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We describe a compactified Supermembrane, or M2-brane, with 2-form fluxes generated by constant 
three-forms that are turned on a 2-torus of the target space M9 × T 2. We compare this theory with the 
one describing a 11D M2-brane formulated on M9 × T 2 target space subject to an irreducible wrapping 
condition. We show that the flux generated by the bosonic 3-form under consideration is in a one 
to one correspondence to the irreducible wrapping condition. After a canonical transformation both 
Hamiltonians are exactly the same up to a constant shift in one particular case. Consequently both of 
them, share the same spectral properties. We conclude that the Hamiltonian of the M2-brane with 2-form 
target space fluxes on a torus has a purely discrete spectrum with eigenvalues of finite multiplicity and 
it can be considered to describe a new sector of the microscopic degrees of freedom of M-theory. We 
also show that the total membrane momentum in the direction associated to the flux condition acquires 
a quantized contribution in correspondence to the flux units that have been turned on.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Supermembranes, also called M2-branes, are 2 + 1 supersym-
metric extended objects that evolve in an eleven dimensional 
target space [1]. They are described by a nonlinear interacting 
field theory invariant under global supersymmetry, local diffeo-
morphisms and local kappa symmetry [2]. Supermembranes are 
part of the building blocks of M-theory and they are sources of 
11D supergravity [1,3], a relation that was emphasized in [4]. 
Moreover, in [5] it is shown that the supermembrane emerges 
as an exact solution of supergravity field equations. A remark-
able property of supermembrane theory is that all the five string 
theories at least at kinematical level and by double dimensional re-
duction can be obtained from it [7–10]. Recently it has been shown 
that M2-brane toroidally compactified is U-dual invariant [11,12].

The Supermembrane theory was originally expected to describe 
the microscopic degrees of freedom of M-theory however when 
formulated on 11D Minkowski background [2], it was rigorously 
proved in the context of matrix model regularization that it has 
continuous spectrum from [0, ∞) [13]. This property led to the 
community to re-interpret this theory as a second quantized the-
ory [14] and the compactification by itself does not change this 
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behavior [15]. The string-like spikes at zero cost energy survive in 
the classical potential [16]. Interestingly, the semiclassical quanti-
zation of the toroidally compactified supermembrane theory how-
ever exhibits a purely discrete spectrum as it was proven in [17]. 
There are just few cases described in the literature -up to our 
knowledge- in which the complete formulation of supermembrane 
theory exhibits discreteness of the spectrum: A first case the so 
called supermembrane with central charges [20] that is irreducibly 
wrapped [21] around a 2-torus whose full-fledged Hamiltonian has 
also a purely discrete spectrum as rigorously shown in [18,19]. 
The case considered in [17], also has a discrete spectrum, since 
it contains a particular realization of the central charge condition. 
This condition that has been extended to other compactifications -
that adds a topological condition on the wrapping, see for example 
[22–24], and a second type, corresponding the supermembrane on 
a pp-wave background [25,26] whose matrix model regularization 
corresponds to the BMN matrix model [27] and whose properties 
of discreteness were proven on [19].

Since M-theory is a candidate for unification theory, at least a 
sector of the theory will be described in terms of the Supermem-
brane theory degrees of freedom. Consequently it becomes increas-
ingly clear the need to obtain the M2-brane theory formulated on 
more general backgrounds. Previous formulation of the M2-brane 
in the Light Cone Gauge (L.C.G) on arbitrary curved backgrounds 
in the formalism of the superspace to second order in Grassmann
variables was done in [28]. In this paper we analyze the quan-
tum properties of a simple but nontrivial case of a M2-brane on 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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a M9 × T 2 background with particular target space 2-form fluxes 
generated by the presence of non vanishing components of a con-
stant form C± . These backgrounds are consistent with supergravity. 
Indeed, backgrounds with a constant C3 were considered by the 
authors [5], corresponding to a M2-brane acting as a source, see 
also [6]. The analysis that we do includes backgrounds correspond-
ing to the asymptotic limit of those considered in [29]. The paper 
is organized as follows: In section 2 we obtain the Hamiltonian 
and constraints of the M2-brane on M9 × T 2 with target space 
fluxes. In section 3 we compare this theory with the M2-brane 
theory irreducibly wrapped around the 2-torus. Based on this re-
sult we characterize its spectrum. In section 4 we establish the 
relation between the two formulations and based on this result 
we characterize its spectral properties. In section 5 we present our 
conclusions.

2. M2-brane subject to 2-form fluxes induced by constant C3

In this section we will analyze the supermembrane theory in 
the L.C.G. formulated on M9 × T 2 background with 2-form fluxes 
induced by the presence of constant bosonic 3-form gauge fields 
Cμνλ . The supersymmetric action of the M2-brane on a generic 
11D noncompact background was found by [1].

S = T

∫
d3ξ

[
−1

2

√−g guv�u
m̂�v

n̂ηm̂n̂ + 1

2

√−g

− 1

6
εuv w� Â

u �B̂
v �Ĉ

w CĈ B̂ Â

]
,

(1)

where, guv = �u
m̂�v

n̂ηm̂n̂ with u, v, w, = 0, 1, 2 the worldvol-
ume indices. (Here Â, B̂, Ĉ , are tangent superspace indices; m̂, ̂n, ̂l, 
bosonic tangent space indices and â, ̂b, ̂c, fermionic tangent space 
indices.) Pullback of the supervielbein E Â

M to the worldvolume is 
given by � Â

u = ∂ Z M

∂ξu E Â
M where M is superspace index. In our study 

we will focus on flat metric Gμν = ημν backgrounds but in the 
presence of some constant components of the three-form:

�m̂
v = ∂v Xμδm̂

μ + θ̄�m̂∂uθ, �â
v = ∂vθ â ,

Cμαβ = (θ̄�μν)(α(θ̄�ν)β), Cαβγ = (θ̄�μν)(α(θ̄�μ)β(θ̄�ν)γ ),

Cμνρ = const , Cμνα = (θ̄�μν)α,

(2)

The embedding coordinates in the superspace formalism are 
(Xμ(ξ), θα(ξ)) with ξu the worldvolume coordinates and where 
μ, ν, λ and α, β , are bosonic and fermionic target space indices, 
respectively. They are scalars under reparametrizations on ξ . In 
this background the action of the supermembrane takes the fol-
lowing form:

S = −T

∫
d3ξ{√−g + εuv w θ̄�μν∂wθ

[
1

2
∂u Xμ(∂v Xν + θ̄�ν∂vθ)+

+ 1

6
θ̄�μ∂uθ θ̄�ν∂vθ

]
+ 1

6
εuv w∂u Xμ∂v Xν∂w Xρ Cρνμ} .

(3)

This background is consistent with supergravity in 11D dimen-
sions and in a particular case it corresponds to the asymptotic limit 
of a supergravity solution generated by an M2-brane acting as a 
source [5,29]. The line element in this case is given by

ds2 = (1 + k

r6
)−

2
3 dxμ̄dxν̄ημ̄ν̄ + (1 + k

r6
)−

1
3 dym̄dyn̄δm̄n̄ , (4)

where μ̄ = 0, 1, 2, m̄ = 3, ..., 10 and r = √
ym̄ ym̄ is the radial 

isotropic coordinate in the transverse space. On the other hand, 
the ansatz for the 3-form produces:
Cμ̄ν̄σ̄ = εμ̄ν̄σ̄ (1 + k

r6
)−1 , (5)

with the other components set to zero. When r → ∞, the metric 
(4) goes to Minkowski metric and (5) is constant. We may now 
formulate the supermembrane action on a M9 × T 2 target space 
with constant gauge field Cμνσ closely following the definitions of 
[15]. We start the L.C.G fixing by taking, X+(ξ) = X+(0) +τ , where 
τ is the time coordinate on the worldvolume, so that ∂u X+ = δuτ , 
and �+θ = 0. Now the supersymmetric action formulated in this 
partial gauge fixing is

S = T

∫
d3ξ{−√

ḡ� − εrs∂r Xaθ̄�−�a∂sθ + C+ + ∂τ X−C−

+ ∂τ XaCa + C+−}
(6)

with1

Ca = −εrs∂r X−∂s XbC−ab + 1

2
εrs∂r Xb∂s XcCabc ,

C± = 1

2
εrs∂r Xa∂s XbC±ab , C+− = εrs∂r X−∂s XaC+−a ,

(7)

where σ r , r = 1, 2 are the spacelike coordinates of the base man-
ifold � × R , being � a torus. It is possible to fix the variation of 
some components of the 3-form by virtue of its gauge invariance. 
In particular it is possible to fix C+−a = 0 and C−ab = constant . The 
Hamiltonian takes the form

H = T

∫
d2σ { 1

(P− − C−)

[
1

2
(Pa − Ca)

2 + 1

4

(
εrs∂r Xa∂s Xb

)2
]

+ εrsθ̄�−�a∂sθ∂r Xa − C+}
(8)

subject to the primary constraints

Pa∂r Xa + P−∂r X− + S̄∂rθ ≈ 0 , S + (P− − C−)�−θ ≈ 0 , (9)

with

Pa =
√

ḡ

�
(∂τ Xa − ur ḡrs∂s Xa) + Ca,

P− =
√

ḡ

�
+ C−, S = −

√
ḡ

�
�−θ.

(10)

The contribution of C+ to the Hamiltonian is a boundary term that 
does not necessarily vanish since there exists a compact sector of 
target space. X− appears explicitly through Ca in the Hamiltonian. 
On the other side X− can be solved from the constraint in terms 
of the physical degrees of freedom. However non-locality is in-
troduced in the procedure. In order to achieve a local canonical 
polynomial reduction of the Hamiltonian one may perform the fol-
lowing transformation

Pa → P̂a ≡ Pa − Ca, P− → P̂− ≡ P− − C− , S → Ŝ ≡ S ,

(11)

keeping invariant the rest of the canonical variables. These pre-
serve all the Poisson brackets, as it is a canonical transformation 
on the phase space. In fact, the kinetic terms remain invariant un-
der (11),

1 In order to be self-contained we include the definitions of [2]: � = −g00 +
ur ḡrsus being ḡrs gst = δr

t and g ≡ detg = −�ḡ (with ε0rs = εrs). ḡrs ≡
grs = ∂r Xa∂s Xbδab ; ur ≡ g0r = ∂r X− + ∂0 Xa∂r Xbδab + θ̄�−∂rθ ; ḡ00 = 2∂0 X− +
∂0 Xa∂0 Xbδab + 2θ̄�−∂0θ .
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∫
�

(Pa Ẋa + P− Ẋ− + S̄ θ̇ ) =
∫
�

( P̂a
˙̂Xa + P̂− ˙̂X− + ˆ̄S ˙̂

θ) , (12)

and the new constrains are

Pa∂r Xa + P−∂r X− + S̄∂rθ = P̂a∂r X̂a + P̂−∂r X̂− + ¯̂S∂r θ̂ ≈ 0 (13)

χ ≈ S + (P− − C−)�−θ = Ŝ + P̂−�−θ̂ ≈ 0 (14)

Now we may use the residual gauge symmetry generated by the 
constraints to impose the gauge fixing condition P̂− = P̂ 0−

√
w ,

where 
√

w is a time independent scalar density and P̂ 0− a zero 
mode defined as in [2]. We may then eliminate ( X̂−, P̂−) as canon-
ical variables and obtain a formulation solely in terms of ( X̂a, P̂a). 
The remaining constraint after the partial gauge fixing corresponds, 
as usual, to the area preserving ones:

d( P̂ad X̂a + θ̂�−dθ̂ ) = 0 ,

∫
�

d( P̂ad X̂a + θ̂�−dθ̂ ) = 0 , (15)

where the first constraint is the local integrability condition which 
must be satisfied in order to have a solution for X̂− . The second in-
tegral constraint, is the condition that the periods dX̂− are trivial 
and hence dX̂− is an exact one form. We then have the follow-
ing hamiltonian density for a membrane on a general background 
field, after the elimination of the conjugate pairs ( X̂−, P̂−) and 
( X̂+, P̂+),

Ĥtotal = Ĥ− C+ = 1

P̂−

[
1

2
P̂a P̂ a + 1

4

(
εrs∂r X̂a∂s X̂b

)2
]

+ εrs ¯̂
θ�−�a∂sθ̂∂r X̂a − C+

(16)

Since we are considering a toroidal compactification of the target 
space M9 ×T 2, the bosonic components decompose in the compact 
and non-compact sector. The even embedding maps X̂a associated 
to the compact sector which always appear as closed one-forms in 
the action. They decompose into an exact one-form, plus a har-
monic one-form. The latter may have nontrivial periods on the 
basis of homology of the compact base Riemann surface �. The 
odd embedding maps θ̂α we assume to be single valued on the 
base manifold. The gauge fixing procedure is consistent under this 
compactification since the local gauge transformations only involve 
the exact part of X̂a . The Hamiltonian of the compactified theory 
is the following one:∫
�

d2σ Ĥtotal =
∫
�

d2σ {
√

w

P̂ 0−

[
1

2

(
Pm√

w

)2

+ 1

2

(
Pi√
w

)2

+1

4

{
Xi, X j

}2 + 1

2

{
Xi, Xm

}2 + 1

4

{
Xm, Xn}2

]
+ √

w
[
θ̄�−�m

{
Xm, θ

} + θ̄�−�i

{
Xi, θ

}]
} − C+,

(17)

where the index m denotes the maps from the base � to M9 and 
i, j = 1, 2 the map from � to T 2. Generically, dXi = Mi

jd X̂ j + dAi , 
Mi

j are integers in order to have a map to cycles. dX̂ j , is a nor-

malized basis of harmonic one-forms and dAi are exact one-form 
components. There are no further requirements on Mi

j . We notice 
the differences between the above Hamiltonian and the one on a 
Minkowski M11 target space where no harmonic contribution is 
present. We will give the complete expression of the Hamiltonian 
in terms of dX̂ i, Ai, dXm in the next section. This Hamiltonian is 
subject to the local and global constraints associated to the Area 
Preserving Diffeomorphisms

d(PidXi + PmdXm + θ�−dθ) = 0 ,∮
Cs

d(PidXi + PmdXm + θ�−dθ) = 0 . (18)

In the compactified case, in contrast to the noncompact one, the 
last term in (17) for constant bosonic 3-form is a total derivative of 
a multivalued function (due to the harmonic contribution). There-
fore its integral is not necessarily zero.

Classically the dynamics of this Hamiltonian contains string-like 
spikes which render the quantum spectrum of the theory contin-
uous. The main point to study in this paper is the behavior of the 
theory when we add a flux quantization condition on the 3-form. 
Given the target space M9 × T 2 a flux condition on it corresponds 
to a closed two form F2 whose integral on the compact sector is an 
integer number. This flux condition is equivalent to the existence 
of an U (1) principle bundle over T 2 and of a 1-form connection 
on it whose curvature is F2:∫
T 2

F2 = k ∈Z/{0} . (19)

In this paper we consider the closed two-forms generated by C+
or C− . We will define them in the following sections. We are in-
terested in the quantum properties of the supermembrane on a 
target space with nontrivial C± , under a flux condition generated 
by them. In order to perform this analysis we are going to compare 
the Hamiltonian (17) subject to a flux condition with the Hamil-
tonian of the M2-brane irreducibly wrapped on a target space 
M9 × T 2.

3. The M2-brane with irreducible wrapping

The M2-brane with irreducible wrapping is defined as follows. 
The embedding maps satisfy winding conditions over the non-
trivial 1-cycles of the 2-torus with 

∮
C j

dXi = Mi
j , Mi

j are winding 
numbers integers and Cs the homological basis of the 2-torus. The 
embedding maps associated to the wrapping on T2 satisfy the fol-
lowing topological condition [21]∫
�

dXi ∧ dX j = ε i jnA, n ∈Z/{0} , (20)

with A denoting the area of the 2-torus (which we can be normal-
ized to 1) and n an integer that is chosen to be different from zero. 
This condition is a quantization condition and ensures that the har-
monic modes appear in a nontrivial way in the expression of Xi . 
This condition is related with the existence of a central charge in 
the SUSY algebra and for this reason this sector of the Superme-
mbrane has been denoted as Supermembrane with central charges. 
Indeed, it implies that the supermembrane is a calibrated subman-
ifold [22]. Other studies analyzing the M2-brane on holomorphic 
curves was considered in [30] and [31]. From a geometrical point 
of view, irreducibility condition ensures the existence of a non-
trivial U (1) principal bundle over the worldvolume of the super-
membrane, characterized by the integer n associated to its first 
Chern class. A particular n fixes and restricts the allowed class of 
principal fiber bundle where it can be formulated. The canonical 
connections are U (1) monopoles expressed in terms of the embed-
ding maps (which are minimal immersions) of the supermembrane 
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in the compactified space. Indeed, this corresponds to have a non-
trivial 2-form flux over the supermembrane world-volume∫
�

F2 = n ∈ Z/{0} . (21)

See [21] for further details. The Hamiltonian of a supermembrane 
wrapped on a 2-torus subject to (20) found in [20] is the following 
one

H Irred =
∫
�

d2σ
√

w
[1

2

( Pm√
w

)2 + 1

2

( Pi√
w

)2 + 1

4

{
Xm, Xm}2

+ 1

2
(Di Xm)2 + 1

4
(Fi j)

2
]

+
∫
�

d2σ
√

w
[
�

(
Di

( Pi√
w

) +
{

Xm,
Pm√

w

})]
+ (n2 Area2

T 2)

+
∫
�

d2σ
√

w
[
− θ̄�−�iDiθ − θ̄�−�m

{
Xm, θ

}
+ �

{
θ̄�−, θ

} ]
,

(22)

where there is a symplectic covariant derivative and symplectic 
curvature defined

Di Xm = Di Xm + {
Ai, Xm}

, Fi j = Di A j − D j Ai + {
Ai, A j

}
,

(23)

with Di a covariant derivative defined in terms of the moduli of 
the torus, the winding numbers Mi

j and the harmonic one-forms,
see [11]. The symplectic connection transforming under area pre-
serving diffeomorphisms given by δε A = Dε . In [32], the authors 
showed that this hamiltonian classically does not contain string-
like configurations. At a quantum level it has the remarkable prop-
erty of having a supersymmetric discrete spectrum with finite mul-
tiplicity, [18,19] in distinction with the supermembrane compacti-
fied on a torus without this restriction (20) which has continuous 
spectrum from [0, ∞) [13,15]. The irreducible wrapping condition 
is a flux condition over the worldvolume that generalizes the Dirac 
monopole construction to Riemann surfaces of arbitrary genus ≥ 1
[33]. The theory defined in this way is a restriction of the super-
membrane theory. All configurations must satisfy, in addition, the 
global constraint. The constraint (20) does not change the local 
symmetries of the supermembrane theory since it is topological 
condition. In particular, the invariance under area preserving dif-
feomorphisms is preserved.

4. Relation between both formulations

We start by considering a flux condition generated by C± on 
the base manifold �. C± is a density with the dimensions of 
the membrane momentum in the directions associated with co-
ordinates X± . It is defined on �, we then consider its associated 
2-form

C±dσ 1 ∧ dσ 2 = 1

2

∂ Xa

∂σ r

∂ Xb

∂σ s
C±ab dσ r ∧ dσ s

= 1

2
C±ab dXa(σ , τ ) ∧ dXb(σ , τ ) (24)

Under the assumption that C±ab is constant, it is a closed two-form 
on �. We impose the flux condition
∫
�

F2 =
∫
�

C±dσ 1 ∧ dσ 2 = k± ∈Z/{0} . (25)

The maps from � → M9 × T 2 decompose into maps from � → M9

and the ones from � → T 2. The former are labeled with an in-
dex m and the latter with index i, j. As we have stated the closed 
one-forms dXi can always be expressed in terms of the harmonic 
part Mi

jd X̂ j and its exact part. In the flux condition the exact one-
forms cancel and we are only left with the harmonic sector. We 
then have for the flux condition∫
�

F2 =
∫
�

1

2
C±i j M

i
k M j

l d X̂k ∧ dX̂l = k± ∈ Z/{0} , (26)

The normalized basis of harmonic one-forms on �, dXi , satisfy ∫
Ci

d X̂ j = δ
j
i , with Ci , being the homology basis on �. Using the 

bilinear Riemann relations we get 
∫
�

dX̂1 ∧ dX̂2 = 1 It is conve-
nient to define the density 

√
w introduced in the gauge fixing 

procedure as 
√

w = ∂ X̂1

∂σ r
∂ X̂2

∂σ s ε
rs it is a regular density on �, we 

then have 
∫
�

√
w dσ 1 ∧ dσ 2 = 1 . We can now change variables 

from (σ 1, σ 2) on � to local coordinates ( X̃1, ̃X2) on the 2-torus 
T 2, the map is defined by X̃ i = X̂ i(σ 1, σ 2) . In fact, the Jacobian of 
the change of variables is 

√
w which is nonzero on �. C± defines 

then a flux condition on T 2,∫
�

F2 = c±detM

∫
T 2

dX̃1 ∧dX̃2 =
∫
T2

1

2
C±i j M

i
k M j

l d X̃k ∧dX̃l =
∫
T 2

F̃2,

(27)

where we have expressed C±i j = c±εi j , and denoted detM the 
determinant of the matrix Mi

j . There is then a one to one corre-
spondence between the flux condition generated by C± on � and 
on T 2. The main point is that detM must be nonzero, that is the 
condition of irreducible wrapping must be satisfied. There is then 
a one to one correspondence between the supermembrane with ir-
reducible wrapping and the supermembrane on a background with 
a flux condition on T 2 generated by C± . In fact, given the latter it 
implies that the supermembrane has an irreducible wrapping. Con-
versely given a supermembrane with irreducible wrapping there 
always exists a three form with a flux condition compatible with 
the nontrivial wrapping. Moreover, if there is no flux, (27) is equal 
to zero, then supermembranes with reducible wrapping are admis-
sible in the configurations space and the spectrum is consequently 
continuous from zero to infinity.

Furthermore the Hamiltonian of both theories differ at most 
in a constant, arising from the C+ term in the Hamiltonian (17), 
hence the spectrum of the supermembrane with fluxes generated 
by C± has also discrete spectrum with finite multiplicity, a remark-
able property. The effect of the C± background produces a discrete 
shift in some components of the momentum of the supermem-
brane, and in the Hamiltonian density. Comparing with the original 
configuration variables (Xa, Pa) and considering the total momen-
tum of the supermembrane, we have

P 0− =
∫
�

P−dσ 1 ∧ dσ 2 =
∫
�

( P̂− + C−)dσ 1 ∧ dσ 2 = P̂ 0− + k− ,

(28)

P 0+ =
∫
�

P+dσ 1 ∧ dσ 2 =
∫
�

( P̂+ + C+)dσ 1 ∧ dσ 2

=
∫

Ĥdσ 1 ∧ dσ 2 + k+ ,

(29)
�
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P 0
a =

∫
�

Padσ 1 ∧ dσ 2 =
∫
�

( P̂a + Ca)dσ 1 ∧ dσ 2

=
∫
�

P̂adσ 1 ∧ dσ 2 ,

(30)

where we have used (27) and 
∫
�

Cadσ 1 ∧dσ 2 = 0 . Ĥ is the Hamil-
tonian density of the supermembrane with fluxes (analogously 
with irreducible wrapping). We conclude that the interaction of 
the supermembrane with the background we have considered has 
rendered a quantized change of the membrane momentum on the 
directions associated with the coordinate X± compared to the case 
when the C± fluxes are set off.

5. Discussion and Conclusions

In this paper we study the effects of fluxes in the quantum 
properties of the M2-brane. We discuss the Hamiltonian formula-
tion of the M2-brane compactified on a torus with 2-form fluxes 
induced by the 3-form C± . We study the effect of the fluxes on 
the quantum properties of the theory. We establish an equivalence 
relation between a theory that contains 2-form fluxes induced by 
the C± on the target space ‘M2-brane with fluxes’ and the super-
membrane satisfying a topological condition over the worldvolume 
associated to an ‘irreducible wrapping’ where no reference to the 
3-form background is present. When we consider the M2-brane 
on a C± background and the target space is noncompact or even 
compactified on the 2-torus times Minkowski but no fluxes are 
present, the spectrum of the theory is continuous. Classically it 
can be understood from the fact that it contains -as in the un-
compactified case-, string-like spikes that can be attached to the 
spectrum without any cost of energy. The case we analyze corre-
sponds to have 2-form fluxes on the target space induced by the 
C± . In this case the spectral behavior of the theory changes drasti-
cally: its mass spectrum becomes discrete. The flux backreacts on 
the worldvolume generating a induced flux on the worldvolume 
associated to the presence of fixed nontrivial U (1) fiber bundle 
whose first chern class is k. It acts as a new constraint on the 
Hamiltonian and it is associated to the existence of a nontrivial 
central charge condition. The Hamiltonian becomes the Hamilto-
nian of the Supermembrane theory irreducible wrapped on a flat 
torus, shifted by a constant term proportional to k. An immediate 
consequence of this equivalence between both actions is the fact 
that a supermembrane formulated on a Minkowski background in 
the presence of a three form C± toroidally compactified with an 
induced 2-form flux condition has a purely discrete spectrum with 
eigenvalues of finite multiplicity at quantum level. It represents a 
new sector of M2-brane with this property. The membrane mo-
mentum becomes shifted by the flux units in the directions of the 
X+ or X− coordinates corresponding to flux C+ or C− respectively. 
This property had also been observed at the level of matrix theory, 
see [34]. An old question posed by the authors in [35] was the re-
lation between the matrix model on a noncommutative torus and 
its M-theory origin in terms of a M2-brane in the presence of a 
quantization condition over a constant C− [28]. We show that this 
last theory corresponds exactly to the supermembrane with cen-
tral charges. The results shown in the paper suggest the interest 
to generalize the precise relation between fluxes and quantization 
properties of M2-brane in order to describe new sectors of the mi-
croscopic degrees of freedom of M-theory.
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