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of approximate quantum error-detecting codes in matrix product states (MPS). We first

show that using open-boundary MPS to define boundary to bulk encoding maps yields

at most constant distance error-detecting codes. These are degenerate ground spaces of

gapped local Hamiltonians. To get around this no-go result, we consider excited states, i.e.,

we use the excitation ansatz to construct encoding maps: these yield error-detecting codes

with distance Ω(n1−ν) for any ν ∈ (0, 1) and Ω(log n) encoded qubits. This shows that

gapped systems contain — within isolated energy bands — error-detecting codes spanned

by momentum eigenstates. We also consider the gapless Heisenberg-XXX model, whose

energy eigenstates can be described via Bethe ansatz tensor networks. We show that it

contains — within its low-energy eigenspace — an error-detecting code with the same

parameter scaling. All these codes detect arbitrary d-local (not necessarily geometrically

local) errors even though they are not permutation-invariant. This suggests that a wide

range of naturally occurring many-body systems possess intrinsic error-detecting features.
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1 Introduction

Quantum error-correcting codes are fundamental for achieving robust quantum memories

and fault-tolerant quantum computation. Following seminal work by Shor [1] and oth-

ers [2–5], the study of quantum error-correction has seen tremendous progress both from

both the theoretical and the experimental point of view. Beyond its operational implica-

tions for the use of faulty quantum hardware, quantum error-correction is closely connected

to fundamental physics, as shown early on by the work of Kitaev [6]: the ground space of

a topologically ordered model constitutes a quantum error-correcting code whose dimen-

sion depends on the topology of the underlying surface containing the physical degrees

of freedom. In addition to giving rise to a new field called topological quantum comput-

ing [7–13], this work has had a significant impact on the problem of classifying topologically

ordered phases in two spatial dimensions [14, 15]. Motivated by the success of this pro-

gram, follow-up work has pursued the classification of gapped phases of matter with or

without global symmetries, starting from one spatial dimension [16–19] up to arbitrarily

high dimensions [20, 21].

More recently, concepts from quantum error-correction have helped to resolve con-

ceptual puzzles in AdS/CFT holographic duality. Almheiri, Dong, and Harlow [22] have

proposed that subspaces of holographic conformal field theories (CFTs) which are dual

to perturbations around a particular classical bulk AdS geometry constitute a quantum

error-correcting code robust against erasure errors. In this proposal, the bulk and bound-

ary degrees of freedom correspond to the logical and the physical degrees of freedom of the

code, respectively. Puzzling features such as subregion-subregion duality and radial com-

mutativity can naturally be understood in this language, under the hypothesis that the

duality map works as a code which recovers, from erasure, part of the boundary degrees of

freedom. Related to this picture, Ryu-Takayanagi type formulas have been shown to hold

in any quantum error-correcting code that corrects against erasure [23].

Key to many of these results in the context of topological order and the AdS/CFT

holographic duality is the language of tensor networks. The latter, originating in work

by Fannes, Nachtergaele, and Werner on finitely correlated states [24] and the density

matrix renormalization group [25, 26], has seen a revival in the last 15 years. Major

conceptual contributions include the introduction of matrix product states by [27–31],

the introduction of the multi-scale entanglement renormalization ansatz (MERA) [32] by

Vidal, and various projected entangled-pair states (PEPS) techniques [30, 33–37] for higher

dimensional systems.

It has been shown that tensor network techniques provide exact descriptions of topolog-

ically ordered states [38–40], and furthermore, tensor networks have been instrumental in

the characterization and classification of topological order [41–45]. This approach has also

been generalized to higher dimensions, clarifying the connections to topological quantum

field theories [46].

A similar success story for the use of tensor networks is emerging in the area of

AdS/CFT duality. Aspects of holographic duality have been explored in terms of toy

models based on tensor networks [47–49]. Indeed, many (though not all) conjectured fea-
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tures of this duality can be recovered in these examples. This field, while still in its infancy,

has provided new appealing conjectures which point to a potentially more concrete under-

standing of the yet to be uncovered physics of quantum gravity [50, 51].

Given the existing close connections between quantum error-correction and a vari-

ety of physical systems ranging from topological order to AdS/CFT, it is natural to ask

how generic the appearance of error-correcting features is in naturally occurring quantum

many-body systems. A first step towards showing the ubiquity of such features is the

work of Brandao, et al. [52]. There, it is shown that quantum chaotic systems satisfy-

ing the Eigenstate Thermalization Hypothesis (ETH) have energy eigenstates that form

approximate quantum error-correcting codes. Nearby extensive energy eigenstates of 1D

translation invariant Hamiltonians, as well as ground spaces of certain gapless systems

(including the Heisenberg and Motzkin models), also contain approximate quantum error-

correcting codes. Motivated by this work, we ask if one can demonstrate the existence of

error-correcting codes within the low-energy eigenspaces of generic Hamiltonians, whether

or not they are gapped or gapless. Specifically, we ask this question for 1D systems.

Our work goes beyond earlier work by considering errors (that is, noise) of a more

general form: existing studies of error-correction in the context of entanglement renormal-

ization and/or holography have primarily concentrated on qubit loss, modeled by so-called

erasure errors (see e.g., [48, 53, 54]). This erasure noise model has several theoretical ad-

vantages. In particular, it permits one to argue about the existence of recovery maps in

terms of entanglement entropies of the associated erased regions. This can be connected to

well-known results on entanglement entropies in critical 1D systems. Furthermore, the ap-

pearance of entanglement entropies in these considerations is natural in the context of the

AdS/CFT duality, where these quantities are involved in the connection of the boundary

field theory to the bulk geometry via the Ryu-Takayangi formula. However, compared to

other forms of errors typically studied in the quantum fault-tolerance community, erasure

is quite a restricted form of noise: it is, in a certain sense, much easier to correct than,

e.g., depolarizing noise. As an example to illustrate this point, we recall that the toric

code can recover from loss of half its qubits [55], whereas it can only tolerate depolarizing

noise up to a noise rate of 11% even given perfect syndrome measurements [9]. Moti-

vated by this, we aim to analyze error-correcting properties with respect to more generic

noise even though this precludes the use of entanglement entropies. Again, the work [52]

provides first results in this direction by considering errors on a fixed, connected subset

of sites (that is, geometrically localized errors). The restriction to a connected subset

was motivated in part by the consideration of permutation-invariant subspaces (note other

previous works on permutation-invariant code spaces [56, 57]). In our work, we lift the re-

striction to permutation-invariant codes and instead analyze arbitrary weight-d errors with

potentially disconnected supports. Furthermore, we study an operational task — that of

error-detection — with respect to a noise model where errors can occur on any subset of

qubits of a certain size, instead of only a fixed subset.

We find that the language of matrix product states (MPS) and the related excitation

ansatz states provides a powerful analytical tool for studying error-detection in 1D systems.

In particular, we relate properties of transfer operators to error-detection features: for MPS
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describing (degenerate) ground spaces of gapped Hamiltonians, injectivity of the transfer

operators gives rise to a no-go theorem. For excitation ansatz states describing the low-

energy excitations of gapped systems, we use injectivity and a certain normal form to

establish error-correction properties. Finally, for a gapless integrable model, we analyze

the Jordan structure of (generalized) transfer matrices to find bounds on code parameters.

In this way, our work connects locally defined features of tensor networks to global error-

correction properties. This can be seen as a first step in an organized program of studying

approximate quantum error-correction in tensor network states.

2 Our contribution

We focus on error-detection, a natural primitive in fault-tolerant quantum computation.

Contrary to full error-correction, where the goal is to recover the initial encoded state from

its corrupted version, error-detection merely permits one to decide whether or not an error

has occurred. Errors (such as local observables) detected by an error-detecting code have

expectation values independent of the particular logical state. In the context of topological

order, where local errors are considered, error-detection has been referred to as TQO-1

(topological quantum order condition 1); see, e.g., [58]. An approximate version of the

latter is discussed in [59].

A code, i.e., a subspace of the physical Hilbert space, is said to be error-detecting (for

a set of errors) if the projection back onto the code space after the application of an error

results in the original encoded state, up to normalization. Operationally, this means that

one can ensure that no error occurred by performing a binary-outcome POVM consisting

of the projection onto the code space or its complement. This notion of an error-detecting

code is standard, though quite stringent: unless the code is constructed algebraically (e.g.,

in terms of Pauli operators), it is typically not going to have this property.

Our first contribution is a relaxed, yet still operationally meaningful definition for

approximate error-detection. It relaxes the former notion in two directions: first, the post-

measurement state is only required to approximate the original encoded state. Second,

we only demand that this approximation condition is satisfied if the projection onto the

code space occurs with non-negligible probability. This is motivated by the fact that

if this projection does not succeed with any significant probability, the error-detection

measurement has little effect (by the gentle measurement lemma [60]) and may as well be

omitted. More precisely, we consider a CPTP map N : B((Cp)⊗n)→ B((Cp)⊗n) modeling

noise on n physical qudits (of dimension p). Here the Kraus operators of N take the role

of errors (considered in the original definition). We define the following notion:

Definition 3.1 (Approximate quantum error-detecting code). A subspace C ⊂ (Cp)⊗n

(with associated projection P ) is an (ε, δ)-approximate error-detecting code for N if for

any state |Ψ〉 ∈ C the following holds:

if tr(PN (|Ψ〉〈Ψ|)) ≥ δ then 〈Ψ|ρN ,P |Ψ〉 ≥ 1− ε ,

where ρN ,P = tr(PN (|Ψ〉〈Ψ|))−1 · PN (|Ψ〉〈Ψ|)P .
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This definition ensures that the post-measurement state ρN ,P is close (as quantified

by ε) to the initial code state when the outcome of the POVM is P . Furthermore, we only

demand this in the case where N (|Ψ〉〈Ψ|) has an overlap with the code space of at least δ.

In the following, we often consider families of codes {Cn}n indexed by the number n

of physical spins. In this case, we demand that both approximation parameters εn and δn
tend to zero as n→∞. This is how we make sure that we have a working error-detecting

code in the asymptotic or thermodynamic limit of the physical Hilbert space.

Of particular interest are errors of weight d, i.e., errors which only act non-trivially on

a subset of d of the n subsystems in the product space (Cp)⊗n. We call this subset the

support of the error, and refer to the error as d-local. We emphasize that throughout this

paper, d-local only refers to the weight of the errors: they do not need to be geometrically

local, i.e., their support may be disconnected. In contrast, earlier work on approximate

error-correction such as [52] only considered errors with support on a (fixed) connected

subset of d sites. We then define the following:

Definition 3.3 (Error-detection for d-local errors). A subspace C ⊂ (Cp)⊗n is called an

(ε, δ)[[n, k, d]]-approximate quantum error-detecting code (AQEDC) if dim C = pk and if C is

an (ε, δ)-approximate error-detecting code for any CPTP map N : B((Cp)⊗n)→ B((Cp)⊗n)

of the form

N (ρ) =
∑
j∈[J ]

pjFjρF
†
j , (2.1)

where each Fj is a d-local operator with ‖Fj‖ ≤ 1 and {pj}j∈[J ] is a probability distribution.

We refer to d as the distance of the code.

In other words, an (ε, δ)[[n, k, d]]-AQEDC deals with error channels which are convex

combinations of d-local errors. This includes for example the commonly considered case

of random Pauli noise (assuming the distribution is supported on errors having weight at

most d). However, it does not cover the most general case of (arbitrary) d-local errors/error

channels because of the restriction to convex combinations. The consideration of convex

combinations of d-local errors greatly facilitates our estimates and allows us to consider

settings that go beyond earlier work. We leave it as an open problem to lift this restriction,

and only provide some tentative statements in this direction.

To exemplify in what sense our definition of AQEDC for d-local errors extends earlier

considerations, consider the case where the distribution over errors in (2.1) is the uniform

distribution over all d-qudit Pauli errors on n qubits. In this case, the number of Kraus

operators in the representation (2.1) is polynomial in n even for constant distance d. In

particular, arguments involving the number of terms in (2.1) cannot be used to establish

bounds on the code distance as in [52], where instead, only Pauli errors acting on d fixed

sites were considered: the number of such operators is only 4d instead of the number
(
n
d

)
4d

of all weight-≤ d-Paulis, and, in particular, does not depend on the system size n.

We establish the following approximate Knill-Laflamme type conditions which are

sufficient for error-detection:
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Corollary 3.4. Let C ⊂ (Cp)⊗n be a code with orthonormal basis {ψα}α∈[pk] such that (for

some γ > 0), ∣∣〈ψα|F |ψβ〉 − δα,β〈ψ1|F |ψ1〉
∣∣ ≤ γ · ‖F‖ for all α, β ∈ [pk] ,

for every d-local operator F on (Cp)⊗n. Let δ > p5kγ2. Then C is an (ε = p5kγ2δ−1, δ)

[[n, k, d]]-AQEDC.

This condition, which is applicable for “small” code space dimension, i.e., k = O(log n),

allows us to reduce the consideration of approximate error-detection to the estimation of

matrix elements of local operators. We also establish a partial converse to this statement:

if a subspace C ⊂ (Cp)⊗n contains two orthonormal vectors whose reduced d-local density

operators (for some subset of d sites) are almost orthogonal, then C cannot be an error-

detecting code with distance d (see lemma 3.6 for a precise statement).

Equipped with these notions of approximate error-detection, we study quantum many-

body systems in terms of their error-detecting properties using tensor network techniques.

More specifically, we consider two types of code families, namely:

(i) codes that are degenerate ground spaces of local Hamiltonians and permits a descrip-

tion in terms of tensor networks, and

(ii) codes defined by low-energy eigenstates of (geometrically) local Hamiltonians, with

the property that these can be efficiently described in terms of tensor networks.

As we explain below, (i) and (ii) are closely connected via the parent Hamiltonian con-

struction. For (i), we follow a correspondence between tensor networks and codes which is

implicit in many existing constructions: we may think of a tensor as a map from certain

virtual to physical degrees of freedom. To define this map, consider a tensor network given

by a graph G = (V,E) and a collection of tensors A. Let us say that an edge e ∈ E is a

dangling edge if one of its vertices has degree 1, and let us call the corresponding vertices

the dangling vertices of the tensor network. An edge e ∈ E is an internal edge if it is not

a dangling edge; we use an analogous notion for vertices. We assume that each internal

edge e ∈ E is associated a virtual space of fixed bond dimension D, and each dangling

edge with a physical degree of dimension p. Then the tensor network associates a tensor T

of degree deg(v) to each internal vertex v of G, where it is understood that indices cor-

responding to internal edges are contracted. The tensor network is fully specified by the

family A of such tensors. We partition the set of dangling vertices into a two subsets M

and M c. Then the tensor network defines a map Γ(A,G) : (Cp)⊗|M | → (Cp)⊗|M
c| as each

fixing of the degrees of freedom in M defines an element of the Hilbert space associated

with the degrees of freedom in M c by tensor contraction. That is, the map depends on

the graph G specifying the structure of the tensor network, as well as the family A of local

tensors. In particular, fixing a subspace of (Cp)⊗|M |, its image under the map Γ(A,G)

defines a subspace C ⊂ (Cp)⊗|M
c| which we will think of as an error-correcting code. In

the following, we also allow the physical and virtual (bond) dimensions to vary (depending

on the location in the tensor network); however, this description captures the essential

construction.

– 5 –
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This type of construction is successful in two and higher spatial dimensions, yielding

error-correcting codes with macroscopic distance: examples are the ground states of the

toric code [41, 61] and other topologically ordered models [38, 40, 42]. However, in 1D, it

seems a priori unlikely that the very same setup can generate any nontrivial quantum error-

detection code, at least for gapped systems. This is because of the exponential decay of

correlations [62–64] and the lack of topological order without symmetry protection [18, 65].

We make this precise by stating and proving a no-go theorem.

More precisely, we follow the above setup provided by the boundary-to-bulk tensor

network map Γ(A) = Γ(A,G). Here, G is the 1D line graph with dangling edges attached

to internal vertices, which is equivalent to considering the ground space of 1D local gapped

Hamiltonians with open boundary conditions. The associated tensor network is a matrix

product state.

Generic MPS satisfy a condition called injectivity, which is equivalent to saying that

the transfer matrix of the MPS is gapped. Exploiting this property allows us to prove

a lower bound on the distinguishability of d-local reduced density operators for any two

orthogonal states in the code space. This bound is expressed in terms of the virtual bond

dimension D of the MPS tensor A. In particular, the bound implies the following no-go

theorem for codes generated by MPS as described above.

Theorem 5.3. Let C ⊂ (Cp)⊗n be an approximate quantum error-detecting code gener-

ated by Γ(A), i.e., a translation-invariant injective MPS of constant bond dimension D by

varying boundary conditions. Then the distance of C is constant.

The physical interpretation of this theorem is as follows: for every injective MPS

with periodic boundary conditions, there exists a strictly logD-geometrically local gapped

Hamiltonian such that the MPS is the unique ground state [29]. One can further enlarge the

ground space by leaving out a few Hamiltonian terms near the boundary. The degeneracy

then depends on the number of terms omitted, and the ground states are described by

open boundary condition MPS. Then, our no-go theorem implies that the ground space of

any such parent Hamiltonian arising from such a constant bond-dimension MPS is a trivial

code, i.e., it can have at most a constant distance. This result is equivalent to saying that

there is no topological quantum order in the ground space of 1D gapped systems.1

To get around this no-go result, we extend our considerations beyond the ground space

and include low-energy subspaces in the code space. We show that this indeed leads to

error-detecting codes with macroscopic distance. We identify two ways of constructing

nontrivial codes by either considering single-particle excitations of varying momenta, or by

considering multi-particle excitations above the ground space. Both constructions provide

us with codes having distance scaling asymptotically significantly better than what can

1More precisely, this statement holds for systems whose ground states can be approximated by constant

bond dimension MPS. It is not clear whether this is sufficient to make a statement about general 1D local

gapped Hamiltonians. The identification of ground states of 1D local gapped Hamiltonians with constant

bond dimension MPS is sometimes made in the literature, as for example in the context of classifying

phases [18, 19, 65].
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be achieved in the setup of our no-go theorem. In fact, the code distance is a polynomial

arbitrarily close to linear in the system size (i.e., n) in both cases.

Our first approach, using states of different momenta, involves the formalism of the

excitation ansatz (see section 6 for a review). This gives a tensor network parametrization

of momentum eigenstates associated with a Hamiltonian having quasi-particle excitations.

We show the following:

Theorem 6.9. Let ν ∈ (0, 1) and let κ, λ > 0 be such that

5κ+ λ < ν .

Let A,B(p) be tensors associated with an injective excitation ansatz state |Φp(B;A)〉, where

p is the momentum of the state. Then there is a subspace C ⊂ (Cp)⊗n spanned by excitation

ansatz states {|Φp(B;A)〉}p with different momenta p such that C is an (ε, δ)[[n, k, d]]-

AQEDC with parameters

k = κ logp n ,

d = n1−ν ,

ε = Θ(n−(ν−(5κ+λ))) ,

δ = n−λ .

The physical interpretation of this result stems from the fact that excitation ansatz

states approximate quasi-particle excitations: given a local gapped Hamiltonian, assuming

a good MPS approximation to its ground state, we can construct an arbitrarily good

approximation to its isolated quasi-particle excitation bands by the excitation ansatz. This

approximation guarantee is shown using Lieb-Robinson type bounds [62, 66] based on a

previous result [67] which employs the method of energy filtering operators. Thus our result

demonstrates that generic low-energy subspaces contain approximate error-detecting codes

with the above parameters. Also, note that unlike the codes considered in [52, theorem 1],

the excitation ansatz codes are comprised of finite energy states, and not finite energy

density states.

We remark that the choice of momenta is irrelevant for this result; it is not necessary

to restrict to nearby momenta. Instead, any subset of momentum eigenstates can be

used. The only limitation here is that the number of different momenta is bounded by

the dimension of the code space. This is related to the fact that localized wave functions

(which would lead to a non-extensive code distance) are a superposition of many different

momenta, a fact formally expressed by the position-momentum uncertainty relation.

Our second approach for side-stepping the no-go theorem is to consider multi-particle

excitations. We consider a specific model, the periodic Heisenberg-XXX spin chain Hamil-

tonian H on n qubits. We find that there are good error-detecting codes within the

low-energy subspace of this system. For this purpose, we consider the state

|Ψ〉 =

n∑
m=1

ωms−m|1〉⊗n where ω = e2πi/n, (2.2)

– 7 –
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and where s−m = |0〉〈1| changes the state of the m-th spin from |1〉 to |0〉. This has

energy O(1/n2) above the ground state energy of H. The corresponding eigenspace is

degenerate and contains all “descendants” Sr−|Ψ〉 for r ∈ {0, . . . , n − 2}, where S− =∑n
m=1 s−m is the (total) spin lowering operator. We also note that each state Sr−|Ψ〉 has

fixed momentum 2π/n, and that r directly corresponds to its total magnetization. We

emphasize that these states are, in particular, not permutation-invariant. Our main result

concerning these states is the following:

Theorem 7.9. Let ν ∈ (0, 1) and κ, λ > 0 be such that

6κ+ λ < ν .

Then there is a subspace C spanned by descendant states {Sr−|Ψ〉}r with magnetization r

pairwise differing by at least 2 such that C is an (ε, δ)[[n, k, d]]-AQEDC with parameters

k = κ log2 n ,

d = n1−ν ,

ε = Θ(n−(ν−(6κ+λ))) ,

δ = n−λ .

This code, which we call the magnon-code, can also be seen to be realized by tensor

networks. The state (2.2) has an MPS description with bond dimension 2 and the descen-

dants Sr−|Ψ〉 can be expressed using a matrix-product operator (MPO) description of the

operator S−. More generally, it is known that these states form an example of the algebraic

Bethe ansatz, and the latter have a natural tensor network description [68]. This suggests

that our results may generalize to other exactly solvable models.

Outline. The paper is organized as follows. We discuss our notion of approximate error-

detection and establish sufficient and necessary conditions in section 3. In section 4, we

review the basics of matrix product states. We also establish bounds on expectation values

in terms of properties of the associated transfer operators. In section 5, we prove our no-

go theorem and show the limits of error-detection for code spaces limited to the ground

space of a gapped local Hamiltonian. We then consider low-energy eigenstates of local

Hamiltonians and show how they perform asymptotically better than the limits of the

no-go theorem. We first consider single-particle momentum eigenstates of generic local

gapped Hamiltonians in section 6. In section 7, we consider codes defined by many-particle

eigenstates of the Heisenberg-XXX model.

3 Approximate quantum error-detection

Here we introduce our notion of approximate quantum error-detection. In section 3.1, we

give an operational definition of this notion. In section 3.2, we provide sufficient conditions

for approximate quantum error-detection which are analogous to the Knill-Laflamme condi-

tions for quantum error-correction [4]. Finally, in section 3.3, we give necessary conditions

for a subspace to be an approximate quantum error-detecting code.
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3.1 Operational definition of approximate error-detection

Let N : B((Cp)⊗n) → B((Cp)⊗n) be a CPTP map modeling noise on n physical qubits.

We introduce the following notion:

Definition 3.1. A subspace C ⊂ (Cp)⊗n (with associated projection P ) is an (ε, δ)-

approximate error-detection code for N if for any pure state |Ψ〉 ∈ C the following holds:

if tr(PN (|Ψ〉〈Ψ|)) ≥ δ then 〈Ψ|ρN ,P |Ψ〉 ≥ 1− ε ,

where ρN ,P = tr(PN (|Ψ〉〈Ψ|))−1 · PN (|Ψ〉〈Ψ|)P .

In this definition, ρN ,P is the post-measurement state when applying the POVM {P, I−
P} to N (|Ψ〉〈Ψ|). Roughly speaking, this definition ensures that the post-measurement

state is ε-close to the initial code state if the outcome of the POVM is P . Note, however,

that we only demand this in the case where N (|Ψ〉〈Ψ|) has an overlap with the code space

of at least δ. The idea behind this definition is that if this overlap is negligible, then

the outcome P does not occur with any significant probability and the error-detection

measurement may as well be omitted.

Definition 3.1 is similar in spirit to operationally defined notions of approximate quan-

tum error-correction considered previously. In [69], approximate error-correction was de-

fined in terms of the “recoverable fidelity” of any encoded pure state affected by noise.

The restriction to pure states in the definition is justified by means of an earlier result by

Barnum, Knill, and Nielsen [70].

We note that, by definition, an (ε, δ)-approximate error-detection code for N is also

an (ε′, δ′)-approximate error-detection code for any ε ≤ ε′ and δ ≤ δ′. The traditional

“exact” notion of a quantum error-detecting code C (see e.g., [71]) demands that for a

set F ⊂ B((Cp)⊗n) of detectable errors, we have

〈Ψ|E|Φ〉 = λE〈Ψ|Φ〉 for all |Ψ〉, |Φ〉 ∈ C

for some scalar λE ∈ C depending only on E, for all E ∈ F . It is straightforward to see

that such a code defines a (0, 0)-approximate error-detecting code of any CPTP map N
whose Kraus operators belong to F .

3.2 Sufficient conditions for approximate quantum error-detection

The following theorem shows that certain approximate Knill-Laflamme-type conditions are

sufficient for approximate error-detection.

Theorem 3.2. Let N (ρ) =
∑

j∈[J ]RjρR
†
j be a CPTP map on B((Cp)⊗n). Let C ⊂ (Cp)⊗n

be a subspace with orthonormal basis {ψα}α∈[K]. Define

εapprox := max
α,β∈[K]

∑
j∈[J ]

∣∣〈ψα|Rj |ψβ〉 − δα,β〈ψ1|Rj |ψ1〉
∣∣2 . (3.1)

Let δ > K5εapprox be arbitrary. Then the subspace C is an (ε, δ)-approximate quantum

error-detection code for N with ε = K5εapproxδ
−1.
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This theorem deals with cases where the code dimension K is “small” compared to

other quantities. We will later apply this theorem to the case where K is polynomial, and

where εapprox and δ are inverse polynomial in the system size n.

We note that the conditions of theorem 3.2 may appear more involved than e.g., the

Knill-Laflamme type conditions (see [4]) for (exact) quantum error-correction: the latter

involve one or two error operators (interpreted as Kraus operators of the channel), whereas

in expression (3.1), we sum over all Kraus operators. It appears that this is, to some

extent, unavoidable when going from exact to approximate error-correction/detection in

general. We note that (tight) approximate error-correction conditions [72] obtained by

considering the decoupling property of the complementary (encoding plus noise) channel

similarly depend on the entire noise channel. Nevertheless, we show below that, at least

for probabilistic noise, simple sufficient conditions for quantum error-detection involving

only individual Kraus operators can be given.

Proof. Let us define

errψ(R,α, β) := 〈ψα|R|ψβ〉 − δα,β〈ψ1|R|ψ1〉 .

Consider an arbitrary orthonormal basis {ϕα}α∈[K] ∈ C ⊂ (Cp)⊗n of C. Let U be a unitary

matrix such that

ϕα =
∑
β∈[K]

Uα,βψβ for all α ∈ [K] .

Because
∑

γ∈[K](U
†)α,γUγ,β = δα,β , we obtain by straightforward computation

〈ϕα|R|ϕβ〉 − δα,β〈ψ1|R|ψ1〉 =
∑

γ,δ∈[K]

Uα,γUβ,δ err
ψ(R, γ, δ) .

We conclude that

|〈ϕα|R|ϕβ〉| ≤
∑

γ,δ∈[K]

|errψ(R, γ, δ)| ≤ K ·
√ ∑
γ,δ∈[K]

|errψ(R, γ, δ)|2 for α 6= β

because maxγ,δ |Uα,γUβ,δ| ≤ 1 for a unitary matrix U and by using the Cauchy-Schwarz

inequality. By definition of err and εapprox, this implies that

〈ϕα|N (|ϕβ〉〈ϕβ |)|ϕα〉 ≤ K4εapprox for α 6= β (3.2)

for any orthonormal basis {ϕα}α∈[K] of C.
Let now δ > 0 be given and let Ψ ∈ C be an arbitrary state in the code space such that

tr(PN (|Ψ〉〈Ψ|)) ≥ δ . (3.3)
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Let us pick an orthonormal basis {ϕα}α∈[K] ∈ C ⊂ (Cp)⊗n of C such that ϕ1 = Ψ. Then

1− 〈Ψ|ρN ,P |Ψ〉 = 1− 〈Ψ|N (|Ψ〉〈Ψ|)|Ψ〉
tr(PN (|Ψ〉〈Ψ|))

=
1

tr(PN (|Ψ〉〈Ψ|))
· (tr(PN (|Ψ〉〈Ψ|))− 〈Ψ|N (|Ψ〉〈Ψ|)|Ψ〉)

=
1

tr(PN (|Ψ〉〈Ψ|))
·
K∑
α=2

〈ϕα|N (|ϕ1〉〈ϕ1|)|ϕα〉

≤ 1

δ
·K5εapprox

because of (3.3) and (3.2). The claim follows.

If there are vectors {ηα,β}α,β∈[K] such that∣∣〈ψα|Rj |ψβ〉 − δα,β〈ψ1|Rj |ψ1〉
∣∣ ≤ ‖Rjηα,β‖ for all j ∈ [J ] , (3.4)

then this implies the bound

εapprox ≤ max
α,β

tr(N (|ηα,β〉〈ηα,β |)) = max
α,β
‖ηα,β‖2 .

Unfortunately, good bounds of the form (3.4) are not straightforward to establish in the

cases considered here. Instead, we consider a slightly weaker condition (see equation (3.6))

which still captures many cases of interest. In particular, it provides a simple criterion

for establishing that a code can detect probabilistic Pauli errors with a certain maximum

weight. Correspondingly, we introduce the following definition:

Definition 3.3. An (ε, δ)[[n, k, d]]-AQEDC C is a pk-dimensional subspace of (Cp)⊗n such

that C is an (ε, δ)-error-detecting code for any CPTP map of the form

N (ρ) =
∑
j∈[J ]

pjFjρF
†
j , (3.5)

where each Fj is a d-local operator with ‖F‖ ≤ 1 and {pj}j∈[J ] is a probability distribution.

We then have the following sufficient condition:

Corollary 3.4. Let K = pk and C ⊂ (Cp)⊗n be a code with orthonormal basis {ψα}α∈[K]

satisfying (for some γ > 0),∣∣〈ψα|F |ψβ〉 − δα,β〈ψ1|F |ψ1〉
∣∣ ≤ γ · ‖F‖ for all α, β ∈ [K] , (3.6)

for every d-local operator F on (Cp)⊗n. Let δ > K5γ2. Then C is an (ε = K5γ2δ−1, δ)

[[n, k, d]]-AQEDC.

Proof. Defining Rj =
√
pjFj , the claim follows immediately from theorem 3.2.
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Note that the exponents in this statement are not optimized, and could presumably be

improved. We have instead opted for the presentation of a simple proof, as this ultimately

provides the same qualitative statements.

We also note that the setting considered in corollary 3.4, i.e., our notion of

(ε, δ)[[n, k, d]]-error-detecting codes, goes beyond existing work on approximate error-

detection/correction [52–54], where typically only noise channels with Kraus (error) opera-

tors acting on a fixed, contiguous (i.e., geometrically local) set of d physical spins are con-

sidered. At the same time, our results are limited to convex combinations of the form (3.5).

It remains an open problem whether these codes also detect noise given by more general

(coherent) channels.

3.3 Necessary conditions for approximate quantum error-detection

Here we give a partial converse to corollary 3.4, which shows that a condition of the

form (3.6) is indeed necessary for approximate quantum error-detection.

Lemma 3.5. Let ψ1, ψ2 ∈ (Cp)⊗n be two orthonormal states in the code space C and

F = FS ⊗ I[n]\S ∈ B((Cp)⊗d) an orthogonal projection acting on d sites S ⊂ [n] such that

|〈ψ1|F |ψ1〉 − 〈ψ2|F |ψ2〉| = η

for some η ∈ [0, 1], with 1− η � 1. Then any subspace C ⊂ (Cp)⊗n of dimension pk is not

an (ε, δ)[[n, k, d]]-code for

ε < 1− 10(1− η), and

δ < η2 .

Proof. Let

Fj,k := 〈ψj |F |ψk〉 for j, k ∈ {1, 2} .

By choosing the phase of |ψ1〉 appropriately, we may assume that F1,2 ≥ 0. Note that

F1,2 = F2,1 ≤ ‖Fψ2‖ =
√
〈ψ2|F |ψ2〉 by the Cauchy-Schwarz inequality and because F is a

projection. Let us denote the entries of F by

F =

(
p r

r q

)

where q ∈ [0, 1 − η], p = q + η, and r ∈ [0,
√
q]. Let us define a CPTP map N of the

form (3.5) by

N (ρ) = eiπFρe−iπF where F = FS ⊗ I[n]\S .

Let P̂ =
∑2

j=1 |ψj〉〈ψj |. Consider the normalized vector |Ψ〉 = 1√
2
(|ψ1〉+ |ψ2〉). Then

P̂N (|Ψ〉〈Ψ|)P̂ =
1

2

∑
i,j,k,`

Wk,iW`,j |ψk〉〈ψ`| , (3.7)
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where

Wj,k := 〈ψj |eiπF |ψk〉 for j, k ∈ {1, 2} .

Observe that since F 2 = F is a projection, we have eiπF = I−2F , thus the entries of W are

Wj,k = δj,k − 2Fj,k for j, k ∈ {1, 2} .

In particular, from (3.7) we obtain for the projection P onto C

tr (PN (|Ψ〉〈Ψ|)P ) ≥ tr
(
P̂N (|Ψ〉〈Ψ|)P̂

)
=

1

2

∑
i,j,k

Wk,iWk,j

= 1− 2p+ 2p2 − 2q + 2q2 + 4r(p+ q − 1 + r)

≥ (p− q)2 = η2 , (3.8)

where we used that the last expression is minimal (and equal to (p− q)2) for r = 1/2(1−
p− q). We also have

〈Ψ|N (|Ψ〉〈Ψ|)|Ψ〉 =
1

4

∑
i,j,k,`

Wk,iW`,j

= (2r + p+ q − 1)2

= (2(r + q)− (1− η))2 .

This expression is maximal for (r, q) each maximal (since both are non-negative), hence

for (r, q) = (
√

1− η, 1− η) and we obtain the upper bound

〈Ψ|N (|Ψ〉〈Ψ|)|Ψ〉 ≤ (1− η + 2
√

1− η)2 ≤ 9(1− η) ,

where we used that x ≤
√
x for x ∈ [0, 1]. This implies with (3.8) that for ρN ,P =

tr(PN (|Ψ〉〈Ψ|))−1 · PN (|Ψ〉〈Ψ|)P we have

〈Ψ|ρN ,P |Ψ〉 ≤
9(1− η)

η2
=

9(1− η)

(1− (1− η))2
≤ 10(1− η)

for 1− η � 1. Thus

1− 〈Ψ|ρN ,P |Ψ〉 ≥ 1− 10(1− η) .

With (3.8), this implies the claim.

We reformulate lemma 3.5, by stating it in terms of reduced density matrices, as

follows:

Lemma 3.6. Let ψ1, ψ2 ∈ (Cp)⊗n be two orthonormal vectors in a subspace C ⊂ (Cp)⊗n of

dimension pk. Fix a region R ⊂ [n] of size |R| = d and let ρj = tr[n]\R |ψj〉〈ψj |, j = 1, 2 be

the reduced density matrices on R. Then C is not a (ε, δ)[[n, k, d]]-error-detecting code for

ε < 1− 10ζ(ρ1, ρ2) , and

δ < (1− ζ(ρ1, ρ2))2 ,

where ζ(ρ1, ρ2) := max{rank ρ1, rank ρ2}2 · tr(ρ1ρ2).
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Proof. By definition of the trace distance, the projection F onto the positive part of ρ1−ρ2

satisfies

η :=
1

2
‖ρ1 − ρ2‖1 = tr(F (ρ1 − ρ2)) .

With the inequality ‖A‖1 ≤
√

rank(A)‖A‖F we get the bound

F (ρ1, ρ2) = ‖√ρ1
√
ρ2‖21 ≤ D2‖√ρ1

√
ρ2‖2F = D2 tr(ρ1ρ2)

on the fidelity of ρ1 and ρ2, where D = rank(
√
ρ1
√
ρ2) ≤ max{rank ρ1, rank ρ2}. Inserting

this into the inequality 1
2‖ρ1 − ρ2‖1 ≥ 1− F (ρ1, ρ2) yields

η ≥ 1−max{rank ρ1, rank ρ2}2 · tr(ρ1ρ2) .

The claim then follows from lemma 3.5 and the fact that if C is not an (ε, δ)[[n, k, d]]-code,

then it is not an (ε′, δ′)[[n, k, d]]-code for any δ′ ≤ δ and ε′ ≤ ε.

We will use lemma 3.6 below to establish our no-go result for codes based on injective

MPS with open boundary conditions.

4 On expectation values of local operators in MPS

Key to our analysis are expectation values of local observables in MPS, and more generally,

matrix elements of local operators with respect to different MPS. These directly determine

whether or not the considered subspace satisfies the approximate quantum error-detection

conditions. To study these quantities, we first review the terminology of transfer operators

(and, in particular, injective MPS) in section 4.1. In section 4.2, we establish bounds on the

matrix elements and the norms of transfer operators. These will subsequently be applied

in all our derivations.

4.1 Review of matrix product states

A matrix product state (or MPS) of bond dimension D is a state |Ψ〉 on (Cp)⊗n which is

parametrized by a collection of D ×D matrices. In this paper, we focus on uniform, site-

independent MPS. Such a state is fully specified by a family A = {Aj}pj=1 of D×D matrices

describing the “bulk properties” of the state, together with a “boundary condition” matrix

X ∈ B(CD). We write |Ψ〉 = |Ψ(A,X, n)〉 for such a state, where we often suppress the

defining parameters (A,X, n) for brevity.

Written in the standard computational basis, the state |Ψ(A,X, n)〉 is expressed as

|Ψ〉 =
∑

i1,...,in∈[p]

tr (Ai1 · · ·AinX) |i1 · · · in〉 (4.1)

for a family {Aj}pj=1 ⊂ B(CD) of matrices. The number of sites n ∈ N is called the system

size, and each site is of local dimension p ∈ N, which is called the physical dimension of

the system. The parameter D ∈ N is called the bond, or virtual, dimension. This state

can be represented graphically as a tensor network as in figure 1.
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Figure 1. This figure illustrates an MPS with n = 3 physical spins, defined in terms of a family

{Aj}pj=1 of matrices and a matrix X.

Note that the family of matrices A = {Aj}pj=1 of a site-independent MPS equivalently

defines a three-index tensor (Aj)αβ with one “physical” (j) and two “virtual” (α, β) indices.

We call this the local MPS tensor associated to |Ψ(A,X, n)〉.
The matrices {Aj}pj=1 defining a site-independent MPS |Ψ(A,X, n)〉 give rise to a

completely positive (CP) linear map E : B(CD)→ B(CD) which acts on Y ∈ B(CD) by

E(Y ) =

p∑
i=1

AiY A
†
i . (4.2)

Without loss of generality (by suitably normalizing the matrices {Aj}pj=1), we assume

that E has spectral radius 1. This implies that E has a positive semi-definite fixed point

r ∈ B(CD) by the Perron-Frobenius Theorem, see [73, theorem 2.5]. We say that the

MPS |Ψ(A,X, n)〉 is injective2 if the associated map E is primitive, i.e., if the fixed-point r

is positive definite (and not just positive semi-definite), and if the eigenvalue 1 associated

to r is the only eigenvalue on the unit circle, including multiplicity [75, theorem 6.7].

From expression (4.1), we can see that there is a gauge freedom of the form

Ãj = P−1AjP, X̃ = P−1XP, for j = 1, . . . , p, (4.3)

for every invertible matrix P ∈ GL(CD), for which |Ψ(A,X, n)〉 = |Ψ(Ã, X̃, n)〉. Given an

injective MPS, the defining tensors can be brought into a canonical form by exploiting this

gauge freedom in the definition of the MPS.3

One proceeds as follows: given an injective MPS, let r denote the unique fixed-point

of the transfer operator E . We can apply the gauge freedom (4.3) with P =
√
r to obtain

an equivalent MPS description by matrices {Ãj := r−1/2Ajr
1/2}pj=1, where the associated

map Ẽ is again primitive with spectral radius 1, but now with the identity operator r̃ = ICD

as the unique fixed-point.

2Injective MPS are known to be “generic”. More precisely, consider the space CD ⊗ CD ⊗ Cp of all

defining tensors with physical dimension p and bond dimension D. Then the set of defining tensors with a

primitive transfer operator forms an open, co-measure zero set. The definition of injective that we use here

differs from the one commonly used in the literature (cf. [29]), but is ultimately equivalent. For a proof of

equivalence, see definition 8, lemma 6, and theorem 18 of [74].
3The canonical form holds for non-injective MPS as well, see [29]. We only consider the injective case

here.
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Similarly, one can show that the adjoint

E†(Y ) =

p∑
i=1

A†iY Ai

of a primitive map E is also primitive.4 Since the spectrum of E† is given by spec(E†) =

spec(E), this implies that the map E† has a unique positive fixed-point ` with eigenvalue 1,

with all other eigenvalues having magnitude less than 1.

Now, let ˜̀denote the unique fixed-point of the previously defined Ẽ . Since ˜̀ is positive

definite, it is unitarily diagonalizable:

˜̀= UΛU †,

with U being a unitary matrix, and Λ being a diagonal matrix with all diagonal entries

positive. Using the gauge freedom (4.3) in the form

Ãj 7→ ˜̃Aj = U †ÃjU for j = 1, . . . , p ,

we obtain an equivalent MPS description such that the associated channel ˜̃E† has a fixed-

point given by a positive definite diagonal matrix Λ. We may without loss of generality

take Λ to be normalized as tr(Λ) = 1. It is also easy to check that the identity operator

ID remains the unique fixed-point of ˜̃E .

In summary, given an injective MPS with associated map E , one may, by using the

gauge freedom, assume without loss of generality that:

(i) The unique fixed-point r of E is equal to the identity, i.e., r = ICD .

(ii) The unique fixed-point ` of E† is given by a positive definite diagonal matrix ` = Λ,

normalized so that tr(Λ) = 1.

An MPS with defining tensors A satisfying these two properties above is said to be in

canonical form.

In the following, after fixing a standard orthonormal basis {|α〉}Dα=1 of CD, we identify

elements X ∈ B(CD) with vectors |X〉〉 ∈ CD ⊗ CD via the vectorization isomorphism

X 7→ |X〉〉 := (XT ⊗ I)

D∑
α=1

|α〉 ⊗ |α〉 =

D∑
α,β=1

Xα,β |β〉 ⊗ |α〉,

where X =
∑D

α,β=1Xα,β |α〉〈β|. It is easy to verify that 〈〈X|Y 〉〉 = tr(X†Y ), i.e., the stan-

dard inner product on CD⊗CD directly corresponds to the Hilbert-Schmidt inner product

of operators in B(CD) under this identification. Furthermore, under this isomorphism, a

4Note that the adjoint is taken with respect to the Hilbert-Schmidt inner product on B(CD). One way

to see that the adjoint of a primitive map is primitive is to note that an equivalent definition for primitivity

given in [75, theorem 6.7(2)] is in terms of irreducible maps. A map is irreducible if and only if its adjoint

is irreducible (see the remarks in [75] after theorem 6.2). This in turn means that a map is primitive if and

only if its adjoint is primitive.
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super-operator E : B(CD) → B(CD) becomes a linear map E : CD ⊗ CD → CD ⊗ CD

defined by

|E(X)〉〉 = E|X〉〉

for all X ∈ B(CD). The matrix E is simply the matrix representation of E , thus E has the

same spectrum as E . Explicitly, for a map of the form (4.2), it is given by

E =

p∑
i=1

Ai ⊗Ai . (4.4)

The fixed-point equations for a fixed-point r of E and a fixed-point ` of E† become

〈〈`|E = 〈〈`| and E|r〉〉 = |r〉〉 , (4.5)

i.e., the corresponding vectors are left and right eigenvectors of E, respectively.

For a site-independent MPS |Ψ(A,X, n)〉, defined by matrices {Aj}pj=1, we call the as-

sociated matrix E (cf. (4.4)) the transfer matrix. Many key properties of a site-independent

MPS are captured by its transfer matrix. For example, the normalization of the state is

given by

‖Ψ‖2 = 〈Ψ|Ψ〉 = tr(En(X ⊗X)) .

If the MPS is injective, then, according to (i)–(ii), it has a Jordan decomposition of the form

E = |I〉〉〈〈Λ| ⊕ Ẽ.

In this expression, |I〉〉〈〈Λ| is the (1-dimensional) Jordan block corresponding to eigenvalue 1,

whereas Ẽ is a direct sum of Jordan blocks with eigenvalues of modulus less than 1. The sec-

ond largest eigenvalue λ2 of E has a direct interpretation in terms of the correlation length ξ

of the state, which determines two-point correlators |〈σjσj′〉− 〈σj〉 · 〈σj′〉| ∼ e−|j−j
′|/ξ. The

latter is given by ξ = log(1/λ2).

For an injective MPS, the fact that |I〉〉 is the unique right-eigenvector of E with

eigenvalue 1 implies the normalization condition

〈〈Λ|I〉〉 = tr(Λ) = 1 . (4.6)

We will represent these identities diagrammatically, which is convenient for later reference.

The matrix Λ will be shown by a square box, the identity matrix corresponds to a straight

line. That is, the normalization condition (4.6) takes the form

and the left and right eigenvalue equations (4.5)
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Figure 2. The transfer operator E, as well as EZ for Z ∈ B(Cp), and EF for F ∈ (Cp)⊗3.

Figure 3. The product EZ1⊗Z2
= EZ1

EZ2
of two transfer operators. Left-multiplication by an

operator corresponds to attaching the corresponding diagram on the left.

4.2 Transfer matrix techniques

Here we establish some essential statements for the analysis of transfer operators. In

section 4.2.1, we introduce generalized (non-standard) transfer operators: these can be

used to express the matrix elements of the form 〈Ψ|F |Ψ′〉 of local operators F with respect

to pairs of MPS (Ψ,Ψ′). In section 4.2.2, we establish bounds on the norm of such operators.

Relevant quantities appearing in these bounds are the second largest eigenvalue λ2 of the

transfer matrix, as well as the sizes of its Jordan blocks.

4.2.1 More general and mixed transfer operators

Consider a single-site operator Z ∈ B(Cp). The generalized transfer matrix EZ ∈ B(CD ⊗
CD) is defined as

EZ =
∑
n,m

〈m|Z|n〉Am ⊗An . (4.7)

We further generalize this as follows: if Z1, . . . , Zd ∈ B(Cp), then EZ1⊗···⊗Zd ∈ B(CD⊗CD)

is the operator

EZ1⊗···⊗Zd = EZ1 · · ·EZd .

This definition extends by linearity to any operator F ∈ B((Cp)⊗d), and gives a correspond-

ing operator EF ∈ B(CD ⊗ CD). The tensor network diagrams for these definitions are

given in figure 2, and the composition of the corresponding maps is illustrated in figure 3.

In the following, we are interested in inner products 〈Ψ(A,X, n)|Ψ(B, Y, n)〉 of two

MPS, defined by local tensors A and B, with boundary matrices X and Y , which may

have different bond dimensions D1 and D2, respectively. To analyze these, it is convenient

to introduce an “overlap” transfer operator E = E(A,B) which now depends on both MPS

tensors A and B. First we define E ∈ B(CD1 ⊗ CD2) by

E =

p∑
m=1

Am ⊗Bm .
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The definition of EZ for Z ∈ B(Cp) is analogous to equation (4.7), but with appropriate

substitutions. We set

EZ =
∑
n,m

〈m|Z|n〉Am ⊗Bn .

Starting from this definition, the expression EF ∈ B(CD1⊗CD2) for F ∈ B((Cp)⊗d) is then

defined analogously as before.

4.2.2 Norm bounds on generalized transfer operators

A first key observation is that the (operator) norm of powers of any transfer operator

scales (at most) as a polynomial in the number of physical spins, with the degree of the

polynomial determined by the size of the largest Jordan block. We need these bounds

explicitly and start with the following simple bounds.

Below, we often consider families of parameters depending on the system size n, i.e.,

the total number of spins. We write m � h as a shorthand for a parameter m “being

sufficiently large” compared to another parameter h. More precisely, this signifies that we

assume that |h/m| → 0 for n → ∞, and that by a corresponding choice of a sufficiently

large n, the term |h/m| can be made sufficiently small for a given bound to hold. Oftentimes

h will in fact be constant, with m→∞ as n→∞.

Lemma 4.1. For m > h, the Frobenius norm of the m-th power (λI + N)m of a Jordan

block λI +N ∈ B(Ch) with eigenvalue λ, such that |λ| ≤ 1, and size h is bounded by

‖(λI +N)m‖F ≤ 3h3/2mh−1|λ|m−(h−1) . (4.8)

Furthermore,

‖ (λI +N)m ‖ ≤ 4mh−1 for m� h . (4.9)

Proof. For h = 0 the claim is trivial. Assume that h > 1. Because Nh = 0 and N r has

exactly h− r non-zero entries for r < h, we have

‖(λIh +N)m‖F ≤
h−1∑
r=0

(
m

r

)
|λ|m−r ‖N r‖F

≤ |λ|m · |λ|−(h−1)
h−1∑
r=0

(
m

r

)
(h− r)1/2

≤ h1/2|λ|m · |λ|−(h−1)
h−1∑
r=0

(
m

r

)
.

Since the right hand side is maximal for r = h − 1, and the binomial coefficient can be

bounded from above by
(
m
r

)
≤
(
em
r

)r ≤ 3 ·mr we obtain

h−1∑
r=0

(
m

r

)
≤ 3h ·mh−1 ,

hence, the first claim follows.
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For the second claim, recall that the entries of the m-th power of a Jordan block are

((λIh +N)m)p,q =

{(
m
q−p
)
λm+(p−q) if q ≥ p

0 otherwise
(4.10)

for p, q ∈ [h]. This means that if |λ| = 1, the maximum matrix element | ((λIh +N)m)p,q | =(
m
h−1

)
is attained for (p, q) = (1, h). Using the Cauchy-Schwarz inequality, it is straightfor-

ward to check that

‖ (λI +N)m ‖ ≤ hmax
p,q
| (λI +N)mp,q | = h ·

(
m

h− 1

)
=

h

(h− 1)!

m!

(m− (h− 1))!
.

Since h
(h−1)! ≤ 2 for h ∈ N and

m!

(m− (h− 1))!
= mh−1(1 +O(h/m)) ≤ 2mh−1 for m� h ,

the claim follows.

Now, we apply lemma 4.1 to (standard and mixed) transfer operators. It is convenient

to state these bounds as follows. The first two statements are about the scaling of the

norms of powers of E; the last statement is about the magnitude of matrix elements in

powers of E.

Lemma 4.2. Let ρ(E) denote the spectral radius of a matrix E ∈ B(CD1 ⊗ CD2).

(i) Suppose ρ(E) ≤ 1. Let h∗ be the size of the largest Jordan block(s) of E. Then

‖Em‖ ≤ 4mh−1 for m� h .

(ii) If ρ(E) < 1, then

‖Em‖F ≤ ρ(E)m/2 for m� D1D2 .

We will often use ‖Em‖F ≤ 1 as a coarse bound.

(iii) Suppose that ρ(E) = 1. Let h∗ denote the size of the largest Jordan block(s) in E.

For p, q ∈ [D1D2], let (Em)p,q denote the matrix element of Em with respect to the

standard computational basis {|p〉}D1D2
p=1 . Then the following holds: for all p, q ∈

[D1D2], there is a constant cp,q with cp,q = O(1) as m→∞ and some ` ∈ {1, . . . , h∗}
such that

|(Em)p,q| = cm`−1(1 +O(m−1)) .

Proof. For λ ∈ spec(E), let us denote by λIh(λ) +Nh(λ) the associated Jordan block, where

h(λ) is its size. Then

‖Em‖ = max
λ∈spec(E)

‖(λIh(λ) +Nh(λ))
m‖ ≤ max

λ∈spec(E)
‖(λIh(λ) +Nh(λ))

m‖F

where we assumed that m� h∗ ≥ h(λ), |λ| ≤ 1 and (4.9). This shows claim (i).
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Claim (ii) immediately follows from (4.8) and the observation that mD1D2−1ρ(E)m =

O(ρ(E)m/2).

For the proof of statement (iii), observe that matrix elements (4.10) of a Jordan block

(matrix) with eigenvalue λ (with |λ| = 1) of size h scale as

∣∣((λI +N)m)p,q
∣∣ =

1

(q − p)!
m!

(m− (q − p))!
=

1

(q − p)!
mq−p (1 +O(1/m))

for q > p and are constant otherwise. Because q − p ∈ {1, . . . , h − 1} when q > p, this is

of the form m`(1 + O(1/m)) for some ` ∈ [h − 1]. Since Em is similar (as a matrix) to a

direct sum of such powers of Jordan blocks, and the form of this scaling does not change

under linear combination of matrix coefficients, the claim follows.

Now let us consider the case where E = |`〉〉〈〈r| ⊕ Ẽ is the transfer operator of an

injective MPS, normalized with maximum eigenvalue 1. Let λ2 < 1 denote the second

largest eigenvalue. Without loss of generality, we can take the MPS to be in canonical

form, so that E has a unique right fixed-point given by the identity matrix I and a unique

left fixed-point given by some positive-definite diagonal matrix Λ with unit trace. We can

then write the Jordan decomposition of the transfer matrix as

E = |I〉〉〈〈Λ| ⊕ Ẽ , (4.11)

where |I〉〉 and |Λ〉〉 denotes the vectorization of I and Λ respectively, and where Ẽ denotes

the remaining Jordan blocks of E. Note that powers of E can then be expressed as

Em = |I〉〉〈〈Λ| ⊕ Ẽm .

We can bound the Frobenius norm of the transfer matrix as

‖Em‖2F = ‖|I〉〉〈〈Λ| ⊕ Ẽm‖2F = tr(I) tr(Λ2) + ‖Ẽm‖2F ≤ D + ‖Ẽm‖2F ,

where tr(I) = D and tr(Λ2) ≤ tr(Λ)2 = 1. In particular, since ρ(Ẽ) = λ2, we obtain from

lemma 4.2(ii) that

‖Ẽm‖F ≤ λm/22 for m� D . (4.12)

This implies the following statement:

Lemma 4.3. The transfer operator E of an injective MPS satisfies

‖Em‖F ≤
√
D + 1 for m� D. (4.13)

We also need a bound on the norm ‖E†F (ψ1 ⊗ ψ2)‖, where E is a mixed transfer

operator, F ∈ B((Cp)⊗d) is an operator acting on d sites, and where ψj ∈ CDj for j = 1, 2.
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Lemma 4.4. Let E1 = E(A) and E2 = E(B) be the transfer operators associated with

the tensors A and B, respectively, with bond dimensions D1 and D2. Let E = E(A,B) ∈
B(CD1 ⊗ CD2) be the combined transfer operator. Let ψ1 ∈ CD1 and ψ2 ∈ CD2 be unit

vectors. Then

‖(EF )†(ψ1 ⊗ ψ2)‖ ≤ ‖F‖
√
‖Ed1‖ · ‖Ed2‖ , (4.14)

‖EF (ψ1 ⊗ ψ2)‖ ≤ ‖F‖
√
‖Ed1‖ · ‖Ed2‖ , (4.15)

‖EF ‖F ≤ D1D2‖F‖
√
‖Ed1‖ · ‖Ed2‖ , (4.16)

for all F ∈ B((Cp)⊗d).

Proof. Writing matrix elements in the computational basis as

Fj1···jd,i1···id := 〈j1 · · · jd|F |i1 · · · id〉,

we have

EF =
∑

(i1,...,id),(j1,...,jd)

Fj1···jd,i1···id(Aj1 ⊗Bj1)(Aj2 ⊗Bj2) · · · (Ajd ⊗Bjd).

Therefore,

(EF )† =
∑

(i1,...,id),(j1,...,jd)

Fj1···jd,i1···id(A
†
jd
⊗B†jd) · · · (A

†
j2
⊗B†j2)(A†j1 ⊗B

†
j1

)

=
∑

(i1,...,id),(j1,...,jd)

(πFπ†)jd···j1,id···i1(A†jd ⊗B
†
jd

) · · · (A†j2 ⊗B
†
j2

)(A†j1 ⊗B
†
j1

) ,

where π is the permutation which maps the j-th factor in the tensor product (Cp)⊗n to the

(n− j+ 1)-th factor, and where F is obtained by complex conjugating the matrix elements

in the computational basis. This means that

(EF )† = E†
πFπ†

, (4.17)

with E† being the mixed transfer operator E† = E(A†, B†) obtained by replacing each Aj
respectively Bj with its adjoint.

Now consider

‖(EF )†(ψ1 ⊗ ψ2)‖2 = (〈ψ1| ⊗ 〈ψ2|)EF (EF )†(|ψ1〉 ⊗ |ψ2〉)

= (〈ψ1| ⊗ 〈ψ2|)EFE†πFπ†(|ψ1〉 ⊗ |ψ2〉) .

This can be represented diagrammatically as

‖(EF )†(ψ1 ⊗ ψ2)‖2 =
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In particular, we have

‖(EF )†(ψ1 ⊗ ψ2)‖2 = 〈χ|(F ⊗ I⊗d)(I⊗d ⊗ πFπ†)|ϕ〉 , (4.18)

where ϕ, χ ∈ (Cp)⊗2d are defined as

|φ〉 = ,

|χ〉 = .

It is straightforward to check that

‖χ‖2 = (〈ψ1| ⊗ 〈ψ1|)Ed1(E†1)d(|ψ1〉 ⊗ |ψ1〉) ,

‖ϕ‖2 = (〈ψ2| ⊗ 〈ψ2|)Ed2(E†2)d(|ψ2〉 ⊗ |ψ2〉) .

Since ‖(E†j )d‖ = ‖Edj ‖ for j = 1, 2, it follows with the submultiplicativity of the operator

norm that

‖χ‖2 ≤ ‖Ed1‖2 ,
‖ϕ‖2 ≤ ‖Ed2‖2 . (4.19)

Applying the Cauchy-Schwarz inequality to (4.18) yields

‖(EF )†(ψ1 ⊗ ψ2)‖2 ≤ ‖(F † ⊗ I⊗d)χ‖ · ‖(I⊗d ⊗ πFπ†)ϕ‖
≤ ‖F‖2 · ‖χ‖ · ‖ϕ‖ ,

where we used the fact that the operator norm satisfies ‖F †‖=‖F‖=‖F‖ and ‖I⊗A‖=‖A‖.
The claim (4.14) follows from this and (4.19).

The claim (4.15) follows analogously by using equation (4.17). Finally, the claim (4.16)

follows from (4.15) and

‖EF ‖2 =
∑

α1,α2∈[D1]

∑
β1,β2∈[D2]

|(〈α1| ⊗ 〈β1|)EF (|α2〉 ⊗ |β2〉)|2

≤
∑

α1,α2∈[D1]

∑
β1,β2∈[D2]

‖EF (|α2〉 ⊗ |β2〉)‖2

≤ D2
1D

2
2 max
α,β
‖EF (|α2〉 ⊗ |β2〉)‖2 ,

where we employed the orthonormal basis {|α〉}α∈[D1] and {|β〉}β∈[D2] for CD1 and CD2 ,

respectively, and applied the Cauchy-Schwarz inequality.
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The main result of this section is the following upper bound on the matrix elements

of geometrically d-local operators with respect to two MPS.

Theorem 4.5. Let |Ψ1〉 = |Ψ(A1, X1, n)〉, |Ψ2〉 = |Ψ(A2, X2, n)〉 ∈ (Cp)⊗n be two MPS

with bond dimensions D1 and D2, where

Xj = |ϕj〉〈ψj |, with ‖ϕj‖ = ‖ψj‖ = 1 for j = 1, 2 ,

are rank-one operators. Let E = E(A1, A2) ∈ B(CD1 ⊗ CD2) denote the combined transfer

operator defined by the MPS tensors A1 and A2, h∗j the size of the largest Jordan block of

Ej = E(Aj) for j = 1, 2, and h∗ the size of the largest Jordan block of E = E(A1, A2).

Assume that the spectral radii ρ(E), ρ(E1), and ρ(E2) are contained in [0, 1]. Then, for

any F ∈ B((Cp)⊗d), we have

|〈Ψ1|(F ⊗ I(Cp)⊗n−d)|Ψ2〉| ≤ 16 · ‖F‖ · d(h∗1+h∗2−2)/2(n− d)h
∗−1

for d� D1, D2 and (n− d)� D1D2.

Proof. The matrix elements α = 〈Ψ1|(F ⊗ I(Cp)⊗n−d)|Ψ2〉 of interest can be written as

α = (〈ψ1| ⊗ 〈ψ2|)EFEn−d (|ϕ1〉 ⊗ |ϕ2〉) .

By the Cauchy-Schwarz inequality, we have

|α| ≤ ‖E†F (|ψ1〉 ⊗ |ψ2〉)‖ · ‖En−d(|ϕ1〉 ⊗ |ϕ2〉‖

≤ ‖F‖
√
‖Ed1‖ · ‖Ed2‖ · ‖E

n−d‖ ,

by the definition of the operator norm and lemma 4.4. Then, the claim follows from

lemma 4.2(i), which provides the bounds

‖Edj ‖ ≤ 4dh
∗
j−1 for j = 1, 2 ,

‖En−d‖ ≤ 4(n− d)h
∗−1

by our assumptions : ρ(Ej) ∈ [0, 1], ρ(E) ∈ [0, 1], and d� Dj ≥ h∗j for j = 1, 2, as well as

n− d� D1D2 ≥ h∗.

5 No-go theorem: degenerate ground spaces of gapped Hamiltonians are

constant-distance AQEDC

In this section we prove a no-go result regarding the error-detection performance of the

ground spaces of local gapped Hamiltonians: their distance can be no more than constant.

We prove this result by employing the necessary condition for approximate error-detection

from lemma 3.6 for the code subspaces generated by varying the boundary conditions of an

(open-boundary) injective MPS. Note that, given a translation invariant MPS with periodic

boundary conditions and bond dimension D, there exists a local gapped Hamiltonian, called

the parent Hamiltonian, with a unique ground state being the MPS [29].
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We need the following bounds which follow from the orthogonality and normalization

of states in such codes.

Lemma 5.1. Let A be the MPS tensor of an injective MPS with bond dimension D, and

let X,Y ∈ B(CD) be such that the states |ΨX〉 = |Ψ(A,X, n)〉 and |ΨY 〉 = |Ψ(A, Y, n)〉
are normalized and orthogonal. Let us write the transfer operator as E = |I〉〉〈〈Λ| ⊕ Ẽ

(cf. equation (4.11)). Assume n� D. Then

(i) The Frobenius norm of X (and similarly the norm of Y ) is bounded by

‖X‖F = O(1) .

(ii) We have

|〈〈Λ|(X ⊗ Y )|I〉〉| = O(λ
n/2
2 ) ,

|〈〈Λ|(Y ⊗X)|I〉〉| = O(λ
n/2
2 ) .

In the following proofs, we repeatedly use the inequality

| tr(M1 . . .Mk)| ≤ ‖M1‖F · ‖M2‖F · · · ‖Mk‖F (5.1)

for D×D-matrices {Mj}kj=1. Note that the inequality (5.1) is simply the Cauchy-Schwarz

inequality for k = 2. For k > 2, the inequality follows from the inequality for k = 2 and

the submultiplicativity of the Frobenius-norm because

| tr(M1 . . .Mk)| ≤ ‖M1‖F · ‖M2 · · ·Mk‖F ≤ ‖M1‖F · ‖M2‖F · · · ‖Mk‖F .

Proof. The proof of (i) follows from the fact that the state ΨX is normalized, i.e.,

1 = ‖ΨX‖2

= tr
(
En(X ⊗X)

)
= tr

(
|I〉〉〈〈Λ|(X ⊗X)

)
+ tr(Ẽn(X ⊗X))

= tr(ΛXX†) + tr(Ẽn(X ⊗X))

≥ λmin(Λ) · ‖X‖2F + tr(Ẽn(X ⊗X)) ,

where λmin(Λ) denotes the smallest eigenvalue of Λ, and we make use of the fact that XX†

is positive with trace tr(XX†) = ‖X‖2F . Since

| tr(Ẽn(X ⊗X))| ≤ ‖Ẽn‖F · ‖X ⊗X‖F ≤ λn/22 ‖X‖
2
F for n� D

by (5.1) and (4.12), we conclude

‖X‖2F ≤
(
λmin(Λ)− λn/22

)−1
= λmin(Λ)−1(1 +O(λ

n/2
2 )) .

Then the claim (i) follows since λmin(Λ)−1 is a constant.
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Now, consider the first inequality in (ii) (the bound for |〈〈Λ|(Y ⊗ X)|I〉〉| is shown

analogously). Using the orthogonality of the states |ΨX〉 and |ΨY 〉, we obtain

0 = 〈ΨX |ΨY 〉 = tr
(
En(X ⊗ Y )

)
= tr

(
(|I〉〉〈〈Λ|+ Ẽn)(X ⊗ Y )

)
= 〈〈Λ|(X ⊗ Y )|I〉〉+ tr(Ẽn(X ⊗ Y ))

hence

|〈〈Λ|(X ⊗ Y )|I〉〉| = | tr(Ẽn(X ⊗ Y ))| ≤ ‖Ẽ‖F · ‖X ⊗ Y ‖F
≤ λn/22 ‖X‖F · ‖Y ‖F ,

using (4.12). The claim (ii) then follows from (i).

With the following lemma, we prove an upper bound on the overlap of the reduced

density matrices ρX and ρY , supported on 2∆-sites surrounding the boundary, of the global

states |ΨX〉 and |ΨY 〉, respectively.

Lemma 5.2. Let A be an MPS tensor of an injective MPS with bond dimension D, and let

X,Y ∈ B((Cp)⊗n) be such that the states |ΨX〉 = |Ψ(A,X, n)〉 and |ΨY 〉 = |Ψ(A, Y, n)〉 are

normalized and orthogonal. Let ∆� D. Let S = {1, 2, . . . ,∆}∪{n−∆+1, n−∆+2, . . . , n}
be the subset of 2∆ spins consisting of ∆ systems at the left and ∆ systems at the right

boundary. Let ρX = tr[n]\S |ΨX〉〈ΨX | and ρY = tr[n]\S |ΨY 〉〈ΨY | be the reduced density

operators on these subsystems. Then

tr(ρXρY ) ≤ cλ∆/2
2

where λ2 is the second largest eigenvalue of the transfer operator E = E(A) and where c is

a constant depending only on the minimal eigenvalue of E and the bond dimension D.

Proof. For convenience, let us relabel the systems as

(L1, . . . , L∆) = (1, 2, . . . ,∆)

(M1, . . . ,Mn−2∆) = (∆ + 1,∆ + 2, . . . , n−∆)

(R1, . . . , R∆) = (n−∆ + 1, n−∆ + 2, . . . , n)

(5.2)

indicating their location on the left, in the middle, and on the right, respectively. For the

tensor productHA⊗HB of two isomorphic Hilbert spaces, we denote by FAB ∈ B(HA⊗HB)

the flip-operator which swaps the two systems. The following expressions are visualized in

figure 4. We have

tr(ρXρY ) = tr((ρL1···L∆R1···R∆
X ⊗ ρL

′
1···L′∆R

′
1···R′∆

Y )(FLL′ ⊗ FRR′)) , where

FLL′ = FL1L′1
⊗ FL2L′2

⊗ · · · ⊗ FL∆L
′
∆
,

FRR′ = FR1R′1
⊗ FR2R′2

⊗ · · · ⊗ FR∆R
′
∆
.
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Figure 4. The two expressions in equation (5.3), where L, M and R are used to denote the sites

defined in (5.2).

Defining FMM ′ analogously, IMM ′ = IM1M ′1
⊗ · · · ⊗ IMn−2∆M

′
n−2∆

, and similarly ILL′ and

IRR′ , this can be rewritten (by the definition of the partial trace) as

tr(ρXρY ) = (〈ΨLMR
X | ⊗ 〈ΨL′M ′R′

Y |)(FLL′ ⊗ IMM ′ ⊗ FRR′)(|ΨLMR
X 〉 ⊗ |ΨL′M ′R′

Y 〉)

= (〈ΨLMR
X | ⊗ 〈ΨL′M ′R′

Y |)(ILL′ ⊗ FMM ′ ⊗ IRR′)(|ΨLMR
Y 〉 ⊗ |ΨL′M ′R′

X 〉) . (5.3)

In the last identity, we have used that F2 = I is the identity.

Reordering and regrouping the systems as

(L1L
′
1)(L2L

′
2) · · · (L∆L

′
∆)(M1M

′
1)(M2M

′
2) · · · (Mn−2∆M

′
n−2∆)(R1R

′
1)(R2R

′
2) · · · (R∆R

′
∆) ,

we observe that |ΨLMR
X 〉 ⊗ |ΨL′M ′R′

Y 〉 is an MPS with MPS tensor A ⊗ A and boundary

tensor X ⊗ Y and |ΨLMR
Y 〉 ⊗ |ΨL′M ′R′

X 〉 is an MPS with MPS tensor A⊗ A and boundary

tensor Y ⊗ X. Let us denote the virtual systems of the first MPS by V1V2, and those of

the second MPS by W1W2, such that the boundary tensors are XV1⊗Y V2 and Y W1⊗XW2

respectively. Let Ê = EV1W1 ⊗ EV2W2 be the associated transfer operator. Then we have

from (5.3)

tr(ρXρY ) = tr
(
Ê∆ÊF⊗n−2∆Ê∆

[
(X

V1 ⊗ Y V2)⊗ (Y W1 ⊗XW2)
])

. (5.4)
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Recall that E∆ = |I〉〉〈〈Λ| ⊕ Ẽ∆, where we have

‖Ẽ∆‖F ≤
√
D2 · ‖Ẽ∆‖ ≤ D · λ∆/2

2 for ∆� D ,

‖|I〉〉〈〈Λ|‖F = ‖|I〉〉‖2 · ‖|Λ〉〉‖2 ≤ D2 .

In the second line, we use the fact that ‖|Λ〉〉‖2 = tr(Λ†Λ) =
∑

i λi
2 ≤ 1 and ‖|I〉〉‖2 = D2.

Therefore, we have

E∆ =
∑

b∈{0,1}

Hb ,

where H0 = |I〉〉〈〈Λ| and H1 = Ẽ∆ satisfy

‖H0‖F ≤ D2 , and ‖H1‖F ≤ D · λ∆/2
2 for ∆� D . (5.5)

Note that

Ê∆ = E∆ ⊗ E∆ =
∑

b1,b2∈{0,1}

Hb1 ⊗Hb2 .

Inserting this into (5.4) gives a sum of 16 terms

tr(ρXρY ) ≤
∑

b1,b2,b3,b4∈{0,1}

|αb1,b2,b3,b4 | ,

where

αb1,b2,b3,b4 = tr
(

(HV1W1
b1

⊗HV2W2
b2

)ÊF⊗n−2∆(HV1W1
b3

⊗HV2W2
b4

)
[
(X

V1⊗Y V2)⊗(Y W1⊗XW2)
])
.

Consider the term with bj = 0 for all j ∈ {1, . . . , 4}. This is given by

α0,0,0,0 = tr

(
(|I〉〉〈〈Λ|V1W1 ⊗ |I〉〉〈〈Λ|V2W2)ÊF⊗n−2∆(|I〉〉〈〈Λ|V1W1 ⊗ |I〉〉〈〈Λ|V2W2)

·
[
(X

V1 ⊗ Y V2)⊗ (Y W1 ⊗XW2)
])

= 〈〈Λ|(X ⊗ Y )|I〉〉 · 〈〈Λ|(Ȳ ⊗X)|I〉〉 · (〈〈Λ| ⊗ 〈〈Λ|)ÊF⊗n−2∆(|I〉〉 ⊗ |I〉〉) . (5.6)

By inserting this into (5.6) we get with lemma 5.1 (ii) and the Cauchy-Schwarz inequality

|α0,0,0,0| = O(λn2 ) ·
∣∣∣(〈〈Λ| ⊗ 〈〈Λ|)ÊF⊗n−2∆(|I〉〉 ⊗ |I〉〉

)∣∣∣
= O(λn2 ) · ‖|Λ〉〉 ⊗ |Λ〉〉‖ · ‖ÊF⊗n−2∆(|I〉〉 ⊗ |I〉〉

)
‖ .

With lemma 4.4 this can further be bounded as

|α0,0,0,0| = O(λn2 ) · ‖|Λ〉〉‖2 · ‖|I〉〉‖2 · ‖F⊗n−2∆‖ · ‖En−2∆‖ .
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Since ‖F‖ = 1 and ‖|Λ〉〉‖ = O(1), ‖|I〉〉‖ = O(1) and ‖En−2∆‖ = O(1) (cf. (4.13)), we

conclude that

|α0,0,0,0| = O(λn2 ) . (5.7)

The remaining terms |αb1,b2,b3,b4 | with (b1, b2, b3, b4) 6= (0, 0, 0, 0) can be bounded as follows

using inequality (5.1): we have

|αb1,b2,b3,b4 | =
∣∣ tr((Hb1 ⊗Hb2)ÊF⊗N−2∆(Hb3 ⊗Hb4)

[
(X ⊗ Y )⊗ (Y ⊗X)

]) ∣∣
≤ ‖Hb1 ⊗Hb2‖F · ‖EF⊗N−2n‖F · ‖Hb3 ⊗Hb4‖F · ‖X ⊗ Y ⊗ Y ⊗X‖F

= ‖X‖2F · ‖Y ‖2F ·

 4∏
j=1

‖Hbj‖F

 · ‖EF⊗n−2∆‖F

= O(λ
∆/2
2 ) · ‖X‖2F · ‖Y ‖2F · ‖EF⊗n−2∆‖F ,

where we use (5.5) and the assumption that (b1, b2, b3, b4) 6= (0, 0, 0, 0). We use lemma 4.4

and (4.13) to get the upper bound ‖EF⊗n−2∆‖ ≤ D2‖F⊗n−2∆‖ · ‖En−D‖ = O(1). Thus

|αb1,b2,b3,b4 | = O(λ
∆/2
2 ) for (b1, b2, b3, b4) 6= (0, 0, 0, 0) . (5.8)

Combining (5.8) with (5.7), we conclude that

| tr(ρXρY )| ≤
∑

b1,b2,b3,b4∈{0,1}

|αb1,b2,b3,b4 | ≤ |α0,0,0,0|+ 15 max
(b1,b2,b3,b4) 6=(0,0,0,0)

|αb1,b2,b3,b4 |

= O(λ
∆/2
2 ) .

The claim follows from this.

Recall that we call (a family of subspaces) C ⊂ (Cp)⊗n an approximate error-detection

code if it is an (ε, δ)[[n, k, d]]-code with ε → 0 and δ → 0 for n → ∞. Our main result is

the following:

Theorem 5.3. Let C ⊂ (Cp)⊗n be an approximate error-detecting code generated from

a translation-invariant injective MPS of constant bond dimension D by varying boundary

conditions. Then the distance of C is constant.

Proof. Let C = Cn ⊂ (Cp)⊗n be a (family of) subspace(s) of dimension pk defined by an

MPS tensor A by choosing different boundary conditions, i.e.,

Cn = {|Ψ(A,X, n)〉 | X ∈ X} ⊂ (Cp)⊗n

for some (fixed) subspace X ⊂ B(CD). For the sake of contradiction, assume that Cn is an

(εn, δn)[[n, k, dn]]-code with

εn, δn → 0 and code distance dn →∞ for n→∞ . (5.9)

Let |ΨX〉 = |Ψ(A,X, n)〉, |ΨY 〉 = |Ψ(A, Y, n)〉 ∈ C be two orthonormal states defined by

choosing different boundary conditions X,Y ∈ X . From lemma 5.2, we may choose ∆
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sufficiently large such that the reduced density operators ρX , ρY on d sites surrounding the

boundary satisfies

tr(ρXρY ) ≤ cλd/42 for all d ≥ 2∆ . (5.10)

We note that ∆ only depends on the transfer operator and is independent of n. Fix any

constant ε, δ ∈ (0, 1) and choose some d ≥ 2∆ sufficiently large such that

ζ(ρX , ρY ) := cD2λ
d/4
2 ,

satisfies

ε < 1− 10ζ and δ < (1− ζ)2 . (5.11)

Since by assumption dn →∞, there exists some N0 ∈ N such that

dn > d for all n ≥ N0 . (5.12)

Combining (5.10), (5.11), and (5.12) with lemma 3.6, we conclude that Cn is not an

(ε, δ)[[n, k, dn]]-code for any n ≥ N0.

By assumption (5.9), there exists some N1 ∈ N such that

εn < ε and δn < δ for all n ≥ N1 .

Let us set N = max{N0, N1}. Then we obtain that Cn is not an (εn, δn)[[n, k, dn]]-code for

any n ≥ N , a contradiction.

In terms of the TQO-1 condition (cf. [58]), theorem 5.3 shows the absence of topological

order in 1D gapped systems. The theorem also tells us that we should not restrict our atten-

tion to the ground space of a local Hamiltonian when looking for quantum error-detecting

codes.5 In the following sections, we bypass this no-go result by extending our search

for codes to low-energy states. In particular, we show that single quasi-particle momen-

tum eigenstates of local gapped Hamiltonians and multi-particle excitations of the gapless

Heisenberg model constitute error-detecting codes. See sections 6 and 7, respectively.

6 AQEDC at low energies: the excitation ansatz

In this section, we employ tangent space methods for the matrix product state formalism,

i.e., the excitation ansatz [67, 77, 78], in order to show that quasi-particle momentum eigen-

states of local gapped Hamiltonians yield an error-detecting code with distance Ω(n1−ν)

for any ν ∈ (0, 1) and Ω(log n) encoded qubits.

In order to render the formalism accessible to an unfamiliar reader, we review the

definition of the excitation ansatz in section 6.1. We then develop the necessary calcu-

lational ingredients in order to prove the error-detection properties. In section 6.2, we

5Note that this conclusion is only valid for local gapped Hamiltonians in one dimension. When the

spatial dimension d ≥ 2, there are ground spaces that have topological order, e.g. Toric code, and even for

higher dimensions good quantum LDPC codes are shown to exist in the ground space of frustration free

Hamiltonians [76].
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compute the norm of the excitation ansatz states to lowest order. In section 6.3, we estab-

lish (norm) bounds on the transfer operators associated with the excitation ansatz. Then,

in section 6.4, we provide estimates on matrix elements of local operators with respect to

states appearing in the definition of the excitation ansatz states. Finally, in section 6.5, we

combine these results to obtain the parameters of quantum error-detecting codes based on

the excitation ansatz.6

6.1 MPS tangent space methods: the excitation ansatz

In [77], the MPS ansatz was generalized to a variational class of states which have non-zero

momentum. The resulting states are called the excitation ansatz. An excitation ansatz

state |Φp(B;A)〉 ∈ (Cp)⊗n is specified by two MPS tensors {Ai}pi=1 and {Bi}pi=1 of the

same bond and physical dimensions, together with a parameter p ∈ {2πk/n | k = 0, . . . , n}
indicating the momentum. It is defined as

|Φp(B;A)〉 = e−ip
n∑
j=1

eipj
∑

i1,...,in∈[p]

tr(Ai1 · · ·Aij−1BijAij+1 · · ·Ain)|i1 . . . in〉 . (6.1)

The definition of these states is illustrated in figure 5. Note that we allow the B tensors

themselves to depend on the momentum p, so we will sometimes write B(p) when we feel

the need to be explicit, and the notation |Φp(B;A)〉 should really be read as a short-hand

for |Φp(B(p);A)〉.
It is also useful to define the constituent “position space” states

|Φj,p(B;A)〉 =
∑

i1,...,in∈[p]

tr(Ai1 · · ·Aij−1BijAij+1 · · ·Ain)|i1 . . . in〉,

= , (6.2)

6A simple yet illustrative example of the excitation ansatz states is the following. Consider the n-fold

product state |0〉⊗n, the n-body W -state

|10 · · · 0〉+ · · ·+ |00 · · · 1〉√
n

,

as well as other W -like states with position dependent phase, such as

|10 · · · 0〉+ eip|01 · · · 0〉+ · · ·+ eip(n−1)|00 · · · 1〉√
n

.

Here p can be interpreted as the momentum of a single particle excitation. These states are the ground

state and first excited states with different momenta of the non-interacting Hamiltonian H = −
∑
i Zi.

One can represent them by a bond-dimension D = 2 non-injective MPS which is obtained by expressing

the excitation ansatz as a single MPS instead of a sum of injective MPS. One can also consider higher

(multi-particle) excitations, which can again be treated by using non-injective MPS.

We note that error-detecting properties of various subspaces of the low-energy space of this particular

simple non-interacting Hamiltonian can be studied either with or without the formalism of MPS. The

tangent space methods serve as a powerful tool that allow us to perform our error-detection analysis, not

only for the non-interacting cases, but also for the most general interacting Hamiltonians.
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Figure 5. This figure illustrates the excitation ansatz |Φp(B;A)〉 for n physical spins.

which is the state with a “single B(p) excitation” at site j. Note that we retain the p

dependence in the definition of these “position space” states since the B tensors themselves

are generally p dependent.

We call an excitation ansatz state |Φp(B;A)〉 injective if the transfer operator E(A)

associated with {Aj}pj=1 is primitive, which is the only case we consider in this work.

Denoting the transfer matrix associated with E(A) simply as E, it will also be useful to

define several other mixed transfer matrices as follows:

EB(p) =
∑D

j=1Aj ⊗Bj(p) = ,

E
B(p)

=
∑D

j=1Bj(p)⊗Aj = ,

E
B(p′)B(p)

=
∑D

j=1Bj(p
′)⊗Bj(p) = .

For brevity, we often suppress the dependence on A and B and simply write |Φp〉 ≡
|Φp(B;A)〉 when no confusion is possible.

In addition to the multiplicative gauge freedom (4.3), the excitation ansatz admits an

additional additive gauge freedom. Exploiting this additive gauge freedom, the following

statement can be shown (see [78, equation (154)]):

Lemma 6.1. Let |Φp(B;A)〉 be an injective excitation ansatz state and assume that A

is normalized such that the transfer operator has spectral radius 1. Let ` and r be the

corresponding left- and right- eigenvectors corresponding to eigenvalue 1. Assume p 6= 0.7

7We have made the p 6= 0 assumption here for simplicity. The gauge condition also holds for p = 0 in

the form 〈〈`|EB̃(p) = 〈〈`|E
B̃(p)

= O(λn2 ). All of the results presented below for p 6= 0 also hold for p = 0 up

to an exponentially small error.
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Then there exists a tensor B̃ such that |Φp(B;A)〉 = |Φp(B̃;A)〉, and such that

〈〈`|EB̃(p) = 0 and 〈〈`|E
B̃(p)

= 0 . (6.3)

For completeness, we give a proof of this statement in appendix A. Below, we assume

that all excitation ansatz states satisfy the gauge condition (6.3).

6.2 The norm of an excitation ansatz state

For a family of excitation ansatz states {|Φp(B;A)〉}p we define the constants

cpp′ = 〈〈`|E
B(p′)B(p)

|r〉〉 = .

We also write cp := cpp. These appear in the norm of the excitation ansatz states as follows:

Lemma 6.2. The norm of an excitation ansatz state |Φp(B;A)〉 ∈ (Cp)⊗n satisfies

‖Φp(B;A)‖ =
√
ncp +O(n3/2λ

n/6
2 ),

where λ2 is the second largest eigenvalue of the transfer matrix E.

Proof. Using the mixed transfer operators defined in (6.1), we can write the norm of the

state |Φp(B;A)〉 as a sum over pairs (j, j′) ∈ [n]2 satisfying j < j′, j = j′, and j > j′

respectively, as follows:

‖Φp(B;A)‖2 =
∑
j<j′

eip(j−j
′) tr

(
Ej−1EB(p)E

j′−j−1E
B(p)

En−j
′
)

+
∑
j>j′

eip(j−j
′) tr

(
Ej−1E

B(p)
Ej
′−j−1EB(p)E

n−j′
)

+
n∑
j=1

tr
(
Ej−1E

B(p)B(p)
En−j

)
. (6.4)

Consider an individual term tr
(
Ej−1EB(p)E

j′−j−1E
B(p)

En−j
′
)

in the first sum. By the

cyclicity of the trace, it can be expressed as

tr
(
Ej−1EB(p)E

j′−j−1E
B(p)

En−j
′
)

= tr
(
EB(p)E

∆−1E
B(p)

En−∆−1
)
,

where ∆ = j′ − j. Clearly, one of the terms ∆− 1 or n−∆− 1 must be lower bounded by

n/3. Assume that it is the first (the argument for the other case is analogous), i.e., that

∆− 1 > n/3 . (6.5)

Then we may substitute the Jordan decomposition of E in the form

E∆−1 = |r〉〉〈〈`| ⊕ Ẽ∆−1 ,
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which allows us to write

tr
(
Ej−1EB(p)E

j′−j−1E
B(p)

En−j
′
)

= tr
(
EB(p)|r〉〉〈〈`|EB(p)

En−∆−1
)

+ tr
(
EB(p)Ẽ

∆−1E
B(p)

En−∆−1
)
.

By the gauge condition (6.3), the first term vanishes. The magnitude of the second term

can be bounded by inequality (5.1), giving

tr
(
EB(p)Ẽ

∆−1E
B(p)

En−∆−1
)
≤ O(1) · ‖Ẽ∆−1‖F · ‖En−∆−1‖F .

Here we used the fact that ‖E
B(p)
‖F = O(1) and ‖EB(p)‖F = O(1). With (6.5) and

lemma 4.2(ii), we have ‖Ẽ∆−1‖F ≤ λn/62 and ‖En−∆−1‖F = O(1). We conclude that∣∣∣tr(Ej−1EB(p)E
j′−j−1E

B(p)
En−j

′
)∣∣∣ = O(λ

n/6
2 )

for all pairs (j, j′) with j < j′.

Identical reasoning gives us a bound of the form

tr
(
Ej−1E

B(p)
Ej
′−j−1EB(p)E

n−j′
)

= O(λ
n/6
2 )

for all pairs (j, j′) with j > j′. Inserting this into the sum (6.4), we obtain

‖Φp(B;A)‖2 =
n∑
j=1

tr
(
Ej−1E

B(p)B(p)
En−j

)
+O(n2 · λn/62 ) . (6.6)

By the cyclicity of the trace and the Jordan decomposition of E, we have

tr
(
Ej−1E

B(p)B(p)
En−j

)
= tr(E

B(p)B(p)
En−1)

= 〈〈`|E
B(p)B(p)

|r〉〉+ tr(E
B(p)B(p)

Ẽn−1)

= cp + tr(E
B(p)B(p)

Ẽn−1).

Again using inequality (5.1) and lemma 4.2(ii), we get∣∣∣tr(EB(p)B(p)
Ẽn−1)

∣∣∣ ≤ ‖EB(p)B(p)
‖F · ‖Ẽn−1‖F = O

(
λ

(n−1)/2
2

)
.

Inserting this into (6.6) and noting that λ
(n−1)/2
2 ≤ n · λn/62 gives us

‖Φp(B;A)‖2 = ncp +O(n2 · λn/6) = ncp(1 +O(n · λn/6)) .

Taking the square root yields the desired claim.
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6.3 Bounds on transfer operators associated with the excitation ansatz

For an operator F ∈ (Cp)⊗L, sites j, j′ ∈ [L] and momenta p, p′, let us define operators

on CD ⊗ CD by the diagrams

EF (j, p, j′, p′) = , and EF (j, p) = .

We also denote by E(j, p, j′, p′) the expression EI(j, p, j
′, p′).

We keep the dependence of EF on L implicit, since none of our computations will

explicitly depend on L. Similar to the bounds discussed in section 4.2.2, we require bounds

on the norm (respectively matrix elements) of these transfer operators. These are given by

the following:

Lemma 6.3. Let F ∈ (Cp)⊗L, j, j′ ∈ [L], and momenta p, p′ be arbitrary. Then we have

〈〈`|E(j, p, j′, p′)|r〉〉 = δj,j′cpp′ , (6.7)

and

|〈〈`|EF (j, p, j′, p′)|r〉〉| ≤ ‖F‖√cpcp′ , (6.8)

‖EF (j, p, j′, p′)‖F ≤ D2‖F‖
√
‖E

B(p)B(p)
‖F ‖EB(p′)B(p′)‖F , (6.9)

‖EF (j, p)‖F ≤ D2‖F‖
√
‖E

B(p)B(p)
‖F , (6.10)

‖EF ‖F ≤ D2‖F‖ . (6.11)

For the proof of lemma 6.3 (and other arguments below), we make repeated use of the

following states. Let L ∈ [n]. Define

|ΦL
j,p〉 = (6.12)

on CD ⊗ (Cp)⊗L ⊗ CD. Despite the similar notation, these states are not to be confused

with the “position space” states |Φj,p〉 introduced in equation (6.2). The key property of

the states |ΦL
j,p〉 is the following:

Lemma 6.4. The states (6.12) have inner product

〈ΦL
j′,p′ |ΦL

j,p〉 = δj,j′cpp′ , (6.13)

independently of the value of L.
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Proof. First, consider the case where j′ = j. Then we have

〈ΦL
j,p′ |ΦL

j,p〉 = 〈〈`|Ej−1E
B(p′)B(p)

EL−j |r〉〉 = 〈〈`|E
B(p′)B(p)

|r〉〉 = cpp′ ,

where we have used the fixed-point equations (4.5). That is, we have

〈ΦL
j,p′ |ΦL

j,p〉 = = .

In a similar fashion, we can compute, for j < j′,

〈ΦL
j′,p′ |ΦL

j,p〉 = 〈〈`|Ej−1EB(p)E
j′−jE

B(p′)E
L−j′ |r〉〉 = 〈〈`|EB(p)E

j′−jE
B(p′)|r〉〉 = 0,

where we have used the fixed-point equations (4.5) and the gauge condition (6.3). The

proof for j > j′ is analogous.

Proof of lemma 6.3. We first prove (6.8). The expression of interest can be written dia-

grammatically as

〈〈`|EF (j, p, j′, p′)|r〉〉 = = 〈ΦL
j′,p′ |(I ⊗ F ⊗ I)|ΦL

j,p〉 .

Equation (6.7) follows by setting F to be equal to the identity on (Cp)⊗L and using the

orthogonality relation (6.13). Furthermore, we have∣∣〈〈`|EF (j, p, j′, p′)|r〉〉
∣∣ =

∣∣〈ΦL
j′,p′ |(I ⊗ F ⊗ I)|ΦL

j,p〉
∣∣ ≤ ‖F‖ · ‖ΦL

j,p‖ · ‖ΦL
j′,p′‖.

The claim (6.8) then follows from (6.13).

Let us next prove (6.9). By the definition of the Frobenius norm ‖ · ‖F , we have

‖EF (j, p, j′, p′)‖2F =
D∑

α1,α2,β1,β2=1

∣∣(〈α1| ⊗ 〈α2|)EF (j, p, j′, p′)(|β1〉 ⊗ |β2〉)
∣∣2

where {|α〉}Dα=1 is an orthonormal basis of CD. The terms in the sum can be written

diagrammatically as

(〈α1| ⊗ 〈α2|)EF (j, p, j′, p′)(|β1〉 ⊗ |β2〉) = .
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Defining vectors

|Ψj,p(α, β)〉 = (6.14)

on (Cp)⊗L, we have

|(〈α1| ⊗ 〈α2|)EF (j, p, j′, p′)(|β1〉 ⊗ |β2〉)|2 = |〈Ψj′,p′(α1, β1)|F |Ψj,p(α2, β2)〉|2

≤ ‖F‖2 · ‖Ψj,p(α2, β2)‖2 · ‖Ψj′,p′(α1, β1)‖2 .

The norm of the vector (6.14) can be bounded as

‖Ψj,p(α, β)‖2 =

=
∣∣ tr(Ej−1E

B(p)B(p)
EL−j(|β〉〈α| ⊗ |β〉〈α|)

) ∣∣
≤ ‖E

B(p)B(p)
‖F · ‖Ej−1‖F · ‖EL−j‖F

≤ ‖E
B(p)B(p)

‖F .

In the first inequality, we have used (5.1), together with the fact that

‖|β〉〈α| ⊗ |β〉〈α|‖F = 1 .

In the second inequality, we have used lemma 4.2, along with the fact ρ(E) = 1. The

claim (6.9) follows from this.

With a completely analogous proof, we also have

‖EF (j, p)‖F ≤ D2‖F‖
√
‖E

B(p)B(p)
‖F , and ‖EF ‖F ≤ D2‖F‖,

which are claims (6.10) and (6.11).

6.4 Matrix elements of local operators in the excitation ansatz

6.4.1 Overview of the proof

Let us give a high-level overview of the argument used to establish our main technical result,

lemma 6.8. The latter gives estimates on matrix elements 〈φp′ |F |φp〉 of a d-local operator F

with respect to normalized excitation ansatz states |φp〉 and |φp′〉, with possibly different

momenta p and p′. More precisely, to apply the approximate Knill-Laflamme conditions

for approximate error-detection, we need to establish two kinds of bounds:

1. For p 6= p′ (i.e., the non-diagonal elements), our aim is to argue that |〈φp′ |F |φp〉|
vanishes as an inverse polynomial in n. This is ultimately a consequence of the fact

that in the Jordan decomposition E = |r〉〉〈〈`| ⊕ Ẽ of the transfer matrix, the sub-

dominant term Ẽ has norm decaying exponentially with a rate determined by the

second largest eigenvalue λ2.
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2. For the diagonal elements, our aim is to argue that 〈φp|F |φp〉 is almost independent

of p, that is, we want to show |〈φp|F |φp〉 − 〈φp′ |F |φp′〉| is small for different mo-

menta p 6= p′. For this purpose, we need to identify the leading order term in the

expression 〈φp|F |φp〉. Higher order terms are again small by the properties of the

transfer operator.

To establish these bounds, first observe that an unnormalized excitation ansatz state

|Φp(B;A)〉 is a superposition of the “position space” states {|Φj,p〉}nj=1, where each

state |Φj,p〉 is given by a simple tensor network with an “insertion” of an operator at

site j′. Correspondingly, we first study matrix elements of the form 〈Φj′,p′ |F |Φj,p〉. Bounds

on these matrix elements are given in lemma 6.5. The idea of the proof of this statement

is simple: in the tensor network diagram for the matrix element, subdiagrams associated

with powers E∆ with sufficiently large ∆ may be replaced by the diagram associated with

the map |r〉〉〈〈`|, with an error scaling term scaling as O(λ
∆/2
2 ). This is due to the Jordan

decomposition of the transfer operator. Thanks to the gauge condition (6.3), the resulting

diagrams then simplify, allowing us to identify the leading order term.

To realize this approach, a key step is to identify suitable subdiagrams corresponding

to powers E∆ in the diagram associated with 〈Φj′,p′ |F |Φj,p〉. These are associated with

connected regions of size ∆ where the operator F acts trivially, and there is no insertion of

B(p) (respectively B(p′)), meaning that j and j′ do not belong to the region. Lemma 6.5

provides a careful case-by-case analysis depending on, at the coarsest level of detail, whether

or not j and j′ belong to a ∆-neighborhood of the support of F .

Some subleties that arise are the following: to obtain estimates on the leading-order

terms for the diagonal matrix elements (see (2) above) as well as related expressions, a

bound on the magnitude of the matrix element 〈Φj,p′ |F |Φj,p〉 only is not sufficient. The

lowest-order approximating expression to 〈Φj,p′ |F |Φj,p〉 obtained by making the above sub-

stitutions of the transfer operators a priori seems to depend on the exact site location j.

This is awkward because the term 〈Φj,p′ |F |Φj,p〉 appears as a summand (with sum taken

over j) when computing matrix elements of excitation ansatz states. We argue that in fact,

the leading order term of 〈Φj,p′ |F |Φj,p〉 is identical for all values of j not belonging to the

support of F . This statement is formalized in lemma 6.6 and allows us to subsequently

estimate sums of interest without worry about the explicit dependence on j.

Finally, we require a strengthening of the estimates obtained in lemma 6.5 because

we are ultimately interested in excitation ansatz states: these are superpositions of the

states |Φj,p〉, with phases of the form eipj . Estimating only the magnitude of matrix

elements of the form 〈Φj′,p′ |F |Φj,p〉 is not sufficient to establish our results. Instead, we need

to treat the phases “coherently”, which leads to certain cancellations. The corresponding

statement is given in lemma 6.7.

6.4.2 The proof

We will envision the sites {1, . . . , n} as points on a ring, i.e., using periodic boundary

conditions, and measure the distance between sites j, j′ by

dist(j, j′) := min
k∈Z
|j − j′ + k · n|.
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For ∆ ∈ {0, . . . , n} and a subset F ⊂ {1, . . . , n}, let

B∆(F) = {j ∈ {1, . . . , n} | ∃ j′ ∈ F such that dist(j, j′) ≤ ∆}

be the ∆-thickening of F .

We say that j′ ∈ {1, . . . , n} is a left neighbor of (or is left-adjacent to) j ∈ {1, . . . , n} if

j′ = j−1 for j > 1, or j′ = n for j = 1. A connected region R ⊂ {1, . . . , n} is said to lie on

the left of (or be left-adjacent to) j ∈ {1, . . . , n} if it is of the form R = {j1, . . . , jr}, with

jα+1 left-adjacent to jα for α ∈ {0, . . . , r− 1} with the convention that j0 = jr. Analogous

definitions hold for right-adjacency.

For an operator F acting on (Cp)⊗n, let supp(F ) ⊂ {1, . . . , n} denote its support,

i.e., the sites of the system that the operator acts on non-trivially. We say that F is d-

local if |supp(F )| = d. Let us assume that supp(F ) decomposes into κ disjoint connected

components

supp(F ) =

κ−1⋃
α=0

Fα . (6.15)

We may, without loss of generality, assume that this gives a partition of {1, . . . , n} into

disjoint connected sets

{1, . . . , n} = A0 ∪ F0 ∪ A1 ∪ F1 ∪ · · · ∪ Aκ−1 ∪ Fκ−1

where Aα is left-adjacent to Fα for α ∈ {0, . . . , κ − 1}, Aα+1 is right-adjacent to Fα for

α ∈ {0, . . . , κ−2}, and A0 is right-adjacent to Fκ−1. We may then decompose the operator

F as

F =
∑
i

κ−1⊗
α=0

(IAα ⊗ Fi,α),

where we write F as a sum of decomposable tensor operators (indexed by i), with each

Fi,α being an operator acting on the component Fα.

Let us define a function τ : {1, . . . , n}\supp(F ) → {0, . . . , κ − 1} which associates to

every site j 6∈ supp(F) the unique index τ(j) for the component Aτ(j) of the complement

of supp(F ) such that j ∈ Aτ(j).

It is also convenient to introduce the following operators {F (τ)}κ−1
τ=0. The operator F (τ)

is obtained by removing the identity factor on the sites Aτ of F , and cyclically permuting

the remaining components in such a way that Fτ ends up on the sites {1, . . . , |Fτ |}. More

precisely, we define F (τ) ∈ B((Cp)⊗(n−|Aτ |)) by

F (τ) =
∑
i

Fi,τ ⊗

(
τ+κ−1⊗
α=τ+1

I
⊗|Aα (mod κ)|
Cp ⊗ Fi,α (mod κ)

)
, (6.16)

for τ ∈ {0, . . . , κ − 1}. We note that j 7→ F (τ(j)) associates a permuted operator to each

site j not belonging to the support of F . Let us also define ι(j) to be the index of the
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F =

F (τ(j1)) = F (τ(j4)) = F (0) = ,

F (τ(j2)) = F (1) = ,

F (τ(j3)) = F (κ− 1) = .

Figure 6. Example for F and sites j1, j2, j3, j4 ∈ {1, . . . , n} with ι(j1) = ι(j4) = 7, ι(j2) = 19, and

ι(j3) = 35.

site which gets cyclically shifted to the first site when defining Fτ(j). An example is shown

diagrammatically in figure 6.

For two excitation ansatz states |Φp〉 and |Φp′〉, and an operator F on (Cp)⊗n, we may

write the corresponding matrix element as

〈Φp′ |F |Φp〉 =

n∑
j,j′=1

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉 , (6.17)

where |Φj,p〉 are the “position space” states introduced in equation (6.2). We are interested

in bounding the magnitude of this quantity.

We begin by bounding the individual terms in the sum (6.17).

Lemma 6.5. Let j, j′ ∈ {1, . . . , n} and let p, p′ be arbitrary non-zero momenta. Consider

the states |Φj,p〉 and |Φj′,p′〉 defined by (6.2). Let ∆ = ∆(n) and d = d(n) be monotonically

increasing functions of n. Suppose further that we have

10∆d < n .

Assume F is a d-local operator of unit norm on (Cp)⊗n whose support has κ connected

components as in (6.15). Then we have the following.

(i) There is some fixed q ∈ [n] such that for all j, j′ ∈ B∆(supp(F )), we have

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|EI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′)|r〉〉+O(λ∆
2 ) ,
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where ĵ = j − ι(q) + ∆ + 1 (mod n) and ĵ′ = j′ − ι(q) + ∆ + 1 (mod n).

Furthermore,

〈Φj′,p′ |Φj,p〉 = ∆j,j′cpp′ +O(λ∆
2 ) . (6.18)

(ii) If j, j′ 6∈ B∆(supp(F )), then

(a) |〈Φj′,p′ |F |Φj,p〉| = O(λ
∆/2
2 ) if j 6= j′.

(b) 〈Φj′,p′ |F |Φj,p〉 = 〈〈`|EF (τ(j))|r〉〉 · cpp′ +O(λ
∆/2
2 ).

Here the operator F (τ(j)) is defined by equation (6.16).

(iii) If j ∈ B∆(supp(F )) and j′ 6∈ B∆(supp(F )), then

(a) |〈Φj′,p′ |F |Φj,p〉| = O(λ
∆/2
2 ) if j′ 6∈ B2∆(supp(F )).

(b) There exists some fixed q ∈ [n] such that, for all j ∈ B∆(supp(F ))

and j′ ∈ B2∆(supp(F ))\B∆(supp(F )), we have

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|EF (τ(q))(ĵ, p, ĵ′, p
′, 2∆)|r〉〉+O(λ2∆

2 ),

where ĵ = j − ι(q) + 2∆ + 1 (mod n) and ĵ′ = j′ − ι(q) + 2∆ + 1 (mod n).

(iv) If j′ ∈ B∆(supp(F )) and j 6∈ B∆(supp(F )), then

(a) |〈Φj′,p′ |F |Φj,p〉| = O(λ
∆/2
2 ) if j 6∈ B2∆(supp(F )).

(b) There exists some fixed q ∈ [n] such that, for all j′ ∈ B∆(supp(F )))

and j ∈ B2∆(supp(F ))\B∆(supp(F )), we have

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|EF (τ(q))(ĵ, p, ĵ′, p
′, 2∆)|r〉〉+O(λ2∆

2 ),

where ĵ = j − ι(q) + 2∆ + 1 (mod n) and ĵ′ = j′ − ι(q) + 2∆ + 1 (mod n).

Proof. For the proof of (i), suppose that j, j′∈B∆(supp(F )). Pick any site q 6∈B2∆(supp(F )).

We note that such a site always exists since

|B2∆(supp(F ))| ≤ 5∆|supp(F )| = 5∆d < 10∆d < n

by assumption. Let us define the shifted indices

ĵ = j − ι(q) + ∆ + 1 (mod n), and ĵ′ = j′ − ι(q) + ∆ + 1 (mod n).

Then we may write

〈Φj′,p′ |F |Φj,p〉 = tr
(
EF (j, p, j′, p′)

)
= tr

(
EsEI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′)

)
(6.19)

where s ≥ 2∆. This is because by the choice of q, there are at least 2∆ sites not belong-

ing to supp(F ) both on the left and the right of q. Each of these 4∆ sites contributes
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a factor E = EI (i.e., a single transfer operator) to the expression within the trace.

The term EI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′) incorporates ∆ of the associated transfer operators

E = EI on the left- and right of q, respectively, such that at least 2∆ factors of E re-

main. By the cyclicity of the trace, these can be consolidated into a single term Es

with s ≥ 2∆. The operator I⊗∆ ⊗ Fτ(q) ⊗ I⊗∆ (i.e., the additional I⊗∆ factors) in the

term EI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′) is used to ensure that j and j′ are correctly “retained”

when going from the first to the second line in (6.19). Inserting the Jordan decomposi-

tion E = |r〉〉〈〈`| ⊕ Ẽ, we obtain

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|EI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′)|r〉〉+ tr
(
ẼsEI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′)

)
.(6.20)

By lemma 4.2(ii) and lemma 6.3, we have the bound∣∣∣tr(ẼsEI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′)
)∣∣∣ ≤ ‖Ẽs‖F · ‖EI⊗∆⊗Fτ(q)⊗I⊗∆(ĵ, p, ĵ′, p′)‖F

≤ λs/22 ·D2‖F‖ ·
√
‖E

B(p′)B(p′)‖F ‖EB(p′)B(p)
‖F

= O(λ∆
2 ),

where we have used the fact that λ
s/2
2 ≤ λ∆

2 in the last line. We have also absorbed the

dependence on the constants D, ‖F‖, and
√
‖E

B(p′)B(p′)‖F ‖EB(p′)B(p)
‖F into the big-O

notation. Inserting this into (6.20) gives the first claim of (i).

Now consider the inner product 〈Φj′,p′ |Φj,p〉 = tr(E(j, p, j′, p′)), which corresponds to

the case where F is the identity. By the cyclicity of the trace, this can be written as

〈Φj′,p′ |Φj,p〉 = tr(EsE(ĵ, p, ĵ′, p′)) for some s ≥ 2∆ and suitably defined ĵ, ĵ′. Repeating

the same argument as above and using the fact that

〈〈`|E(ĵ, p, ĵ′, p′)|r〉〉 = ∆ĵ,ĵ′cpp′ = ∆j,j′cpp′

by definition of E(ĵ, p, ĵ′, p′), equation (4.5) (i.e., the fact that |`〉〉 and |r〉〉 are left- respec-

tively right eigenvectors of E), and the gauge identities (6.3) of EB(p) and E
B(p)

, we obtain

the claim (6.18).

Now consider claim (ii). Suppose that j, j′ 6∈ B∆(supp(F )). We consider the following

two cases:

(iia) If j 6= j′, then there is a connected region of at least ∆ sites not belonging to supp(F )

to either the left of j′ and not containing j, or the left of j and not containing j′.

Without loss of generality, we assume the former is the case. By the cyclicity of the

trace, we may also assume without loss of generality that j′ = ∆ + 1, j > j′, and that

F is supported on the sites {2∆ + 2, . . . , n}. Let F̂ denote the restriction of F to the

sites {∆ + 2, . . . , n}, and let ĵ := j − (∆ + 1). Then we may write

〈Φj′,p′ |F |Φj,p〉 = tr
(
E∆E

B(p′)EF̂ (ĵ, p)
)
.

Substituting the Jordan decomposition E∆ = |r〉〉〈〈`| ⊕ Ẽ∆, we have

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|E
B(p′)EF̂ (ĵ, p)|r〉〉+ tr

(
Ẽ∆E

B(p′)EF̂ (ĵ, p)
)
.
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Since we assume that p 6= 0, the gauge condition (6.3) states that 〈〈`|E
B(p)

= 0, hence

the first term vanishes and it follows that

|〈Φj′,p′ |F |Φj,p〉| =
∣∣∣tr(Ẽ∆E

B(p′)EF̂ (ĵ, p)
)∣∣∣

≤ ‖Ẽ∆‖F · ‖EB(p′)‖F · ‖EF̂ (ĵ, p)‖F

≤ λ∆/2
2 ‖E

B(p′)‖F ·D
2‖F̂‖

√
‖EB(p)B(p)‖F

= O(λ
∆/2
2 ) ,

as claimed in (iia). In the last line, we have again absorbed the constants into the

big-O-expression. This proves part (iia) of claim (ii).

(iib) If j = j′, then there are at least ∆ sites to the left and right of j which do not belong

to supp(F ). Therefore we may write

〈Φj′,p′ |F |Φj,p〉 = tr
(
EsE

B(p′)B(p)
EtEF (τ(j))

)
,

where s and t are integers greater than ∆, representing the sites surrounding j which

are not in the support of F .

Applying the Jordan decomposition E∆ = |r〉〉〈〈`| ⊕ Ẽ∆ twice (for Es and Et) then

gives four terms

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|E
B(p′)B(p)

|r〉〉〈〈`|EF (τ(j))|r〉〉

+ tr
(
|r〉〉〈〈`|E

B(p′)B(p)
ẼsEF (τ(j))

)
+ tr

(
ẼtE

B(p′)B(p)
|r〉〉〈〈`|EF (τ(j))

)
+ tr

(
ẼtE

B(p′)B(p)
ẼsEF (τ(j))

)
.

Since s and t are both larger than ∆, by the same arguments from before, it is clear

that the last three terms can each be bounded by O(λ
∆/2
2 ). The claim follows since

〈〈`|E
B(p′)B(p)

|r〉〉 = cpp′ .

Next, we give the proof of claim (iii). Let us consider the situation where j ∈
B∆(supp(F )) and j′ 6∈ B∆(supp(F )). The proof of the other setting is analogous. We

consider two cases:

(iiia) Suppose j′ 6∈ B2∆(supp(F )). Let us define the shifted index ĵ = j−ι(j′)+∆+1 (mod n).

Then we may write

〈Φj′,p′ |F |Φj,p〉 = tr
(
EsE

B(p′)E
tEI⊗∆⊗F (τ(j′))⊗I⊗∆(ĵ, p)

)
,

where s and t are integers larger than ∆, representing the number of sites adjacent to j′

on the left and right which are not in B∆(supp(F )). We use the Jordan decomposition

– 43 –



J
H
E
P
0
9
(
2
0
1
9
)
0
2
1

E = |r〉〉〈〈`| ⊕ Ẽ on Es to get

tr
(
EsE

B(p′)E
tEI⊗∆⊗F (τ(j′))⊗I⊗∆(ĵ, p)

)
= 〈〈`|E

B(p′)E
tEI⊗∆⊗F (τ(j′))⊗I⊗∆(ĵ, p)|r〉〉

+ tr
(
ẼsE

B(p′)E
tEI⊗∆⊗F (τ(j′))⊗I⊗∆(ĵ, p)

)

= tr
(
ẼsE

B(p′)E
tEI⊗∆⊗F (τ(j′))⊗I⊗∆(ĵ, p)

)
,

where the first term vanishes due to the gauge condition (6.3). From lemma 4.2(ii) we

have ‖Et‖F ≤ 1, and repeating the same arguments as before, we get the bound

|〈Φj′,p′ |F |Φj,p〉| =
∣∣∣tr(ẼsEB(p′)E

tEI⊗∆⊗F (τ(j′))⊗I⊗∆(ĵ, p)
)∣∣∣

≤ ‖Ẽs‖F · ‖EB(p′)‖F · ‖E
t‖F ·D2‖F‖ · ‖E

B(p)B(p)
‖F

≤ λs/22 ‖EB(p′)‖F ·D
2‖F‖

√
‖E

B(p)B(p)
‖F .

Since s ≥ ∆, we conclude that

|〈Φj′,p′ |F |Φj,p〉| = O
(
λ

∆/2
2

)
.

(iiib) Suppose now that j′ ∈ B2∆(supp(F )). Then by repeating the argument for case (i),

with ∆ replaced by 2∆, we obtain

〈Φj′,p′ |F |Φj,p〉 = 〈〈`|EI⊗2∆⊗F (τ(q))⊗I⊗2∆(ĵ, p, ĵ′, p′)|r〉〉+O(λ2∆
2 ),

where we now have q 6∈ B4∆(F). Again, the existence of such a q is guaranteed by the

condition 10∆d < n.

We note that (iv) follows immediately from (iii) by interchanging the roles of (j, p) and

(j′, p′). Note that we can write

〈Φj′,p′ |F |Φj,p〉 = 〈Φj′,p′ |F |Φj,p〉 = 〈Φj,p|F †|Φj′,p′〉 .

The last expression within the parentheses is precisely what we had calculated in (iii),

so this implies the following:

(iva) If j /∈ B2∆(supp(F )) then∣∣〈Φj′,p′ |F |Φj,p〉
∣∣ =

∣∣∣〈Φj,p|F †|Φj′,p′〉
∣∣∣ = O(λ

∆/2
2 ),

where we note that the exact same bound holds for F and F † since ‖F‖ = ‖F †‖.

(ivb) If j ∈ B2∆(supp(F )) then

〈Φj′,p′ |F |Φj,p〉 = 〈Φj,p|F †|Φj′,p′〉

= 〈〈`|EI⊗2∆⊗F †(τ(q))⊗I⊗2∆(ĵ′, p′, ĵ, p)|r〉〉+O(λ2∆
2 )

= 〈〈`|EI⊗2∆⊗F †(τ(q))⊗I⊗2∆(ĵ′, p′, ĵ, p)|r〉〉+O(λ2∆
2 )

= 〈〈`|EI⊗2∆⊗F (τ(q))⊗I⊗2∆(ĵ, p, ĵ′, p′)|r〉〉+O(λ2∆
2 ).
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This proves the claim.8

Note that in the statement (iib), the dependence on j in the expression 〈〈`|EF (τ(j))|r〉〉
can be eliminated as follows:

Lemma 6.6. Suppose j1, j2 6∈ B∆(supp(F )). Then

|〈〈`|EF (τ(j1))|r〉〉 − 〈〈`|EF (τ(j2))|r〉〉| = O(λ∆
2 ) . (6.21)

In particular, for any fixed j0 6∈ B∆(supp(F )) we have

〈Φj,p′ |F |Φj,p〉 = 〈〈`|EF (τ(j0))|r〉〉 · cpp′ +O(λ
∆/2
2 ) , for all j 6∈ B∆(supp(F )) . (6.22)

Proof. The claim (6.22) follows immediately from (6.21) and claim (iib) of lemma 6.5 since

|cpp′ | = O(1).

If τ(j1) = τ(j2), there is nothing to prove. Suppose τ(j1) 6= τ(j2). Without loss of

generality, assume that τ(j1) = 0 and τ(j2) = ξ. Then we may write

F (τ(j1)) =
∑
i

Fi,0 ⊗ I⊗a1 ⊗ Fi,1 ⊗ I⊗a2 · · · ⊗ I⊗aκ−1 ⊗ Fi,κ−1, and

F (τ(j2)) =
∑
i

Fi,ξ ⊗ I⊗aξ+1 ⊗ Fi,ξ+1 ⊗ I⊗aξ+2 · · · ⊗ I⊗aκ ⊗ Fi,κ−1 ⊗ I⊗a0

⊗ Fi,0 ⊗ I⊗a1 ⊗ Fi,1 ⊗ I⊗a2 ⊗ · · · ⊗ Fi,ξ−1,

where aα = |Aα| for α ∈ {0, . . . , κ}. Defining the operators

F̂i = Fi,ξ ⊗ I⊗aξ+1 ⊗ Fi,ξ+1 ⊗ I⊗aξ+2 · · · ⊗ I⊗aκ−1 ⊗ Fi,κ−1 ,

Ĝi = Fi,0 ⊗ I⊗a1 ⊗ Fi,1 ⊗ I⊗a2 ⊗ · · · ⊗ Fi,ξ−1 ,

we have

F (τ(j1)) =
∑
i

Ĝi ⊗ I⊗aξ ⊗ F̂i, and F (τ(j2)) =
∑
i

F̂i ⊗ I⊗a0 ⊗ Ĝi .

(We give an example for the operator F , F (τ(j1)) and F (τ(j2)) in figure 7.) Therefore we

8To clarify how the term 〈〈`|EI⊗∆⊗F†(τ(q))⊗I⊗∆(ĵ′, p′, ĵ, p)|r〉〉 is complex conjugated, first write

〈〈`|EI⊗∆⊗F†(τ(q))⊗I⊗∆(ĵ′, p′, ĵ, p)|r〉〉 = 〈ΦLĵ′,p′ |I ⊗ I
⊗2∆ ⊗ F †τ(q) ⊗ I

⊗2∆ ⊗ I|ΦLĵ,p〉,

where |ΦL
ĵ,p
〉 are the states defined by (6.12), for some appropriate length L. Then we can proceed to

conjugate the matrix element, giving us

〈ΦL
ĵ′,p′
|I ⊗ I⊗2∆ ⊗ F †τ(q) ⊗ I⊗2∆ ⊗ I|ΦL

ĵ,p
〉 = 〈ΦLĵ,p|I ⊗ I

2∆ ⊗ Fτ(q) ⊗ I2∆ ⊗ I|ΦLĵ′,p′〉

= 〈〈`|EI⊗2∆⊗F (τ(q))⊗I⊗2∆(ĵ, p, ĵ′, p′)|r〉〉.
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F = ,

F (τ(j1)) = ,

F (τ(j2)) = .

Figure 7. Example for the operator F and the corresponding F (τ(j1)) and F (τ(j2)).

can write

〈〈`|EF (τ(j1))|r〉〉 =
∑
i

〈〈`|EĜiE
aξEF̂i |r〉〉 ,

〈〈`|EF (τ(j2))|r〉〉 =
∑
i

〈〈`|EF̂iE
a0EĜi |r〉〉 .

Inserting the Jordan decomposition E = |r〉〉〈〈`| ⊕ Ẽ gives

〈〈`|EF (τ(j1))|r〉〉 =
∑
i

(
〈〈`|EĜi |r〉〉〈〈`|EF̂i |r〉〉+ 〈〈`|EĜiẼ

aξEF̂i |r〉〉
)
,

〈〈`|EF (τ(j2))|r〉〉 =
∑
i

(
〈〈`|EF̂i |r〉〉〈〈`|EĜi |r〉〉+ 〈〈`|EF̂iẼ

a0EĜi |r〉〉
)
.

Taking the difference, the first terms of the sums cancel, and we are left with

∣∣〈〈`|EF (τ(j1))|r〉〉−〈〈`|EF (τ(j2))|r〉〉
∣∣= ∣∣∣∣∣∑

i

〈〈`|EĜiẼ
aξEF̂i |r〉〉−

∑
i

〈〈`|EF̂iẼ
a0EĜi |r〉〉

∣∣∣∣∣
≤

∣∣∣∣∣∑
i

〈〈`|EĜiẼ
aξEF̂i |r〉〉

∣∣∣∣∣+
∣∣∣∣∣∑
i

〈〈`|EF̂iẼ
a0EĜi |r〉〉

∣∣∣∣∣ . (6.23)
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We can bound the first term
∣∣∣∑i〈〈`|EĜiẼ

aξEF̂i |r〉〉
∣∣∣ as follows. First, we write∣∣∣∣∣∑

i

〈〈`|EĜiẼ
aξEF̂i |r〉〉

∣∣∣∣∣ = tr

(
Ẽaξ

∑
i

EF̂i |r〉〉〈〈`|EĜi

)

≤ ‖Ẽaξ‖F

∥∥∥∥∥∑
i

EF̂i |r〉〉〈〈`|EĜi

∥∥∥∥∥
F

≤ λ∆
2

∥∥∥∥∥∑
i

EF̂i |r〉〉〈〈`|EĜi

∥∥∥∥∥
F

,

where the last inequality comes from the fact that j2 6∈ B∆(supp(F )) and j2 ∈ Aξ implies

that aξ ≥ 2∆, so lemma 4.2(ii) gives ‖Ẽaξ‖F ≤ λ∆
2 . Proceeding as we did in the proof of

lemma 6.3, we can write the latter Frobenius norm as∥∥∥∥∥∑
i

EF̂i |r〉〉〈〈`|EĜi

∥∥∥∥∥
2

F

=

D∑
α1,α2,β1,β2=1

∣∣∣∣∣〈α1|〈α2|

(∑
i

EF̂i |r〉〉〈〈`|EĜi

)
|β1〉|β2〉

∣∣∣∣∣
2

.

The individual terms in the sum can be depicted diagrammatically as

〈α1|〈α2|

(∑
i

EF̂i |r〉〉〈〈`|EĜi

)
|β1〉|β2〉= .

Defining the vectors

|Ψ(α, β)〉 = ,

we can then write

〈α1|〈α2|

(∑
i

EF̂i |r〉〉〈〈`|EĜi

)
|β1〉|β2〉 = 〈Ψ(α1, β1)|

(∑
i

F̂i ⊗ ID ⊗ ID ⊗ Ĝi

)
|Ψ(α2, β2)〉.

Applying the Cauchy-Schwarz inequality, we get∣∣∣∣∣〈α1|〈α2|

(∑
i

EF̂i |r〉〉〈〈`|EĜi

)
|β1〉|β2〉

∣∣∣∣∣
2

≤‖Ψ(α1,β1)‖2 ·‖Ψ(α2,β2)‖2 ·

∥∥∥∥∥∑
i

F̂i⊗ID⊗ID⊗Ĝi

∥∥∥∥∥
2

.

The norm of the vector |Ψ(α, β)〉 is given by

‖Ψ(α, β)‖2 = = = 〈α|r|α〉〈β|`|β〉 ,
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where in the second equality we have used the fixed-point equations (4.5). Therefore

we have∥∥∥∥∥∑
i

EF̂i |r〉〉〈〈`|EĜi

∥∥∥∥∥
2

F

≤
∥∥∥∥∥∑

i

F̂i⊗ID⊗ID⊗Ĝi

∥∥∥∥∥
2 D∑
α1,α2,β1,β2=1

〈α1|r|α1〉〈α2|r|α2〉〈β1|`|β1〉〈β2|`|β2〉

=

∥∥∥∥∥∑
i

F̂i⊗ID⊗ID⊗Ĝi

∥∥∥∥∥
2

·|tr(r)tr(`)|2 =D2

∥∥∥∥∥∑
i

F̂i⊗ID⊗ID⊗Ĝi

∥∥∥∥∥
2

,

where the last equality follows from the fact that we gauge-fix the left and right fixed-

points such that r = ICD and tr(`) = 1. Finally, we note that since the operator norm is

multiplicative over tensor products, i.e., ‖A⊗B‖ = ‖A‖ · ‖B‖, we have∥∥∥∥∥∑
i

F̂i ⊗ ID ⊗ ID ⊗ Ĝi

∥∥∥∥∥ =

∥∥∥∥∥∑
i

F̂i ⊗ Ĝi

∥∥∥∥∥ = ‖F‖.

Therefore, we have ∣∣∣∣∣∑
i

〈〈`|EĜiẼ
aξEF̂i |r〉〉

∣∣∣∣∣ ≤ D‖F‖λ∆
2 .

The term involving a0 in (6.23) can be bounded identically, and so∣∣〈〈`|EF (τ(j1))|r〉〉 − 〈〈`|EF (τ(j2))|r〉〉
∣∣ ≤ 2D‖F‖λ∆

2 ,

which proves (6.21).

We also need a different version of statement (i), as well as statements (iiib) and (ivb)

derived from it.

Lemma 6.7. For Ω ⊂ [n]2, let us define

σpp′(Ω) =
∑

(j,j′)∈Ω

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉 .

Let us write F := supp(F ) and Ac = [n]\A for the complement of a subset A ⊂ [n]. Then:∣∣σpp′(B∆(F)× B∆(F))
∣∣ ≤ |B∆(F)| · ‖F‖√cpcp′ +O

(√
nλ

∆/2
2

)
, (6.24)∣∣σpp′(B∆(F)× B∆(F)c)

∣∣ ≤ |B2∆(F)| · ‖F‖√cpcp′ +O
(
n2λ

∆/2
2

)
, (6.25)∣∣σpp′(B∆(F)c × B∆(F))

∣∣ ≤ |B2∆(F)| · ‖F‖√cpcp′ +O
(
n2λ

∆/2
2

)
. (6.26)

Finally, we have the following: there exists some fixed j0 ∈ [n] such that for p = p′, we have

σpp(B∆(F)c × B∆(F)c) = |B∆(F)c| · 〈〈`|EFτ(j0)
|r〉〉cp +O

(
n2λ

∆/2
2

)
. (6.27)

For p 6= p′, we have∣∣σpp′(B∆(F)c × B∆(F)c)
∣∣ ≤ |B∆(F)| · ‖F‖√cpcp′ +O

(
n2λ

∆/2
2

)
. (6.28)
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We observe that the first expression on the right-hand side of the above bound scales

linearly with the support size of F instead of the support size of Fc, as may be naively

expected. For (6.28), this is due to a cancellation of phases, see (6.32) below.

Proof. For the proof of (6.24), let us first define the vectors

|Ψ(p)〉 =
∑

j∈B∆(F)

eipj |Φj,p〉 .

Then we can write

|σpp′(B∆(F)× B∆(F))| = |〈Ψ(p′)|F |Ψ(p)〉| ≤ ‖F‖ · ‖Ψ(p)‖ · ‖Ψ(p′)‖ , (6.29)

where the last inequality follows by Cauchy-Schwarz along with the definition of the oper-

ator norm ‖F‖. The vector norm is given by

‖Ψ(p)‖2 =
∑

j,j′∈B∆(F)

eip(j−j
′)〈Φj′,p|Φj,p〉,

and together with equation (6.18), we get

‖Ψ(p)‖2 = |B∆(F)| · cp +O(λ
∆/2
2 ) .

Taking the square root and inserting into equation (6.29), we get

|σpp′(B∆(F)× B∆(F))| = ‖F‖
(√
|B∆(F)| · cp +O(λ

∆/2
2 )

)(√
|B∆(F)| · cp′ +O(λ

∆/2
2 )

)

= |B∆(F)| · ‖F‖√cpcp′ +O

(√
|B∆(F)| · λ∆/2

2

)
.

Using the bound
∣∣B∆(F)

∣∣ ≤ 5d∆ < n gives (6.24).

Next, let us look at (6.25). We have

σpp′(B∆(F)× B∆(F)c) =
∑

j∈B∆(F)

∑
j′∈B∆(F)c

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉 = Σ1 + Σ2,

where we define

Σ1 :=
∑

j∈B∆(F)

∑
j′∈B2∆(F)\B∆(F)

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉 ,

and

Σ2 :=
∑

j∈B∆(F)

∑
j′∈B2∆(F)c

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉 .

The norm of the second sum can be bounded using lemma 6.5(iiia), giving us

|Σ2| ≤
∑

j∈B∆(F)

∑
j′∈B2∆(F)c

|〈Φj′,p′ |F |Φj,p〉|

≤ |B∆(F)| · |B2∆(F)c| ·O(λ
∆/2
2 )

= O(n2λ
∆/2
2 ) , (6.30)
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where we again use the trivial bound
∣∣B∆(F)

∣∣ , ∣∣B2∆(F)c
∣∣ ≤ n in the last line. Using

lemma 6.5 (iiib), we can express the first sum, with some fixed q ∈ [n], as

Σ1 =
∑

j∈B∆(F)

∑
j′∈B2∆(F)\B∆(F)

ei(pj−p
′j′)〈〈`|EF (τ(q))(ĵ, p, ĵ′, p

′)|r〉〉

+ |B∆(F)| · |B2∆(F)\B∆(F)| ·O(λ
∆/2
2 )

=
∑

j∈B∆(F)

∑
j′∈B2∆(F)\B∆(F)

ei(pj−p
′j′)〈〈`|EF (τ(q))(ĵ, p, ĵ′, p

′)|r〉〉+O
(
n2λ

∆/2
2

)
,

where the indices ĵ and ĵ′ are defined as in lemma 6.5. To bound the remaining sum, let

us introduce the states

|Ψ1(p)〉 :=
∑

j∈B∆(F)

eipj |ΦL
ĵ,p
〉 , and

|Ψ2(p′)〉 :=
∑

j′∈B2∆(F)\B∆(F)

eip
′j′ |ΦL

ĵ′,p′
〉 ,

where we set L = |supp(F (τ(q)))|. Here, |ΦL
j,p〉 are as defined in (6.12). Then we can write

Σ1 = 〈Ψ2(p′)|F (τ(q))|Ψ1(p)〉+O
(
n2λ

∆/2
2

)
.

By the Cauchy-Schwarz inequality and the orthogonality relations (6.13), we have

|〈Ψ2(p′)|F (τ(q))|Ψ1(p)〉| ≤ ‖F‖ · ‖Ψ1(p)‖ · ‖Ψ2(p′)‖

= ‖F‖
√
cpcp′ |B∆(F)| · |B2∆(F)\B∆(F)|,

where we bound the states |Ψ1,2(p)〉 in exactly the same way as we did in the proof of (6.24).

Using the fact that |B∆(F)|, |B2∆(F)\B∆(F)| ≤ |B2∆(F)|, we conclude that

|Σ1| ≤ |B2∆(F)| · ‖F‖√cpcp′ +O
(
n2λ

∆/2
2

)
.

Combining this with (6.30) gives the claim (6.25). The proof of (6.26) is analogous, using

lemma 6.5(iv).

Finally, consider (6.27) and (6.28). We have

σpp′(B∆(F)c×B∆(F)c) =
∑

j∈B∆(F)c

eij(p−p
′)〈Φj,p′ |F |Φj,p〉

︸ ︷︷ ︸
=:Θ1

+
∑

j,j′∈B∆(F)c

j 6=j′

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉

︸ ︷︷ ︸
=:Θ2

.

Using lemma 6.5(iia), we have

|Θ2| ≤ ‖F‖ ·O(n2λ
∆/2
2 ) . (6.31)
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On the other hand, by lemma 6.5(iib), or more precisely its refinement in the form of

equation (6.22) from lemma 6.6, we have

Θ1 =

 ∑
j∈B∆(F)c

eij(p−p
′)

 〈〈`|EF (τ(j0))|r〉〉cpp′ +O(nλ
∆/2
2 ) ,

for some fixed j0 ∈ B∆(F)c. For p′ = p, the sum above is given trivially by
∑

j∈B∆(F)c 1 =∣∣B∆(F)c
∣∣. For p 6= p′, we have

∑
j∈[n] e

ij(p−p′) = 0, and hence∣∣∣∣∣∣
∑

j∈B∆(F)c

eij(p−p
′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j∈B∆(F)

eij(p−p
′)

∣∣∣∣∣∣ ≤ |B∆(F)|. (6.32)

Therefore, for p = p′ we have

Θ1 =
∣∣B∆(F)c

∣∣ 〈〈`|EF (τ(j0))|r〉〉cp +O(nλ
∆/2
2 )

and for p 6= p′, we have

|Θ1| ≤
∣∣B∆(F)

∣∣ 〈〈`|EF (τ(j0))|r〉〉cpp′ +O(nλ
∆/2
2 )

≤
∣∣B∆(F)

∣∣ · ‖F‖cpp′ +O(nλ
∆/2
2 ).

Note that we also have cpp′ ≤
√
cpcp′ by the Cauchy-Schwarz inequality. Combining these

results with (6.31) proves claims (6.27) and (6.28).

6.5 The parameters of codes based on the excitation ansatz

Recall that the normalization of the excitation ansatz states |Φp〉 ≡ |Φp(B;A)〉 are given

by lemma 6.2 as

‖Φp‖ =
√
ncp +O(n3/2λ

n/6
2 ).

In the following, we let |φp〉 denote the normalized versions of |Φp〉. In terms of matrix

elements, we have

〈φp|F |φp′〉 =
〈Φp|F |Φp′〉

n
√
cpcp′(1 +O(n2λ

∆/6
2 ))

=
〈Φp|F |Φp′〉
n
√
cpcp′

+O(nλ
∆/6
2 ). (6.33)

Our main technical result for the excitation ansatz consists of the following estimates:

Lemma 6.8. Let ν ∈ (0, 1) and d = n1−ν . Let F ∈ B((Cp)⊗n) be a d-local operator

with unit norm. Consider the normalized versions |φp〉 and |φp′〉 of the excitation ansatz

state (6.1). Then we have

|〈φp′ |F |φp〉| = O(n−ν/2) for p 6= p′ , (6.34)

and

|〈φp|F |φp〉 − 〈φp′ |F |φp′〉| = O(n−ν/2) for all p, p′ . (6.35)
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Proof. By definition of the excitation ansatz states, we have

〈Φp′ |F |Φp〉 =
n∑

j,j′=1

ei(pj−p
′j′)〈Φj′,p′ |F |Φj,p〉 =

4∑
α=1

σpp′(Ωα) , (6.36)

where

Ω1 = B∆(supp(F ))× B∆(supp(F )) ,

Ω2 = B∆(supp(F ))× B∆(supp(F ))c ,

Ω3 = B∆(supp(F ))c × B∆(supp(F )) ,

Ω4 = B∆(supp(F ))c × B∆(supp(F ))c ,

is the partition of [n]2 considered in lemma 6.7. Thus, for p 6= p′, we obtain

|〈Φp′ |F |Φp〉| ≤ 4|B2∆(F)|√cpcp′ +O(n2λ
∆/2
2 ) .

Inserting the expression (6.33) for the normalized matrix element, we get

|〈φp′ |F |φp〉| ≤
∣∣〈Φp|F |Φp′〉

∣∣
n
√
cpcp′

+O(nλ
∆/6
2 )

≤ 4|B2∆(F)|
n

+O(nλ
∆/2
2 ) +O(nλ∆/6)

=
4|B2∆(F)|

n
+O(nλ

∆/6
2 )

Assume that supp(F ) consists of κ disjoint connected components. By definition, we have

|B∆(supp(F ))| =
∣∣supp(F ) ∪

(
B∆(supp(F ))\supp(F )

) ∣∣ ≤ d+ 2κ∆ ≤ d(1 + 2∆),

where we use the fact that κ ≤ d in the last inequality. Hence, we have

|〈φp′ |F |φp〉| ≤
4d(1 + 4∆)

n
+O(nλ

∆/6
2 ) .

Let 1 > ν > 0 be arbitrary. Choosing d = n1−ν and ∆ = 6nν/2 gives9

|B2∆(supp(F ))|
n

≤ d(1 + 4∆)

n
= O(n−ν/2), (6.37)

and therefore

|〈φp′ |F |φp〉| = O(n−ν/2) +O(nλn
ν/2

2 ) = O(n−ν/2) .

Note that the last equality follows since, for all λ2<1 and a, b>0, we have limn→∞ n
aλn

b

2 =0.

This proves claim (6.34).

9Note that this choice of d and ∆ satisfies the requirement in lemma 6.5 for sufficiently large n.
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Next, we prove (6.35). Making use of equation (6.33) and the decomposition (6.36),

we have

|〈φp|F |φp〉 − 〈φp′ |F |φp′〉| ≤
∣∣∣∣〈Φp|F |Φp〉

ncp
−
〈Φp′ |F |Φp′〉

ncp′

∣∣∣∣+O(nλ
∆/6
2 )

≤ 1

n

4∑
α=1

∣∣∣ (c−1
p σpp(Ωα)− c−1

p′ σp′p′(Ωα)
) ∣∣∣+O(nλ

∆/6
2 ).

By lemma 6.7 we have

|σpp(Ωα)| ≤ |B2∆(supp(F ))|cp +O(n2λ
∆/2
2 ) for α ∈ {1, 2, 3} ,

and so we can write

1

n

3∑
α=1

∣∣∣c−1
p σpp(Ωα)− c−1

p′ σp′p′(Ωα)
∣∣∣ ≤ 1

n

3∑
α=1

∣∣c−1
p σpp(Ωα)

∣∣+
1

n

3∑
α=1

∣∣∣c−1
p′ σp′p′(Ωα)

∣∣∣
≤ 6|B2∆(supp(F ))|

n
+O(nλ∆/2).

It remains to consider the terms involving Ω4, whereby using equation (6.27) we get∣∣∣c−1
p σpp(Ω4)− c−1

p′ σp′p′(Ω4)
∣∣∣ = O(n2λ

∆/2
2 ).

Putting everything together, we have

|〈φp|F |φp〉 − 〈φp′ |F |φp′〉| ≤
6|B2∆(supp(F ))|

n
+O(nλ

∆/6
2 )

= O(n−ν/2),

where we again use the bound (6.37) in the last line. This proves claim (6.35).

With lemma 6.8, it is straightforward to check the condition for approximate quantum

error-detection from section 3.2. This leads to the following:

Theorem 6.9. Let ν ∈ (0, 1) and let κ,∆ > 0 be such that

5κ+ λ < ν .

Let A,B be tensors associated with an injective excitation ansatz state |Φp(B;A)〉, where p

is the momentum of the state. Then there is a subspace C ⊂ (Cp)⊗n spanned by excitation

ansatz states {|Φp(B;A)〉}p with different momenta p such that C is an (ε, δ)[[n, k, d]]-

AQEDC with parameters

k = κ logp n ,

d = n1−ν ,

ε = Θ(n−(ν−(5κ+λ))) ,

δ = n−λ .

– 53 –



J
H
E
P
0
9
(
2
0
1
9
)
0
2
1

Proof. Let us choose an arbitrary set {p1, . . . , ppk} of pk = nκ distinct, non-zero momenta

and define the space C by

C = span{|Φpj (B;A)〉}p
k

j=1 .

Since momentum eigenstates to different momenta are orthogonal, the states {|φpj 〉}
pk

j=1

form an orthonormal basis of C. By lemma 6.8, we have

|〈φpr |F |φps〉 − δr,s〈φp1 |F |φp1〉| = O(n−ν/2) ,

for any d-local unit norm operator F ∈ B((Cp)⊗n) and all r, s ∈ [pk]. The sufficient

conditions of corollary 3.4 for approximate error-detection applied with γ = Θ(n−ν/2)

show that C is a (Θ(p5kn−ν/δ), δ)[[n, k, d]]-AQEDC for any δ satisfying δ > p5kn−ν . This

implies the claim for the given choice of parameters.

From [67], we know that isolated energy bands in gapped systems are well approxi-

mated, under mild physical conditions, by the Fourier transforms of local operators. In par-

ticular, this means that, possibly after blocking, isolated momentum eigenstates of gapped

systems are well approximated by some excitation ansatz state, as one would expect.10

One consequence of this is that the excitation ansatz codes considered in this section are

generic among physical systems: essentially any selection of momentum eigenstates from

an isolated energy band of a gapped system can be expected to form an error-detecting

code with the above parameters.

7 AQEDC at low energies: an integrable model

In this section, we consider the Heisenberg-XXX spin chain. In section 7.1, we introduce

the model. The approximate error-detection codes we consider are spanned by eigenstates

that we call magnon-states. The latter are particular instances of the algebraic Bethe

ansatz, for which a general framework of MPS/MPO descriptions has been introduced in

prior work [68]. We review the necessary notation for matrix product operators (MPOs)

in section 7.2. In section 7.3, we give an MPS/MPO description of magnon-states. In

section 7.4, we provide a second MPS/MPO description with smaller bond dimension. In

section 7.5, we consider matrix elements of operators with respect to the magnon-state

basis. We show how to relate matrix elements of operators with arbitrary support to

matrix elements of operators with connected support. In section 7.6 we analyze the Jordan

structure of the transfer operators. In section 7.7, we bound matrix elements of local

operators in magnon states. Finally, in section 7.8, we determine the parameters of the

magnon code.

10In fact, we expect excitation ansatz states to be even better approximations of momentum eigenstates

than the constructions considered in [67]. In [67], the local operators O act on the physical level, whereas

the defining tensors B of excitation ansatz states act on the virtual level, and are hence more general.
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7.1 The XXX-model and the magnon code

Consider the periodic Heisenberg-XXX spin chain, with Hamiltonian

H = −1

4

n∑
m=1

(
σxmσ

x
m+1 + σymσ

y
m+1 + σzmσ

z
m+1

)
(7.1)

on (C2)⊗n, where we apply periodic boundary conditions, and where σxm, σ
y
m, σzm are the

Pauli matrices acting on the m-th qubit. The model (7.1) is gapless and can be solved

exactly using the algebraic Bethe ansatz. Our goal here is to argue that (7.1) contains

error-detecting codes in its low-energy subspace. More precisely, we consider subspaces

spanned by non-zero momentum eigenstates.

The Hamiltonian (7.1) may alternatively be expressed as

H =
n

4
I − 1

2

n∑
m=1

Fm,m+1 , (7.2)

where Fm,m+1 is the flip-operator acting on the m-th and (m+ 1)-th qubit. Equation (7.2)

shows that H commutes with the tensor product representation of the special unitary

group SU(2) on (C2)⊗n, hence we may restrict to irreducible subspaces (with fixed angular

momentum) to diagonalize H. More precisely, let us define, for each qubit m, the operators

s−m = |0〉〈1|, s+
m = (s−m)†, and s3

m =
1

2
(−|0〉〈0|+ |1〉〈1|).

These satisfy the canonical su(2) commutation relations, with s+ and s− being the raising

and lowering operators of the spin-1/2 representation, and the basis states |0〉 and |1〉
corresponding to |j,m〉 = |1/2,−1/2〉 and |1/2, 1/2〉, respectively. The total z-angular

momentum and raising/lowering-operators for the tensor product representation on (C2)⊗n

are given by

S3 =

n∑
m=1

s3
m and S± =

n∑
m=1

s±m .

These operators commute with H, and therefore the total Hilbert space splits into a direct

sum of spin representations:

(C2)⊗n ∼=
⊕
j

Hj ⊗ Cmj ,

where the direct sum is taken over all irreducible spin represenations (with multiplicity mj)

present in the decomposition of the tensor representation. Each Hj defines an irreducible

2j+1-dimensional angular momentum-j representation, and H|Hj = EjIHj is proportional

to the identity on each of these spaces. For instance, the subspace Hn/2 with maximal an-

gular momentum has highest weight vector |1〉⊗n and is spanned by “descendants” obtained

by applying the lowering operator, that is,

Hn/2 = span
{
Sr−|1〉⊗n | r = 0, . . . , n

}
.
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It is associated with energy En/2 = −n/4, which is the ground state energy of H.

Clearly, this is the symmetric subspace, containing only permutation-invariant (i.e., zero-

momentum) states. Error-correction within this subspace has been considered in [52].

Indeed, all the examples constructed there consist of subspaces of Hn/2.

Here we go beyond permutation-invariance. Specifically, we consider the vector

|Ψ〉 = ω

n∑
r=1

ωrs−r |1〉⊗n where ω = e2πi/n . (7.3)

The factor ω in front is introduced for convenience. A straightforward calculation shows

that S+|Ψ〉 = 0 and S3|Ψ〉 = (n/2− 1) |Ψ〉, hence this is a highest weight vector for angular

momentum j = n/2− 1 and

Hn/2−1 = span
{
Sr−|Ψ〉 | r = 0, . . . , n− 2

}
. (7.4)

The energy of states in this subspace can be computed to be En/2−1 = −n/4 + 1 −
cos(2π/n) = En/2 + O(1/n2). This shows that these states are associated with low-lying

excitations, and the system is gapless. Observe also that (7.3) is an eigenvector of the

cyclic shift with eigenvalue ω, that is, it has fixed momentum p = 2π/n. As Sr− com-

mutes with the cyclic shift, the same is true for all states in Hn/2−1: this is a subspace of

fixed momentum and energy. We will argue that Hn/2−1 contains error-detecting codes.

Specifically, we consider subspaces spanned by states of the form {Sr−|Ψ〉}r for appropriate

choices of magnetization r. The state (7.3) is sometimes referred to as a one-magnon state.

Correspondingly, we call the corresponding code(s) the magnon-code. We also refer to the

vectors {Sr−|Ψ〉}r (respectively, their normalized versions) as magnon-states. For brevity,

let us denote the r-th descendant by

|Ψr〉 := Sr−|Ψ〉 for r = 0, . . . , n− 2 . (7.5)

It is clear that the states |Ψr〉 and |Ψs〉 are orthogonal for r 6= s as they have different

magnetization, hence they form a basis of the magnon code. It is also convenient to

introduce their normalized versions which are given by

|ψr〉 =

(
(n− 2− r)!
n(n− 2)!r!

)1/2

Sr−|Ψ〉 for r = 0, . . . , n− 2 , (7.6)

as follows from the fact that for a normalized highest-weight vector |j, j〉 of a spin-j-

representation, the vectors

|j, j − k〉 =

(
(2j − k)!

(2j)!k!

)1/2

Sk−|j, j〉,

with k = 0, . . . , 2j form an orthonormal basis.

7.2 Matrix product operators

Here we briefly review the formalism of matrix product operators (MPO) and introduce

the corresponding notation. We only require site-independent MPO. Such an MPO O ∈
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Figure 8. Alternative parametrization of an MPO O.

B((Cp)⊗n) with bond dimension D is given by

O =
∑

i1,...,in∈[p]
j1,...,jn∈[p]

tr(Oi1,j1 · · ·Oin,jnX)|i1〉〈j1| ⊗ · · · ⊗ |in〉〈jn|

for a family of local tensors {Oi,j}i,j∈[p] ⊂ B(CD), and a boundary operator X ∈ B(CD).

Alternatively, the MPO O can also be parametrized by the operator X ∈ B(CD) together

with family {Oα,β}α,β∈[D] of p×p-matrices. In this parametrization (illustrated in figure 8),

the MPO is written as

O =
∑

α0,...,αn∈[D]

Xαn,α0O
α0,α1 ⊗Oα1,α2 ⊗ · · · ⊗Oαn−1,αn . (7.7)

Equation (7.7) shows that the MPO O = O(O,X, n) ∈ B((Cp)⊗n) is fully specified by

three objects:

(i) a four-index tensor O, defined in terms of the collection {Oi,j}i,j∈[p] of matrices

acting on the so-called virtual space CD (alternatively, the collection of matri-

ces {Oα,β}α,β∈[D] acting on the physical space Cp),

(ii) a matrix X ∈ B(CD) acting on the virtual space, and

(iii) an integer n ∈ N specifying the number of physical spins.

We refer to the tensor O as a local MPO tensor, and to X as a boundary operator.

It is convenient to introduce the following product on MPO tensors. Suppose O1

and O2 are MPO tensors associated with MPOs having physical dimension p, and bond

dimensions D1 and D2, respectively. Then O1 � O2 is the MPO tensor of an MPO with

physical dimension p and bond dimension D1 ·D2. Its tensor network description is given

in figure 9. More precisely, if Oα is defined by {O(x)
i,j }i,j∈[p] for x = 1, 2, then O1 � O2 is

defined in terms of the matrices

Oi,j =

r∑
k=1

(O(1))i,k ⊗ (O(2))k,j ∈ B(CD1 ⊗ CD2) for i, j ∈ [p] .

This is clearly associative, and allows us to define O�k := O �O�(k−1) recursively.

Suppose now that an MPO O = O(O,X, n) is given. Observe that for k ∈ N, the

operator Ok is an MPO whose virtual bond space is (CD)⊗k and whose local tensors take
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Figure 9. The product of two MPO tensors O1 and O2, as well as the power O�k
1 .

Figure 10. This figure shows an MPO O = O(O,X, 2) defined in terms of matrices {Oi,j}i,j and

the matrices {O�3
i,j}i,j defining the MPO O3. Left-multiplication by an operator corresponds to

stacking a diagram on top.

the form

〈α1 · · ·αk|(O�k)i,j |β1 · · ·βk〉 =
∑

s1,...,sk−1∈[p]

〈α1|Oi,s1 |β1〉 · 〈α2|Os1,s2 |β2〉
· · · 〈αk−1|Osk−2,sk−1

|βk−1〉 · 〈αk|Osk−1,j |βk〉 ,

with boundary tensor X⊗k. Thus the MPO Ok = O(O�k, X⊗k, n) is defined by the MPO

tensor O�k and the boundary operator X⊗k. These are visualized in figure 10, for k = 3.

Consider an MPS |Ψ〉 = |Ψ(A,X, n)〉 ∈ (Cp)⊗n of bond dimension D1 and an

MPO O = O(O, Y, n) ∈ B((Cp)⊗n) of bond dimension D2. Then clearly O|Ψ〉 is an

MPS with bond dimension D1D2. We write

O|Ψ〉 = |Ψ(O �A, Y ⊗X,n)〉 , (7.8)

see figure 11 for the definition of the MPS tensor O � T .

In the following, we are interested in matrix elements of the form 〈Ψ|O|Ψ〉. A central

object of study is the generalized transfer operator EO. If O is specified by matrices
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Figure 11. Definition of the MPS tensor O � T .

Figure 12. This figure shows the tensor network representations of EO and EO�3 .

Figure 13. This figure illustrates the definition of the product O � |ϕ〉.

{Oi,j}i,j∈[p] ⊂ B(CD2), this is given by

EO =
∑

s,t∈[D1]

∑
j,k∈[D2]

〈s|Oj,k|t〉As ⊗ |j〉〈k| ⊗At ∈ B(Cp ⊗ CD2 ⊗ Cp) .

This operator, as well as EO�k ∈ B(Cp⊗(CD2)⊗k⊗Cp) for k = 3 are illustrated in figure 12.

Consider an MPO tensor O with physical space Hp and virtual space Hv. Given a

vector |ϕ〉 ∈ Hv, we can define an element O� |ϕ〉 ∈ Hv ⊗B(Hp) by attaching O from the

left, see figure 13. The map (O,ϕ) 7→ O � |ϕ〉 is bilinear. Hence we can define

O � (O � |ϕ〉) := (O ⊗ IB(Hp))(O � |ϕ〉) ∈ Hv ⊗ B(Hp)⊗ B(Hp) .

This is clearly associative. Correspondingly, we also define O�n|ϕ〉 ∈ Hv⊗B(Hp)⊗n as the

result applying this map n times. Note that an MPO defined by (O,X = |ϕ〉〈χ|) can be

written as
(
〈χ| ⊗ I⊗nB(Hp)

)
O�n|ϕ〉.

Conversely, observe that a bilinear map Γ : Hv → Hv ⊗ B(Hp), together with two

states |ϕ〉, |χ〉 ∈ Hv, defines a site-independent MPO in this fashion.
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Figure 14. An MPS description of the one-magnon state |Ψ〉 (cf. (7.3)).

7.3 MPS/MPO representation of the magnon states

Here we give an MPS/MPO representation of the magnon states that we use throughout

our analysis below. We note that more generally, [68] discusses such representations for

the Bethe ansatz states.

Consider the one-magnon state |Ψ〉 ∈ (C2)⊗n defined by (7.3). It is straightforward to

check that an MPS representation of |Ψ〉 = |Ψ({A0, A1, X})〉 with bond dimension D = 2

is given by

A0 = |1〉〈0| ,
A1 = |0〉〈0|+ ω|1〉〈1| , (7.9)

X = |0〉〈1| ,

where ω = e2πi/n, see figure 14. Next, we consider the descendants (7.5). The operator

S− =
∑n

m=1 s−m can be expressed as a bond dimension D = 2 MPO, given by

S− = O(O0,0, O0,1, 01,0, O1,1, X) ∈ B((C2)⊗n) ,

where the boundary tensor is X = σ− := |0〉〈1|, and where the local tensors are defined as

O0,0 = O1,1 = IC2 ,

O1,0 = |0〉〈1| , (7.10)

O0,1 = 0 .

This definition is illustrated in figure 15. The adjoint operator S+ has an MPO represen-

tation described as in figure 16.

It follows that the “descendants” |Ψs〉 = Ss−|Ψ〉 can be represented as in figure 17, i.e.,

they are MPS of the form

|Ψs〉 = |Ψ(O�s �A,X⊗(s+1), n)〉 for s = 0, . . . , n− 2 ,

where the MPS tensor O � T is defined as in equation (7.8).
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Figure 15. An MPO description of the lowering operator. The MPO S− = O(O,X, n) is defined

with O as given in the figure and with X = σ−.

Figure 16. An MPO description of the adjoint MPO S+.

Figure 17. An MPS/MPO representation of the vector |Ψs〉 = Ss
−|Ψ〉. Seen as an MPS, this has

rank-1-boundary tensor X = (|0〉〈1|)⊗s+1.

7.4 A compressed MPS/MPO representation of the magnon states

Consider the MPO representation (7.10) of S−. For s ∈ [n], it implies the MPO represen-

tation

Ss− = O(O�s, σ⊗s− , n) (7.11)

for the s-th power of S−, which has bond dimension D = 2s. Below we argue that the

MPO (7.11) can also be expressed as an MPO with bond dimension s+ 1. We call this the

compressed representation:
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Lemma 7.1. Let s ∈ [n] and consider the operator Ss−, where S− =
∑n

m=1 s−m. This has

the bond dimension D = s+ 1-MPO representation

Ss− = O(Õs, X̃s, n) .

Here the virtual space Cs+1 is that of a spin-s/2 with orthonormal angular momentum

eigenstate basis {|s/2,m〉 | m = − s
2 ,−s/2 + 1, . . . , s/2}. The boundary tensor is

X̃s = |s/2,−s/2〉〈s/2, s/2|

and the MPO tensor Õs is defined by the matrices

(Õs)0,0 = (Õs)1,1 = I ,

(Õs)1,0 = 0 , (7.12)

(Õs)0,1 = J+ ,

where J+ is the usual spin-raising operator.11 In particular, the states |Ψs〉 = Ss−|Ψ〉 have

an MPS representation of the form

|Ψs〉 = |Ψ(Õs �A, X̃s ⊗X,n)〉 ,

with bond dimension 2(s+ 1).

Proof. Consider the MPO tensor O�s associated with the MPO representation (7.11)

of Ss−. We express it in terms of matrices {Oi,j}i,j∈{0,1} ⊂ B((C2)⊗s) acting on the vir-

tual space of dimension D = 2s. The latter has orthonormal basis {|α〉 = |α1〉 ⊗ · · · ⊗
|αs〉}α=(α1,...,αs)∈{0,1}s . By definition (7.10) of O and the fact that (O1,0)2 = σ2

− = 0, it is

easy to see that

〈α|O0,0|β〉 = δα,β
〈α|O1,1|β〉 = δα,β
〈α|O1,0|β〉 = 0

, and 〈α|O0,1|β〉 =

{
1 if β � α
0 otherwise

,

where we write β � α for α, β ∈ {0, 1}s if and only if there is exactly one k ∈ [s] such

that βk = 0 and αk = 1, and α` = β` for all ` 6= k. Let us define j−k as the operator |0〉〈1|
acting on the k-factor in (C2)⊗s, and j+

k = (j−k )† for k ∈ [s]. Then it is easy to check that

j+ :=
∑s

k=1 j+
k has the same matrix elements 〈α|O0,1|β〉 as O0,1. It follows that

O0,0 = I(C2)⊗s

O1,1 = I(C2)⊗s
, and

O1,0 = 0

O0,1 = j+
. (7.13)

According to the MPO representation (7.11) of Ss−, the matrix elements of this operator

can be expressed as

〈i1 · · · in|Ss−|j1 · · ·jn〉= 〈1|⊗sOi1j1 · · ·Oinjn |0〉⊗s for all (i1, . . . , in),(j1, . . . , jn)∈{0,1}n .
11With respect to a distinguished orthonormal basis {|j,m〉}m=−j,−j+1,··· ,j , we have

J+|j,m〉 =
√
j(j + 1)−m(m+ 1)|j,m+ 1〉

for all m = −j, · · · , j − 1 and J+|j, j〉 = 0.
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Combining this expression with (7.13), it follows that

〈i1 · · · in|Ss−|j1 · · ·jn〉= 〈1|⊗s(Õs)i1j1 · · ·(Õs)injn |0〉⊗s for all (i1, . . . , in),(j1, . . . , jn)∈{0,1}n .

where (Õs)i,j is the restriction of (O�s)i,j to the subspace span{(j+)r|0〉⊗s | r = 0, . . . , s}.
This implies the claim.

7.5 Action of the symmetric group on the magnon states

The symmetric group Sn acts on (C2)⊗n by permuting the factors, i.e., we have for an

orthonormal basis {|e1〉, |e2〉} ∈ C2 that

π(|ei1〉 ⊗ · · · ⊗ |ein〉) = |eiπ−1(1)
〉 ⊗ · · · ⊗ |eiπ−1(n)

〉 for all π ∈ Sn ,

and this is linearly extended to all of (C2)⊗n. Since

[π, S−] = 0 for all π ∈ Sn , (7.14)

the space span{Sk−|Ψ〉 | k ∈ N0} is invariant under permutations. In the following, we

will show that the restriction of the group action to this space has a particularly simple

form: every permutation acts as a tensor product of diagonal unitaries. Our main claim

(theorem 7.3 below) follows from (7.14) and the following statement.

Lemma 7.2. Let A0, A1 ∈ B(C2) be the matrices defining the MPS |Ψ〉, cf. equation (7.9).

Then

AcAb = ωcωbAbAc for all b, c ∈ {0, 1} . (7.15)

Consider the MPO tensor O defined by equation (7.10) and set Oa,b = O(O, |b〉〈a|, 2) ∈
B((C2)⊗2) for a, b ∈ {0, 1}. Then

Oa,b(Z† ⊗ Z) = (Z† ⊗ Z)Oa,b for all a, b ∈ {0, 1} , (7.16)

where Z = diag(1, ω).

It is convenient to express the corresponding statements diagramatically. First observe

that specializing (7.14) to a neighboring transposition and inserting the MPO description

of S− introduced in section 7.3, we obtain the diagrammatic identity

(7.17)

Claim (7.15) describes the action of a neighboring transposition and can be written as

(7.18)
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Claim (7.16) can be written as

(7.19)

Proof. Equation (7.15) can be shown by checking each case:

Similarly, (7.16) is shown by direct computation.

The main feature we need in what follows is the following statement:

Lemma 7.3. Consider the spin j = n/2 − 1 subspace Hn/2−1 ⊂ (C2)⊗n introduced in

equation (7.4). Let τ = (k k + 1) ∈ Sn be an arbitrary transposition of nearest neighbors.

Then the restriction of τ to Hn/2−1 is given by the operator

τ |Hn/2−1
= I⊗k−1 ⊗ Z† ⊗ Z ⊗ I⊗n−k−1 ,

where I = IC2.

Proof. It suffices to check that τSs−|Ψ〉 = (I⊗k−1 ⊗Z† ⊗Z ⊗ I⊗n−k−1)Ss−|Ψ〉. This follows

immediately from lemma 7.2. A diagrammatic proof of the steps involved can be given as
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follows (illustrated for s = 3):

Here we used (7.17) s times in the first identity, equation (7.18) in the second identity, and

equation (7.19) (applied s times) in the last step.

An immediate and crucial consequence of lemma 7.3 and the unitarity of Z is the fact

that matrix elements of an operator acting on d arbitrary sites can be related to matrix

elements of a local operator on the d first sites. To express this concisely, we use the

following notation: suppose F = F1 ⊗ · · · ⊗ Fd ∈ B((C2)⊗d) is a tensor product operator

and A = {a1 < · · · < ad} ⊂ [n] a subset of d = |A| (ordered) sites. Then we write

FA ⊗ I[n]\A ∈ B((C2)⊗n) for the operator acting as Fk on site ak, for k ∈ [d]. By linearity,

this definition extends to general (not necessarily product) operators F ∈ B((C2)⊗d). Note

that if A = [d] are the first d sites, then FA ⊗ I[n]\A = F ⊗ I⊗n−d.

Lemma 7.4. Consider the magnon states |Ψ`〉 = S`−|Ψ〉 and let r, s ∈ {0, . . . , n − 2} be

arbitrary. Suppose F ∈ B((C2)⊗d) acts on a subset A ⊂ [n] of d = |A| sites. Then

〈Ψr|(FA ⊗ I[n]\A)|Ψs〉 = 〈Ψr|(F̃[d] ⊗ I⊗n−d)|Ψs〉

where F̃ ∈ B((C2)⊗d) is given by

F̃ = ((Z†)a ⊗ (Z†)a+1 · · · ⊗ (Z†)a+d)F (Za ⊗ Za+1 · · · ⊗ Za+d)

where a = (minA)− 1.

More generally, if B ⊂ [n] is a subset of size b = |B| located “to the right of A” (i.e.,

if minB > maxA) and G ∈ B((C2)⊗b), then

〈Ψr|(FA ⊗GB ⊗ I[n]\(A∪B))|Ψs〉 = 〈Ψr|(F̃[d] ⊗GB ⊗ I[n]\([d]∪B))|Ψs〉 (7.20)
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Furthermore, the analogous statement holds when G is permuted to the right, but with Z

replaced by Z†.

Succintly, equation (7.20) can be represented as follows in the case where A consists

of a connected set of sites (and r = s = 0):

We emphasize, however, the analogous statement is true for the more general case where

A is a union of disconnected components.

Proof. The proof of equation (7.20) for a single-site operator F is immediate. We have

(illustrated for r = s = 0):

Applying (7.20) (with d = 1) iteratively then shows that the claim (7.20) also holds for any

tensor product operator F = F1⊗· · ·⊗Fd. The general claim then follows by decomposing

an arbitrary operator F into tensor products and using linearity.

7.6 The transfer operator of the magnon states and its Jordan structure

We are ultimately interested in matrix elements 〈Ψr|(F⊗I⊗(n−d))|Ψs〉 where F ∈ B((C2)⊗d)

acts on d sites. Using the compressed representation from lemma 7.1, we may write these as

〈Ψr|(F ⊗ I⊗(n−d))|Ψs〉 = 〈Ψ(Õr �A, X̃r ⊗X,n)|(F ⊗ I⊗(n−d))|Ψ(Õs �A, X̃s ⊗X,n)〉 .

We are thus interested in the (“overlap”) transfer operator

Er,s = E(Õr �A, Õs �A) for r, s ∈ [n] .
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For convenience, let us also set

E0,s = E(A, Õs �A) for s ∈ [n] ,

Er,0 = E(Õr �A,A) for r ∈ [n] ,

E0,0 = E(A,A) .

Observe that E0,0 is the transfer operator E of the MPS |Ψ〉, whereas E0,s is the transfer

operator of Ss−|Ψ〉. We will order the tensor factors such that the virtual spaces of the

original MPS are the first two factors. Then Er,s ∈ B(C2 ⊗ C2 ⊗ Cr+1 ⊗ Cs+1). Our main

goal in this section is to show the following:

Theorem 7.5. Let r, s ∈ {0, . . . , n} be arbitrary. Then the operator Er,s ∈ B(C2 ⊗ C2 ⊗
Cr+1⊗Cs+1) has spectrum spec(Er,s) = {1, ω, ω} (where 1 has multiplicity 2 · (r+ 1)(s+ 1)

and ω, ω each have multiplicity (r + 1)(s + 1)). The size h∗ of the largest Jordan block in

Er,s is bounded by

h∗ ≤ min{r, s}+ 2 .

To prove this theorem, we first rewrite the operator Er,s. We have

Er,s = E(Õr �A, Õs �A) = E(A, Õ†r � Õs �A) ,

where Õ†r is obtained from the defining matrices {Õα,β}α,β of Õ by replacing Õα,β with

its adjoint (Õ†)α,β . This amounts to replacing σ− by σ+, or alternatively, swapping the

indices in the defining matrices {(Õs)i,j} (cf. (7.12)). That is,

(Õs)0,0 = (Õs)1,1 = ICs+1

(Õs)1,0 = 0

(Õs)0,1 = J+,s

, and

(
˜
O†r)0,0 = (Õ†r)1,1 = ICr+1

(
˜
O†r)1,0 = J+,r

(
˜
O†r)0,1 = 0

,

where J+,s and J+,r are the raising operators in the spin-s/2 respectively the spin-r/2

representation, respectively. We conclude that

Er,s =E⊗ICr+1⊗ICs+1 +Eσ+⊗J+,r⊗ICs+1 +Eσ−⊗ICr+1⊗J+,s+Eσ+σ−⊗J+,r⊗J+,s ,

where S+ are the raising operator S+ of the spin-j representation with j = r/2 and j = s/2,

respectively. Here

E = |00〉〈00|+ ω|01〉〈01|+ ω|10〉〈10|+ |11〉〈11|+ |11〉〈00| ,
Eσ− = |10〉〈00|+ ω|11〉〈01| ,
Eσ+ = |01〉〈00|+ ω|11〉〈10| ,

Eσ+σ− = |00〉〈00|+ ω|10〉〈10|+ ω|01〉〈01|+ |11〉〈11| ,

are the transfer operators of the MPS |Ψ〉. We can write down the transfer matrix Er,s
more explicitly as

Er,s = A0 ⊗A0 ⊗ I ⊗ I +A1 ⊗A1 ⊗ I ⊗ I +A0 ⊗A1 ⊗ I ⊗ J+,s

+A1 ⊗A0 ⊗ J+,r ⊗ I +A1 ⊗A1 ⊗ J+,r ⊗ J+,s , (7.21)
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where

A0 = σ+ =

(
0 0

1 0

)
, and A1 =

(
1 0

0 ω

)
are the defining tensors of the original state |Ψ〉 (cf. (7.9)). With this, we can give the

proof of the above theorem as follows.

Proof of theorem 7.5. Observe that in the standard basis of the spin-j-representation, the

raising operator J+ is strictly lower diagonal. From (7.21) and the definition of A0 and

A1, it follows that the transfer operator Er,s is lower diagonal in the tensor product basis

(consisting of these standard bases and the computational basis of C2) since each term in

the sum is a tensor product of lower diagonal matrices. In fact, every term except

D ≡ A1 ⊗A1 ⊗ I ⊗ I

is strictly lower diagonal. Therefore, we see that the eigenvalues of Er,s are given by the

diagonal entries of D, and consist of the eigenvalue 1 with multiplicity 2(r+ 1)(s+ 1), and

the eigenvalues ω and ω, both with multiplicity (r + 1)(s + 1). Observe that A0 and A1

commute up to a factor of ω, that is,

A1A0 = ωA0A1 . (7.22)

To shorten some of the expressions, let define

N1 = A0 ⊗A0 , N2 = A0 ⊗A1 , N3 = A1 ⊗A0 , and A = A1 ⊗A1 .

We note that each Ni is a nilpotent matrix of order 2, i.e.,

N2
i = 0 for i = 1, 2, 3 (7.23)

since A2
0 = 0. Moreover, for the same reason and (7.22), we have

N2N1 = N1N2 = N3N1 = N1N3 = 0 and N2N3 = ω2N3N2 ,

equation (7.22) also implies that

NiA = qi(ω)ANi for i = 1, 2, 3 , (7.24)

where qi(ω) ∈ {1, ω, ω}. Now consider the transfer operator with its diagonal term removed,

i.e.,

Er,s −D = N1 ⊗ I ⊗ I +N2 ⊗ I ⊗ J+,s +N3 ⊗ J+,r ⊗ I +A⊗ J+,r ⊗ J+,s .

Let C[ω, ω] be the set of polynomials in ω and ω. Let us define the set

X =

{
p1(ω, ω)N1 ⊗ I ⊗ I + p2(ω, ω)N2 ⊗ I ⊗ J+,s

+ p3(ω, ω)N3 ⊗ J+,r ⊗ I + p4(ω, ω)A⊗ J+,r ⊗ J+,s

∣∣∣∣ pi ∈ C[ω, ω]

}
such that Er,s −D ∈ X . The key properties of X which we need are the following:
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(i) If X1 ∈ X , then DX1 = X2D and X1D = DX3 for some X2, X3 ∈ X .

(ii) The product of any min{r, s}+ 2 operators in X is equal to zero.

Property (i) follows immediately with the commutation relation (7.24) because D = A ⊗
I ⊗ I. Similarly, property (ii) follows from the nilpotency relation (7.23), the commutation

relation (7.24) and the fact that

J
min{r,s}+2
+,r = J

min{r,s}+2
+,s = 0 .

We can write these two properties succintly as equalities of sets, that is,

DX = XD , and (7.25)

Xm = {0} for all m ≥ min{r, s}+ 2 , (7.26)

where e.g., X 2 = {X1X2 |X1, X2 ∈ X}. Let us write Dλ = D − λI. Then

Er,s − λI = Dλ + (Er,s −D) ∈ Dλ + X .

In particular, for `,m, n ∈ N0 we have

(Er,s − I)`(Er,s − ωI)m(Er,s − ωI)n ∈ (D1 + X )` (Dω + X )m (Dω + X )n

⊆
∑

a∈{0,...,`}
b∈{0,...,m}
c∈{0,...,n}

Da
1D

b
ωD

c
ωX (`−a)+(m−b)+(n−c) ,

where in the last step, we used the binomial expansion, the pairwise commutativity of

the matrices D1, Dω and Dω, and (7.25). Since D1DωDω = 0, the non-zero terms in the

expansion must have at least one of a, b, c equal to zero. Choosing

` = m = n = min{r, s}+ 2 ,

the exponent (` − a) + (m − b) + (n − c) is lower bounded by min{r, s} + 2 for any such

triple (a, b, c). We conclude with (7.26) that∑
a∈{0,...,`}
b∈{0,...,m}
c∈{0,...,n}

Da
1D

b
ωD

c
ωX (`−a)+(m−b)+(n−c) = {0} ,

and thus

(Er,s − I)min{r,s}+2(Er,s − ωI)min{r,s}+2(Er,s − ωI)min{r,s}+2 = 0 .

Therefore the minimal polynomial of Er,s must divide p(x) = [(x−1)(x−ω)(x−ω)]min{r,s}+2.

Thus the Jordan blocks of Er,s are bounded above in size by min{r, s}+ 2, as claimed.
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7.7 Matrix elements of magnon states

With the established bounds on the Jordan structure of Er,s, we can derive upper bounds

on overlaps of magnon states. Recall that |Ψr〉 = Sr−|Ψ〉 for r = 0, . . . , n− 2 and |ψr〉 is its

normalized version (cf. (7.6)).

Theorem 7.6. Let F ∈ B((C2)⊗d) be such that ‖F‖ ≤ 1. Let r 6= s. Then

|〈ψr|(F ⊗ I⊗(n−d))|ψs〉| = O

(
d

n|s−r|/2

)
.

Proof. We can take the complex conjugate, effectively interchanging r and s. Thus we can

without loss of generality assume that r < s. Recall that |Ψr〉 and |Ψs〉 can be represented

as MPS using bond dimensions Dr = 2(r+1), Ds = 2(s+1) such that the associated transfer

operators Er, Es and the combined transfer operator Er,s all have spectrum {1, ω, ω} and

Jordan blocks bounded by 2, 2, and min{r, s} + 2 = r + 2, respectively; see theorem 7.5.

Applying theorem 4.5 (with h∗1 = 2, h∗2 = 2, h∗ = r + 2) we get

|〈Ψr|(F ⊗ I⊗n−d)|Ψs〉| ≤ 16 · d(n− d)r+1 = O(d · nr+1) .

Inserting the normalization (7.6)

‖Ψs‖2 =
n(n− 2)!s!

(n− 2− s)!
≥ s! · ns+1(1−O(s2/n))

gives

|〈ψr|(F ⊗ I⊗n−d)|ψs〉| =
dnr+1

(r!s!)1/2n(r+s)/2+1
· (1 +O(s2/n)) = O(d · n−(s−r)/2)

as claimed.

We also need estimates for the difference of expectation values of magnon states. Let

us first show that the reduced d-local operators are all essentially the same.

Lemma 7.7. Let {|ψs〉}n−2
s=0 be the normalized magnon-states defined in equation (7.6).

Then

〈1|⊗d (trn−d |ψs〉〈ψs|) |1〉⊗d ≥ 1−O(ds/n)

for all s ∈ [n].

Proof. Let us define

|Ψk
s〉 = Ss−

 k∑
j=1

ωjσ−j |1〉
⊗k

 .

Observe that for d < n

|Ψn
0 〉 = |Ψd

0〉 ⊗ |1〉⊗n−d + ωd|1〉⊗d ⊗ |Ψn−d
0 〉 .
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Writing S− = SA− + SB− with SA− =
∑d

j=1 σ
−
j and SB− =

∑n
j=d+1 σ

−
j we get

|Ψn
s 〉 =

s∑
`=0

(
s

`

)
(SA−)`(SB− )s−`|Ψn

0 〉

= ωd|1〉⊗d ⊗ (SB− )s|Ψn−d
0 〉+ |Φ〉

= ωd|1〉⊗d ⊗ |Ψn−d
s 〉+ |Φ〉 ,

for a vector |Φ〉 ∈ (Cp)⊗n satisfying (|1〉〈1|⊗d ⊗ I⊗n−d)|Φ〉 = 0. In particular, we have

(|1〉〈1|⊗d ⊗ I⊗(n−d))|Ψn
s 〉 = ωd|1〉⊗d|Ψn−d

s 〉 .

Tracing out the (n− d) qubits, it follows that

〈1|⊗d trn−d (|Ψn
s 〉〈Ψn

s |) |1〉⊗d = ‖Ψn−d
s ‖2 .

Rewriting the term using the normalized vector ψns = Ψn
s /‖Ψn

s ‖, we get

〈1|⊗d (trn−d |ψns 〉〈ψns |) |1〉⊗d =
‖Ψn−d

s ‖2

‖Ψn
s ‖2

.

Observe that the norm ‖Ψk
s‖2 is a matrix element of the operator Eks,s. With lemma 4.2(iii)

we obtain

〈1|⊗d (trn−d |ψns 〉〈ψns |) |1〉⊗d =
c · (n− d)`−1(1 +O((n− d)−1))

c · n`−1(1 +O(n−1))

= (1− d/n)`−1(1 +O((n− d)−1))

≥ (1− d(`− 1)/n)) · (1 +O((n− d)−1))

≥ 1−
(
d(`− 1)

n
+O(1/n)

)
,

for some ` ∈ {1, . . . , h∗}, where h∗ is the size of the largest Jordan block of the transfer

operator Es,s. Since h∗ ≤ s+ 2 by theorem 7.5, the claim follows.

Theorem 7.8. Let F ∈ B((C2)⊗d) be such that ‖F‖ ≤ 1. Fix some s0 ≤ n− 2. Then∣∣〈ψs|(F ⊗ I⊗n−d)|ψs〉 − 〈ψr|(F ⊗ I⊗n−d)|ψr〉∣∣ = O(
√
ds0/n) for all r, s ≤ s0 .

Proof. For any F ∈ B((C2)⊗d) with ‖F‖ ≤ 1 we have∣∣〈ψs|(F ⊗ I⊗n−d)|ψs〉 − 〈1|⊗dF |1〉⊗d∣∣ ≤ ‖ trn−d |ψs〉〈ψs| − |1〉〈1|⊗n‖

≤
√

1− 〈1|⊗d (trn−d |ψs〉〈ψs|) |1〉⊗d ,

using the Fuchs-van de Graaf inequality 1
2‖ρ − |ϕ〉〈ϕ|‖1 ≤

√
1− 〈ϕ|ρ|ϕ〉 [79]. With

lemma 7.7 we get ∣∣〈ψs|(F ⊗ I⊗n−d)|ψs〉 − 〈1|⊗dF |1〉⊗d∣∣ ≤ O(
√
ds0/n) .

Using the triangle inequality, the claim follows.
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7.8 The parameters of the magnon code

Our main result is the following:

Theorem 7.9 (Parameters of the magnon-code). Let ν ∈ (0, 1) and λ, κ > 0 be such that

6κ+ λ < ν .

Then there is a subspace C spanned by descendant states {Sr−|Ψ〉}r with magnetization r

pairwise differing by at least 2 such that C is an (ε, δ)[[n, k, d]]-AQEDC with parameters

k = κ log2 n ,

d = n1−ν ,

ε = Θ(n−(ν−(6κ+λ))) ,

δ = n−λ .

Proof. We claim that the subspace

C = span{ψs | s even and s ≤ 2nκ}

spanned by a subset of magnon-states has the claimed property. Clearly, dim C = nκ = 2k.

Let F be an arbitrary d-local operator on (C2)⊗n of unit norm. According to lemma 7.4,

the following considerations concerning matrix elements 〈ψq|F |ψp〉 of magnon states do not

depend on the location of the support of F as we are interested in the supremum over d-

local operators F and unitary conjugation does not change the locality or the norm. Thus,

we can assume that F = F̃ ⊗ I⊗n−d. That is, we have

sup
F d-local
‖F‖≤1

|〈ψr|F |ψs〉| = sup
F̃∈B((C2)⊗d)

‖F̃‖≤1

|〈ψr|(F̃ ⊗ I⊗n−d)|ψs〉| = O(d/n|r−s|/2) for r, s ≤ 2nκ ,

by theorem 7.6. In particular, if |r − s| ≥ 2, then this is bounded by O(d/n). Similarly,

sup
F d-local
‖F‖≤1

∣∣〈ψs|F |ψs〉−〈ψr|F |ψr〉∣∣= sup
F̃∈B((C2)⊗d)

‖F̃‖≤1

∣∣〈ψs|(F̃⊗I⊗(n−d))|ψs〉−〈ψr|(F̃⊗I⊗(n−d))|ψr〉
∣∣

=O(
√
dnκ/n) =O(

√
dnκ−1) for r,s≤ 2nκ .

by theorem 7.8. Since d/n = O(
√
dnκ−1), we conclude that for all d-local operators F of

unit norm, we have∣∣〈ψr|F |ψs〉 − δr,s〈ψ0|F |ψ0〉| = O(d1/2n(κ−1)/2) for all r, s even with r, s ≤ 2nκ .

The sufficient conditions of corollary 3.4 for approximate error-detection, applied with

γ = Θ(d1/2n(κ−1)/2), thus imply that C is an (Θ(25kdnκ−1)/δ, δ)[[n, k, d]]-AQEDC for any

δ satisfying

δ > Θ(25kdnκ−1) = Θ(n6κ−ν) ,

for the choice d = n1−ν . With δ = n−λ, the claim follows.
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A Canonical form of excitation ansatz states

For the reader’s convenience, we include here a proof of the lemma 6.1 following [78].

Lemma 6.1. Let |Φp(B;A)〉 be an injective excitation ansatz state and assume that A

is normalized such that the transfer operator has spectral radius 1. Let ` and r be the

corresponding left- and right- eigenvectors corresponding to eigenvalue 1. Assume p 6= 0.

Then there exists a tensor B̃ such that |Φp(B;A)〉 = |Φp(B̃;A)〉, and such that

〈〈`|EB̃(p) = 0 and 〈〈`|E
B̃(p)

= 0 .

Proof. We note that the equations (6.3) can be written as∑
i∈[p]

A†i `B̃i = 0 , and
∑
i∈[p]

B̃†i `Ai = 0 . (A.2)

Diagrammatically, they take the form

,

,

where square and round boxes correspond to B̃ and A, respectively.

Let the original MPS tensors be A = {Aj}pj=1 and B = {Bj}pj=1 ⊂ B(CD ⊗ CD).

Suppose X ∈ B(CD) is invertible. Define the MPS tensor C = {B̃j}pj=1 ⊂ B(CD) by

Cj = AjX − e−ipXAj for j = 1, . . . , p ,
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that is,

. (A.3)

It is then easy to check that

|Φp(B;A)〉 = |Φp(B + C;A)〉 ,

where B+C is the MPS tensor obtained by setting (B+C)j = Bj+Cj for each j = 1, . . . , p.

Indeed, the difference of these two vectors is

|Φp(B + C;A)〉 − |Φp(B;A)〉

=
∑

i1,...,in∈[p]

n∑
k=1

eipk tr(Ai1 · · ·Aik−1
CikAik+1

· · ·Ain)|i1 · · · in〉

=
∑

i1,...,in∈[p]

(
n∑
k=1

eipk tr
[
Ai1 · · ·Aik−1

(AikX − e
−ipXAik)Aik+1

· · ·Ain
])
|i1 · · · in〉

= 0 ,

since the terms in the square brackets vanish because of the cyclicity of the trace (alterna-

tively, this can be seen by substituting each square box (corresponding to B) in figure 5

by a formal linear combination of a square box (B) and diagram (A.3)).

Observe that the second equation in (A.2) can be obtained from the first by taking

the adjoint since ` is a selfadjoint operator. It thus suffices to show that there is an MPS

tensor B̃ with the desired property |Φp(B̃;A)〉 = |Φp(B;A)〉 such that∑
i∈[p]

A†i `B̃i = 0 . (A.4)

It turns out that setting B̃ = B + C for an appropriate choice of X (and thus C) suffices.

equation (A.4) then amounts to the identity∑
j∈[p]

A†j`(Bj +AjX − e−ipXAj) = 0 , (A.5)

or diagrammatically,

.

Because ` is the unique eigenvector of E†(ρ) =
∑

j∈[p]A
†
jρAj to eigenvalue 1, equation (A.5)

simplifies to ∑
j∈[p]

A†j`Bj + `X − e−ip
∑
j∈[p]

A†j`XAj = 0 ,
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or

.

Since ` is full rank, we may substitute X = `−1Y . Then (A.5) is satisfied if

,

or ∑
j∈[p]

A†j`Bj + (I − e−ipE)(Y ) = 0 .

Because 1 is the unique eigenvalue of magnitude 1 of E , the map (λI − e−ipE) is invertible

under the assumption that p 6= 0, and we obtain the solution

X = `−1Y

= −`−1
(
I − e−ipE

)−1

∑
j∈[p]

A†j`Bj


to equation (A.5), proving the claim for p 6= 0.
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[78] J. Haegeman, M. Mariën, T.J. Osborne and F. Verstraete, Geometry of matrix product

states: Metric, parallel transport and curvature, J. Math. Phys. 55 (2014) 021902

[arXiv:1210.7710] [INSPIRE].

[79] C.A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum

mechanical states, quant-ph/9712042.

– 79 –

https://doi.org/10.1007/s00220-014-2213-8
https://arxiv.org/abs/1206.2947
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,333,761%22
https://doi.org/10.1103/physrevb.84.165139
https://doi.org/10.1103/physrevb.73.085115
https://doi.org/10.1103/physrevlett.111.080401
https://doi.org/10.1103/physrevb.86.045125
https://doi.org/10.1103/physrevb.86.045125
https://doi.org/10.1109/18.850671
https://doi.org/10.1109/18.850671
https://arxiv.org/abs/quant-ph/0207170
https://doi.org/10.1103/PhysRevLett.104.120501
https://doi.org/10.1112/jlms/s2-17.2.345
https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
https://arxiv.org/abs/1811.00277
https://doi.org/10.1103/PhysRevB.88.075133
https://arxiv.org/abs/1305.1894
https://doi.org/10.1063/1.4862851
https://arxiv.org/abs/1210.7710
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,55,021902%22
https://arxiv.org/abs/quant-ph/9712042

	Introduction
	Our contribution
	Approximate quantum error-detection
	Operational definition of approximate error-detection
	Sufficient conditions for approximate quantum error-detection
	Necessary conditions for approximate quantum error-detection

	On expectation values of local operators in MPS
	Review of matrix product states
	Transfer matrix techniques
	More general and mixed transfer operators
	Norm bounds on generalized transfer operators


	No-go theorem: degenerate ground spaces of gapped Hamiltonians are  constant-distance AQEDC 
	AQEDC at low energies: the excitation ansatz
	MPS tangent space methods: the excitation ansatz
	The norm of an excitation ansatz state
	Bounds on transfer operators associated with the excitation ansatz
	Matrix elements of local operators in the excitation ansatz
	Overview of the proof
	The proof

	The parameters of codes based on the excitation ansatz 

	AQEDC at low energies: an integrable model
	The XXX-model and the magnon code
	Matrix product operators
	MPS/MPO representation of the magnon states 
	A compressed MPS/MPO representation of the magnon states 
	Action of the symmetric group on the magnon states
	The transfer operator of the magnon states and its Jordan structure
	Matrix elements of magnon states
	The parameters of the magnon code

	Canonical form of excitation ansatz states

