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lowest nontrivial order in the auxiliary field. The fermionic contributions to the Bianchi
identity are restored by assuming its covariance with respect to broken supersymmetry.
The invariance of the action with respect to unbroken supersymmetry is checked in the
lowest order in the fermionic fields. The supersymmetry preserving reduction of the d = 6
action to four dimensions is performed, resulting in the N = 4, d = 4 Born-Infeld theory.
As expected, the reduced action enjoys U(1) self-duality.
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1 Introduction

A lot of work has already been devoted to the study of the supersymmetric Born-Infeld
theories. In the string theories, they arise in the effective description of the D-branes [1]. In
the supersymmetric context, they appear while studying of partial spontaneous breaking of
global supersymmetry with vector multiplets as Goldstone superfields. One of the simplest
and most familiar systems of this kind is the theory of the N = 1, d = 4 vector multiplet
with additional spontaneously broken N = 1, d = 4 supersymmetry which is a direct
generalization of the original Born-Infeld theory [2]. Its superfield action was constucted
by Ceccotti and Ferrara [3]. The fact that this action is invariant with respect to additional
spontaneously broken supersymmetry was established by Bagger and Galperin [4]. They
obtained the superfield Lagrangian as a composite N = 1, d = 4 superfield which, together
with the Goldstone fermion, provides the realization of the N = 2, d = 4 supersymmetry.
Also, they proved self-duality of this action with respect to the Legendre transformations.
After that many other ways to construct the N = 2, d = 4 Born-Infeld theory were
found such as nilpotent superfields [5] and superembedding approach [6]. It was found



how to explicitly construct the component action of this theory using the formalism of
nonlinear realizations [7].

One may also try to construct analogous theories with higher supersymmetry breaking
the N =4, d = 4 supersymmetry with N =2, d =4 or N = (2,0), d = 6 supersymmetry
with N = (1,0), d = 6 vector multiplets as Goldstone superfields. The first of these theories
can be produced by the dimensional reduction of the second, and they describe D3- and
Db5-branes in D = 6, respectively. The attempts to find their superfield actions, however,
were not as successful as with the N = 2, d = 4 Born-Infeld theory. One superfield action
was proposed in [8, 9]. It satisfied the nonlinear constraint, later called the Ketov equation,
which was a generalization of the constraint the Cecotti and Ferrara Lagrangian satisfied.
However, it was criticized in [10] as it is not possible to write down such a shift and
broken supersymmetry transformations of the Goldstone bosons that are compatible with
the mentioned constraint. Later analysis revealed [11] that it is indeed possible to realize
additional broken N = 2, d = 4 supersymmetry but only on the infinite set of N =2, d =4
superfields, satisfying an infinite number of constraints, and only one of these superfields is
the proper superfield Lagrangian. A few terms in the power series expansion of the action
were found this way, not contradicting those obtained in [10] from the requirement of self-
duality and invariance with respect to shifts of the Goldstone bosons, but the computation
of the whole action appeared to be possible only in principle. Even the exact solution of
Ketov’s condition (truncation of an infinite system of [11]) appeared hard to find, with
new terms appearing in the 20th order in power expansion [12]. The use of the formalism
of nonlinear realizations allowed just to compute the equations of motion [13] and only in
the specific limits. The computation of the action of the N = (2,0), d = 6 theory [8, 9]
also faced difficulties: it was argued [10] that the proposed action is not even N = (1,0)
supersymmetric and that it is not possible to write down the six dimensional action as an
integral over the N = (1,0), d = 6 superspace or its supersymmetric subspaces.

Therefore, it would be reasonable to try to find an alternative way to deal with such
theories. Indeed, one may try to make a theory treatable either by using more elaborate
extensions of the superfield method, as was suggested in [14, 15], either by formulating
the theory in terms of the component fields. In this paper, we consider the second option.
Note that the component actions with spontaneously broken supersymmetry have also been
constructed in [16], although the complete action and the transformation laws here were
found using the “top-down” approach, by gauge fixing the k-symmetric action and the
corresponding transformations.

The component approach to the actions with partially spontaneously broken global
supersymmetry involving the formalism of nonlinear realizations was suggested in the pa-
pers [17, 18] for three-dimensional theories with scalar fields and supersymmetric mechan-
ics. It was used to construct the actions of the N =2, d = 3 and N = 1, d = 4 chiral
multiplets, as well as N = 2, d = 4 hypermultiplet, all with spontaneous breaking half
supersymmetry [19-21]. Later the component theories with the vector multiplets, N = 1,
d=4][7and N = 2, d = 3 [22], were constructed. The basic point of the component
approach is that it is possible to define the Goldstone fermionic superfield so that the bro-
ken supersymmetry is realized on this superfield and the spacetime coordinates in a very



simple way, like in the work by Volkov and Akulov [23], while the #-coordinates of the
superspace remain inert. If these conditions hold, the transformations of the first compo-
nent of the Goldstone fermionic superfield mimic the transformations of the Volkov-Akulov
fermion. Invariance of the action with respect to such transformations completely fixes its
dependence on the Goldstone fermions. In particular, it implies that this fermion may only
enter into the action only either through the matrix 47 = 65 + i(¢pyP04%), which co-
variantizes the derivatives of all fields 94 — Dy = (5 _1)§8B and the integration measure
d*z — d*x det £ [23, 24], or the Wess-Zumino terms. The complete supersymmetric action,
therefore, would be just a simple generalization of the bosonic action, and it would be only
required to check its invariance with respect to the unbroken supersymmetry.

It should also be noted that of the two related Born-Infeld theories, N = 4, d = 4
and N = (2,0), d = 6, it makes more sense to construct the second one as the four
dimensional theory could then be obtained by the dimensional reduction. Moreover, there
are indications that actually the N = (2,0), d = 6 theory would be easier to construct.
Indeed, one of the simplest theories with scalar and electromagnetic fields was analyzed
in [22], where conclusion was reached that it would be highly desirable to formulate the
irreducibility conditions of the multiplet in terms of the fermionic superfields. This would
eliminate the necessity to solve nonlinear algebraic relations between derivatives of scalar
fields and bosonic components of fermionic superfields, which appear in all theories with
scalars and can be very complicated in the cases of high supersymmetry (examples can
be found in [19-21]). Also, the components of the vector multiplets, which correspond to
the electromagnetic field, satisfy the differential identity (called the Bianchi identity). It
should be derived as a consequence of the irreducibility conditions, and this is much easier
to do if the conditions are formulated in terms of fermionic superfields. Also, in the theories
with spontaneous breaking of supersymmetry this condition is typically highly nonlinear
and should be proven equivalent to the usual ;4 Fpc) = 0, which would also relate the true
physical field strength F4p to the components of the multiplet. This is much simpler to do
if the identity does not involve scalar fields. As the only physical boson of the N = (1,0),
d = 6 multiplet is the electromagnetic field strength tensor Fap, while N = 2, d = 4
supermultiplet has two additional scalars, the six dimensional case is preferable.

Therefore, our approach to construct the actions of the N = (2,0), d = 6 and N = 4,
d = 4 Born-Infeld theories is the following one.

e At first, we should derive proper irreducibility conditions of the N = (1,0), d = 6
vector multiplet from the assumption of covariance with respect to broken supersym-
metry and the SO(4) group (subgroup of the SO(5) automorphisms of the N = (2,0),
d = 6 superalgebra).

e Secondly, as the consequence of the irreducibility conditions, the nonlinear Bianchi
identities should be derived. Let us note that it is sufficient to find them in the
bosonic limit and with the auxiliary field removed by its equation of motion. This
is acceptable as we are going to construct the action without the auxiliary field,
and the fermionic terms in the identity can be restored from the assumption of its
covariance with respect to the broken supersymmetry. Then it should be shown that



the found nonlinear identities are equivalent to the usual ones 94 Fpc; = 0. At
the same time, the expression of the physical bosonic field strength in terms of the
bosonic components of the multiplet would be found.

e Thirdly, the ansatz for the action should be constructed by covariantizing the well-
known bosonic action with respect to broken supersymmetry and by adding the
Wess-Zumino term. Finally, using the standard techniques, the transformation laws
of the components with respect to unbroken supersymmetry should be derived and the
invariance of the action proven in the lowest nontrivial approximation in the fermions.

e Fourthly, we perform the reduction of the obtained action to four dimensions.

2 The superalgebra and the coset space

The N = (2,0), d = 6 superalgebra is composed of two copies of N = (1,0), d = 6
superalgebras,
{Q4, Qh} = 26" Pap, {54, 5%} = 2¢7 P, (2.1)

as well the Lorentz algebra in d = 6 and the sp(2) ~ so(5) algebra of automorphisms.
Indices i, j = 1,2 are those of SU(2) spinors, and o, § = 1,...,4 are the indices of so(1,5) ~
su*(4) spinors. In this notation, P,3 = —Pg, is the d = 6 spacetime vector, F.? is the
antisymmetric tensor if F,* = 0, Cog = Cg, is the self-dual three-form, and so on.

The commutation relations of the so(5) automorphism algebra in the basis with only
one explicit su(2) can be written as

[TU Tkl] 1( szjl Eleik)’ [Tij kl] ( sz]l EﬂRik),
|:T”Lj Nkl] — ( kR]l ejléik) [le Rkl] — (Zijl ]szk)
ij Dkl ikl jlik ij Dkl ik _jl ]k il (22)
[R R] ( T—i—eT) [R R] (ee+6 )Ro,
[RO,R”] = 1R”, [RU,R”] = —iRY.
The generators of so(5) commute with the supercharges as
T9,Q8) = 2(hQi + *QL),  [T9,8E] = L(ehsi + FS),
[19.Q8] = j(e*si+@hs). [,k = G (e0h+al).
N . (2.3)
[R9,Qk) = %( *Ql + I*Qi), (R, 5% = _%(eiksg; + ek sy),
[ROanx] = _55&’ [R()v ] = 7onc

For the purposes of the latter construction, only the generators R” and T, which form
so(4), are relevant.
The spontaneous breaking of half the supersymmetry can be achieved with the follow-

ing coset element:
— o127 Pag 100 QL it (2,0)S), (2.4)



Here, 2 and ¢ are the coordinates of the superspace, and 9§ (x,6) are the Goldstone
fermionic superfields. This is justified by their transformation laws. If the transformations
in the coset space are induced by the left multiplication

gog = g'h, h=-S0(1,5) x SO(5), (2.5)
the variations of x, # and ¥ under unbroken and broken supersymmetry are

go=eC% 5o = —id 07, b =€, gy =0,  (26)
gg = €5, gz = —igl@qplli, Sgpe = &2, 502 = 0. (2.7)

1
As expected, 2 and 0% transform with respect to unbroken supersymmetry as the coor-
dinates of the superspace, and the 1§ remains inert. Conversely, 6 are not touched by
broken supersymmetry, while the variations of ¥¢ and 2 remind the transformation laws
of the Goldstone fermion proposed by Volkov and Akulov [23, 24] in four dimensions.
The Maurer-Cartan differential form Q = g~'dg is invariant with respect to the @ and
S transformations:

g7 g =102 Pyg +1d69 Q, + idep® S, A2 = da®P — id6l 077 — idep™ Pl (2.8)
Expanding the differential of the arbitrary invariant function in terms of the forms Az®?

and d@%

<, one may construct derivatives covariant with respect to both supersymmetries.

They are defined by the relations

o 0

Az g + dOFVE, = (dz®® —id6* 0°1)Dap + dO2 DY = duP 0,5 + b e

(2.9)

The second relation can be used to find the expression for the standard spinor derivative
D! . Studying the first relation, one can rewrite daz®” —idf!® 69 in terms of NxB, doy forms

(da? —1d0" 071) = Aa®P + idepl® i
= 22 iDL POV 1 18]Vl P (2.10)

and obtain the covariant derivatives as coefficients of Az®?, dos:

Vag = (Eil)aﬁwazwv
Eog = 81004 — 1001 )1,

(B71) " = U8 +iVasyp) 97, (2.11)
Vo = Do +1Vaph, ™ 0ps = Di + 1D, ™7V g,
9 4
D = —— +i0"0,p.
a 8(9? + 16 aa,g

The alternative representation of the covariant spinor derivative can be obtained by ex-
panding the first relation (2.9) in terms of dz®? — idf!® 6%li, dpe.



As {Dé,Dé} = 2i€0,p4, the (anti)commutation relations of V-derivatives can be

found as
{Vi. VL) = 2i€7V 5 + 21VE, V4p7FY 0,
[Vag: V] = 2iVaptph, V2p7"V g, (2.12)
(Vas: Vir] = —2iVaptp} V,uth V0.

3 The N = (1,0), d = 6 vector multiplet

Let us briefly recall the properties of the N = (1,0), d = 6 vector multiplet. It was
considered in the SU(2) non-covariant approach in [25] and [26]. The SU(2) covariant
formulation can be found in [27, 28]. The latter is most useful when the formalism of
nonlinear realizations is used. In this case, the usual N = (1,0), d = 6 vector multiplet is
given by the spinorial superfield 5", subjected to the following irreducibility conditions
Dip® = 0. D B + DI iﬁ_lgﬁpi 77 3.1
a'l»bi_7a/ltb a/l/) _ia'yw' ()
One can check that these conditions imply that only the following components of the
multiplet are independent:

0 = o0, Fo’ = Ditplloso, BY = Diapi|o 0. (3.2)

Acting on the 13 field by two spinorial derivatives, one finds that the result always reduces
to the spacetime derivatives of ;.

It should be noted that as a consequence of the constraints (3.1) the component F,”
satisfies the differential identities known as the Bianchi identities. They indirectly imply
that the antisymmetric tensor F.B = Dfﬂp? lo—0 is the strength of some vector potential.

The first identity can be obtained by acting by two derivatives on the condition
Dyl = 0: A

D, DL (Ds)) =0 = oy F" + 9py Fo” = 0. (3.3)

The second one is a bit trickier. Analyzing the expression e**” /\DL D, D’)f'l/if, one can note
that its part, symmetric in «, 3, is proportional to €7:
o g 1
cXHADE DI DY + (a 5 B) = 4i(9°7 DEp) + 97 Dlap) i, 990 = 560‘6/“/8#% (3.4)

Multiplying this by €;; and using the fact that eo‘ﬁf‘”eiijLDi = %e”‘ﬁ“”eij{DL, D,J;}, one
finds the second identity

OVE, + 0P F> = 0. (3.5)

In the d = 6 vector notation, these two identities can be recognized as self-dual and anti
self-dual parts of the identity d;4Fpc) = 0:

1
OaryFg" + Opy I = ) (VABC)

R + 0, = = (74PO) s Fipey. (3.6)



To construct the N = (2,0), d = 6 Born-Infeld action, it is required to find a proper
covariant generalization of these constraints, which would be compatible with additional
spontaneously broken supersymmetry. As the construction of the actions of the N = 2, d =
4 and N =4, d = 3 Born-Infeld theories shows, in the case of the vector multiplets it is not
sufficient to formally covariantize the constraints with respect to the broken supersymmetry
only by replacing the spinor derivatives with fully covariant ones (2.11). It is also required
to choose the constraints which are covariant with respect to the automorphism group of
the considered superalgebra.

Actually, the irreducibility conditions should be covariantized with respect to only the
SO(4) subgroup of the whole automorphism group SO(5). Moreover, the SU(2) part of
the SO(4) is realized by the linear transformations which rotate the indices 4,7, and to
preserve this symmetry, it would be sufficient to keep the balance of these indices. The
transformations of the coset SO(4)/SU(2) are realized on the variables z®°, 6%, ¥ as

gr = 97 = 5200 =0, §0% = aFep, S = kP, asSAz* =0.  (3.7)

Now one can immediately derive variations of the differential forms Az®?, doy, dapi* with
respect to these transformations and, finally, of the derivatives of 9"

e = afdfy = 002" Vb8 + 8d0)] Ve + Azt oV apd + b SV =
OViap] = alol — ak Viap] Vil (3.8)
It can be noted that 6Vfl'z,b§j experiences a shift by the transformation parameter under
these transformations, though it affects only its trace part over the Lorentz indices sym-
metrized with respect to 4,7, VEEWW. The first component of this combination is the
auxiliary field of the multiplet.
Using the transformation laws (3.8), one can establish the covariant generalization of

the constraints (3.1). The simplest task is to generalize the constraint D)% = 0. Let us
consider the products of two or more V1), defined by formulaes

(VU1 = Vi, (V) = Ve VA, (U = (T 09

and their traces Tr (V¢") = (V'L,b")fj: One can observe that

0T (V') = —ay, (V)7 (3.10)
0T (Vo) = 3ay, (V)7 — 3ay, (Vo')7), etc.

Therefore, in the following matrix power series variations of each term mutually cancel
each other:

5(Tr(V’l,b) + éTr(V?b?’) + éTr(V'lﬁ) +.. ) =0Tr [arctanh (Vfﬂ,bf)] =0. (3.11)

As Tr [arctanh (Vg'(,bf )} reduces to D’ ¢ when all nonlinear terms are neglected, the con-
dition
Tr [arctanh (vg@bf)} =0 (3.12)

is the suitable one.



The second irreducibility condition should be generalized as

o 1 o
Vi) = ZYaﬁvﬁjq,w)’n Y =4, Y, =6 +.... (3.13)

Here the matrix Y ,? should depend on V,? = Vi ¢B and B? = B”B , BY = Vgit/)j)”
Their transformation laws could be readily extracted from (3.8):

SrVao =2(a- B)V Y2 (3.14)

6rB = a (4 - Tr(V2) = —TY(YQ)B2> 2 L 1v(v?)(a-B) BY.

32 6

Then collecting the coefficients of a’/, B in the variation of (3.13), one can find that

y 1 1 1

o’ 35— (V?), - S BA(Y?), P =Y. (1 - 16Tr(v2) - 5T (Y?)B?),
o1 1

BY: —(a-B)Y, Y\ =0+ — (@ B)Y, ATr(Y?). (3.15)

As we want to find the on-shell identity for the field strength, it is sufficient to know the
irreducibility conditions in the first approximation in B¥, or Y,? in the limit B — 0.
Then the second relation could be neglected, while the first one implies that

0= 4(V?),”

Y.~ . 3.16
¢ 1= AT (V?) (3.16)
It is convenient to write the approximate irreducibility condition as
V0B Z." Vi) z P =6,° 1 V2) B (3.17)
@ AR =% =7 (V)% '

As these conditions are known only approximately, it is not possible to fully check their
consistency. However, they are, at least partially, justified by the latter construction.

It should be noted that one can establish the covariance of the constraints with respect
to RY and T% transformations but not others. For example, for any generator that mixes
Q and S, like the generator Ry, the transformation law for V¢ @bﬁ will contain a shift by the
transformation parameter. However, the 1rredu61b1hty condltlon can be written as a rela-
tion that expresses the general superfield V? w'B in terms of the superfields BY = 2 P>
VP = Véﬂbf — idgvgqu, the first components of which are independent components of
the multiplet:

Vil? = GI%(BM™, v ,Y). (3.18)
As the variation of the left-hand side contains the shift term, the variation of the right-hand
side should contain such a term, too. Therefore, it is possible to covariantize the identity
only with respect to the generators which can be associated with the auxiliary field of
the multiplet.

Let us also note that the first irreducibility condition (3.12) remains nonlinear even in
the on-shell limit B = Ve

! 1 ( 7 n
Vit o 55V = (Vo) = 275J(V) =

, . 1
arctanh (Vfﬂ/)f) — 5;-arctanh<§va5) = Tr [arctanh<§va5>} =0. (3.19)



Therefore, Tr(V) is not equal to zero, unlike the linear case. It remains a nontrivial com-

ponent, though it is expressed in terms of other components. Interestingly, this condition

can be reduced to a much simpler cubic equation with the use of the formula det e = eT4:

T fasctaas(3V.7)] =0 = aet (20) =1 =

24Tr(V) + (Tr(V))? = 3Tr (V) Tr(V?) ; 2Tr(v3) =0. (3.20)

Also, the derivative of this condition implies that

dTr [arctanh(%va/g)} =0 = dv.(27Y) " =0 (3.21)

4 Bianchi identities

With the irreducibility conditions found, it is possible to derive differential identities that
are satisfied by the components Vv, = Vaﬁlg_m. The derivation of the identities can be
made simpler if one needs only the identities in the bosonic limit and with the auxiliary
field eliminated by its equation of motion in the final result. To perform this task, one
needs to take the irreducibility conditions in the lowest nontrivial approximation in B% and
perform differentiation neglecting B% in all cases when less than two spinorial derivatives
act on it. Much like the identities in the linear case, the first identity can be found by
acting by two derivatives on one of the irreducibility conditions:

ngjé (Tr [arctanh(v/’j'qb;’n)]) =0 =

(BI) 5 = (0 + 1VatV, 0V ) (271),7 + (0 > 8) = 0. (4.1)
The second identity can be found by the analysis of the expression e**¥ AVZV%V’}}#?

—~\ af
(BI) = <8ﬂ’/v/\7 + Lllvupvvaap"vﬂ) (7)) +(aep =0 (42)

v
The derivation of these identities is discussed in detail in the appendix B.
The identities (4.1), (4.2) should be equivalent to the usual ones. This requires that, in

particular, the matrices M(,p) (h), Nap)( M(MV)(O‘B), N(@B)) ghould exist, such that

uv)s

v

Ouy F" + Oy Fa™ = Mo (BI) ,, + Niagyuun (BI)"

P + 9P E > = M(W)(Ocﬁ) (E’D we o N(@B) (k) (BI) (4.3)

pv’
In principle, one may treat F,” as a polynomial of degree 3 in V,,#, the matrices M(a/g)(’“’ ),
N(ap)(uv) — as double polynomials, and equate both sides of relations (4.3). This approach,
however, is very tedious and does not shed light on the nature of the matrices M, N.
Additionally, it requires to analyze two separate identities.

To avoid these difficulties, one should rewrite the identities in the vector notation. To
additionally simplify these relations, one may note that in both of them the derivatives are



found as part of the combination Dyg = Oup + iVa“Vg” O = Yo" 0. Then one can
represent V,,? and (Z —1)0/3 as

VP = AL+ %(VAB)QBVAB, (z71),?=Go (5§ + ;(WAB)aﬂGAB> ,  where

Gon e 1 AVap + geapcpunVoPVMN 14
AB =79 3424 1 cD (4.4)
2 1+ 4A + 8VCDV

and Gy could be canceled from the identities. The relation on the components of V,,# (3.20)
now implies

ABODMN Y, o Ve p Vi + 964 4 2443 + 124V pVEP = 0. (4.5)

With the help of (4.4), two identities (4.1), (4.2) can be written as follows:

(,yABC)aB (

DAVpe+GpeDaA—2D4 Ve Ge™ =D Vi s Gpe—D*Vap Gre) =0,
(?ABC)O‘B (DaVBe+GBeDAA—2DAVek G + D  Vica Gpe+D* Vap Gre) =0

. (4.6)
Here Dy = —%(&A)aﬂ]@ag =450,

1 1 1 1 1
ya4P = (1 + ZAZ + 8VKLVKL) 548 + §AVAB + §VAKVKB + —eaPOPMNY L p Vi

16
(4.7)
Taking into account the self-duality properties of (WAB C)a 5 (’yABC)aﬂ (see appendix),
two relations (4.6) are equivalent to the single one

1
DiaAVse) + DA Gpey — 2DAVe" Goyx — GEABCMNP (DVEMGNP L D VMNGER) = 0.

(4.8)
Using the identity e(apcymnpDr) = 0, (4.8) can also be presented as
1
DaVae) + DaA Gpe — 2D VE" Geyre — ZEKMNP[BCDA]VKMGNP =0. (4.9)
It is now clear that this identity should be multiplied by three matrices
B ER E (4.10)

to be brought to the standard form because it is one and only way to make the indices of
all derivatives 04/ free, as in the canonical identity. To prove exactly that after this multi-
plication (4.9) finally acquires the expected form, it is convenient to introduce the matrix

16
Duc(27") = Anap+Vas. (4.11)

1 1 1 A
Qup= (1—4A2+8VKLVKL> VAB+§VACVCDVDB_7€ABCDMNVCDVMN’

~10 -



In terms of this matrix, identity (4.9) reads
1
D[A@BC] -+ AQD[AVBC] + ZAG[BCMNPQDA}VMN VPQ (412)
1 1
+ AD4 V" Vo — 1ViBcDa (Ve VEE) + ZEMNPQK[CDAVMN VPRY K
— DAV Ve VFk = Ve pDaViE Vi, = 0.
A(Z—l) /B(E—l)

After the multiplication by (Z‘l) ,¢ and the integration by parts, the

first term can be presented as

Al B C

O () p " () oy “ne) +2(271) A7) p P (BT oy (Pro (B71) DA% 5").

(4.13)
Using the properties of ® 45 (4.11) and explicitly taking the derivative of X%, one may
find that the generated terms cancel all the extra terms in identity (4.12). Therefore, the
right identity reads ;4 Fgc) = 0, where

Fap= (E_l)AC (E_I)BD(I)CD = (E_l)AC(AUCB +Vep) = (4.14)

_ (1 + %A2 — %VCDVCD)VAB + %GAGABCDPQVCDVPQ — %VAc‘/CDVDB
1+ A2+ 1%144 + %AZVKLVKL — T%VKLVLMVMNVNK + 6%1(‘/KLVKL)2

For further considerations, it is useful to write it down in the spinor notation:

e aT(V)Ol+ (L4 §(Te(V)" = §Te(V2)) Ve — §Te(V) (), ° + 5 (V)
a = 2 4 2 2 :
L (T (V)" + s (Tr(V)” = e (Tr(V?))" = 2 (Tx(V) "Tr (V2) + &Tr((‘fl)m
Here relation (3.20) was used to express Tr(V3) in terms of Tr(V) and Tr(VQ). Let us
also note that the numerator of (4.15) can be written as

Vdet Z((Z‘l)aAVAB - iag(z—l)pavap). (4.16)

5 Broken supersymmetry

The component approach to the actions with broken supersymmetry involves the con-
struction of the ansatz for the action invariant with respect to broken supersymmetry by
modifying the measure and the derivatives in the bosonic action and adding the Wess-
Zumino terms and checking its invariance with respect to unbroken supersymmetry. As
0% are invariant with respect to broken supersymmetry, the necessary transformation laws
and invariant forms can be obtained from (2.7), (2.8) in the limit # — 0. Therefore, the
covariant derivative which acts on the components reads

Dop = (E71) (5" Oprr Eas™ = Eap o0 = 010} — i0agup v, (5.1)
It is also useful to rewrite the derivatives and the matrices in the vector notation

Da= (1Y), Pop, €45 =05 - %émbf v (7P) (5.2)

po’
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The active transformation laws of the fields and the vielbein in the vector notation are

S =+ U040, 55Fap=U“0cFag, UA = %sgw‘ (v4) 0 (5:3)
5EAP = 04U EP +UCO0ENP, 5 det £ =04 (U det &), 65D ays = U dcDayy.

The invariant measure is, therefore, dx det €.

With these transformations at hand, one can restore the fermionic contributions to
the field strength. As is easy to note, the unmodified Bianchi identity 94 Fpc; = 0 is
not invariant (due to variation of F)4p, when active transformations are considered, or due
to nontrivial variation of 2 if one considers usual transformations). Therefore, the true
physical field strength F4p should have another transformation law with respect to broken
supersymmetry. The comparison with the N = 2, d = 4 Born-Infeld theory suggests that
the right field strength is Fap = E4aEgP Fop. Varying the expression 914FBc), one may
find that it transforms proportionally to itself and its derivatives:

5§G[AJ-“BC] = —28[BUK(9AJT"0}K + 8K]-"[BC<9A]UK + UKGK (8[A]-“BC])
= 3[BUK8AJTKC} + OKUK 8[A~7:BC] + UK0K (a[A]:BC})- (5.4)

Therefore, the identity 94 Fpc) = 0 is compatible with broken supersymmetry in all ap-
proximations in the fermions.

The simple transformation law of F4p, in comparison with F4p, suggests that the
bosonic core of the action should be generalized as

So = _/dﬁx det £(Cy -+ /= det (nap + Fan) ). (5.5)

Comparing the lowest nontrivial limit of (5.5) with the free action, one may immediately
determine C; = 1. It can be rewritten in terms of the variables V,,? too,

6 ~2deté (1455 (Tr(V)) "~ 5 Tr(V?))
S():/d x 1 D) 1 D) 5 . .
13T (V) 4 s [(Tr(V) ' = (1 (V2)?] = [ (T (V) T (v2) = T (v4)
(5.6)
The Wess-Zumino term also should be constructed. As the main action (5.6) involves

the terms of even power in the fermions and in the bosons, the Wess-Zumino term which
could make a useful contribution to the action should also be quadratic in the field strengths
and at least quadratic in the fermions. Also, its variation with respect to broken super-
symmetry transformations (5.3) should reduce to the full derivative. Therefore, one can
expect this term to approximately read

Ly z ~ ieBPEPMN e 4P (v8) agFepFun- (5.7)

Indeed, in the lowest order in the fermions, the only field which transforms is v§* without
the derivative, ds9)f* ~ €. Then dsLwz can be integrated by parts, and the appearing
terms with the derivatives of Fl4p will vanish due to the Bianchi identity.
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By adding more terms with the fermions, one can make the Wess-Zumino action in-
variant with respect to broken supersymmetry in all approximations in the fermions:

Lwz =idet 56ABCDMNLZJ? 'D,aﬂ[)ﬁi (S_I)BK (’YK)QBFCDFMN- (5.8)
Indeed, varying this term with respect to transformations (5.3), one can find that

05Lwz = idet ENPIPMN e DB (1) K (vi) s FopFun
— idet EeABCPMNya D P UK (’VK)QBFCDFMN +04(UALwz)
— jABODMN o g qpPi (VB)aﬂchgDLFKL EnTENCFpg + 04 (UAﬁwz)
— ABCDMN o 8A1/ﬂ3i€?331/1”jGagwchEDLFKL En"ENDFpg (5.9)
= jABODMN 0 )P ('YB)aﬁ]:CD Fun +04(ULwz)

]_ . .
- geABCDMNEQEWaB (e o) Fop Fun,

which is full divergence due to the previously established Bianchi identities. In the last
line we used two relations

wiaaAw,BigganujGABCDMNGQB“V — GABCDMNGQB/y/aB (wélaAwBiE?wuj)

1 ABCDMN 5 AlpiaaBd,ﬁiE;w”f and  (5.10)
, : 1 : ‘
D00, w,gzgy dppI ABCDMN Cadr = 3 géfwocj ) A%ﬂ OV ieABODMN €aBpu-

It can be noted that no more Wess-Zumino terms can be constructed. For example, the
only term which is invariant with respect to the broken supersymmetry and is no less than
quadric in the fermions is

det SEABCDMNwiawjﬁ,DA¢fDB'¢}/ €aBuVFCDFMN (511)

Note that the indices of both derivatives of the fermions should be summed up with the
indices of the antisymmetric tensor, as otherwise integration by parts after varying this term
would not produce the Bianchi identities. The term (5.11), however, vanishes identically,
as DA¢fLDB¢;eABCDMN6a5W ~ €, while wio‘dﬂﬁeaﬁw is symmetric in ¢,j. The term of
sixth power in the fermions does not exist for the same reason.

It would be useful to rewrite the Wess-Zumino term in the spinor notation. In the
lowest approximation in the fermions it reads

Lywz ~ 4 06g” (F?) 4 42 0™ (F?) [; — 24Tr (F?) Y@ Onpp™. (5.12)

6 Unbroken supersymmetry

The last point in constructing the action is checking its invariance with respect to unbroken
supersymmetry. As one of the coefficients in the action (5.5) was already fixed by the
invariance with respect to unbroken supersymmetry in lowest approximation, only one free
constant Cyy 7 remains:

S=5+CwzSwz. (6.1)
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It should be determined by the invariance with respect to the complete unbroken super-
symmetry transformations taken in the lowest approximation in ¢5*. The transformations
of the components can be derived with the help of the formula

A . i A
of =~ Difloso = € Villpso + H" Oy f, HY = SV (62)

As we plan to prove the invariance of the action in the first order in the fermions, the H*¥
terms are not relevant and all broken supersymmetry covariant derivatives can be replaced
with the usual ones D,g — 0,5. The transformations of the basic components in the lowest
approximation in the fermions then read

* (e 1 o
55 Val ~ —4i€) Dyo ™ — di€] Z, Doyp” (Z71) * + 212, €Dy (Z271) F-

v
Derivation of the 1f* transformation law is straightforward while the derivation of V’;Vaﬁ
is discussed in the appendix B. The variation of det & is relatively simple,

5 det € m i€} Va0 9", (6.4)

while the variations of the basic bosonic invariants whose action depends on, Tr (V), Tr(VQ)
and Tr(V4), are too large to be written explicitly. Also, only the fermions have to be varied
in the Wess-Zumino term (5.8), where, up to the full derivative,

56£WZ ~ QiEABCDMN(SZ?ﬂ)? 6A1/Jﬁi (’YB)QBFCDFMN (6.5)
= 8id5 U Oag™ (F2) N + 816535 dant™ (F?) , — 4iTr (F?) 650 g™

Then the whole variation of the action (6.1) can be written as a sum of terms with the
structure @ 1) () = €' (Vk)apapawﬁ (Vm)ﬁg, where k,m = 0, ..., 3, with scalar coefficients.
They can be rewritten in terms of i(k)(m) =€} (Fk)apﬁpgwiﬁ (Fm)ﬁ", as (Fk)aﬁ can also
be written as polynomials in (Vm) 5” and, therefore, ® ;) (,,) and &)(k)(m) are linearly related
to each other by the matrix, the elements of which are functions of traces of powers of V,,”.
It can be noted that if Cyz = —k, the variation of the Lagrangian in (6.1) can be cast

—,
into a relatively simple form

. . 1 = . 1
oL = 1(1 + gTI‘(FQ))(I)(l)(O) - 1<1 - gTr(FQ))(I)(U)(l)

i % = ~ i
1 (%)(3) + Q)0 + 2wy + %)(1)) + 5T (F) @ (0)0)- (6.6)

Though it is far from obvious, the terms with the third power of F,? actually cancel out.
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To prove this, let us write all pieces of (6.6) in the vector notation:
= I~ 1 )
(1)) — L)1) = —5 (117) 45 00V Fa,

~ 1 .
TI“(FS)(I)(O)(D) = ZGABMNPQFABFMNFPQE?anm (’Yc)aﬁv

Te(F?) (®a)0) + Do) = 2Pk PPt 040" FAP (v5) o,

B(a)0) + Poys) = 26704t FAFepFPP (15) .4

3 .
+ §FKLFKLE?3A1Z)BZFAB (’YB)CMﬁ

1 .
+ gGABMNPQFABFMNFPQE?({)Clﬁm (Vc)aﬁ, (6.7)

D9)(1) + 5(1)(2) = 268 FAC Fop PP ('YB)aﬂ

1 .
— g FRLF GO EE (15) o

] :
_ ﬂEABMNPQ1;114]3]:‘]\41\,_F’erf‘((?cl/JﬁZ (’Yc)ag'

It is now evident that all cubic terms cancel out, and the only linear term is full divergence
due to the bosonic Bianchi identity.
Therefore, the final action reads

S = —/dﬁxdeté’ (1 + \/—det (77AB +FAB)>

1 a i o—
~ 16 / d°z det EAPCPMN Y2 D 4P (E7Y) 5 (k) yFep Farn. (6.8)

7 Reduction to four dimensional theory

With the action of the N = 2, d = 6 theory at hand (6.8), it would be natural to find the
action of the related N = 4, d = 4 Born-Infeld theory by the dimensional reduction [8-
10]. It implies taking all the fields independent of two coordinates, x* and x5. As the
physical field strength can be represented as antisymmetrized derivative of the potential,
Fap = 04aAp — 0 Ay, the aforementioned reduction also implies F45 = 0.

Two most important points should be studied here, the invariance of the reduced
action with respect to both broken and unbroken N = 2, d = 4 supersymmetries, and
the self-duality of the reduced action [10]. Throughout this section, we denote the four
dimensional vector indices by A, B = 0,...,3 and the four dimensional spinor indices by
a,f=1,2 andg,ﬁz 1,2.

7.1 General considerations on reduction

One can note that only the law of reduction of the field strength F45 = 0 is simple, while the
reduction of V4 p is considerably more complicated; it is not even known how to explicitly
express Vap in terms of Fap. As the unbroken supersymmetry transformation laws are
written in terms of Vyp, it would be desirable to avoid explicit proof of invariance of the
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action and just verify that the reduction is compatible with both supersymmetries. This
means that variations of all fields that vanish upon the reduction should also reduce to
zero and the reduced transformations should form a closed superalgebra. To clarify this
point, let us consider the general form of transformations:

X @ — 6(a)K(i)
(@)

Here we split all the basic fields and their derivatives into two sets: X® fields, such as
4

(X,Y), oY@ = @10 (x,v). (7.1)

(a

&, 01, Fio, just lose their dependence on z%, 25 upon the reduction, while Y@ fields,
like Fys5, 0470, vanish upon the reduction. The parameter (@) combines the parameters of
both broken and unbroken supersymmetries.

To keep the reduced Lagrangian supersymmetric, it is necessary to have L — 0 if
Y — 0. Indeed, the variation of the six dimensional Lagrangian, which depends on X,Y and

the variation of the four dimensional reduced Lagrangian, which depends on X only, read

(@) 7-4) oL () 1 () oL . a4
0L = VK (X V)5 + €L (X, Y) 5o = 040,
_ (o) 3-(®) OLreq
Laea = ) (X) 5258, (7.2)

As could be noted, the reduced 6L coincides with §L,eq if LEZ)) — 0 upon the reduction.
On the other hand, as the six dimensional action is invariant, 6£ = 94A“ is the six
dimensional divergence, and d4A4 — 8AA4 if 94 = 95 = 0. Then the variation of the four
dimensional Lagrangian L;.q is the four dimensional divergence, and the corresponding
action Sieq = f d*x L eq is invariant.

We also need to make sure that the reduced transformations form a closed algebra.
Calculating the commutators of the supersymmetries with the parameters ¢,(®), e2(%) on

X and Y, we find

| OK() oK oK"Y oK
(@ _ D @B | B )@ @) @ P
012X =801 X1 = —e Ve | K =+ Koy 22 H L gy O gy |
[, 0L oL oL'%) oL
(a)_ @ _ (). ® | ;® %50, ;0 %@, o) 7B | 6 P
0102 =020 Y = —er e | L) =y L )ay(b)+K( ax® TG ax 0

(7.3)

We assume that they commute properly, producing appropriate derivatives of X and Y.
The reduced transformations and their commutator just read

Srea XD = e KD (X), (7.4)
OK ) oKW

(&) _ (@) — _ (), (B (@) 8) (4) (@)
Ored10red2 X Ored20red1 X 7 = —€1'Ver K(a) oxX0) K(ﬁ) axX0)

Thus, to obtain (7.4) by reducing (7.3), we should assume that upon the reduction
aL(“)

(a) () B
Y =0, LE(X,Y) =0, oo 0. (7.5)
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The latter two requirements could be satisfied if L(X,Y) ~ Y. If (7.5) hold, the com-
mutator of the reduced transformations is equivalent to the reduced commutator of the
original transformations, acting on X. It should be noted that the algebra of supersymme-
tries closes on the equations of motion and, therefore, the equations of motion that follow
from the reduced Lagrangian should coincide with the result of reduction of the original
equations of motion. However, this is true for arbitrary E( *, 040, Fa B) and could not
be considered as a limitation.

Now we should verify that the transformations (5.3), (6.3) really satisfy the condi-
tions (7.5). As in our case the transformations are active and the variation of the derivative
of a field is the derivative of the transformation of this field, the conditions (7.5) obviously
hold for 94, 05 of any field. Thus Fy5 could be the only obstacle. Let us consider this field
in detail. It sufficient to study Fus, as Fus = E42E5PFap — Fus upon the reduction.

As 65Fys = U C9cFys, the broken supersymmetry is compatible with the reduction,
and we need to consider the unbroken supersymmetry. The most convenient way to prove
the fact that 522F45 = 0 upon the reduction is to use the following trick. Let us study
expression (6.3) multiplied by Z~!:

5oVar (271),7 = —4ie' D™ (271) P — 4ie/ Do (Z271) 1 + 2160 €] Doy (Z271) 1.

(7.6)
Its trace over «, [ vanishes, as it should be. In the vector notation (4.4) this implies
the relation

1
0pA =5GP 5aVas. (7.7)
Multiplying (7.6) by (’yAB ) Ba’ one obtains another relation that is satisfied by the variation
of VAB
1
56VAB - 5ZQVAKGBK + 5ZQVBKGAK — ZEABCDKL(sE?VCDGKL + 52214 Gap = (7.8)

= —i(efD 9™ (VB)QB — Dy (VA)QB) +1(M DAY Gpe — €Dpy G ac) (70)(15

- i(ﬁg]DAwﬁi (’YBCD)QB - G?DBIbBi (’YACD)QB)GCD.

2
One can note that the left-hand side can be represented as
30,1 KL - Cy_Dsx
1+ ZA + gVKLV Y4~ Yn 6QFC'D7 (79)

where the matrix ¥ 4? was defined in (4.7). The simplest way to prove this is to use
the relation

A8 Fop = 6(24“SpP Fop) — 05495 Fop — 49685 Fop
=0Qap + (MBcA + Vic)0Z4Y — (NacA + Vac)dSp°. (7.10)
Therefore, multiplying (7.8) by two matrices (Eil)A,A (Eil)B,B, one can note that the
variation of F4p consists only of terms that contain d4:4"* or Ogp*t. As a result, the varia-
tion of Fy5 under the unbroken supersymmetry is proportional to the fields that vanish upon

the reduction, just as needed. It can be stated in other words: the Bianchi identity (4.8)
and the unbroken supersymmetry transformations are compatible with each other.
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7.2 The reduced action

The above results guarantee that the reduced action would be invariant with respect to
reduced broken and unbroken supersymmetries, and the reduction of the action and the
Bianchi identity can now be performed explicitly.

The six dimensional spinor 1f* can be represented as the doublet

vr=v2 %) (7.11)
(Cr
Then the elements of the fermionic matrix reduce to
E47 = 0P +1(0H04Y7 + U7 040%) (07) 4
Eat +iEA% = 2L 0a0TE, Eat —i€a° = 210040, EA =07, &h=5 (7112)

The broken supersymmetry covariant derivative should be defined as D4 = (§ - ) B 20B.

If 94 = 05 = 0 and Fy5 = 0, the Bianchi identity dcFap) = 0 implies that the four
dimensional vectors Fa4, Fas are the derivatives of some scalar fields. We express the
derivative of the complex scalar field and its conjugate by the relations

i . — i .
8AW=§(]-‘A4+1]-“A5), 6AW:—§(}“A4—1]-“A5)
fA4:5ADFD4:5AQFQ4, .FAE,ZSADFDE,ZSAQFQE, = (7.13)
Fas = —i(DaW =DuW),  Fas = —(DaW +DaW).

The reduced four dimensional field strength tensor, including fermionic contributions, reads

Fap = E4%E 5P Fop+2(0aW00p05 —0pW i 0a0T) —2(0aW L0y — Op WL, 040F).

(7.14)
It satisfies the Bianchi identity djcFap] = 0.
Finally, the reduced Lagrangian reads
Lred = — det ELanpin — AFAE (94 WL Ip0E + O4W L Op0Y)
— 2eABCD (219 p® 4 PO P (08) 44 dcWIDW, (7.15)

where  Lunain = 1+ 1/~ det (ap + Fap — 2D WD — 2D, WD, V).

Note that in the limit Fap — 0, 15 — 0, 2 — 0, this Lagrangian coincides with the
Lagrangian of the 3-brane in D = 6 [20], up to the redefinition z4 — —z4. Tts invariance
with respect to the broken and unbroken supersymmetries is guaranteed by the previous

considerations, and we do not need to check it explicitly.

7.3 Self-dualify

Let us now discuss the self-duality properties of the Lagrangian (7.15). The concept of
self-duality can be introduced in the standard nonlinear four dimensional electrodynamics,
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starting from the fact that in such theories the Bianchi identity and the equation of motion
of the abelian gauge field have the same structural form:

OL(F)
3]:,473'

OpFAE =0, 9pG2E8 =0, GAB =2 (7.16)
Then one may consider the U(1) transformations, which preserve the set of Bianchi iden-
tities and the equations of motion:

.7-:'473 = cos(A\)Fap +sin(A\)Gap, 91'473 = cos(A\)Gap — sin(A\)Fap (7.17)

If E(f’ ) = L'(}' ), the model is called self-dual. As a consequence, it is also self-dual with
respect to (pseudo)Legendre transformations. It was proved in [31-33] that a theory of a
single abelian field is self-dual if the following equation is satisfied:

eapcpGABGED _ ABCD | p Ty = 0. (7.18)

The Lagrangian of the standard bosonic Born-Infeld theory is a solution to this equa-
tion. Moreover, it is worth noting that (7.18) is also satisfied by the Lagrangian of the
component N = 2 supersymmetric Born-Infeld theory [7] and by the bosonic core of the
N = 4 theory (7.15). One may go further and calculate G, which corresponds to the full
Lagrangian (7.15):

1
AB _ ma;
G222 = —2det & Fr

(ENAET) P + 2125 (VLI IpW + i, dcpdpW).

Cc
(7.19)
Substituting it into equation (7.18), one can find that it is not satisfied, however. After
some algebra, the result of the substitution can be represented as

0L main OLmai
d tg 4 main mam ABCDF F
¢ *( ABCD5p. 5 OFcp Al C—D> *
8Emain T e Ti7. .0 o
—32idet £ (DAW Y DpYs + DaW, Dpiit) — (7.20)
AB - -

—8€ABCD]:AiB (BQWJJiganZJ% - 8QW¢;82¢?)'

The first line of this expression should vanish if the bosonic core of the action is self-dual,
which is exactly the case. The second line does not vanish, however. This means that the
Lagrangian (7.15) could be self-dual only if the scalars and the fermions are assumed to
transform nontrivially. Indeed, one can adapt the methods of [31-33] to find that if W, ¢:*
are not inert, the following equation should be satisfied:

A i~
dwL =2 (eapcGAEGED — ABCPF pFop) | (7.21)

where dyy L is the variation of the Lagrangian, when W, Y5 but not Fap are varied.
Taking into account that the transformations of W, 9% also induce the nontrivial trans-
formation of Fap = Fap (W, v, F ), one can find the following very simple variations of W,
i which allow equation (7.21) to be satisfied:

SW =AW, W = iAW, o =i\gf, 09 = - (7.22)
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These phase rotations keep the matrix & Aﬁ, as well as the covariant derivatives, inert.
Actually, the only terms in the Lagrangian which nontrivially transform are the first Wess-
Zumino term, containing F4p, and Lmyain, purely due to its dependence on Fup.

7.4 Comparison with the previous works

Finally, let us compare this result with the others previously obtained using the super-
field methods.

In [10], the concept of dualities was generalized to explicitly supersymmetric theories
and the appropriate conditions of the theory to be self-dual were derived in the cases of the
N =1 and N = 2 supersymmetry. It was again found that the NV = 1 theory satisfies this
new superfield condition, and it was suggested that explicitly IV = 2 supersymmetric gen-
eralization of the Born-Infeld theory also should be self-dual. The duality transformations
and the self-duality condition in this case were found to be

.6 ol g O
SW =AM, IM=-W, M= ﬂms[w,w], M = 15W5[W,W,
/ d*zd'9(M* + W?) = / d'zd'0(M* + W), (7.23)

The self-duality condition is satisfied by the superfield action,

_!

5=3

1 — . 1 N
/ dizd'oW? + 3 / dtzd*OW? + 3 / drzd* 0d OWW? + ... = (7.24)
M=—-iWI1+DW? +..., M=—-W(1+DW?) +...
where we write down only the terms up to the fourth power in the fields. In [10], terms up
to W?® were obtained and they coincided with the terms obtained in [11] from the condition

of invariance of the action with respect to the spontaneously broken supersymmetry.
The N = 2 vector multiplet itself is defined by the irreducibility conditions

DaiW =0 DiW =0, D2DyyW = DaiDSW. (7.25)

Note that while obtaining the variation of the action with respect to W, W, only chirality
conditions should be taken into account but not the Bianchi identity.
The components of the superfields W, W can be defined as

W =W)|o_o, W:Wleeo,
& = 5D Wl 8 = LD Wy o,
B9 = D®DI W], DD EW|gyo = i(028) P H g,
DD EWlpo = i(648) M. cHap = 0. (7.26)

We are primarily interested in terms up to the fourth power in bosons and of the second
power in bosons and fermions. Calculating the component form of the action (7.24), one
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may note that the auxiliary field should be defined as
BY = B +1(§0eg + &) 0487 (04) ,,, — WWOBY
+ AWOP (ELEYT) + AWOP (£4E)) + 2699 Do (HOZED) + 2620 m@@sg)
_ 85@'8%()/\/8&@{2) + 85@8@(W3@§é) + ... ) (7.27)

The equation of motion of B% is algebraic and implies BY = 0. After removing the
auxiliary field, one can use the following redefinitions of the basic fields

1 i . .
W=w (1 - gﬂAjHA—B + ;HABHAB> — AW IAWW — WIWIPW
+i0aW () &€ — 20 (04) L, E0aET +

(WO*W + W82W)>

=~ =

Ui =& (1 - %HLBHA—B - %H@ﬁA—B —~
i aa = 1~ ~ [e7e" = =
+ %%LB(&E)*@A(W&Q) + §HA*B(U§)*(3AW Eia — W 0a&ia) (7.28)

— WopWoBes — %Waz (WEZ) — WA (WDLEY) — IWDWORES (0AE) g5

1 _ i ~ _ -
Fap = 3Hap + 0202 (WWhHpp) + 104 (Hp (WOPW — WoPW))
— 04(Hpp (o2) , £7€5) — 204 (WIS (E€7)) (5c) o

— 2104 (WS (62€7)) (08c) s — 204 (WEDBEL)

+204(WEFOBEL) +...— (A B),

to show that the Lagrangian can be cast into form

Lsp = 20,4W 0AW — i}",LB FAE = 2i(¢f 040 + 204y (07

o 1 B _
+ 20AWOAW OpWIBW — 2FACFALHW opW + 5 FAB FABYEW QW
] . . — 1
- %(w%aéw + 0¥ 900) (04) <aCW80W - g ]-"CD> (7.29)
i a 7,00 yNe'} a T T 1
+ %(w;aéwf + M) (o) e (8AW83W + OpWOAW — 2]—“,40}"30)

— 2FAB QW0 — OpWHtoaps) + 2FAL(Waxyfopyl, + Wt opdh)
— 24BCR (040 + 4 0a ) (9B) . I WIDW + ...

In the considered approximation, it coincides with the power expansion of (7.15).
Let us note that the redefinition of the components is somewhat arbitrary. For example,
the term
2AWIPWELD4E% (04)
can be absorbed into W, W = W — iWEF94EY (UA)aa + ... but also can be used to
redefine the fermion ¢ = £+ 2Wo*WEF+ ... To prorgrly resolve this arbitrariness, one

ad
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should take into account that W, w%, P F ‘AB are the components of some superfield W,
satisfying some nonlinear covariant chirality constraint. While we do not consider such a
superfield, it is worth noting that in [13] the approximate relation between the superfields
satisfying the standard linear and covariant nonlinear constraints was obtained and the
first component of this relation is exactly the definition of the proper scalar component
W (7.28).

It is worthwhile to note, however, that the duality transformations (7.17), (7.22) do
not coincide with the component expansion of the transformations (7.23). Indeed, using
the relation

one can establish that in the lowest approximation
W = =AW+ ..., 66% = <X, 0Hap = AHap + ..., (7.31)

with some signs being opposite of (7.17), (7.22). Moreover, these transformations also
contain higher derivative terms and they do not vanish even after passing to the components
of nonlinear realization. For example, the variation of W (7.28) reads

OW = —IAW — AW E 0497 (07) , + 2AWWPW + .. (7.32)

The relation between these two sets of transformations, therefore, remains unclear.

As the last comment, it is desirable to compare the action (7.15) with the component
actions previously obtained in the paper [16]. Though the notations and the general form of
the Lagrangians are significantly different, one can expect that the Lagrangian of the N = 4,
d = 4 Born-Infeld theory, obtained in [16], is related to (7.15) by a field redefinition. To shed
some light on this point, one may study the broken supersymmetry transformation laws.
Initially, it seems natural to associate the parameter ¢ (formula (A.30) in [16]) with the
standard broken supersymmetry transformations, as the transformation law of the fermion
with the parameter ( is just the law of Volkov and Akulov. The bosonic fields, however,
are not covariant with respect to the ( transformations. In particular, the transformation
laws of the scalar fields begin with the terms proportional to the transformation parameter
and the fermionic field. The only appropriate Lorentz and SU(2) covariant terms are
0 ~ Cigwé and 0¢ ~ E?z/?fx It is natural to expect that ¢, ¢ differ from W, W by terms
with these transformation laws. The expected terms have to be quadratic in fermions, but
the only candidates 1)'@1;, and 1)'@1);; are equal to zero identically. The only solution
to this problem seems to identify the standard broken supersymmetry transformations
with 6¢ 4 0¢|c—¢. This identification removes the undesirable terms in the transformation
laws of the bosons but introduces terms ~ ¢4\ in the transformation law of the Goldstone
fermions. Then, to remove these newly appeared terms, one should perform the redefinition
of the fermionic field ¢ ~ A + FI'A + .... Note that in the Lagrangian this redefinition
generates the terms linear in F and quadratic in the fermions, which are absent in (7.15)
but typically occur in the actions in the paper [16]. Therefore, a tentative conclusion
could be reached that from the point of view of the standard nonlinear realizations the
action obtained in [16] corresponds to the breaking of @) + S supersymmetry. The exact
correspondence between the action [16] and (7.15) should be studied elsewhere.
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8 Conclusion

In this article, the N = (2,0), d = 6 Born-Infeld theory was considered in the compo-
nent approach. It was shown that it is possible to construct its component action using
the principles already successfully employed in the construction of the component N = 2,
d = 4 Born-Infeld theory [7]. These include the use of the standard nonlinear realization
formalism with the exponential parametrization of the coset space to find the transfor-
mation laws of the superfields with respect to both unbroken and spontaneously broken
supersymmetries and automorphisms, as well as the differential forms and the derivatives
covariant with respect to these transformations. Another important idea used in this pa-
per, already employed in [7], is that the properly generalized irreducibility conditions of
the vector multiplets should be invariant not only with respect to broken supersymmetry
but also with respect to the subgroup of the external automorphisms of the supersymmetry
algebra. With these ideas implemented, it becomes a difficult though technical problem to
calculate the Bianchi identity, which is satisfied by the bosonic field strength, and prove
its equivalence to the standard one. The fermionic contributions to the identity can be
unambiguously restored by demanding its covariance with respect to broken supersymme-
try. The rest of the procedure is common to all studied component actions with partial
spontaneous breaking of supersymmetry. It involves modifying the bosonic action follow-
ing the recipe of Volkov and Akulov [23, 24|, adding the Wess-Zumino term, and checking
the invariance with respect to unbroken supersymmetry, fixing the remaining arbitrary
constants in the process.

Though the proof of invariance of the d = 6 action with respect to the unbroken
supersymmetry was performed in the linear approximation in the fermions, the obtained
action seems to be exact one. It can be noted that already the spontaneously broken
supersymmetry, which transformation laws are known exactly, constrains the action to be
a sum of det £, the covariantized bosonic action and only one Wess-Zumino term. As no
Wess-Zumino terms which are quadric in the fermions could be constructed and the term
with nontrivial bosonic limit is determined exactly by the unbroken supersymmetry already
in the lowest order in the fermions, no freedom in the action remains. True subtle point of
the construction is the second irreducibility condition (3.17) which is known in the lowest
order in the auxiliary field only. This precludes the complete study of its consequences and
the proof that it is strictly off-shell. It should be noted, however, that the resulting Bianchi
identities are benign and can be cast into standard form without use of the equations of
motion, which is a strong indication of consistency of the constraints.

The reduction of the constructed theory to four dimensions was also considered. It was
proven that the supersymmetry transformations do not contradict the reduction conditions
and, therefore, the action after reduction is still invariant with respect to the N =4, d =4
supersymmetry. Its self-duality was proven at the component level, with rather simple
duality transformations of the scalar and the fermionic fields. The comparison with the
previous works shows that the obtained action coincides with ones found in [10, 11] in the
second and fourth power in the fields after the proper field redefinition. Whether the action
obtained in [16] is nontrivially different from (7.15) remains unclear.
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Let us also mention the observation made during the analysis of the bosonic Bianchi
identity for the field strength. This identity involves the matrix which, at the same time,
relates the anticommutator of two spinor derivatives to the z#* derivative, relates the phys-
ical bosonic field strength to the tensor component of the multiplet, and is used to multiply
the original identity to bring it to the proper form. Therefore, the role of this matrix is
likely fundamental for the component D-brane actions and requires further investigation.
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A Properties of the v-matrices

The six dimensional y4-matrices are assumed to have following properties [26]:

~avap 1
(’YA)aﬁ = _(’YA),B@’ (fyA)aB (fyA)/“/ = _26‘16“1’7 (’YA)O[ = ieaﬁuu (f}/A);,LV7

M eapu =24, (v4) ) () + (17) () ) = 2m*P6.. (A1)

The composite matrices are defined as:

67,7 = 50 G = (67 n YY),

(047 a5 = 5 (1) ap (1) (6%)5+ (1) 5

N
=
he)
IS
8
Q
S—
Q
Q
—

- 1/, - - -
G =5 (6767, 607+ 6N 00),,697). (A2
The composite matrices satisfy the relations
(ryAB)aﬁ == (’YBA)QB’
(,YAB)aOz — 07
1
(,YAB)QA( CD))\B _ _ieABCDMN (’YMN) B_ (nACnBD nBCnAD)(Saﬁ
_ (nAC (,YBD)QB_UBC (,YAD)QB_UAD (,YBC) B4nB ( AC)a5)7
(VABC)Q ( ABC),Ba = (FY[ABC])(X,B’
(5 ABC)a (5 ABC)ﬁOé 3 [ABC])Oéﬁ’ (A.3)
eapcmnp (Y MNP)aﬁ = —G(VABC)Q[;,
fABCMNP( MNP)aﬁ (’YABO) ’67
(,YABC)aﬂ (,?MNP)Oéﬁ ( AM, BN CP _ AN pBM, CP _ [ AM | BPCN
AP_BN AP, BM, CN

_pAPyBN, CM | AP, BM,, +77ANUBP770M)+46ABCMNP_
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The vector and spinor notation for the vectors and antisymmetric tensors are related
in the following way:

Faﬁ — AB)

(v (’YAB)aﬂFga. (A.4)

For the purposes of dimensional reduction, one can use the following explicit represen-
tation of these matrices:

09 (o, "0 ) 0= (T ) = (0, ) 00

Here, 04 = (1, ot o2, 03) are the standard four dimensional o-matrices, while the e-tensors
have properties

€10 =1,

3A _ A
€ap = ~pa egéeéf =0g €3 =1 (A.6)
They can be used to lower the four dimensional spinor indices, ¥n; = eggwié, e.t.c.

B Derivation of the Bianchi identities

In this appendix, we discuss how to obtain the bosonic Bianchi identities for the field
strength of the nonlinear N = (1,0), d = 6 vector supermultiplet as well as the unbroken
supersymmetry transformation laws.

Let us stress that we do not know the complete form of one of the irreducibility
conditions (3.17) and, therefore, do not make an attempt to prove that, acting by the
covariant derivatives on the conditions (3.12), (3.17), one will obtain only the Bianchi
identities for the field strength and nothing else. While general study is desirable, the
known irreducibility conditions are sufficient to derive the complete Bianchi identities in
the bosonic limit and without the auxiliary field, as well as the transformation laws of V2
with respect to unbroken supersymmetry in the lowest approximation in the fermions but
in all orders in the field strength.

We use the approximate equality symbol “ax” to note that the expressions separated
by this sign are equal if at least some fermionic and auxiliary field terms are neglected.

As a preliminary exercise, let us find how the covariant derivative acts on the superfield

V.2 = V).
j v ] v oV j v Lo v 1 v ]
VRV =V Vil = VRV & {VE Vil - S VIV = (Y VBl (B.1)

Here we used the second approximate identity (3.13), (3.16) and took into account that
B should not appear in the relations explicitly, without a covariant derivative acting on
it. To calculate V’;Bi, one should use the first irreducibility condition (3.12):

. , . pm ,
0 = V4 Tr[arctanh (Vi ))] = V,VEgl, <1—1V¢2>k ~VIV,Y(Z7TY),H, (B2
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where we took the matrix in brackets in the limit BY — 0. Let us also note that the matrix
Z could be replaced by Y, as they are proportional to each other. Thus, multiplying (B.1)
by (Yﬁl)y“, one finds
k | j k o —1 j k o -1
VEB ~ —4{VL, Vilyl (Y ') P +2{V), Vilyi (Y ') *. (B.3)

g

Therefore,

j v 4 j k v 2 j k v
VeV~ o {Vi Vi bk = 3{Vi Vi ok
Ly (v ) {9, vE g — (Vi VR Ly B.4
+§ ﬂ( )a { B P}¢k_§{ P u}¢k (B.4)
2 -1 i ok Lioi ok
KGR EHUART
Using the explicit form of the anticommutator of the spinorial covariant derivatives (2.12),
one can completely remove B¥™ and the nonlinear fermionic terms and use this formula
to find the transformation law of V,,? with respect to the unbroken supersymmetry (6.3).
As the matrices Z and Y are proportional to each other, Y g” (Y_l)g/J =Zg" (Z_l)ap.
The relation (B.3) also allows to derive the first Bianchi identity (4.1). Acting on it
by one derivative, one can find, again neglecting the fermions and the auxiliary field,
VEVE By ~ 3{V}, Vi, } Va7 (Y1) 7. (B.5)

g

The symmetric part of V’;Vg*B km 18 proportional to the anticommutator {v’;, Vg‘}B km
and vanishes when B;; — 0. As the symmetric part of the right-hand side should also
vanish, we obtain the identity (4.1).

The dual identity could be obtained using analogous procedure. We start from

AV 1, VD, = €M AV Vi, VR0, — e AVEVIV a0 . (B.6)

Then we again use the second irreducibility condition V’,ﬁzﬂfn = %6anl,f3 + %Yl,ﬁ BF and
approximately obtain

1 1 1

§eaﬂ"*v’;vmvwg ~ —iea“VA{Vﬁ, Vir} Viraph, + iea“”’\YABVZVZ”‘Bkm. (B.7)

Finally, substituting VﬁVTBkm (B.5) and taking into account that 2ea””’\ijVk,,V,\B =
e M VE Vi } VAP, we find

MMV Vi Va7 & et Y 3PV Vi bV, (Y1), 2. (B-8)

Multiplying this relation by (Yﬁl) 67’ we find that the right-hand side of the result is
antisymmetric in «, v and, therefore, the symmetric part of the left-hand side should vanish.
Thus we obtain the second Bianchi identity (4.2).
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