyl anomaly (4.3) would arise from the

effective action of the string field theory coupled to an external 3-form flux background.

We leave this problem to future work.

Another interesting question come from the following observation. Recall that D-

branes in the presence of a constant 2-form NS-NS B-field background is described by a

non-commutative geometry of Moyal type. This can be derived by considering open string

quantisation. One may expect a link between the quantum geometry on the D-brane with

the magnetic Casimir effect as both consequence of the background flux . For a M5-brane in

the presence of a constant 3-form C-field background, it has been widely speculated that it

– 10 –
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Figure 2. Loop deformation.

must give rises to some kind of non-commutative geometry in certain limit. However much

of this speculation is unknown so far. All we know is that it must reduce to a Moyal type

non-commutative geometry upon a dimensional reduction. It may be possible to establish

an analogous relation between the desired quantum geometry and the boundary 2-form

current and use the magnetic Casimir effect to learn about the quantum geometry.
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A Derivation of key relation (4.2)

Consider a BQFT with a well defined effective action. The integrated Weyl anomaly A [80]

A =

∫
M

√
g
[
gµν〈Tµν〉 − 〈gµνTµν〉

]
. (A.1)

can be obtained as the coefficient of the logarithmic UV divergent term of the expectation

value of the effective action,

I = · · ·+A log

(
1

ε

)
+ Ifinite, (A.2)

where · · · denotes terms which are UV divergent in powers of the UV cutoff 1/ε, and Ifinite

is the renormalized, UV finite part of the effective action. To derive this result, let us

consider a constant Weyl transformation gµν → exp(2ω)gµν . Under this transformation,

the UV cutoff transforms as ε→ exp(ω)ε and the variation of effective action (A.2) becomes

δωI = · · ·+ ω

(
−A+

∫
M

√
g〈Tµν〉gµν

)
+O(ω2), (A.3)

– 11 –
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where we have used δωA = 0 and δωIfinite = ω
∫
M

√
g〈Tµν〉gµν +O(ω2). On the other hand,

by definition we have

δωI =
1

2

∫
M

√
gT̂µνδωgµν = ω

∫
M

√
gT̂µνgµν +O(ω2), (A.4)

where T̂µν is the non-renormalized stress tensor. We use the hatted symbol (e.g. T̂µν) to

denote non-renormalized quantity and un-hatted symbol (e.g. Tµν) to denote renormalized

quantity. Separating T̂µνgµν into the renormalized UV finite part 〈T̂µνgµν〉 and divergent

part, we have

δωI = · · ·+ ω

∫
M

√
g〈T̂µνgµν〉+O(ω2). (A.5)

Comparing the finite part of (A.3) and (A.5), we obtain the expression (A.1) for A and

hence our claim.

Now we are ready to prove the result (4.1) quoted in the main text of the paper.

As in [1], let us regulate the effective action by excluding from its volume integration a

small strip of geodesic distance ε from the boundary. Then there is no explicit boundary

divergences in this form of the effective action, however there are boundary divergences

implicit in the bulk effective action which is integrated up to distance ε. The variation of

effective action with respect to the 2-form potential is given by

δI =

∫
x≥ε

√
gĴµνδBµν (A.6)

where Ĵµν = δI√
gδBµν

is the non-renormalized bulk current. The renormalized bulk current

is defined by the difference of the non-renormalized bulk current against a reference one [81]:

Jµν = Ĵµν − Ĵµν0 , (A.7)

where Ĵµν0 is the non-renormalized current defined for the same CFT without boundary.

It is

δI0 =

∫
x≥ε

√
gĴµν0 δBµν , (A.8)

where I0 is the effective action of the CFT with the boundary removed, hence the integra-

tion over the region x ≥ ε. Subtract (A.8) from (A.6) and focus on only the logarithmically

divergent terms, we obtain our key formula

(δA)∂M =

(∫
x≥ε

√
gJµνδBµν

)
log(1/ε)

, (A.9)

where (δA)∂M is the boundary terms in the variations of Weyl anomaly and Jµ is the

renormalized bulk current. In the above derivations, we have used the fact that δI and δI0

have the same bulk variation of Weyl anomaly so that

(δA)∂M = (δI − δI0)log(1/ε). (A.10)

– 12 –
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B Holographic Weyl anomaly

In this appendix, we investigate the holographic Weyl anomaly for 6d CFT. Since we are

interested in the bulk Weyl anomaly (4.3) which is irrelevant to the boundary, we focus

on the case without boundary. For simplicity, we focus on the flat space. Then all the

curvatures vanish and only the field strength Hijk contribute to Weyl anomaly. According

to [82], holographic Weyl anomaly can be obtained as the UV logarithmic divergent terms

of the gravitational action (3.1). In the FG gauge, we have

ds2 = GMNdx
MdxN =

dz2 + ĝµνdx
µdxν

z2
, (B.1)

where ĝµν = gµν + z2g
(2)
µν + z4g

(4)
µν + · · · . Since we focus on flat space gµν = ηµν , we have

g
(2)
µν = 0 [82, 83]. According to [84], g

(4)
µν and higher order terms in the expansions of gµν

do not contribute to holographic Weyl anomaly for 6d CFT. Thus, we can set ĝµν = ηµν
in the following derivations. Similar to FG gauge (B.1) for the bulk metric, we take the

following gauge for bulk gauge field

Bzµ = 0, Bµν = Bµν + z2B(2)
µν + · · · (B.2)

where Bµν is the background gauge field for 6d CFT.

Substituting (B.1), (B.2), together with ĝµν = ηµν into the action (3.3), we obtain the

logarithmic divergent term as

I =
1

16πGN

∫
dzd6x

√
g

z7

(
· · · − z6

6
HµνλHαβρg

µαgνβgλρ
)
,

= − 1

96πGN

∫
M
d6x
√
gH2

µνλ ln
1

ε
+ · · · (B.3)

where · · · denote power law divergent terms and regular terms. From (B.3), we can read

off the holographic Weyl anomaly

A =

∫
M

√
g
b

6
H2
µνλ (B.4)

with b = − R
16πGN q2

. This holographic Weyl anomaly agrees precisely with that obtained

in (4.3).
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