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1 Introduction

The R-operator formalism introduced in [1] establishes a connection between calculating

the scattering amplitudes in N = 4 super-Yang-Mills theory and integrable systems, such

as spin chains. This approach exploits Yangian symmetry of the amplitudes, that has been

studied e.g. in [2, 3] The framework of R-operators was developed in a number of papers [4–

6, 8]. For example, in [6], a connection was established between the graded permutations

encoding the on-shell graphs and chains of R-operators acting on a suitable basic state, as

well as a connection to the top-cell graphs.

As it has been shown in [1] the amplitude terms can be obtained by acting on basic

states (formed by products of delta-functions) by products of Yang-Baxter R-operators.

These operators are defined from the L-matrices by the RLL-intertwining relation. The R-

operators act on just one pair of the spin chain sites. The sequential action by Yang-Baxter

R-operators on the basic state results in a production of non-local, entangled solutions,

reproducing the amplitude.

In order to continue the program of studying N = 4 sYM by the methods used for

integrable models in quantum theory, this paper aims to develop further the formalism of

R-operators for constructing the tree amplitudes in N = 4 sYM in the NMHV sector and

get an expression for R-invariants through R-operators.

The paper is organized as follows. In section 2 I introduce the basic notation for the

scattering amplitudes in N = 4 sYM. In section 3 I show the connection according to [1]

between the gl(4|4) spin chains and scattering amplitudes in N = 4 sYM, and introduce

the notation for the main objects of the paper — Yang-Baxter R-operators (which will be
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referred to as R-operators) and discuss their properties. In section 4 I provide a solution

for the BCFW [7] recursive relation in N = 4 sYM in the NMHV sector in terms of R-

operators and give the formulas R-invariants, presenting them as the chains of R-operators

acting on an appropriate basic state, which is the main result of the paper.

2 Amplitudes in N = 4 sYM

The fact that the theory N = 4 sYM is supersymmetric allows one to introduce a super-

field that combines all the fields into one function defined on the on-shell superspace [9]

(λα, λ̃α̇, η
A)

Φ(λ, λ̃, η) = g++ηAψA+
1

2!
ηAηBφAB+

1

3!
εABCDη

AηBηCψ
D

+
1

4!
εABCDη

AηBηCηDg− (2.1)

where the capital Latin letters A,B,C,D denote the indices of the fundamental repre-

sentation of the group SU(4)R, and εABCD is the Levi-Civita symbol, ηA are Grassmann

variables. With the help of superfields it is possible to construct a superamplitude — a

generating function for all possible scattering amplitudes of a given order:

Mn(Φ1, . . . ,Φn) ≡Mn((λ1, λ̃1, η1), . . . , (λn, λ̃n, ηn))

≡Mn((p1, η1), . . . , (pn, ηn)) ≡Mn(1, . . . , n) (2.2)

It can be shown, according to [9], that the general form for the scattering amplitude of n

particles in N = 4 sYM is

Mn({λi, λ̃i, ηi}) =
δ4(p)δ8(q)

〈12〉〈23〉 . . . 〈n1〉
Pn({λi, λ̃i, ηi}) (2.3)

where p = p1 + . . .+ pn — total momentum, q = q1 + . . .+ qn = |1〉η1 + . . .+ |n〉ηn — total

supermomentum. The spinors λα := |p〉 and λ̃α̇ := |p] correspond to the states with helicity

±1/2 respectively. Pn({λi, λ̃i, ηi}) has the form of a polynomial in ηi and allows to classify

superamplitudes (will be referred to as amplitudes hereinafter) by the type Nk−2MHV

Pn({λi, λ̃i, ηi}) = P
(0)
n + P

(4)
n + P

(8)
n + · · ·+ P

(4n−16)
n

↓ ↓ ↓ ↓
MHV NMHV N2MHV MHV

(2.4)

P
(0)
n = 1 and P

(l)
n ∼ O(ηl). This, in particular, implies the Park-Taylor formula [10] for

MHV amplitudes in N = 4 sYM

MMHV
2,n =

δ4(p)δ8(q)

〈12〉〈23〉 . . . 〈n1〉
(2.5)

where Mk,n denotes Nk−2MHV scattering amplitude of n particles, i.e. M2,n corresponds

to MHV, M3,n — NMHV etc. The amplitude type is sometimes additionally indicated as

above, for example MMHV
2,n .
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The introduction of a superamplitude allows one to introduce an analogue of the BCFW

relations in N = 4 sYM, the so-called super-BCFW relation [9]. The analytic form of the

super-BCFW for Nk−2MHV amplitude is

Mk;n(1, 2, . . . , n) =
∑

nL+nR=n+2
kL+kR=k+1

∫
d4Pd4ηML((p̂1, η̂1), . . . , (pnL−1, ηnL−1), (p, η))

1

P 2

·MR((−p, η), (pnR+1, ηnR+1), . . . , (p̂n, η̂n))

(2.6)

where p = P +zPLλ1λ̃n and zPL =
P 2
L

〈1|PL|n] , whereas the subamplitudes ML and MR include

momentum δ-functions.

2.1 R-invariants and dual superconformal symmetry

The super-BCFW recursive relation can be solved in general for tree amplitudes. A general

analytic expression for a tree NMHV amplitude in N = 4 sYM was initially obtained in

the paper [11]

MNMHV
3,n = MMHV

2,n

∑
1<s<t<n
|s−t|≥2

Rn;st (2.7)

where Rr;st — dual superconformal invariants (R-invariants). The explicit form of Rr;st is

Rr;st =
〈ss− 1〉〈tt− 1〉δ4 (Ξr;st)

x2st〈r|xrsxst|t〉〈r|xrsxst|t− 1〉〈r|xrtxts|s〉〈r|xrtxts|s− 1〉
(2.8)

where xab := pa + . . . + pb−1, θab := qa + . . . + qb−1 are dual variables. At b < a I have

xab = −xba. The Grassmann-odd quantity Ξr;st is defined by

Ξr;st := 〈r|xrsxst|θtr〉+ 〈r|xrtxts|θsr〉

Expressions of the form 〈r|xrsxst|t〉 should be interpreted as 〈r|a(xrs)aċ(xst)ċb|t〉b.
In the paper [13] it has been shown that it is possible to combine the algebras of

superconformal and dual superconformal symmetries of tree scattering amplitudes in N = 4

sYM into an infinite-dimensional algebra called Yangian Y (psu(2, 2|4)). Then the tree

amplitudes will be the sum of the Yangian invariants in the super-BCFW decomposition

(which will be referred to hereafter as BCFW).

3 Spin chains and on-shell graphs

In the paper [1], each tree scattering amplitude of n particles Mn in N = 4 sYM is

associated with a gl(4|4) spin chain of length n. As I know from the paper [14], a discrete

set of canonically conjugate coordinates and momenta can be associated with a discrete set

of spins, thus forming a spin chain. The paper [1] introduces a set of canonical variables

x = (xa)
N+M
a=1 , p = (pa)

N+M
a=1 , satisfying the commutation relations {xa, pb] = −δab where

{xa, pb] is a graded commutator, N and M are correspondingly the numbers of bosonic

and fermionic components.

– 3 –
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The spin chain is an example of an integrable quantum model, and one can apply

quantum inverse scattering method (QISM) (see, for example, papers by L. D. Faddeev

and collaborators [14–17]) to solve it. One of the central objects of QISM is the monodromy

matrix

[T (u)]ac = [L1(u)]ab1 [L2(u)]b1b2 . . . [L(u)]bn−1c (3.1)

where L-operators

[L(u)]ab = uδab + xapb. (3.2)

Further, the authors of the paper [1] introduce the R-operators defined by the RLL-relation

R12(u− v)[L1(u)]ab[L2(v)]bc = [L1(v)]ab[L2(u)]bcR12(u− v) (3.3)

and give the solution to the RLL-relation for gl(4|4) (relevant to N = 4 sYM)

R12(u) =

∫ +∞

0

dz

z1−u
e−z(p1·x2) (3.4)

Finally, the connection of a spin chain with N = 4 sYM is established by the following

definition of canonically conjugate variables

x := (λα, ∂λ̃α̇ , ∂ηA) (3.5)

p := (∂λα ,−λ̃α̇,−ηA) (3.6)

Then the action of the operator Rij(u) on an arbitrary function F (λi, λ̃i, ηi, λj , λ̃j , ηj) is

given by [1]

Rij(u)F (λi, λ̃i, ηi, λj , λ̃j , ηj) =

∫ +∞

0

dz

z1−u
F (λi − zλj , λ̃i, ηi, λj , λ̃j + zλ̃i, ηj + zηi) (3.7)

that is, it performs a BCFW shift on the spinor-helicity variables. Also, as shown in [1],

the condition of Yangian invariance of scattering amplitudes in N = 4 sYM is formulated

in that way, that the amplitude M is an eigenfunction of the monodromy operator

T (u)M = C ·M (3.8)

where the eigenvalue C plays a minor role. Thus, a connection is established between the

scattering amplitudes in N = 4 sYM and gl(4|4) spin chains.

The R-operator from the equation (3.4) will be the main construction object of am-

plitudes, allowing us to construct scattering amplitudes in the spirit of the QISM method.

The essentially non-local object — amplitude Mn, depending on the variables of all n ex-

ternal particles will be built using the product of R -operators, each of which acts only on

a pair of variables associated with external particles. In [1], the authors give the formu-

las for 3-particle scattering amplitudes MMHV
2,3 and MMHV

1,3 in N = 4 sYM, expressed in

R-operators as

MMHV
1,3 = R12R23Ω1,3 and Ω1,3 = δ2(λ1)δ

2(λ2)δ
2(λ̃3)δ

4(η3), (3.9)

MMHV
2,3 = R23R12Ω2,3 and Ω2,3 = δ2(λ1)δ

2(λ̃2)δ
4(η2)δ

2(λ̃3)δ
4(η3), (3.10)

where Rij ≡ Rij(0).

– 4 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
7

MHV MHV NMHV

NMHV

Figure 1. The BCFW recursion relation in terms of on-shell graphs for an NMHV amplitude.

The summation is performed over all possible MHV subamplitudes, where the index i denotes the

rightmost external leg of the left MHV subamplitude.

3.1 On-shell diagrams

The work [18] shows that BCFW decomposition can be written in terms of the so-called

on-shell graphs. The building blocks of on-shell diagrams are 3-particle MHV and anti-

MHV amplitudes depicted in figure 1 with black and white circles respectively. In terms

of the BCFW on-shell diagrams, the decomposition, according to [18], can be written

diagrammatically as in figure 1. where the sum is performed for all possible MHV sub-

amplitudes (non-recurrent terms) and the last term contains the NMHV subamplitude

(recurrent term). The right-hand side of the diagram decomposition in figure 1 looks ex-

actly like a BCFW-diagram with added ”bridges” (the so-called BCFW-bridge). According

to [1], the R1n-operator implements this bridge. For on-shell diagrams, the rules of diagram

technique change as compared to BCFW diagrams — here each internal line is assigned

an integral
∫
d4ηd4Pδ(P 2).

4 Solving BCFW in the NMHV sector

To start solving the BCFW relations with the help of R-operators, I formulate the following

statement

Rn,i+1M(1, 2, . . . , i, n)δ2
(
λ̃i+1

)
δ4 (ηi+1) (4.1)

=

∫
dη0d

4P0δ(P
2
0 )M(1, 2, . . . , i, {| − P0〉, | − P0], η0})MMHV

2,3 ({|P0〉, |P0], η0}, i+1, n),

which I will be using further. Graphically, this statement is shown in figure 2. The proof

of eq. (4.1) is given in appendix.

4.1 Non-recurrent terms of BCFW

Now I can proceed to the calculation of diagrams, which are non-recurrent terms in the

diagram expansion of the NMHV amplitude (figure 1). To do this, first build the amplitude

MMHV
2,t (1, 2 . . . t− 2, t− 1, n).

I start the construction with a 3-part amplitude MMHV
2,3 (1, t − 1, n) and add the ends

t − 2, t − 3, . . . , 2 to the left using the Inverse Soft Limit (ISL) using R-operators [1, 19].

– 5 –
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Figure 2. A diagrammatic representation of eq. (4.1).

As a result, I get the amplitude M2,t(1, 2, . . . , t − 2, t − 1, n). I construct a chain of R-

operators corresponding to the described procedure. The 3-particle amplitude M2,3(1, t−
1, n), expressed in terms of R-operators, according to [1], is given by

M2,3(1, t− 1, n) = R1t−1R1nδ
2 (λ1) δ

2
(
λ̃n

)
δ4 (ηn) δ2 (λt−1) (4.2)

Then, adding the particles {t − 2, t − 3, . . . , 2} using the ISL, I obtain the expression for

M2,t(1, 2, . . . , t− 2, t− 1, n)

M2,t(1, 2, . . . , t− 2, t− 1, n) = R21R23 · . . . ·Rt−21Rt−2t−1R1t−1R1nΩt−1,n
1,...,t−2,t−1,n (4.3)

where Ωt−1,n
1,...,t−2,t−1,n ≡ δ2 (λ1) δ

2 (λ2) · . . . · δ2 (λt−2) δ
2
(
λ̃t−1

)
δ4 (ηt−1) δ

2
(
λ̃n

)
δ4 (ηn), and

the superscripts t − 1, n distinguish the delta-functions containing (λ̃, η) variables. Now,

according to the proved formula 4.1, I attach to the obtained amplitude M2,t(1, 2, . . . , t −
2, t − 1, n) the 3-particle MHV subamplitude at the outer end n. In the language of R-

operators, the given transformation of the amplitude M2,t(1, 2, . . . , t−2, t−1, n) corresponds

to the expression RntM2,t(1, 2, . . . , t− 2, t− 1, n)δ2
(
λ̃t

)
δ4 (ηt). Further, applying the ISL,

I add to the obtained on-shell diagram the external ends of t+ 1, t+ 2, . . . , n, which yields

the following expression

Rn−1n−2Rn−1n · . . . ·Rt+1tRt+1n ·Rnt ·R21R23 · . . . ·Rt−21Rt−2t−1R1t−1R1nΩt−1,t,n
1,...,n (4.4)

where the appropriate basic state Ωt−1,t,n
1,...,n is determined

Ωt−1,t,n
1,...,n = δ2 (λ1) δ

2 (λ2) · . . . · δ2 (λt−2) δ
2
(
λ̃t−1

)
δ4 (ηt−1) δ

2
(
λ̃t

)
δ4 (ηt) δ

2 (λt+1) (4.5)

· . . . · δ2 (λn−1) δ
2
(
λ̃n

)
δ4 (ηn)

It remains only to turn it into a BCFW diagram by adding the BCFW bridge to the outer

ends 1 and n. According to [1] such a bridge is implemented using the R1n operator. Thus,

acting on the obtained on-shell diagram with the operator R1n, I get the desired BCFW-

diagram. This BCFW diagram, according to the paper [12], corresponds to the expression

MMHV
2,n Rn;2,t. That is, I get the expression for Rn;2,t in R-operators:

MMHV
2,n Rn;2,t =R1n ·Rn−1n−2Rn−1n · . . . ·Rt+1tRt+1n ·Rnt ·R21R23 (4.6)

· . . . ·Rt−21Rt−2t−1R1t−1R1nΩt−1,t,n
1,2,...,n

– 6 –
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Figure 3. Diagram arising at the second (s = 2) recursion step (the missing ends 1 . . . s − 1 are

added with the ISL).

4.2 Recurrent term of the BCFW decomposition

Now I turn to the last diagram in the BCFW decomposition in figure 1. This diagram can

be viewed as adding a particle with the number 1 through the ISL to the subamplitude

MNMHV
3,n−1 (2, 3, . . . , n). According to [1] this type of the ISL is realized through a pair of

R-operators in the following form

R1nR12M
NMHV
3,n−1 (2, 3, . . . , n)δ2 (λ1) (4.7)

The amplitude MNMHV
3,n−1 (2, 3, . . . , n) in its turn, is decomposed recursively with the help of

BCFW into the sum of amplitudes of the form given in figure 3 and the term containing an

NMHV subamplitude. The amplitude given above in figure 3 differs from the previously

calculated ones (non-recurrent terms) by re-designation of the ends, and thus corresponds

to the expression

MMHV
2,n−1(2, 3, . . . , n)Rn;3,t. (4.8)

Acting on it with a pair of R1nR12 operators, according to the formula (4.7), I obtain

R1nR12M
MHV
2,n−1(2, 3, . . . , n)Rn;3,tδ2 (λ1) = MMHV

2,n (1, 2, . . . , n)Rn;3,t (4.9)

because Rn;s,t does not explicitly depend on λ̃2 and λ̃n , which directly follows from the

expression for R-invariants (eq. (2.8)). Thus, with a recursion depth equal to s (the first

decomposition step corresponds to s = 1), the R invariant of Rn;s+1,t is obtained. I

construct its expression in terms of R-operators in the same way as was done in the first

iteration of the BCFW decomposition. As a result, I obtain a general expression for an

arbitrary R-invariant Rn;s+1,t terms of R-operators

MMHV
2,n (1, 2, . . . , n)Rn;s+1,t

= I ′1 · . . . · I ′s−1 ·Rsn · In−1 · . . . · It+1 ·Rnt · I(s)s+1 · . . . · I
(s)
t−2 ·Rst−1RsnΩt−1,t,n

1,2,...,n (4.10)

– 7 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
7

where I ′k ≡ RknRkk+1, Ik ≡ Rkk−1Rkn and I
(s)
k ≡ RksRkk+1 - for brevity, I denote the

pairs of R-operators implementing the addition of external ends through the ISL.

Ωt−1,t,n
1,...,n = δ2 (λ1) δ

2 (λ2) · . . . · δ2 (λt−2) δ
2
(
λ̃t−1

)
δ4 (ηt−1) δ

2
(
λ̃t

)
δ4 (ηt) δ

2 (λt+1) (4.11)

· . . . · δ2 (λn−1) δ
2
(
λ̃n

)
δ4 (ηn)

is an appropriate basic state for the chain of R-operators in the general formula (4.10),

which is the main result of the paper.

5 Discussion and conclusion

The formula (4.10) can be understood following way. One starts with the action of operators

Rst−1Rsn which generates a 3-particle MHV amplitude MMHV
2,n (s, t − 1, n). Then, the

chain of operators I
(s)
s+1 · . . . · I

(s)
t−2 adds the legs s + 1, . . . , t − 2 resulting in an MHV

amplitude MMHV
2,n (s, s + 1, . . . , t − 1). Having done that, the operator Rnt in accordance

with eq. (4.1) adds an MHV subamplitude on the leg n with the outer end t. Then, the

sequence In−1 · . . . ·It+1 appends the legs t+1, . . . , n−1 and Rsn realizes the BCFW-bridge

for the ends s and n, thus I arrive at the diagram depicted in figure 3. Finally, the series of

operators I ′1 · . . . ·I ′s−1 appends the legs 1, . . . , s−1, finishing the construction of the general

term MMHV
2,n (1, 2, . . . , n)Rn;s+1,t of the super-BCFW expansion in the NMHV sector.

Note that the procedure described in the paper for constructing tree amplitudes by

“building up” one of the subamplitudes at the outer end of the other (merging the subam-

plitudes and adding the BCFW-bridge) is suitable for any tree amplitude in N = 4 sYM

and not just for merging MHV amplitudes, i.e. I can express generalized R-invariants of

any order (i.e. those, that appear in the NkMHV sector) through R-operators.

Thus, in this work I have solved the BCFW relation in the NMHV sector using R-

operators and obtained the general expression (4.10) for an arbitrary R-invariant through

the chain of R-operators. I see the construction of a closed formula for the generalized R-

invariants in terms of R-operators as the next step to study. This would give us a complete

solution to the problem of finding an arbitrary tree scattering amplitude in N = 4 sYM in

terms of R-operators in the spirit of the QISM method.
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A Proof of main lemma

To begin the proof of eq. (4.1), I calculate the l.h.s.

Rn,i+1M(1, 2 . . . i, n)δ2
(
λ̃i+1

)
δ4 (ηi+1)

=

∫ +∞

0

dz

z
M(1, 2 . . . i, λn − zλi+1, λ̃n, ηn)δ2

(
λ̃i+1 + zλn

)
δ4 (ηi+1 + zηn)
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=

∫ +∞

0

dz

z
M · δ

(
z +

[i+ 11]

[n1]

)
δ4 (ηi+1 + zηn) (A.1)

=
[1n]

[i+ 11]
δ4
(
ηi+1 −

[i+ 11]

[n1]
ηn

)
M

(
1, 2, . . . i, λ̃n +

[i+ 11]

[n1]
λ̃i+1, λ̃n, ηn

)
δ([i+ 1n])

I now turn to the calculation of the right-hand side of eq. (4.1). It corresponds to the

algebraic expression written in the right part of the statement:∫
dη0d

4P0δ(P
2
0 )M(1, 2 . . . i, | − P0〉, | − P0], η0)M

MHV
2,3 (|P0〉, |P0], η0, i+ 1, n)

=

∫
dη0d

4P0δ(P
2
0 )M(1, 2 . . . i,−P0, η0)·

· δ
4 (P0 + Pi+1 + Pn) δ8 (|P0〉η0 + |i+ 1〉ηi+1 + |n〉ηn)

〈P0i+ 1〉〈i+ 1n〉〈nP0〉

=

∫
dη0d

4P0δ(P
2
0 )M(1, 2 . . . i,−P0, η0)

δ4 (P0 + Pi+1 + Pn)

〈P0i+ 1〉〈i+ 1n〉〈nP0〉
·

· 〈P0i+ 1〉4δ4
(
η0 −

〈i+ 1n〉
〈P0i+ 1〉

ηn

)
δ4
(
ηi+1 −

〈nP0〉
〈P0i+ 1〉

ηn

)
=

∫
d4P0δ(P

2
0 )M

(
1, 2 . . .

〈i+ 1n〉
〈P0i+ 1〉

ηn,−P0

)
〈P0i+ 1〉3

〈i+ 1n〉〈nP0〉
·

· δ4
(
ηi+1 −

〈nP0〉
〈P0i+ 1〉

ηn

)
δ4 (P0 + Pi+1 + Pn)

(A.2)

From the delta-function δ4 (P0 + Pi+1 + Pn) it follows that −P0 = Pi+1 + Pn

− |P0〉〈P0| = |i+ 1〉〈i+ 1|+ |n〉〈n| (A.3)

The 3-particle special kinematics [20] yields [P0| ∼ [i+ 1| ∼ [n| and thus

[i+ 1| ∼ [n| ⇒[i+ 1| = [i+ 11]

[n1]
[n|

⇒ − |P0〉〈P0| =
(
|n〉+

[i+ 11]

[n1]
|i+ 1〉

)
〈n|

(A.4)

Using the analytical continuation of Weyl spinors | − P0] = −|P0] and | − P0〉 = |P0〉 one

may rewrite −|P0〉〈P0| as | − P0〉〈−P0|. Since [P0| ∼ [n| than from little group scaling [20]

it follows, that one may assume in eq. (A.4) −|P0] = | − P0] = |n] and |P0〉 = | − P0〉 =

|n〉+ [i+11]
[n1] |i+ 1〉.

Integration over the variable P0 is very simple, since it enters the integrand through

the delta function, which imposes the restriction (A.3). Therefore, I exclude P0 everywhere

in the integral. Let us start with the expression 〈nP0〉
〈P0i+1〉 . For this purpose I multiply (A.3)

from the left by 〈P0|, and from the right by |1], then I obtain

〈nP0〉
〈P0i+ 1〉

=
[i+ 11]

[n1]
(A.5)

Now I express 〈i+1n〉
〈P0i+1〉 multiplying (A.3) from the left by 〈i+ 1|, and from the right by |1]

which yields 〈i + 1n〉 = 〈P0i + 1〉 since [P0| = −[n|. The delta function δ(P 2
0 ), given that

– 9 –
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δ4 (P0 + Pi+1 + Pn), equals

δ((Pi+1 + Pn)2) = δ(2Pi+1 · Pn) = δ(〈i+ 1n〉[ni+ 1]) =
δ([ni+ 1])

〈i+ 1n〉
(A.6)

Total numerical multiplier under the integral sign (A.2) takes the form

〈P0i+ 1〉3

〈i+ 1n〉2〈nP0〉
=
〈i+ 1n〉
〈nP0〉

, (A.7)

where 〈i + 1n〉 = 〈P0i + 1〉 is used. Let us calculate it, multiplying (A.3) from the left by

〈n|, I get

− 〈nP0〉[P0| = 〈ni+ 1〉[i+ 1| = 〈ni+ 1〉 [i+ 11]

[n1]
[n| (A.8)

Since −[P0| = [n|, then
〈i+ 1n〉
〈nP0〉

=
[1n]

[i+ 11]
(A.9)

Finally, performing the integration over P0 in the last line of eq. (A.2), I arrive at

δ((Pi+1 + Pn)2)M

(
1, 2 . . .

〈i+ 1n〉
〈P0i+ 1〉

ηn, | − P0〉, | − P0]

)
· 〈P0i+ 1〉3

〈i+ 1n〉〈nP0〉
δ4
(
ηi+1 −

〈nP0〉
〈P0i+ 1〉

ηn

)
= δ([i+ 1n])

[1n]

[i+ 11]
M

(
1, 2 . . . λn +

[i+ 11]

[n1]
λi+1, λ̃n, ηn

)
δ4
(
ηi+1 −

[i+ 11]

[n1]
ηn

)
(A.10)

The result obtained coincides with the expression (A.1), i.e the left hand side of eq. (4.1),

that completes the proof.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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