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1 Introduction

A lot of work has already been devoted to the study of the supersymmetric Born-Infeld

theories. In the string theories, they arise in the effective description of the D-branes [1]. In

the supersymmetric context, they appear while studying of partial spontaneous breaking of

global supersymmetry with vector multiplets as Goldstone superfields. One of the simplest

and most familiar systems of this kind is the theory of the N = 1, d = 4 vector multiplet

with additional spontaneously broken N = 1, d = 4 supersymmetry which is a direct

generalization of the original Born-Infeld theory [2]. Its superfield action was constucted

by Ceccotti and Ferrara [3]. The fact that this action is invariant with respect to additional

spontaneously broken supersymmetry was established by Bagger and Galperin [4]. They

obtained the superfield Lagrangian as a composite N = 1, d = 4 superfield which, together

with the Goldstone fermion, provides the realization of the N = 2, d = 4 supersymmetry.

Also, they proved self-duality of this action with respect to the Legendre transformations.

After that many other ways to construct the N = 2, d = 4 Born-Infeld theory were

found such as nilpotent superfields [5] and superembedding approach [6]. It was found
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how to explicitly construct the component action of this theory using the formalism of

nonlinear realizations [7].

One may also try to construct analogous theories with higher supersymmetry breaking

the N = 4, d = 4 supersymmetry with N = 2, d = 4 or N = (2, 0), d = 6 supersymmetry

with N = (1, 0), d = 6 vector multiplets as Goldstone superfields. The first of these theories

can be produced by the dimensional reduction of the second, and they describe D3- and

D5-branes in D = 6, respectively. The attempts to find their superfield actions, however,

were not as successful as with the N = 2, d = 4 Born-Infeld theory. One superfield action

was proposed in [8, 9]. It satisfied the nonlinear constraint, later called the Ketov equation,

which was a generalization of the constraint the Cecotti and Ferrara Lagrangian satisfied.

However, it was criticized in [10] as it is not possible to write down such a shift and

broken supersymmetry transformations of the Goldstone bosons that are compatible with

the mentioned constraint. Later analysis revealed [11] that it is indeed possible to realize

additional broken N = 2, d = 4 supersymmetry but only on the infinite set of N = 2, d = 4

superfields, satisfying an infinite number of constraints, and only one of these superfields is

the proper superfield Lagrangian. A few terms in the power series expansion of the action

were found this way, not contradicting those obtained in [10] from the requirement of self-

duality and invariance with respect to shifts of the Goldstone bosons, but the computation

of the whole action appeared to be possible only in principle. Even the exact solution of

Ketov’s condition (truncation of an infinite system of [11]) appeared hard to find, with

new terms appearing in the 20th order in power expansion [12]. The use of the formalism

of nonlinear realizations allowed just to compute the equations of motion [13] and only in

the specific limits. The computation of the action of the N = (2, 0), d = 6 theory [8, 9]

also faced difficulties: it was argued [10] that the proposed action is not even N = (1, 0)

supersymmetric and that it is not possible to write down the six dimensional action as an

integral over the N = (1, 0), d = 6 superspace or its supersymmetric subspaces.

Therefore, it would be reasonable to try to find an alternative way to deal with such

theories. Indeed, one may try to make a theory treatable either by using more elaborate

extensions of the superfield method, as was suggested in [14, 15], either by formulating

the theory in terms of the component fields. In this paper, we consider the second option.

Note that the component actions with spontaneously broken supersymmetry have also been

constructed in [16], although the complete action and the transformation laws here were

found using the “top-down” approach, by gauge fixing the κ-symmetric action and the

corresponding transformations.

The component approach to the actions with partially spontaneously broken global

supersymmetry involving the formalism of nonlinear realizations was suggested in the pa-

pers [17, 18] for three-dimensional theories with scalar fields and supersymmetric mechan-

ics. It was used to construct the actions of the N = 2, d = 3 and N = 1, d = 4 chiral

multiplets, as well as N = 2, d = 4 hypermultiplet, all with spontaneous breaking half

supersymmetry [19–21]. Later the component theories with the vector multiplets, N = 1,

d = 4 [7] and N = 2, d = 3 [22], were constructed. The basic point of the component

approach is that it is possible to define the Goldstone fermionic superfield so that the bro-

ken supersymmetry is realized on this superfield and the spacetime coordinates in a very
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simple way, like in the work by Volkov and Akulov [23], while the θ-coordinates of the

superspace remain inert. If these conditions hold, the transformations of the first compo-

nent of the Goldstone fermionic superfield mimic the transformations of the Volkov-Akulov

fermion. Invariance of the action with respect to such transformations completely fixes its

dependence on the Goldstone fermions. In particular, it implies that this fermion may only

enter into the action only either through the matrix EAB = δBA + i(ψ̄γB∂Aψ), which co-

variantizes the derivatives of all fields ∂A → DA =
(
E−1

)B
A
∂B and the integration measure

d4x→ d4x det E [23, 24], or the Wess-Zumino terms. The complete supersymmetric action,

therefore, would be just a simple generalization of the bosonic action, and it would be only

required to check its invariance with respect to the unbroken supersymmetry.

It should also be noted that of the two related Born-Infeld theories, N = 4, d = 4

and N = (2, 0), d = 6, it makes more sense to construct the second one as the four

dimensional theory could then be obtained by the dimensional reduction. Moreover, there

are indications that actually the N = (2, 0), d = 6 theory would be easier to construct.

Indeed, one of the simplest theories with scalar and electromagnetic fields was analyzed

in [22], where conclusion was reached that it would be highly desirable to formulate the

irreducibility conditions of the multiplet in terms of the fermionic superfields. This would

eliminate the necessity to solve nonlinear algebraic relations between derivatives of scalar

fields and bosonic components of fermionic superfields, which appear in all theories with

scalars and can be very complicated in the cases of high supersymmetry (examples can

be found in [19–21]). Also, the components of the vector multiplets, which correspond to

the electromagnetic field, satisfy the differential identity (called the Bianchi identity). It

should be derived as a consequence of the irreducibility conditions, and this is much easier

to do if the conditions are formulated in terms of fermionic superfields. Also, in the theories

with spontaneous breaking of supersymmetry this condition is typically highly nonlinear

and should be proven equivalent to the usual ∂[AFBC] = 0, which would also relate the true

physical field strength FAB to the components of the multiplet. This is much simpler to do

if the identity does not involve scalar fields. As the only physical boson of the N = (1, 0),

d = 6 multiplet is the electromagnetic field strength tensor FAB, while N = 2, d = 4

supermultiplet has two additional scalars, the six dimensional case is preferable.

Therefore, our approach to construct the actions of the N = (2, 0), d = 6 and N = 4,

d = 4 Born-Infeld theories is the following one.

• At first, we should derive proper irreducibility conditions of the N = (1, 0), d = 6

vector multiplet from the assumption of covariance with respect to broken supersym-

metry and the SO(4) group (subgroup of the SO(5) automorphisms of the N = (2, 0),

d = 6 superalgebra).

• Secondly, as the consequence of the irreducibility conditions, the nonlinear Bianchi

identities should be derived. Let us note that it is sufficient to find them in the

bosonic limit and with the auxiliary field removed by its equation of motion. This

is acceptable as we are going to construct the action without the auxiliary field,

and the fermionic terms in the identity can be restored from the assumption of its

covariance with respect to the broken supersymmetry. Then it should be shown that
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the found nonlinear identities are equivalent to the usual ones ∂[AFBC] = 0. At

the same time, the expression of the physical bosonic field strength in terms of the

bosonic components of the multiplet would be found.

• Thirdly, the ansatz for the action should be constructed by covariantizing the well-

known bosonic action with respect to broken supersymmetry and by adding the

Wess-Zumino term. Finally, using the standard techniques, the transformation laws

of the components with respect to unbroken supersymmetry should be derived and the

invariance of the action proven in the lowest nontrivial approximation in the fermions.

• Fourthly, we perform the reduction of the obtained action to four dimensions.

2 The superalgebra and the coset space

The N = (2, 0), d = 6 superalgebra is composed of two copies of N = (1, 0), d = 6

superalgebras, {
Qiα, Q

j
β

}
= 2εijPαβ ,

{
Siα, S

j
β

}
= 2εijPαβ , (2.1)

as well the Lorentz algebra in d = 6 and the sp(2) ∼ so(5) algebra of automorphisms.

Indices i, j = 1, 2 are those of SU(2) spinors, and α, β = 1, . . . , 4 are the indices of so(1, 5) ∼
su∗(4) spinors. In this notation, Pαβ = −Pβα is the d = 6 spacetime vector, Fα

β is the

antisymmetric tensor if Fα
α = 0, Cαβ = Cβα is the self-dual three-form, and so on.

The commutation relations of the so(5) automorphism algebra in the basis with only

one explicit su(2) can be written as[
T ij , T kl

]
= i
(
εikT jl + εjlT ik

)
,

[
T ij , Rkl

]
= i
(
εikRjl + εjlRik

)
,[

T ij , R̃kl
]

= i
(
εikR̃jl + εjlR̃ik

)
,

[
Rij , Rkl

]
= i
(
εikT jl + εjlT ik

)
,[

R̃ij , R̃kl
]

= i
(
εikT jl + εjlT ik

)
,

[
Rij , R̃kl

]
= i
(
εikεjl + εjkεil

)
R0,[

R0, R
ij
]

= iR̃ij ,
[
R0, R̃

ij
]

= −iRij .

(2.2)

The generators of so(5) commute with the supercharges as

[
T ij , Qkα

]
=

i

2

(
εikQjα + εjkQiα

)
,

[
T ij , Skα

]
=

i

2

(
εikSjα + εjkSiα

)
,[

Rij , Qkα
]

=
i

2

(
εikSjα + εjkSiα

)
,

[
Rij , Skα

]
=

i

2

(
εikQjα + εjkQiα

)
,[

R̃ij , Qkα
]

=
i

2

(
εikQjα + εjkQiα

)
,

[
R̃ij , Skα

]
= − i

2

(
εikSjα + εjkSiα

)
,[

R0, Q
i
α

]
= − i

2
Siα,

[
R0, S

i
α

]
=

i

2
Qiα.

(2.3)

For the purposes of the latter construction, only the generators Rij and T ij , which form

so(4), are relevant.

The spontaneous breaking of half the supersymmetry can be achieved with the follow-

ing coset element:

g = eix
αβPαβeiθ

α
i Q

i
αeiψ

α
i (x,θ)S

i
α . (2.4)
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Here, xαβ and θαi are the coordinates of the superspace, and ψαi (x, θ) are the Goldstone

fermionic superfields. This is justified by their transformation laws. If the transformations

in the coset space are induced by the left multiplication

g0g = g′h, h = SO(1, 5)× SO(5), (2.5)

the variations of x, θ and ψ under unbroken and broken supersymmetry are

gQ = eiε
α
i Q

i
α : δQx

αβ = −iε
[α
i θ

β]i, δQθ
α
i = εαi , δQψ

α
i = 0, (2.6)

gS = eiε
α
i S

i
α : δSx

αβ = −iε
[α
i ψ

β]i, δSψ
α
i = εαi , δSθ

α
i = 0. (2.7)

As expected, xαβ and θαi transform with respect to unbroken supersymmetry as the coor-

dinates of the superspace, and the ψαi remains inert. Conversely, θαi are not touched by

broken supersymmetry, while the variations of ψαi and xαβ remind the transformation laws

of the Goldstone fermion proposed by Volkov and Akulov [23, 24] in four dimensions.

The Maurer-Cartan differential form Ω = g−1dg is invariant with respect to the Q and

S transformations:

g−1dg = i4xαβPαβ + idθαi Q
i
α + idψαi S

i
α, 4xαβ = dxαβ − idθ

[α
i θβ]i − idψ

[α
i ψ

β]i. (2.8)

Expanding the differential of the arbitrary invariant function in terms of the forms 4xαβ

and dθαi , one may construct derivatives covariant with respect to both supersymmetries.

They are defined by the relations

4xαβ∇αβ + dθαi ∇iα =
(
dxαβ − idθ

[α
i θβ]i

)
∂αβ + dθαi D

i
α = dxαβ∂αβ + dθαi

∂

∂θαi
. (2.9)

The second relation can be used to find the expression for the standard spinor derivative

Di
α. Studying the first relation, one can rewrite dxαβ−idθ

[α
i θβ]i in terms of4xαβ , dθαi forms(

dxαβ − idθ
[α
i θβ]i

)
= 4xαβ + idψ

[α
i ψ

β]i

= 4xαβ + i4xµν∇µνψ[α
i ψ

β]i + idθγj∇
j
γψ

[α
i ψ

β]i (2.10)

and obtain the covariant derivatives as coefficients of 4xαβ , dθαi :

∇αβ =
(
E−1

)
αβ

µν∂µν ,

Eαβ
µν = δ[µα δ

ν]
β − i∂αβψ

[µ
i ψ

ν]i,(
E−1

)
αβ

µν = δ[µα δ
ν]
β + i∇αβψ

[µ
i ψ

ν]i,

∇iα = Di
α + i∇iαψρmψmσ∂ρσ = Di

α + iDi
αψ

ρ
mψ

mσ∇ρσ,

Di
α =

∂

∂θαi
+ iθiβ∂αβ .

(2.11)

The alternative representation of the covariant spinor derivative can be obtained by ex-

panding the first relation (2.9) in terms of dxαβ − idθ
[α
i θβ]i, dθαi .

– 5 –
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As
{
Di
α, D

j
β

}
= 2iεij∂αβ , the (anti)commutation relations of ∇-derivatives can be

found as {
∇iα,∇

j
β

}
= 2iεij∇αβ + 2i∇iαψ

ρ
k∇

j
βψ

σk∇ρσ,[
∇αβ ,∇iγ

]
= 2i∇αβψρm∇iγψσm∇ρσ,[

∇αβ ,∇µν
]

= −2i∇αβψρk∇µνψ
σk∇ρσ.

(2.12)

3 The N = (1, 0), d = 6 vector multiplet

Let us briefly recall the properties of the N = (1, 0), d = 6 vector multiplet. It was

considered in the SU(2) non-covariant approach in [25] and [26]. The SU(2) covariant

formulation can be found in [27, 28]. The latter is most useful when the formalism of

nonlinear realizations is used. In this case, the usual N = (1, 0), d = 6 vector multiplet is

given by the spinorial superfield ψαi , subjected to the following irreducibility conditions

Di
αψ

α
i = 0, Di

αψ
jβ +Dj

αψ
iβ =

1

2
δβαD

i
γψ

jγ . (3.1)

One can check that these conditions imply that only the following components of the

multiplet are independent:

ψαi = ψαi |θ→0, Fα
β = Di

αψ
β
i |θ→0, Bij = Di

αψ
jα|θ→0. (3.2)

Acting on the ψαi field by two spinorial derivatives, one finds that the result always reduces

to the spacetime derivatives of ψαi .

It should be noted that as a consequence of the constraints (3.1) the component Fα
β

satisfies the differential identities known as the Bianchi identities. They indirectly imply

that the antisymmetric tensor Fα
β = Di

αψ
β
i |θ→0 is the strength of some vector potential.

The first identity can be obtained by acting by two derivatives on the condition

Dk
γψ

γ
k = 0:

Di
αD

j
β

(
Dk
γψ

γ
k

)
= 0 ⇒ ∂αγFβ

γ + ∂βγFα
γ = 0. (3.3)

The second one is a bit trickier. Analyzing the expression εαµνλDi
µD

j
ν Dk

λψ
β
k , one can note

that its part, symmetric in α, β, is proportional to εij :

εαµνλDi
µD

j
ν D

k
λψ

β
k + (α↔ β) = 4i

(
∂αγDk

γψ
β
k + ∂βγDk

γψ
α
k

)
εij , ∂αβ =

1

2
εαβµν∂µν . (3.4)

Multiplying this by εij and using the fact that εαβµνεijD
i
µD

j
ν = 1

2ε
αβµνεij

{
Di
µ, D

j
ν

}
, one

finds the second identity

∂αγFγ
β + ∂βγFγ

α = 0. (3.5)

In the d = 6 vector notation, these two identities can be recognized as self-dual and anti

self-dual parts of the identity ∂[AFBC] = 0:

∂αγFβ
γ + ∂βγFα

γ =
1

2

(
γABC

)
αβ
∂[AFBC],

∂αγFγ
β + ∂βγFγ

α = −1

2

(
γ̃ABC

)αβ
∂[AFBC]. (3.6)
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To construct the N = (2, 0), d = 6 Born-Infeld action, it is required to find a proper

covariant generalization of these constraints, which would be compatible with additional

spontaneously broken supersymmetry. As the construction of the actions of the N = 2, d =

4 and N = 4, d = 3 Born-Infeld theories shows, in the case of the vector multiplets it is not

sufficient to formally covariantize the constraints with respect to the broken supersymmetry

only by replacing the spinor derivatives with fully covariant ones (2.11). It is also required

to choose the constraints which are covariant with respect to the automorphism group of

the considered superalgebra.

Actually, the irreducibility conditions should be covariantized with respect to only the

SO(4) subgroup of the whole automorphism group SO(5). Moreover, the SU(2) part of

the SO(4) is realized by the linear transformations which rotate the indices i, j, and to

preserve this symmetry, it would be sufficient to keep the balance of these indices. The

transformations of the coset SO(4)/SU(2) are realized on the variables xαβ , θαi , ψαi as

gR = eiaijR
ij ⇒ δxαβ = 0, δθαi = akiψ

α
k , δψαi = aki θ

α
k , as δ4xαβ = 0. (3.7)

Now one can immediately derive variations of the differential forms 4xαβ , dθαi , dψαi with

respect to these transformations and, finally, of the derivatives of ψαi :

δdψαi = aki dθ
α
k = δ4xµν ∇µνψαi + δdθβj ∇

j
βψ

α
i +4xµνδ∇µνψαi + dθβj δ∇

j
βψ

α
i ⇒

δ∇iαψ
β
j = aijδ

β
α − akm∇iαψ

γ
k ∇

m
γ ψ

β
j . (3.8)

It can be noted that δ∇iαψ
β
j experiences a shift by the transformation parameter under

these transformations, though it affects only its trace part over the Lorentz indices sym-

metrized with respect to i, j, ∇(i
αψ

j)α. The first component of this combination is the

auxiliary field of the multiplet.

Using the transformation laws (3.8), one can establish the covariant generalization of

the constraints (3.1). The simplest task is to generalize the constraint Di
αψ

α
i = 0. Let us

consider the products of two or more ∇ψ, defined by formulaes(
∇ψ1

)iβ
αj

= ∇iαψ
β
j ,
(
∇ψ2

)iβ
αj

= ∇iαψ
γ
k ∇

k
γψ

β
j ,
(
∇ψn+1

)iβ
αj

=
(
∇ψn

)iγ
αk
∇kγψ

β
j , (3.9)

and their traces Tr
(
∇ψn

)
=
(
∇ψn

)iα
αi

. One can observe that

δTr
(
∇ψ1

)
= −akm

(
∇ψ2

)mγ
γk
, (3.10)

δTr
(
∇ψ3

)
= 3akm

(
∇ψ2

)mγ
γk
− 3akm

(
∇ψ4

)mγ
γk
, e.t.c.

Therefore, in the following matrix power series variations of each term mutually cancel

each other:

δ
(

Tr
(
∇ψ

)
+

1

3
Tr
(
∇ψ3

)
+

1

5
Tr
(
∇ψ5

)
+ . . .

)
= δTr

[
arctanh

(
∇iαψ

β
j

)]
= 0. (3.11)

As Tr
[
arctanh

(
∇iαψ

β
j

)]
reduces to Di

αψ
α
i when all nonlinear terms are neglected, the con-

dition

Tr
[
arctanh

(
∇iαψ

β
j

)]
= 0 (3.12)

is the suitable one.
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The second irreducibility condition should be generalized as

∇(i
αψ

j)β =
1

4
Y α

β∇(i
γψ

j)γ , TrY = 4, Y α
β = δβα + . . . . (3.13)

Here the matrix Y α
β should depend on V α

β = ∇iαψ
β
i and B2 = BijBij , B

ij = ∇(i
γψ

j)γ .

Their transformation laws could be readily extracted from (3.8):

δRV α
β = 2

(
a ·B

)
V α

λY λ
β , (3.14)

δRB
ij = aij

(
4− 1

4
Tr
(
V 2
)
− 1

32
Tr
(
Y 2
)
B2
)

+
1

16
Tr
(
Y 2
)(
a ·B

)
Bij .

Then collecting the coefficients of aij , Bij in the variation of (3.13), one can find that

aij : δβα −
1

4

(
V 2
)
α
β − 1

32
B2
(
Y 2
)
α
β = Y α

β
(

1− 1

16
Tr(V 2)− 1

128
Tr
(
Y 2
)
B2
)
,

Bij :
1

16

(
a ·B

)
Y α

λY λ
β = δRY α

β +
1

64

(
a ·B

)
Y α

βTr
(
Y 2
)
. (3.15)

As we want to find the on-shell identity for the field strength, it is sufficient to know the

irreducibility conditions in the first approximation in Bij , or Y α
β in the limit B → 0.

Then the second relation could be neglected, while the first one implies that

Y α
β ≈

δα
β − 1

4

(
V 2
)
α
β

1− 1
16Tr

(
V 2
) . (3.16)

It is convenient to write the approximate irreducibility condition as

∇(i
αψ

j)β ≈ Zα
β

TrZ
∇(i
γψ

j)γ , Zα
β = δα

β − 1

4

(
V 2
)
α
β . (3.17)

As these conditions are known only approximately, it is not possible to fully check their

consistency. However, they are, at least partially, justified by the latter construction.

It should be noted that one can establish the covariance of the constraints with respect

to Rij and T ij transformations but not others. For example, for any generator that mixes

Q and S, like the generator R0, the transformation law for ∇iαψ
β
j will contain a shift by the

transformation parameter. However, the irreducibility condition can be written as a rela-

tion that expresses the general superfield ∇iαψ
β
j in terms of the superfields Bij = ∇(i

αψ
j)α,

V̂ α
β = ∇iαψ

β
i −

1
4δ
β
α∇iγψ

γ
i , the first components of which are independent components of

the multiplet:

∇iαψjβ = Gijβα
(
Bkm, V̂ µ

ν
)
. (3.18)

As the variation of the left-hand side contains the shift term, the variation of the right-hand

side should contain such a term, too. Therefore, it is possible to covariantize the identity

only with respect to the generators which can be associated with the auxiliary field of

the multiplet.

Let us also note that the first irreducibility condition (3.12) remains nonlinear even in

the on-shell limit Bij = ∇(i
αψ

j)α = 0:

∇iαψ
β
j →

1

2
δijV

β
α ⇒

(
∇ψn

)iβ
jα
→ 1

2n
δij
(
V n
)
α
β ⇒

arctanh
(
∇iαψ

β
j

)
→ δijarctanh

(1

2
V α

β
)
⇒ Tr

[
arctanh

(1

2
V α

β
)]

= 0. (3.19)
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Therefore, Tr
(
V
)

is not equal to zero, unlike the linear case. It remains a nontrivial com-

ponent, though it is expressed in terms of other components. Interestingly, this condition

can be reduced to a much simpler cubic equation with the use of the formula det eA = eTrA:

Tr
[
arctanh

(1

2
V α

β
)]

= 0 ⇒ det
(1 + 1

2V

1− 1
2V

)
= 1 ⇒

24Tr
(
V
)

+
(
Tr
(
V
))3 − 3Tr

(
V
)
Tr
(
V 2
)

+ 2Tr
(
V 3
)

= 0. (3.20)

Also, the derivative of this condition implies that

dTr
[
arctanh

(1

2
V α

β
)]

= 0 ⇒ dV α
β
(
Z−1

)
β
α = 0. (3.21)

4 Bianchi identities

With the irreducibility conditions found, it is possible to derive differential identities that

are satisfied by the components Vα
β = V α

β |θ→0. The derivation of the identities can be

made simpler if one needs only the identities in the bosonic limit and with the auxiliary

field eliminated by its equation of motion in the final result. To perform this task, one

needs to take the irreducibility conditions in the lowest nontrivial approximation in Bij and

perform differentiation neglecting Bij in all cases when less than two spinorial derivatives

act on it. Much like the identities in the linear case, the first identity can be found by

acting by two derivatives on one of the irreducibility conditions:

∇iα∇
j
β

(
Tr
[
arctanh

(
∇kµψνm

)])
= 0 ⇒(

BI
)
αβ

=
(
∂αρVβ

σ + 1
4Vα

µVρ
ν∂µνVβ

σ
)(
Z−1

)
σ
ρ + (α↔ β) = 0. (4.1)

The second identity can be found by the analysis of the expression εαµνλ∇iµ∇
j
ν∇kλψ

β
k :(

B̃I
)αβ

= εαµνλ
(
∂µνVλ

γ +
1

4
Vµ

ρVν
σ∂ρσVλ

γ

)(
Z−1

)
γ
β + (α↔ β) = 0. (4.2)

The derivation of these identities is discussed in detail in the appendix B.

The identities (4.1), (4.2) should be equivalent to the usual ones. This requires that, in

particular, the matrices M(αβ)
(µν), N(αβ)(µν), M̃(µν)

(αβ), Ñ (αβ)(µν) should exist, such that

∂αγFβ
γ + ∂βγFα

γ = M(αβ)
(µν)
(
BI
)
µν

+N(αβ)(µν)

(
B̃I
)µν

,

∂αγFγ
β + ∂βγFγ

α = M̃(µν)
(αβ)

(
B̃I
)
µν + Ñ (αβ)(µν)

(
BI
)
µν
. (4.3)

In principle, one may treat Fα
β as a polynomial of degree 3 in Vα

β , the matrices M(αβ)
(µν),

N(αβ)(µν) — as double polynomials, and equate both sides of relations (4.3). This approach,

however, is very tedious and does not shed light on the nature of the matrices M , N .

Additionally, it requires to analyze two separate identities.

To avoid these difficulties, one should rewrite the identities in the vector notation. To

additionally simplify these relations, one may note that in both of them the derivatives are
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found as part of the combination Dαβ = ∂αβ + 1
4Vα

µVβ
ν∂µν ≡ Σαβ

µν∂µν . Then one can

represent Vα
β and

(
Z−1

)
α
β as

Vα
β = Aδβα +

1

2

(
γAB

)
α
βVAB,

(
Z−1

)
α
β = G0

(
δβα +

1

2

(
γAB

)
α
βGAB

)
, where

GAB = −1

2

AVAB + 1
8εABCDMNV

CDVMN

1 + 3
4A

2 + 1
8VCDV

CD
(4.4)

and G0 could be canceled from the identities. The relation on the components of Vα
β (3.20)

now implies

εABCDMNVABVCDVMN + 96A+ 24A3 + 12AVCDV
CD = 0. (4.5)

With the help of (4.4), two identities (4.1), (4.2) can be written as follows:(
γABC

)
αβ

(
DAVBC+GBCDAA−2DAVBKGCK−DKVKAGBC−DKVABGKC

)
= 0,(

γ̃ABC
)αβ(DAVBC+GBCDAA−2DAVBKGCK+DKVKAGBC+DKVABGKC

)
= 0. (4.6)

Here DA = −1
2

(
γ̃A
)αβDαβ ≡ ΣA

B∂B,

ΣA
B =

(
1 +

1

4
A2 +

1

8
VKLV

KL

)
δA

B +
1

2
AVA

B +
1

2
VAKV

KB +
1

16
εA

BCDMNVCDVMN .

(4.7)

Taking into account the self-duality properties of
(
γABC

)
αβ

,
(
γ̃ABC

)αβ
(see appendix),

two relations (4.6) are equivalent to the single one

D[AVBC] +D[AAGBC]− 2D[AVB
KGC]K −

1

6
εABCMNP

(
DKV KMGNP +DKVMNGKP

)
= 0.

(4.8)

Using the identity ε[ABCMNPDK] = 0, (4.8) can also be presented as

D[AVBC] + D[AAGBC] − 2D[AVB
KGC]K −

1

4
εKMNP [BCDA]V KMGNP = 0. (4.9)

It is now clear that this identity should be multiplied by three matrices(
Σ−1

)
A′
A
(
Σ−1

)
B′
B
(
Σ−1

)
C′
C (4.10)

to be brought to the standard form because it is one and only way to make the indices of

all derivatives ∂A′ free, as in the canonical identity. To prove exactly that after this multi-

plication (4.9) finally acquires the expected form, it is convenient to introduce the matrix

ΦAB =

(
1− 1

4
A2+

1

8
VKLV

KL

)
VAB+

1

2
VACV

CDVDB−
A

16
εAB

CDMNVCDVMN ,

ΦAC

(
Σ−1

)
B
C =AηAB+VAB. (4.11)
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In terms of this matrix, identity (4.9) reads

D[AΦBC] +A2D[AVBC] +
1

4
Aε[BC

MNPQDA]VMN VPQ (4.12)

+AD[AVB
K VC]K −

1

4
V[BCDA]

(
VKLV

KL
)

+
1

4
εMNPQK[CDAVMN V PQVB]

K

− D[AVB
KVC]LV

L
K − VK[BDAV KL VC]L = 0.

After the multiplication by
(
Σ−1

)
A′
A
(
Σ−1

)
B′
B
(
Σ−1

)
C′
C and the integration by parts, the

first term can be presented as

∂[A′
((

Σ−1
)
B′
B
(
Σ−1

)
C′]

CΦBC

)
+ 2
(
Σ−1

)
[A′

A
(
Σ−1

)
B′
B
(
Σ−1

)
C′]

C
(
ΦKC

(
Σ−1

)
L
KDAΣB

L
)
.

(4.13)

Using the properties of ΦAB (4.11) and explicitly taking the derivative of ΣB
L, one may

find that the generated terms cancel all the extra terms in identity (4.12). Therefore, the

right identity reads ∂[AFBC] = 0, where

FAB =
(
Σ−1

)
A
C
(
Σ−1

)
B
DΦCD =

(
Σ−1

)
A
C
(
AηCB + VCB

)
= (4.14)

=

(
1 + 1

4A
2 − 1

8VCDV
CD
)
VAB + 1

16AεABCDPQV
CDV PQ − 1

2VACV
CDVDB

1 +A2 + 3
16A

4 + 1
16A

2VKLV KL − 1
16VKLV

LMVMNV NK + 1
64

(
VKLV KL

)2 .
For further considerations, it is useful to write it down in the spinor notation:

Fα
β =

1
2Tr
(
V
)
δβα +

(
1 + 1

8

(
Tr
(
V
))2 − 1

8Tr
(
V 2
))
V β
α − 1

4Tr
(
V
)(
V 2
)
α
β + 1

4

(
V 3
)
α
β

1 + 1
4

(
Tr
(
V
))2

+ 1
128

(
Tr
(
V
))4 − 1

128

(
Tr
(
V 2
))2 − 1

64

(
Tr
(
V
))2

Tr
(
V 2
)

+ 1
64Tr

(
V 4
) .

(4.15)

Here relation (3.20) was used to express Tr
(
V 3
)

in terms of Tr
(
V
)

and Tr
(
V 2
)
. Let us

also note that the numerator of (4.15) can be written as

√
detZ

((
Z−1

)
α
λVλ

β − 1

4
δβα
(
Z−1

)
ρ
σVσ

ρ
)
. (4.16)

5 Broken supersymmetry

The component approach to the actions with broken supersymmetry involves the con-

struction of the ansatz for the action invariant with respect to broken supersymmetry by

modifying the measure and the derivatives in the bosonic action and adding the Wess-

Zumino terms and checking its invariance with respect to unbroken supersymmetry. As

θαi are invariant with respect to broken supersymmetry, the necessary transformation laws

and invariant forms can be obtained from (2.7), (2.8) in the limit θ → 0. Therefore, the

covariant derivative which acts on the components reads

Dαβ =
(
E−1

)
αβ

µν∂µν , Eαβµν = Eαβ
µν |θ→0 = δ[µα δ

ν]
β − i∂αβψ

[µ
i ψ

ν]i. (5.1)

It is also useful to rewrite the derivatives and the matrices in the vector notation

DA =
(
E−1

)
A
B∂B, EAB = δBA −

i

2
∂Aψ

ρ
i ψ

σi
(
γB
)
ρσ
. (5.2)
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The active transformation laws of the fields and the vielbein in the vector notation are

δ?Sψ
α
i = εαi +UA∂Aψ

α
i , δ?SFAB =UC∂CFAB, UA =

i

2
εµi ψ

νi
(
γA
)
µν
, (5.3)

δ?SEAB = ∂AU
CECB+UC∂CEAB, δ?S detE = ∂A

(
UAdetE

)
, δ?SDAψαi =UC∂CDAψαi .

The invariant measure is, therefore, d6x det E .

With these transformations at hand, one can restore the fermionic contributions to

the field strength. As is easy to note, the unmodified Bianchi identity ∂[AFBC] = 0 is

not invariant (due to variation of FAB, when active transformations are considered, or due

to nontrivial variation of xA if one considers usual transformations). Therefore, the true

physical field strength FAB should have another transformation law with respect to broken

supersymmetry. The comparison with the N = 2, d = 4 Born-Infeld theory suggests that

the right field strength is FAB = EACEBDFCD. Varying the expression ∂[AFBC], one may

find that it transforms proportionally to itself and its derivatives:

δ?S∂[AFBC] = −2∂[BU
K∂AFC]K + ∂KF[BC∂A]U

K + UK∂K
(
∂[AFBC]

)
= ∂[BU

K∂AFKC] + ∂KU
K ∂[AFBC] + UK∂K

(
∂[AFBC]

)
. (5.4)

Therefore, the identity ∂[AFBC] = 0 is compatible with broken supersymmetry in all ap-

proximations in the fermions.

The simple transformation law of FAB, in comparison with FAB, suggests that the

bosonic core of the action should be generalized as

S0 = −
∫
d6x det E

(
C1 +

√
− det

(
ηAB + FAB

))
. (5.5)

Comparing the lowest nontrivial limit of (5.5) with the free action, one may immediately

determine C1 = 1. It can be rewritten in terms of the variables Vα
β too,

S0 =

∫
d6x

−2detE
(
1+ 1

16

(
Tr
(
V
))2− 1

16Tr
(
V 2
))

1+ 1
4

(
Tr
(
V
))2

+ 1
128

[(
Tr
(
V
))4−(Tr

(
V 2
))2]− 1

64

[(
Tr
(
V
))2

Tr
(
V 2
)
−Tr

(
V 4
)] .
(5.6)

The Wess-Zumino term also should be constructed. As the main action (5.6) involves

the terms of even power in the fermions and in the bosons, the Wess-Zumino term which

could make a useful contribution to the action should also be quadratic in the field strengths

and at least quadratic in the fermions. Also, its variation with respect to broken super-

symmetry transformations (5.3) should reduce to the full derivative. Therefore, one can

expect this term to approximately read

LWZ ≈ iεABCDMNψαi ∂Aψ
βi
(
γB
)
αβ
FCDFMN . (5.7)

Indeed, in the lowest order in the fermions, the only field which transforms is ψαi without

the derivative, δSψ
α
i ∼ εαi . Then δSLWZ can be integrated by parts, and the appearing

terms with the derivatives of FAB will vanish due to the Bianchi identity.
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By adding more terms with the fermions, one can make the Wess-Zumino action in-

variant with respect to broken supersymmetry in all approximations in the fermions:

LWZ = i det EεABCDMNψαi DAψβi
(
E−1

)
B
K
(
γK
)
αβ
FCDFMN . (5.8)

Indeed, varying this term with respect to transformations (5.3), one can find that

δ?SLWZ = i det EεABCDMNεαi DAψβi
(
E−1

)
B
K
(
γK
)
αβ
FCDFMN

− i det EεABCDMNψαi DAψβiDBUK
(
γK
)
αβ
FCDFMN + ∂A

(
UALWZ

)
= iεABCDMNεαi ∂Aψ

βi
(
γB
)
αβ
ECKEDLFKL EMPENQFPQ + ∂A

(
UALWZ

)
− εABCDMNψαi ∂Aψ

βiεµj ∂Bψ
νjεαβµνECKEDLFKL EMPENQFPQ (5.9)

= iεABCDMNεαi ∂Aψ
βi
(
γB
)
αβ
FCD FMN + ∂A

(
UALWZ

)
− 1

3
εABCDMN εαβµν∂B

(
εµj ψ

νj ψαi ∂Aψ
βi
)
FCD FMN ,

which is full divergence due to the previously established Bianchi identities. In the last

line we used two relations

ψαi ∂Aψ
βiεµj ∂Bψ

νjεABCDMN εαβµν = εABCDMN εαβµν∂B
(
ψαi ∂Aψ

βiεµj ψ
νj
)

+ εABCDMN εαβµν∂Aψ
α
i ∂Bψ

βiεµj ψ
νj and (5.10)

ψαi ∂Aψ
βiεµj ∂Bψ

νjεABCDMN εαβµν = −1

2
εµj ψ

αj∂Aψ
β
i ∂Bψ

νiεABCDMN εαβµν .

It can be noted that no more Wess-Zumino terms can be constructed. For example, the

only term which is invariant with respect to the broken supersymmetry and is no less than

quadric in the fermions is

det EεABCDMNψiαψjβDAψµi DBψ
ν
j εαβµνFCDFMN (5.11)

Note that the indices of both derivatives of the fermions should be summed up with the

indices of the antisymmetric tensor, as otherwise integration by parts after varying this term

would not produce the Bianchi identities. The term (5.11), however, vanishes identically,

as DAψµi DBψνj εABCDMN εαβµν ∼ εij , while ψiαψjβεαβµν is symmetric in i, j. The term of

sixth power in the fermions does not exist for the same reason.

It would be useful to rewrite the Wess-Zumino term in the spinor notation. In the

lowest approximation in the fermions it reads

LWZ ≈ 4iψαi ∂λβψ
βi
(
F 2
)
α
λ + 4iψαi ∂αλψ

βi
(
F 2
)
β
λ − 2iTr

(
F 2
)
ψαi ∂αβψ

βi. (5.12)

6 Unbroken supersymmetry

The last point in constructing the action is checking its invariance with respect to unbroken

supersymmetry. As one of the coefficients in the action (5.5) was already fixed by the

invariance with respect to unbroken supersymmetry in lowest approximation, only one free

constant CWZ remains:

S = S0 + CWZ SWZ . (6.1)
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It should be determined by the invariance with respect to the complete unbroken super-

symmetry transformations taken in the lowest approximation in ψαi . The transformations

of the components can be derived with the help of the formula

δ?Qf = −εαi Di
αf |θ→0 ≡ −εαi ∇iαf |θ→0 +Hµν∂µνf, H

µν =
i

2
ελi Vλ

[µψν]i. (6.2)

As we plan to prove the invariance of the action in the first order in the fermions, the Hµν

terms are not relevant and all broken supersymmetry covariant derivatives can be replaced

with the usual ones Dαβ → ∂αβ . The transformations of the basic components in the lowest

approximation in the fermions then read

δ?Qψ
α
i ≈ −

1

2
εβi Vβ

α, (6.3)

δ?QVα
β ≈ −4iεγi Dγαψ

iβ − 4iεγi Zγ
βDαµψνi

(
Z−1

)
ν
µ + 2iZα

βεγi Dγµψ
νi
(
Z−1

)
ν
µ.

Derivation of the ψαi transformation law is straightforward while the derivation of ∇kγV α
β

is discussed in the appendix B. The variation of det E is relatively simple,

δ?Q det E ≈ −iελi Vλ
µ∂µνψ

νi, (6.4)

while the variations of the basic bosonic invariants whose action depends on, Tr
(
V
)
, Tr
(
V 2
)

and Tr
(
V 4
)
, are too large to be written explicitly. Also, only the fermions have to be varied

in the Wess-Zumino term (5.8), where, up to the full derivative,

δ?QLWZ ≈ 2iεABCDMNδ?Qψ
α
i ∂Aψ

βi
(
γB
)
αβ
FCDFMN (6.5)

= 8iδ?Qψ
α
i ∂λβψ

βi
(
F 2
)
α
λ + 8iδ?Qψ

α
i ∂αλψ

βi
(
F 2
)
β
λ − 4iTr

(
F 2
)
δ?Qψ

α
i ∂αβψ

βi.

Then the whole variation of the action (6.1) can be written as a sum of terms with the

structure Φ(k)(m) = εαi
(
V k
)
α
ρ∂ρσψ

iβ
(
V m
)
β
σ, where k,m = 0, . . . , 3, with scalar coefficients.

They can be rewritten in terms of Φ̃(k)(m) = εαi
(
F k
)
α
ρ∂ρσψ

iβ
(
Fm
)
β
σ, as

(
F k
)
α
β can also

be written as polynomials in
(
V m
)
β
σ and, therefore, Φ(k)(m) and Φ̃(k)(m) are linearly related

to each other by the matrix, the elements of which are functions of traces of powers of Vα
β .

It can be noted that if CWZ = − 1
16 , the variation of the Lagrangian in (6.1) can be cast

into a relatively simple form

δ?QL = i
(

1 +
1

8
Tr
(
F 2
))

Φ̃(1)(0) − i
(

1− 1

8
Tr
(
F 2
))

Φ̃(0)(1)

− i

4

(
Φ̃(0)(3) + Φ̃(3)(0) + Φ̃(1)(2) + Φ̃(2)(1)

)
+

i

12
Tr
(
F 3
)
Φ̃(0)(0). (6.6)

Though it is far from obvious, the terms with the third power of Fα
β actually cancel out.
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To prove this, let us write all pieces of (6.6) in the vector notation:

Φ̃(1)(0) − Φ̃(0)(1) = −1

2

(
γABC

)
αβ
εαi ∂Cψ

iβFAB,

Tr
(
F 3
)
Φ̃(0)(0) =

1

4
εABMNPQFABFMNFPQε

α
i ∂Cψ

βi
(
γC
)
αβ
,

Tr
(
F 2
)(

Φ̃(1)(0) + Φ̃(0)(1)

)
= 2FKLF

KLεαi ∂Aψ
βiFAB

(
γB
)
αβ
,

Φ̃(3)(0) + Φ̃(0)(3) = 2εαi ∂Aψ
βiFACFCDF

DB
(
γB
)
αβ

+
3

2
FKLF

KLεαi ∂Aψ
βiFAB

(
γB
)
αβ

+
1

8
εABMNPQFABFMNFPQε

α
i ∂Cψ

βi
(
γC
)
αβ
, (6.7)

Φ̃(2)(1) + Φ̃(1)(2) = −2εαi ∂Aψ
βiFACFCDF

DB
(
γB
)
αβ

− 1

2
FKLF

KLεαi ∂Aψ
βiFAB

(
γB
)
αβ

− 1

24
εABMNPQFABFMNFPQε

α
i ∂Cψ

βi
(
γC
)
αβ
.

It is now evident that all cubic terms cancel out, and the only linear term is full divergence

due to the bosonic Bianchi identity.

Therefore, the final action reads

S = −
∫
d6x det E

(
1 +

√
− det

(
ηAB + FAB

))
− i

16

∫
d6x det EεABCDMNψαi DAψβi

(
E−1

)
B
K
(
γK
)
αβ
FCDFMN . (6.8)

7 Reduction to four dimensional theory

With the action of the N = 2, d = 6 theory at hand (6.8), it would be natural to find the

action of the related N = 4, d = 4 Born-Infeld theory by the dimensional reduction [8–

10]. It implies taking all the fields independent of two coordinates, x4 and x5. As the

physical field strength can be represented as antisymmetrized derivative of the potential,

FAB = ∂AAB − ∂BAA, the aforementioned reduction also implies F45 = 0.

Two most important points should be studied here, the invariance of the reduced

action with respect to both broken and unbroken N = 2, d = 4 supersymmetries, and

the self-duality of the reduced action [10]. Throughout this section, we denote the four

dimensional vector indices by A,B = 0, . . . , 3 and the four dimensional spinor indices by

α, β = 1, 2 and α̇, β̇ = 1̇, 2̇.

7.1 General considerations on reduction

One can note that only the law of reduction of the field strength F45 = 0 is simple, while the

reduction of VAB is considerably more complicated; it is not even known how to explicitly

express VAB in terms of FAB. As the unbroken supersymmetry transformation laws are

written in terms of VAB, it would be desirable to avoid explicit proof of invariance of the
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action and just verify that the reduction is compatible with both supersymmetries. This

means that variations of all fields that vanish upon the reduction should also reduce to

zero and the reduced transformations should form a closed superalgebra. To clarify this

point, let us consider the general form of transformations:

δX(i) = ε(α)K
(i)
(α)(X,Y ), δY (a) = ε(α)L

(a)
(α)(X,Y ). (7.1)

Here we split all the basic fields and their derivatives into two sets: X(i) fields, such as

ψαi , ∂1ψ
α
i , F12, just lose their dependence on x4, x5 upon the reduction, while Y (a) fields,

like F45, ∂4ψ
α
i , vanish upon the reduction. The parameter ε(α) combines the parameters of

both broken and unbroken supersymmetries.

To keep the reduced Lagrangian supersymmetric, it is necessary to have L → 0 if

Y → 0. Indeed, the variation of the six dimensional Lagrangian, which depends on X,Y and

the variation of the four dimensional reduced Lagrangian, which depends on X only, read

δL = ε(α)K
(i)
(α)(X,Y )

∂L
∂X(i)

+ ε(α)L
(a)
(α)(X,Y )

∂L
∂Y (a)

= ∂AΛA,

δLred = ε(α)K
(i)
(α)(X)

∂Lred
∂X(i)

. (7.2)

As could be noted, the reduced δL coincides with δLred if L
(a)
(α) → 0 upon the reduction.

On the other hand, as the six dimensional action is invariant, δL = ∂AΛA is the six

dimensional divergence, and ∂AΛA → ∂AΛA if ∂4 = ∂5 = 0. Then the variation of the four

dimensional Lagrangian Lred is the four dimensional divergence, and the corresponding

action Sred =
∫
d4xLred is invariant.

We also need to make sure that the reduced transformations form a closed algebra.

Calculating the commutators of the supersymmetries with the parameters ε1
(α), ε2

(β) on

X and Y , we find

δ1δ2X
(i)−δ2δ1X(i) =−ε1(α)ε2(β)

K(j)
(α)

∂K
(i)
(β)

∂X(j)
+K

(j)
(β)

∂K
(i)
(α)

∂X(j)
+L

(a)
(α)

∂K
(i)
(β)

∂Y (a)
+L

(a)
(β)

∂K
(i)
(α)

∂Y (a)

 ,
δ1δ2Y

(a)−δ2δ1Y (a) =−ε1(α)ε2(β)
L(b)

(α)

∂L
(a)
(β)

∂Y (b)
+L

(b)
(β)

∂L
(a)
(α)

∂Y (b)
+K

(i)
(α)

∂L
(a)
(β)

∂X(i)
+K

(i)
(β)

∂L
(a)
(α)

∂X(i)

 .
(7.3)

We assume that they commute properly, producing appropriate derivatives of X and Y .

The reduced transformations and their commutator just read

δredX
(i) = ε(α)K

(i)
(α)(X), (7.4)

δred1δred2X
(i) − δred2δred1X(i) = −ε1(α)ε2(β)

K(j)
(α)

∂K
(i)
(β)

∂X(j)
+K

(j)
(β)

∂K
(i)
(α)

∂X(j)

 .
Thus, to obtain (7.4) by reducing (7.3), we should assume that upon the reduction

Y (a) → 0, L
(a)
(α)(X,Y )→ 0,

∂L
(a)
(β)

∂X(i)
→ 0. (7.5)
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The latter two requirements could be satisfied if L(X,Y ) ∼ Y . If (7.5) hold, the com-

mutator of the reduced transformations is equivalent to the reduced commutator of the

original transformations, acting on X. It should be noted that the algebra of supersymme-

tries closes on the equations of motion and, therefore, the equations of motion that follow

from the reduced Lagrangian should coincide with the result of reduction of the original

equations of motion. However, this is true for arbitrary L
(
ψαi , ∂Aψ

α
i ,FAB

)
and could not

be considered as a limitation.

Now we should verify that the transformations (5.3), (6.3) really satisfy the condi-

tions (7.5). As in our case the transformations are active and the variation of the derivative

of a field is the derivative of the transformation of this field, the conditions (7.5) obviously

hold for ∂4, ∂5 of any field. Thus F45 could be the only obstacle. Let us consider this field

in detail. It sufficient to study F45, as F45 = E4AE5BFAB → F45 upon the reduction.

As δ?SF45 = UC∂CF45, the broken supersymmetry is compatible with the reduction,

and we need to consider the unbroken supersymmetry. The most convenient way to prove

the fact that δ?QF45 = 0 upon the reduction is to use the following trick. Let us study

expression (6.3) multiplied by Z−1:

δ?QVα
λ
(
Z−1

)
λ
β = −4iεµi Dµαψ

iν
(
Z−1

)
ν
β − 4iεβi Dαµψ

νi
(
Z−1

)
ν
µ + 2iδα

βεγi Dγµψ
νi
(
Z−1

)
ν
µ.

(7.6)

Its trace over α, β vanishes, as it should be. In the vector notation (4.4) this implies

the relation

δ?QA =
1

2
GABδ?QVAB. (7.7)

Multiplying (7.6) by
(
γAB

)
β
α, one obtains another relation that is satisfied by the variation

of VAB

δ?QVAB − δ?QVAKGBK + δ?QVBKGA
K − 1

4
εABCDKLδ

?
QV

CDGKL + δ?QAGAB = (7.8)

= −i
(
εαi DAψβi

(
γB
)
αβ
− εαi DBψβi

(
γA
)
αβ

)
+ i
(
εαi DAψβiGBC − εαi DBψβiGAC

)(
γC
)
αβ

− i

2

(
εαi DAψβi

(
γBCD

)
αβ
− εαi DBψβi

(
γACD

)
αβ

)
GCD.

One can note that the left-hand side can be represented as(
1 +

3

4
A2 +

1

8
VKLV

KL

)−1
ΣA

CΣB
Dδ?QFCD, (7.9)

where the matrix ΣA
B was defined in (4.7). The simplest way to prove this is to use

the relation

ΣA
CΣB

DδFCD = δ
(
ΣA

CΣB
DFCD

)
− δΣA

CΣB
DFCD − ΣA

CδΣB
DFCD

= δΦAB +
(
ηBCA+ VBC

)
δΣA

C −
(
ηACA+ VAC

)
δΣB

C . (7.10)

Therefore, multiplying (7.8) by two matrices
(
Σ−1

)
A′
A
(
Σ−1

)
B′
B, one can note that the

variation of FAB consists only of terms that contain ∂A′ψνi or ∂B′ψνi. As a result, the varia-

tion of F45 under the unbroken supersymmetry is proportional to the fields that vanish upon

the reduction, just as needed. It can be stated in other words: the Bianchi identity (4.8)

and the unbroken supersymmetry transformations are compatible with each other.
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7.2 The reduced action

The above results guarantee that the reduced action would be invariant with respect to

reduced broken and unbroken supersymmetries, and the reduction of the action and the

Bianchi identity can now be performed explicitly.

The six dimensional spinor ψαi can be represented as the doublet

ψαi =
√

2

(
ψ
α
i

ψ̄
α̇
i

)
. (7.11)

Then the elements of the fermionic matrix reduce to

EAB = δA
B + i

(
ψ̄α̇i∂Aψ

α
i + ψ

α
i ∂Aψ̄

α̇i
)(
σB
)
αα̇
,

EA4 + iEA5 = 2iψiα∂Aψ
α
i , EA

4 − iEA5 = 2iψ̄iα̇∂Aψ̄
α̇
i , E4

A = δA4 , E5A = δA5 . (7.12)

The broken supersymmetry covariant derivative should be defined as DA =
(
E−1

)
A
B∂B.

If ∂4 = ∂5 = 0 and F45 = 0, the Bianchi identity ∂[CFAB] = 0 implies that the four

dimensional vectors FA4, FA5 are the derivatives of some scalar fields. We express the

derivative of the complex scalar field and its conjugate by the relations

∂AW =
i

2

(
FA4 + iFA5

)
, ∂AW = − i

2

(
FA4 − iFA5

)
FA4 = EADFD4 = EADFD4, FA5 = EADFD5 = EADFD5 ⇒ (7.13)

FA4 = −i
(
DAW −DAW

)
, FA5 = −

(
DAW +DAW

)
.

The reduced four dimensional field strength tensor, including fermionic contributions, reads

FAB = EACEBDFCD+2
(
∂AWψ̄iα̇∂Bψ̄

α̇
i −∂BWψ̄iα̇∂Aψ̄

α̇
i

)
−2
(
∂AWψiα∂Bψ

α
i −∂BWψiα∂Aψ

α
i

)
.

(7.14)

It satisfies the Bianchi identity ∂[CFAB] = 0.

Finally, the reduced Lagrangian reads

Lred = − det ELmain − 2iF̃AB
(
∂AWψ̄iα̇∂Bψ̄

α̇
i + ∂AWψiα∂Bψ

α
i

)
− 2εABCD

(
ψ̄α̇i∂Aψ

α
i + ψ

α
i ∂Aψ̄

α̇i
)(
σB
)
αα̇
∂CW∂DW, (7.15)

where Lmain = 1 +
√
− det

(
ηAB + FAB − 2DAWDBW − 2DBWDAW

)
.

Note that in the limit FAB → 0, ψ
α
2 → 0, ψ̄α̇2 → 0, this Lagrangian coincides with the

Lagrangian of the 3-brane in D = 6 [20], up to the redefinition xA → −xA. Its invariance

with respect to the broken and unbroken supersymmetries is guaranteed by the previous

considerations, and we do not need to check it explicitly.

7.3 Self-dualify

Let us now discuss the self-duality properties of the Lagrangian (7.15). The concept of

self-duality can be introduced in the standard nonlinear four dimensional electrodynamics,
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starting from the fact that in such theories the Bianchi identity and the equation of motion

of the abelian gauge field have the same structural form:

∂BF̃AB = 0, ∂BG̃AB = 0, G̃AB = 2
∂L
(
F
)

∂FAB
. (7.16)

Then one may consider the U(1) transformations, which preserve the set of Bianchi iden-

tities and the equations of motion:

F ′AB = cos(λ)FAB + sin(λ)GAB, G′AB = cos(λ)GAB − sin(λ)FAB (7.17)

If L
(
F ′
)

= L
(
F
)
, the model is called self-dual. As a consequence, it is also self-dual with

respect to (pseudo)Legendre transformations. It was proved in [31–33] that a theory of a

single abelian field is self-dual if the following equation is satisfied:

εABCDG̃ABG̃CD − εABCDFABFCD = 0. (7.18)

The Lagrangian of the standard bosonic Born-Infeld theory is a solution to this equa-

tion. Moreover, it is worth noting that (7.18) is also satisfied by the Lagrangian of the

component N = 2 supersymmetric Born-Infeld theory [7] and by the bosonic core of the

N = 4 theory (7.15). One may go further and calculate G̃, which corresponds to the full

Lagrangian (7.15):

G̃AB = −2 det E ∂Lmain

∂FCD

(
E−1

)
C
A
(
E−1

)
D
B + 2iεABCD

(
ψ̄iα̇∂Cψ̄

α̇
i ∂DW + ψiα∂Cψ

α
i ∂DW

)
.

(7.19)

Substituting it into equation (7.18), one can find that it is not satisfied, however. After

some algebra, the result of the substitution can be represented as

det E
(

4εABCD
∂Lmain

∂FAB

∂Lmain

∂FCD
− εABCDFABFCD

)
+

−32i det E ∂Lmain

∂FAB

(
DAWψ̄iα̇DBψ̄

α̇
i +DAWψiαDBψ

α
i

)
− (7.20)

−8εABCDFAB
(
∂CWψ̄iα̇∂Dψ̄

α̇
i − ∂CWψiα∂Dψ

α
i

)
.

The first line of this expression should vanish if the bosonic core of the action is self-dual,

which is exactly the case. The second line does not vanish, however. This means that the

Lagrangian (7.15) could be self-dual only if the scalars and the fermions are assumed to

transform nontrivially. Indeed, one can adapt the methods of [31–33] to find that if W , ψ
α
i

are not inert, the following equation should be satisfied:

δW,ψL =
λ

8

(
εABCDG̃ABG̃CD − εABCDFABFCD

)
, (7.21)

where δW,ψL is the variation of the Lagrangian, when W , ψ
α
i but not FAB are varied.

Taking into account that the transformations of W , ψαi also induce the nontrivial trans-

formation of FAB = FAB
(
W,ψ,F

)
, one can find the following very simple variations of W ,

ψ
α
i which allow equation (7.21) to be satisfied:

δW = iλW, δW = −iλW, δψ
α
i = iλψ

α
i , δψ̄iα̇ = −iλψ̄iα̇. (7.22)
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These phase rotations keep the matrix EAB, as well as the covariant derivatives, inert.

Actually, the only terms in the Lagrangian which nontrivially transform are the first Wess-

Zumino term, containing F̃AB, and Lmain, purely due to its dependence on FAB.

7.4 Comparison with the previous works

Finally, let us compare this result with the others previously obtained using the super-

field methods.

In [10], the concept of dualities was generalized to explicitly supersymmetric theories

and the appropriate conditions of the theory to be self-dual were derived in the cases of the

N = 1 and N = 2 supersymmetry. It was again found that the N = 1 theory satisfies this

new superfield condition, and it was suggested that explicitly N = 2 supersymmetric gen-

eralization of the Born-Infeld theory also should be self-dual. The duality transformations

and the self-duality condition in this case were found to be

δW = λM, δM = −λW , M = −i
δ

δW S
[
W ,W

]
, M = i

δ

δW
S
[
W ,W

]
,∫

d4xd4θ
(
M2 + W2

)
=

∫
d4xd4θ̄

(
M2

+ W2)
. (7.23)

The self-duality condition is satisfied by the superfield action,

S =
1

2

∫
d4xd4θW2 +

1

2

∫
d4xd4θ̄W2 +

1

2

∫
d4xd4θd4θ̄W2W2 + . . . ⇒ (7.24)

M = −iW
(
1 +D4W2

)
+ . . . , M = −iW

(
1 +D4W2

)
+ . . .

where we write down only the terms up to the fourth power in the fields. In [10], terms up

to W8 were obtained and they coincided with the terms obtained in [11] from the condition

of invariance of the action with respect to the spontaneously broken supersymmetry.

The N = 2 vector multiplet itself is defined by the irreducibility conditions

Dα̇iW = 0 Di
αW = 0, D

α
i DαjW = Dα̇iD

α̇
jW . (7.25)

Note that while obtaining the variation of the action with respect to W , W , only chirality

conditions should be taken into account but not the Bianchi identity.

The components of the superfields W , W can be defined as

W = W |θ→0, W = W |θ→0,

ξ
α
i =

i

2
D
α
i W |θ→0, ξ̄α̇i =

i

2
D
α̇iW |θ→0,

Bij = DiαDj
αW |θ→0, DiαDi

βW |θ→0 = i
(
σAB

)αβHAB,
D
iα̇
Di

β̇W |θ→0 = i
(
σ̃AB

)α̇β̇HAB, ∂[CHAB] = 0. (7.26)

We are primarily interested in terms up to the fourth power in bosons and of the second

power in bosons and fermions. Calculating the component form of the action (7.24), one
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may note that the auxiliary field should be defined as

Bij = Bij + i
(
ξ(iαξ̄

α̇
k + ξ

α
k ξ̄

α̇(i
)
∂ABj)k

(
σA
)
αα̇
−WW∂2Bij

+ 4W∂2
(
ξ̄iα̇ξ̄

α̇j
)

+ 4W∂2
(
ξαiξjα

)
+ 2ξ̄α̇j∂αα̇

(
Hαβξiβ

)
+ 2ξiα∂αα̇

(
Hα̇β̇ ξ̄j

β̇

)
− 8ξ̄α̇i∂αα̇

(
W∂αβ̇ ξ̄j

β̇

)
+ 8ξiα∂αα̇

(
W∂βα̇ξjβ

)
+ . . . (7.27)

The equation of motion of Bij is algebraic and implies Bij = 0. After removing the

auxiliary field, one can use the following redefinitions of the basic fields

W =W
(

1− 1

8
HABHAB +

i

8
HABH̃AB

)
− ∂AW ∂AWW −WW∂2W

+ i∂AW
(
σA
)
αα̇
ξ
α
i ξ̄

iα̇ − 2iW
(
σA
)
αα̇
ξ̄iα̇∂Aξ

α
i + . . . ,

ψ
α
i = ξ

α
i

(
1− 1

8
HABHAB +

i

8
HABH̃AB −

1

4

(
W∂2W +W∂2W

))
+

i

2
HAB

(
σ̃B
)α̇α

∂A
(
W ξ̄iα̇

)
+

1

2
H̃AB

(
σ̃B
)α̇α(

∂AW ξ̄iα̇ −W ∂Aξ̄iα̇
)

(7.28)

−W∂BW∂Bξ
α
i −

1

2
W∂2

(
Wξ

α
i

)
−W∂A

(
W∂Aξ

α
i

)
− iW∂AW∂Bξ

β

i

(
σAB

)
β
α + . . . ,

FAB =
1

2
HAB + ∂A∂

D
(
WWHBD

)
+

i

4
∂A
(
H̃BD

(
W∂DW −W∂DW

))
− ∂A

(
H̃BD

(
σD
)
αα̇
ξ
α
i ξ̄

α̇i
)
− 2i∂A

(
W∂C

(
ξ̄α̇iξ̄

β̇

i

))(
σ̃BC

)
α̇β̇

− 2i∂A
(
W∂C

(
ξαiξ

β

i

))(
σBC

)
αβ
− 2∂A

(
W ξ̄

α̇
i ∂B ξ̄

i
α̇

)
+ 2∂A

(
Wξ

α
i ∂Bξ

i
α

)
+ . . .−

(
A↔ B

)
,

to show that the Lagrangian can be cast into form

LSF = 2∂AW ∂AW − 1

4
FAB FAB − 2i

(
ψ
α
i ∂Aψ̄

α̇i + ψ̄α̇i∂Aψ
α
i

)(
σA
)
αα̇

+ 2∂AW∂AW ∂BW∂BW − 2FACFAD∂CW ∂DW +
1

2
FAB FAB∂CW∂CW

− i

2

(
ψ
α
i ∂Aψ̄

α̇i + ψ̄α̇i∂Aψ
α
i

)(
σA
)
αα̇

(
∂CW∂CW −

1

8
FCD FCD

)
(7.29)

+
i

2

(
ψ
α
i ∂

Aψ̄α̇i + ψ̄α̇i∂Aψ
α
i

)(
σB
)
αα̇

(
∂AW∂BW + ∂BW∂AW −

1

2
FACFBC

)
− 2FAB

(
∂BWψ̄

α̇
i ∂Aψ̄

i
α̇ − ∂BWψ

α
i ∂Aψ

i
α

)
+ 2iF̃AB

(
W∂Aψ

α
i ∂Bψ

i
α +W∂Aψ̄

α̇
i ∂Bψ̄

i
α̇

)
− 2εABCD

(
ψ̄α̇i∂Aψ

α
i + ψ

α
i ∂Aψ̄

α̇i
)(
σB
)
αα̇
∂CW∂DW + . . .

In the considered approximation, it coincides with the power expansion of (7.15).

Let us note that the redefinition of the components is somewhat arbitrary. For example,

the term

2iW∂2Wξ
α
i ∂Aξ̄

α̇i
(
σA
)
αα̇

can be absorbed into W , W = W − iWξ
α
i ∂Aξ̄

α̇i
(
σA
)
αα̇

+ . . . but also can be used to

redefine the fermion ψ
α
i = ξ

α
i +2W∂2Wξ

α
i + . . .. To properly resolve this arbitrariness, one
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should take into account that W , ψ
α
i , ψ̄α̇i, FAB are the components of some superfield W ,

satisfying some nonlinear covariant chirality constraint. While we do not consider such a

superfield, it is worth noting that in [13] the approximate relation between the superfields

satisfying the standard linear and covariant nonlinear constraints was obtained and the

first component of this relation is exactly the definition of the proper scalar component

W (7.28).

It is worthwhile to note, however, that the duality transformations (7.17), (7.22) do

not coincide with the component expansion of the transformations (7.23). Indeed, using

the relation (
σAB

)
α
β
(
σCD

)
β
α = 2

(
ηACηBD − ηADηBC + iεABCD

)
, (7.30)

one can establish that in the lowest approximation

δW = −iλW + . . . , δξ
α
i = −iλξ

α
i , δHAB = λH̃AB + . . . , (7.31)

with some signs being opposite of (7.17), (7.22). Moreover, these transformations also

contain higher derivative terms and they do not vanish even after passing to the components

of nonlinear realization. For example, the variation of W (7.28) reads

δW = −iλW − 4λWψ̄α̇i∂Aψ
α
i

(
σA
)
αα̇

+ 2iλWW∂2W + . . . (7.32)

The relation between these two sets of transformations, therefore, remains unclear.

As the last comment, it is desirable to compare the action (7.15) with the component

actions previously obtained in the paper [16]. Though the notations and the general form of

the Lagrangians are significantly different, one can expect that the Lagrangian of the N = 4,

d = 4 Born-Infeld theory, obtained in [16], is related to (7.15) by a field redefinition. To shed

some light on this point, one may study the broken supersymmetry transformation laws.

Initially, it seems natural to associate the parameter ζ (formula (A.30) in [16]) with the

standard broken supersymmetry transformations, as the transformation law of the fermion

with the parameter ζ is just the law of Volkov and Akulov. The bosonic fields, however,

are not covariant with respect to the ζ transformations. In particular, the transformation

laws of the scalar fields begin with the terms proportional to the transformation parameter

and the fermionic field. The only appropriate Lorentz and SU(2) covariant terms are

δφ ∼ ζ
α
i ψ

i
α and δφ̄ ∼ ζ̄

α̇
i ψ̄

i
α̇. It is natural to expect that φ, φ̄ differ from W , W by terms

with these transformation laws. The expected terms have to be quadratic in fermions, but

the only candidates ψiαψiα and ψ̄iα̇ψ̄iα̇ are equal to zero identically. The only solution

to this problem seems to identify the standard broken supersymmetry transformations

with δζ + δε|ε→ζ . This identification removes the undesirable terms in the transformation

laws of the bosons but introduces terms ∼ ζ̄βλ in the transformation law of the Goldstone

fermions. Then, to remove these newly appeared terms, one should perform the redefinition

of the fermionic field ψ ∼ λ + FΓλ + . . .. Note that in the Lagrangian this redefinition

generates the terms linear in F and quadratic in the fermions, which are absent in (7.15)

but typically occur in the actions in the paper [16]. Therefore, a tentative conclusion

could be reached that from the point of view of the standard nonlinear realizations the

action obtained in [16] corresponds to the breaking of Q + S supersymmetry. The exact

correspondence between the action [16] and (7.15) should be studied elsewhere.
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8 Conclusion

In this article, the N = (2, 0), d = 6 Born-Infeld theory was considered in the compo-

nent approach. It was shown that it is possible to construct its component action using

the principles already successfully employed in the construction of the component N = 2,

d = 4 Born-Infeld theory [7]. These include the use of the standard nonlinear realization

formalism with the exponential parametrization of the coset space to find the transfor-

mation laws of the superfields with respect to both unbroken and spontaneously broken

supersymmetries and automorphisms, as well as the differential forms and the derivatives

covariant with respect to these transformations. Another important idea used in this pa-

per, already employed in [7], is that the properly generalized irreducibility conditions of

the vector multiplets should be invariant not only with respect to broken supersymmetry

but also with respect to the subgroup of the external automorphisms of the supersymmetry

algebra. With these ideas implemented, it becomes a difficult though technical problem to

calculate the Bianchi identity, which is satisfied by the bosonic field strength, and prove

its equivalence to the standard one. The fermionic contributions to the identity can be

unambiguously restored by demanding its covariance with respect to broken supersymme-

try. The rest of the procedure is common to all studied component actions with partial

spontaneous breaking of supersymmetry. It involves modifying the bosonic action follow-

ing the recipe of Volkov and Akulov [23, 24], adding the Wess-Zumino term, and checking

the invariance with respect to unbroken supersymmetry, fixing the remaining arbitrary

constants in the process.

Though the proof of invariance of the d = 6 action with respect to the unbroken

supersymmetry was performed in the linear approximation in the fermions, the obtained

action seems to be exact one. It can be noted that already the spontaneously broken

supersymmetry, which transformation laws are known exactly, constrains the action to be

a sum of det E , the covariantized bosonic action and only one Wess-Zumino term. As no

Wess-Zumino terms which are quadric in the fermions could be constructed and the term

with nontrivial bosonic limit is determined exactly by the unbroken supersymmetry already

in the lowest order in the fermions, no freedom in the action remains. True subtle point of

the construction is the second irreducibility condition (3.17) which is known in the lowest

order in the auxiliary field only. This precludes the complete study of its consequences and

the proof that it is strictly off-shell. It should be noted, however, that the resulting Bianchi

identities are benign and can be cast into standard form without use of the equations of

motion, which is a strong indication of consistency of the constraints.

The reduction of the constructed theory to four dimensions was also considered. It was

proven that the supersymmetry transformations do not contradict the reduction conditions

and, therefore, the action after reduction is still invariant with respect to the N = 4, d = 4

supersymmetry. Its self-duality was proven at the component level, with rather simple

duality transformations of the scalar and the fermionic fields. The comparison with the

previous works shows that the obtained action coincides with ones found in [10, 11] in the

second and fourth power in the fields after the proper field redefinition. Whether the action

obtained in [16] is nontrivially different from (7.15) remains unclear.
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Let us also mention the observation made during the analysis of the bosonic Bianchi

identity for the field strength. This identity involves the matrix which, at the same time,

relates the anticommutator of two spinor derivatives to the xA derivative, relates the phys-

ical bosonic field strength to the tensor component of the multiplet, and is used to multiply

the original identity to bring it to the proper form. Therefore, the role of this matrix is

likely fundamental for the component D-brane actions and requires further investigation.

Acknowledgments

The work of N.K. was supported by the RFBR, grant 18-52-05002 Arm a. The author

wishes to thank Stefano Bellucci, Sergey Krivonos, Anton Sutulin and Armen Yeranyan

who collaborated with him on the component approach to partial breaking of global su-

persymmetry.

A Properties of the γ-matrices

The six dimensional γA-matrices are assumed to have following properties [26]:(
γA
)
αβ

= −
(
γA
)
βα
,
(
γA
)
αβ

(
γA
)
µν

= −2εαβµν ,
(
γ̃A
)αβ

=
1

2
εαβµν

(
γA
)
µν
,

εαβµνεαβµν = 24,
(
γA
)
αλ

(
γ̃B
)λβ

+
(
γB
)
αλ

(
γ̃A
)λβ

= 2ηABδα
β . (A.1)

The composite matrices are defined as:(
γAB

)
α
β =

1

2

((
γA
)
αλ

(
γ̃B
)λβ − (γB)

αλ

(
γ̃A
)λβ)

,(
γABC

)
αβ

=
1

2

((
γA
)
αρ

(
γ̃B
)ρσ(

γC
)
σβ

+
(
γA
)
βρ

(
γ̃B
)ρσ(

γC
)
σα

)
,(

γ̃ABC
)αβ

=
1

2

((
γ̃A
)αρ(

γB
)
ρσ

(
γ̃C
)σβ

+
(
γ̃A
)βρ(

γB
)
ρσ

(
γ̃C
)σα)

. (A.2)

The composite matrices satisfy the relations(
γAB

)
α
β =−

(
γBA

)
α
β ,(

γAB
)
α
α = 0,(

γAB
)
α
λ
(
γCD

)
λ
β =−1

2
εABCDMN

(
γMN

)
α
β−
(
ηACηBD−ηBCηAD

)
δα
β

−
(
ηAC

(
γBD

)
α
β−ηBC

(
γAD

)
α
β−ηAD

(
γBC

)
α
β+ηBD

(
γAC

)
α
β
)
,(

γABC
)
αβ

=
(
γABC

)
βα

=
(
γ[ABC]

)
αβ
,(

γ̃ABC
)αβ

=
(
γ̃ABC

)βα
=
(
γ̃[ABC]

)αβ
, (A.3)

εABCMNP

(
γMNP

)
αβ

=−6
(
γABC

)
αβ
,

εABCMNP

(
γ̃MNP

)αβ
= 6
(
γ̃ABC

)αβ
,(

γABC
)
αβ

(
γ̃MNP

)αβ
=−4

(
ηAMηBNηCP−ηANηBMηCP−ηAMηBP ηCN

−ηAP ηBNηCM+ηAP ηBMηCN+ηANηBP ηCM
)

+4εABCMNP .
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The vector and spinor notation for the vectors and antisymmetric tensors are related

in the following way:

Pαβ =
1

2

(
γA
)
αβ
PA ⇔ PA = −1

2

(
γ̃A
)αβ

Pαβ ,

Fα
β =

1

2

(
γAB

)
α
βFAB ⇔ FAB = −1

4

(
γAB

)
α
βFβ

α. (A.4)

For the purposes of dimensional reduction, one can use the following explicit represen-

tation of these matrices:(
γA
)
αβ

=

(
0

(
σA
)
αα̇

−
(
σA
)
αα̇

0

)
,
(
γ4
)
αβ

=

(
εαβ 0

0 εα̇β̇

)
,
(
γ5
)
αβ

=

(
−iεαβ 0

0 iεα̇β̇

)
(A.5)

Here, σA =
(
1, σ1, σ2, σ3

)
are the standard four dimensional σ-matrices, while the ε-tensors

have properties

εαβ = −εβα, εαβε
βλ = δλα, ε12 = 1,

εα̇β̇ = −εβ̇α̇, εα̇β̇ε
β̇λ̇ = δ

λ̇
α̇, ε1̇2̇ = 1. (A.6)

They can be used to lower the four dimensional spinor indices, ψαi = εαβψ
β

i , e.t.c.

B Derivation of the Bianchi identities

In this appendix, we discuss how to obtain the bosonic Bianchi identities for the field

strength of the nonlinear N = (1, 0), d = 6 vector supermultiplet as well as the unbroken

supersymmetry transformation laws.

Let us stress that we do not know the complete form of one of the irreducibility

conditions (3.17) and, therefore, do not make an attempt to prove that, acting by the

covariant derivatives on the conditions (3.12), (3.17), one will obtain only the Bianchi

identities for the field strength and nothing else. While general study is desirable, the

known irreducibility conditions are sufficient to derive the complete Bianchi identities in

the bosonic limit and without the auxiliary field, as well as the transformation laws of Vα
β

with respect to unbroken supersymmetry in the lowest approximation in the fermions but

in all orders in the field strength.

We use the approximate equality symbol “≈” to note that the expressions separated

by this sign are equal if at least some fermionic and auxiliary field terms are neglected.

As a preliminary exercise, let us find how the covariant derivative acts on the superfield

V α
β = ∇kαψ

β
k :

∇jβV µ
ν =

{
∇jβ ,∇

k
µ

}
ψνk −∇kµ∇

j
βψ

ν
k ≈

{
∇jβ ,∇

k
µ

}
ψνk −

1

2
∇jµV β

ν − 1

4
Y β

ν∇kµB
j
k. (B.1)

Here we used the second approximate identity (3.13), (3.16) and took into account that

Bij should not appear in the relations explicitly, without a covariant derivative acting on

it. To calculate ∇kµB
j
k, one should use the first irreducibility condition (3.12):

0 = ∇jβTr
[
arctanh

(
∇iαψ

β
j

)]
= ∇jβ∇

k
µψ

ν
m

(
1

1−∇ψ2

)µm
kν

≈ ∇jβV µ
ν
(
Z−1

)
ν
µ, (B.2)
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where we took the matrix in brackets in the limit Bij → 0. Let us also note that the matrix

Z could be replaced by Y , as they are proportional to each other. Thus, multiplying (B.1)

by
(
Y −1

)
ν
µ, one finds

∇kβB
j
k ≈ −4

{
∇jβ ,∇

k
ρ

}
ψσk
(
Y −1

)
σ
ρ + 2

{
∇jρ,∇kβ

}
ψσk
(
Y −1

)
σ
ρ. (B.3)

Therefore,

∇jβV µ
ν ≈ 4

3

{
∇jβ ,∇

k
µ

}
ψνk −

2

3

{
∇jµ,∇kβ

}
ψνk

+
4

3
Y β

ν
(
Y −1

)
σ
ρ

[{
∇jµ,∇kρ

}
ψσk −

1

2

{
∇jρ,∇kµ

}
ψσk

]
(B.4)

− 2

3
Y µ

ν
(
Y −1

)
σ
ρ

[{
∇jβ ,∇

k
ρ

}
ψσk −

1

2

{
∇jρ,∇kβ

}
ψσk

]
.

Using the explicit form of the anticommutator of the spinorial covariant derivatives (2.12),

one can completely remove Bkm and the nonlinear fermionic terms and use this formula

to find the transformation law of Vα
β with respect to the unbroken supersymmetry (6.3).

As the matrices Z and Y are proportional to each other, Y β
ν
(
Y −1

)
σ
ρ = Zβ

ν
(
Z−1

)
σ
ρ.

The relation (B.3) also allows to derive the first Bianchi identity (4.1). Acting on it

by one derivative, one can find, again neglecting the fermions and the auxiliary field,

∇kα∇mβ Bkm ≈ 3
{
∇kβ ,∇kρ

}
V α

σ
(
Y −1

)
σ
ρ. (B.5)

The symmetric part of ∇kα∇mβ Bkm is proportional to the anticommutator
{
∇kα,∇mβ

}
Bkm

and vanishes when Bij → 0. As the symmetric part of the right-hand side should also

vanish, we obtain the identity (4.1).

The dual identity could be obtained using analogous procedure. We start from

εαµνλ∇kµ∇kν∇mλ ψβm = εαµνλ∇kµ
{
∇kν ,∇mλ

}
ψβm − εαµνλ∇kµ∇mλ ∇kνψβm. (B.6)

Then we again use the second irreducibility condition ∇kνψβm = 1
2δ
k
mV ν

β + 1
4Y ν

βBk
m and

approximately obtain

1

2
εαµνλ∇kµ∇kν∇mλ ψβm ≈ −

1

2
εαµνλ

{
∇kν ,∇kλ

}
∇mµ ψβm +

1

4
εαµνλY λ

β∇kµ∇mν Bkm. (B.7)

Finally, substituting ∇kµ∇mν Bkm (B.5) and taking into account that 2εαµνλ∇kµ∇kνV λ
β =

εαµνλ
{
∇kµ,∇kν

}
V λ

β , we find

εαµνλ
{
∇kµ,∇kν

}
V λ

β ≈ εαµνλY λ
β
{
∇kν ,∇kρ

}
V µ

σ
(
Y −1

)
σ
ρ. (B.8)

Multiplying this relation by
(
Y −1

)
β
γ , we find that the right-hand side of the result is

antisymmetric in α, γ and, therefore, the symmetric part of the left-hand side should vanish.

Thus we obtain the second Bianchi identity (4.2).
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