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Abstract: Using symmetry properties, we determine the mixing pattern of a class of nonlocal quark bilinear operat-
ors containing a straight Wilson line along a spatial direction. We confirm the previous study that mixing among the
lowest dimensional operators, which have a mass dimension equal to three, can occur if chiral symmetry is broken in
the lattice action. For higher dimensional operators, we find that the dimension-three operators will always mix with
dimension-four operators, even if chiral symmetry is preserved. Also, the number of dimension-four operators in-
volved in the mixing is large, and hence it is impractical to remove the mixing by the improvement procedure. Our
result is important for determining the Bjorken-x dependence of the parton distribution functions using the quasi-dis-
tribution method on a Euclidean lattice. The requirement of using large hadron momentum in this approach makes the
control of errors from dimension-four operators even more important.
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lattice spacing a. Since it is crucial to understand the mix-
ing patterns of the operators involved, understanding the
symmetries of a problem provides a powerful nonperturb-
ative method. Symmetries could protect certain mixings
from happening, while those not protected by symmet-
ries could occur under quantum corrections. Although

1 Introduction

Controlling the systematic uncertainties is critical for
obtaining meaningful results in lattice QCD. For ex-
ample, the nonperturbative renormalization method of the

Rome-Southampton collaboration [1] has been widely
used to convert from the lattice scheme to continuum
schemes, avoiding the introduction of errors from the
slowly converging lattice perturbation theory. Another
example is the use of Symanzik improvement [2, 3] to
systematically reduce discretization errors due to nonzero

symmetry considerations do not provide a quantitative
analysis of the mixing, they do provide a complete mix-
ing pattern among operators in the problem.

In this work, we use the symmetries of lattice QCD to
analyze the mixing pattern of a class of nonlocal quark
bilinear operators defined in Eq. (27). Their renormaliza-
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tion in the continuum has been discussed since the 1980s
[4, 5]. In recent years, there has been renewed interest in
the renormalization of these operators in the context of
methods for calculating the Bjorken-x dependence of the
hadron parton distribution functions (PDFs) using the lat-
tice QCD, the quasi-PDF method [6] and its variations [7,
8]. For recent progress in this area, see Refs. [9-56]. A
special feature of these nonlocal quark bilinears is that the
Wilson line connecting the quark fields receives power-
divergent contributions. A nonperturbative subtraction of
the power divergence was proposed in Refs. [33, 34, 57]
by recasting the Wilson line as a heavy quark field in the
auxiliary field approach [4, 5] such that the counterterm
needed to subtract the power divergence is just the coun-
terterm for heavy quark mass renormalization. The renor-
malization of the nonlocal quark bilinears in the con-
tinuum was studied in Refs. [19, 35, 36] , on a lattice in
Ref. [27], and in nonperturbative renormalization
schemes in [14, 15].

A lattice theory has fewer symmetries than its corres-
ponding continuum theory. This implies that there will be
more mixing among the operators in a lattice theory than
in the corresponding continuum theory. For example, a
pioneering one-loop lattice perturbation theory calcula-
tion using Wilson fermions showed that the breaking of
chiral symmetry for the Wilson fermions induces the
mixing shown in Eq. (34) [26]. In this work, instead of
performing explicit computations, we use symmetries to
systematically study the mixing patterns among nonlocal
quark bilinears (part of this work was reported in [15,
58]). We study not only the mixing among the lowest di-
mensional nonlocal quark bilinears of mass dimension-
three as was done in Ref. [26], but also the mixing
between dimension-three and dimension-four operators,
which cannot be avoided even if chiral symmetry is pre-
served”. This feature is confirmed by the computation of
an example one-loop diagram.

Our study is particularly relevant to the quasi-PDF
approach, which receives power corrections in inverse
powers of hadron momentum. It is important to find the
window where hadron momentum is large enough to sup-
press power corrections (good progress was made using
momentum smearing in [13, 59]), but small enough that
mixing with dimension-four operators is under control. In
the following, we first review the symmetry analysis of
local quark bilinear operators, and then move to the non-
local ones.

2 Review of local quark bilinear operators

If the 6 term is neglected, the lattice action exhibits

important discrete symmetries: the action is invariant un-
der discrete parity (%), time reversal (7) and charge con-
jugation (C) transformations (see e.g. Ref. [60]). Chiral
symmetry, which is a continuous symmetry, however,
might be broken after the fermion fields are discretized.
In this section, we review the symmetry properties for a
specific set of local quark bilinear operators under these
transformations. We then extend the analysis to nonlocal
quark bilinear operators in the next section. The import-
ance of these analyses is that if two operators transform
differently, then the symmetries will protect them from
mixing with each other under quantum corrections to all
orders in the coupling. Operators not protected from mix-
ing by the symmetries will, in general, mix.

2.1 %P,7,C and axial transformations

In this subsection, we summarize the transformations
of fields under P, 7, C and the axial transformation (the
vector transformation in chiral symmetry is conserved for
all operators that we study). We work in the Euclidean
spacetime  with  coordinates (x,y,z,7)= (1,2,3,4)
throughout this paper. Gamma matrices are chosen to be
Hermitian: yZ =vu and ys = y1y2¥3Y4.

Since there is no distinction between time and space
in the Euclidean space, the parity transformation, de-
noted #, with y € {1,2,3,4}, can be defined with respect to
any direction.

P, p
Y(x) = Y0 = yup(Pu(x), (1)
B
Y(x) = Y0 = Y(Bu(0))yp, 2)

i P t .
Uyzy(x) — Uyzy(x)+ = Uv;t,u(Pﬂ(x)_y)’ 3)
P, .

Uy(x) — Uy(x) "= UM(PH()C)), “4)

where P,(x) is the vector x with the flipped sign, except
for the u-direction.

Similarly, the time reversal transformation, denoted
as 7,, can be generalized in any direction in the Euc-
lidean space.

T 7,
() — ()™ = yuys(Tu(x)), (%)
— T —
Y(x) = ()" = Y(Tu(0))ysYus (6)
T T, _ 7t D
U,(x) = Uy(x)'r = Uﬂ(Tﬂ(x)—u), (7)
7 7,
Uvi,u(x) — Uv;t;l(x) "= Uviu(T,u(x))’ ®)

where T, (x) is the vector x with the flipped sign in the u-
direction.

1) This is different for the case of local operators, where mixing between the dimension three and four operators is forbidden by symmetries. If a lattice action is
O(a)-improved, then the mixing of dimension three and four local operators is forbidden, but the mixing between nonlocal operators is still allowed.

103101-2



Chinese Physics C Vol. 43, No. 10 (2019) 103101

Charge conjugation C transforms particles into anti-
particles,

() S p® =P, ©)
B0 S B = —u()7C, (10)
Up) S Uy0€ = U0 = (Ui)T, (1)
and
CyuC ' ==y, CysC'=v1. (12)

The continuous axial rotation (A) of the fermion
fields is

A i 7 A - i
Y(x) = ¢ (x) =eVY(x),  P(x) =P (x) = Px)e”, (13)
where « is the x-independent rotation angle of the global
transformation’. The explicit axial symmetry breaking
pattern induced by the quark mass m can be studied by in-
troducing a spurious transformation
m L i i, (14)
so that the quark mass term is invariant under this exten-
ded axial transformation.

2.2 Dimension-three local operators

We now study the transformation properties of a class
of local quark bilinear operators of the form

Or = Y)Y (), (15)
with
e {17 7}1’ Vs, iy#’ys’ O—yv}a (16)

where o, = %[yﬂ,yv]. Quantum loop effects for these op-
erators are in powers of loga. The Hermitian conjugate is

(Or)" ==0,,ry, = =G40, (17)
where G,(I'), which has a value of either +1 or —1, satisfies
YLy, =G, (18)

Therefore, depending on T, the expectation value of Or
can be purely real or imaginary.

Under £, 7, and C, the local quark bilinear trans-
forms as

P, 7, c
Or — Oy,ry,, Or — Oy ryy: Or = Ocrey. (19)

Or cither stays invariant (even, E) or changes sign (odd,
O) under a transformation. The results are summarized in
Table 1. Operators of different I" do not mix under renor-
malization, since they transform differently under #, or
T .. C alone does not protect the operators from mixing
with each other.

Under an axial rotation (with Eq. (14) included), Or is
either invariant (I) or variant (V), as shown in Table 1.

Table 1.
parity (P,), time reversal (7,), charge conjugation (C) and axial
(A) transformations. E and O stand for even and odd, while I and V

Properties of the dimension-three local operator Or under

stand for invariant and variant under transformations.

r=1 Y s YuYs Ty
Py E E o} 0 0
Posy  E 0 0 E Oper)/Eqpav)
Tpeu B 0 0 E 0
T  E E 0 0 Oper)/Eqpav)
C E (0] E E (0]
A \Y 1 \Y 1 A%

Some lattice fermions, such as Wilson fermions, break
the axial symmetry, but from the above discussion we see
that axial symmetry is not essential for protecting Or
from mixing. Only #, or 7, is needed.

2.3 Dimension-four local operators

For dimension-four, we can further classify the oper-
ators into p type and m type operators, which have one
more insertion of derivative or quark mass, respectively,
compared with the dimension-three operators. Here p de-
notes a typical momentum in the external state. It is use-

. o = — .
ful to define the covariant derivatives, D, and D,, acting
on a field ¢(x),

- 1 +
Dup(x) = 5 [Uu((x + i) = Uj(x = pa)d(x— pa) |, (20)

— 1
()Dy = 5= [#x+pa)U(x) = §(x ~ pa)Up(x = )] (21)

The Euclidean four-dimensional rotational symmetry dig—)

tates that p type operators are constructed by inserting Ip
—

and P into Or:

03 =0IPyY(®, Qs =BOPTY(M,  (22)

Op. = POPTY(x), 5= PO DY), (23)

It can be shown that these operators transform in the
same way as Or under #, and 7, while under C,
c
- = —> —Q(— —,
D/ DT erey jcrcy b
c

b _Q(CFC*')T_D)/B(CFC*')T’ (24)

. = =s o
with the operators ) and Ip transforming into each other.
Therefore, it is convenient to define the combinations

(#) _ () _
Or” =05+ Oz, 0% =0 D 25)

5~ CBr
which are either even or odd under C. The transforma-
tion properties of the p type operators are listed in Table

1) The anomaly induced by the single-flavor axial rotation is identical for all the operators that we study. Hence, it can be safely neglected in the operator classifica-

tion.
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Table 2. Transformation properties of the dimension-four p type loc-

al operators 0? (/? Notation is the same as in Table 1.

r=1 Y s YuYs Ty
Py E E o 0 0
Pt E 0 0 E Op=r)/Epin)
T s E 0 o E 0
Tptu E E 0 0 Op=r)/Epin)
C(O?j;)) 0 E 0 0 E
c<0'r’j;) E 0 E E 0
A I % I % I

2. By comparing with Table 1, we observe that #,, 7,
and C symmetries do not protect Or from mixing with
0? j%) but the axial symmetry does. So, if the lattice the-
ory preserves axial or chiral symmetry, then the dimen-
sion-three and p type dimension-four operators studied
above will not mix.

We now consider the m type operators. The only op-
erator that appears at this order is

O = mp(0Ty(x), (26)

which transforms in the same way as Or under #,,, 7,, and
C. However, it transforms differently from Or under A.

Therefore, we conclude that if the lattice theory pre-
serves axial or chiral symmetry, then the dimension-three
and dimension-four operators (including both the p type
and m type operators) studied above will not mix.

3 Nonlocal quark bilinear operators

Having reviewed the operator-mixing properties of
the local quark bilinears, we now apply the analysis to a
specific type of nonlocal quark bilinears.

3.1 Dimension-three nonlocal operators

We are interested in the nonlocal quark bilinear oper-
ators with quark fields separated by ¢z in the z-direction:

Or(62) = Y(x + 62)LUs(x + 62, x)yr(x), (27)

where a straight Wilson line Us is added such that the op-
erators are gauge invariant. Treating the z-direction dif-
ferently from the other directions, we write

T el{l, yi, v3, ¥s, i¥i¥s, iy3Ys, Oizs €0 jk},  (28)
where i, j,k #3. These operators receive quantum loop
corrections as powers of 1/a and loga [19, 35, 36]. It is
important to keep in mind that one cannot take the con-

tinuum limit of the matrix elements of these operators.
Under #, and 7,

Pras Ps
Or(6z) — Oyry (=62),  Or(6z) — Oy, (62),  (29)

Ties 75
Or(62) — O,y y,(02),  Or(6z) — Oy,y.ry,y,(—02). (30)
The transformations could change the sign of 6z, so it is
convenient to define

1
Or.(6z) = 3 (Or(0z) = Or(-02)), (1)

whose Hermitian conjugate yields
(Or+(62))" = FG4(D)Or(52). (32)

Thus, the expectation value of Or.(dz) is either purely
real or purely imaginary, depending on T". Under C,

c
Or+(62) = £0(crc-1)r+(62). (33)

The transformation properties of Or.(6z) are listed in
Table 3. We see that #,, 7, and C symmetries cannot
protect the mixing between 1 and ;3 or between iy;ys and
€;jx0 ji operators of dimension-three. This can be summar-
ized as

Or(60) " (1+GsM)0y 562, (34)
which is consistent with the mixing pattern found using
the lattice perturbation theory in Refs. [26, 27]. However,
if the lattice theory preserves axial or chiral symmetry,
then none of the dimension-three operators will mix with
each other.

The mixing among dimension-three operators of dif-
ferent 6z cannot be excluded by symmetries, but diagram-
matic analysis excludes this possibility to all orders in the
strong coupling constant expansion [35]. The mixing of
dimension-three with dimension-four operators of differ-

Table 3. Transformation properties of the dimension-three nonlocal operators Or.(67). i, j,k # 3. Other notation is the same as in Table 1.

r=1,,- Yi+/- V3+/- V5+/- 1YiYs5+/- 1Y3Y54/- Ti3+4/— €ijk T jk+/—
P3 E (6] E (6] E (6] (0] E
Py E/O E/O-) O/E O/E O/E =i E/O O/E E/O (=)
O/E1zi) E/Oqzi) E/Oqzi) O/E i)
T3 E/O E/O O/E O/E E/O O/E E/O
Tix3 E O=i) ] E¢=i o Oq=i) Eg=i
Eqi) O Eqi) Oz
C E/O O/E E/O E/O E/O O/E O/E
A \Y 1 \% 1 I \'% \
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ent 6z has not been systematically studied yet. However,
the one-loop example in Eq. (48) is consistent with no
mixing among operators of different §z.

3.2 Dimension-four nonlocal operators

We now extend the discussion for p type and m type
local operators to nonlocal ones. We can insert ) at any
point on the Wilson line. The symmetry properties will
not depend on where P is inserted.

03 (62,62) =y(x+362)Us(x+ 36z, x +367)

XTI o Us(x + 362 (), 35)
03 (62,62") =y(x +362)Us(x + 36z;x+ 367))

X Dol Us(x + 362 00(x), (36)
0,55 (62,62) =(x+ 362)Us(x+ 367, x+367)

X TP, Us(x+ 367 0w (x), (37)
Qg5 (62,67 =y(x+ 362)Us(x + 36z, x+ 367

x DT Us(x+ 367 0w (x), (38)

where 0 <67’ < 6z. The z-direction is treated differently

by writing « € [3, L] and L_D>3 = y37>)3, and 5¢ = Y3 ny)ﬂ
As in the local quark bilinear case, inserting L_D) and D

does not change the transformation properties under #,

and 7. These operators transform in the same way as

Or(6z). It is useful to define combinations that are even or
odd under P, and 7,

. )

O, .B,r+(0%:02) _5 ( /3.1(02,07)
+0p 302,02 )) (39)

015 . 51 (5% 6z)—§( 5 50(02.6)
015 5. r(70%— 67 )) (40)

Under C, these operators transform as

OB 3.1+ 0% 5 FO5 cre-ysiercery B, 0%
41)
62,67) S 50 52,67
Qﬁ,ri/r(ﬁoi( 2,02) > F (CFC")TB(,j:/BQ(CI‘C")Ti( 2,02).
(42)
Hence, we define the combinations
D,(+) _ ,
o, /1"+(6Z’6Z )= 05 5, 02020+ O3, 3.1, (62,620),
(43)
D,(-) _ ’
Qr /ri(& 67) = Q<5 a5, i((Sz 67)— QFB /D,ri(&’& ),
(44)
such that
D, (+) D, (+) ’
o, .02, 57) S FO vy o ey 000, (45)
0> (62,67) S +0PC) (62,67).  (46)

I+/T+ (CTCy+/(CTC)T+
Their properties under #,, 7, and C are listed in Table 4.
Comparing with Table 3, we find that #,, 7, and C sym-
metries do not protect Or(6z) from mixing with
Q?"(éz, 0z') or Qﬁ”r(éz,éz’). If the lattice theory preserves
axial or chiral symmetry, then the mixing with Q? “(0z,07")
is forbidden, but the mixing with Qi"r(éz,&’) is still al-
lowed. Since the Wilson line can be described as a heavy
quark propagator in the auxiliary field approach [19, 27,
35], this is analogous to the static heavy-light system,
which has p type discretization errors even if the light
quarks respect chiral symmetry. Note that Ref. [58] did
not include the operators with 6z’ different from 0 and ¢z.
Since there are many more p type operators now, it makes
the nonperturbative improvement program advocated in
Ref. [58] much more difficult, and perhaps impractical.
The m type nonlocal bilinear is

OM(62) = mp(x + 362)T U3 (x + 362; ) (x). (47)

It has the same transformation properties as Or(dz) under

Table 4. Transformation properties of the dimension-four p type nonlocal operators Q?:/(;i(éz,éz’). i, j,k # 3. Other notation is the same as in Tab. 1.

C=1,/ Yis/- Y3+/- Ys+/- YiY¥s+/- Y3Y5+/- Ti34/- €ijk T jk+ /-
P3 E (0} E (0] E (6] (0] E
Pras E/O E/O(-s) O/E O/E O/E( E/O O/E- E/O-i)
O/E i) E/Oqi) E/Ozi) O/E14i)
T3 E/O E/O O/E O/E O/E E/O O/E E/O
Tiz3 E Oqi=py E 0 E=i) o Oq=i E=i)
Eqzi) Oz Ezi) Oy
Do (+) O/E E/O E/O O/E O/E O/E E/O E/O
C(Ql‘+/r+)
Do (-) E/O O/E O/E E/O E/O E/O O/E O/E
C(Ql“+/1‘+)
A 1 \% \Y 1 v \% 1 I
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. T, and C but is different for the chiral rotation.
However, chiral symmetry does not prevent Or(6z) from
mixing with the m type operator Q).(62).

3.3 A mixing example in perturbative theory

In the previous section, it was shown that P, 7, C,
and chiral symmetries cannot protect dimension-three
nonlocal quark bilinears from mixing with dimension-
four operators. This is a distinct feature, different from
local quark bilinears in which dimension-three operators
are protected from mixing with dimension-four operators.
Here, we use the diagram shown in Fig. 1 to demonstrate
where the effect comes from. For our purpose, we can
simplify the calculation by taking the Feynman gauge and
the limit of small external momenta and quark masses,
and we work in the continuum limit with appropriate UV
and IR regulators imposed implicitly. The one-loop am-
putated Green function in Fig. 1, A1 1°°p (p’, p,m), then
yields

AL pom)el O =T+ fk OB iy, )

x 1 —ik;0z

i(k+p)+m i(k+p)+m

=(1+8°GrAr 5 )T+ g*GrAL s (1+G3(D))mysT
+82GrAL i{(1+ G5 (D) (—pyysT = y3Tp3)
+(1 = G3(D)(~ 53T + 3T )
+&°GrAL i{(1+G3(D)(=p ysT —y3Tp,)
+(1=G3()(—p 73T +73T )
+&GrAL i{(1+ Gy D)(=ysT# ~ poysD)
+(1=G3(D)(~ysT B, + p,ysD)}
+0(p”, p*.p'p.p'm, pm.m®),

(—igy, T?)

(43)
where the coefficients are
cos(k3oz) H(I)
A5 = kﬁ ((H@) - G5k
+(=H(D) +4G3(D)K3). (49)
m sin(k30z)k
A = fk T CHD#26,D), (50)
ks62)ks H(T
A= [ T (2HI) G
+2(H(D) —4G3(D)K3). (51)
sin(k302)kz G3(I')
AL = f # T ((H@D) = 6G3 (D) K+ 2HID)KS).

(52)

$(0430z)  (0)

k+7p E+p

k

Fig. 1.
local quark bilinear. p and p’ are incoming and outgoing ex-

One of the one-loop Feynman diagrams for the non-

ternal momenta, respectively.

D, _fsm(kz52)k3

Toz (k%) <( —H(T)+3G3(D)k* + H (F)k3)

(53)

and where H(I') = Zi:] G,(@). It is easy to see that when
6z =0 (corresponding to a local quark bilinear), the mix-
ings with all dimension-four operators vanish, but when
6z# 0 (corresponding to a nonlocal quark bilinear), the
mixing with dimension-four operators appears even
though the theory has , 7, C, and chiral symmetries.

4 Summary

We have used the symmetry properties of nonlocal
quark bilinear operators under parity, time reversal and
chiral or axial transformations to study the possible mix-
ing among these operators. Below, we summarize our
findings.

1) If the lattice theory preserves chiral symmetry, then
the dimension-three nonlocal quark bilinear operators
Or.(6z) of Eq. (31) are protected from mixing with each
other, but they are not protected from mixing with the di-
mension-four operators of Eqgs. (43), (44) and (47) with
all possible values of 67’ satisfying 0 < 67’ < 6z:

02(62,62) =(1+G3() Q7 (62,67)
+(1-G3(M)0){(62,67),  (54)

0%(62,67) =(1 + G3(F))Q%_)(6z,6z')
+(1- Gs(F»O%“(az, §7),  (55)

01'(62) = (1+G3(I) Q) (62), (56)

where G, is defined in Eq. (18). This mixing pattern is
confirmed by an example calculation for a one-loop dia-
gram, as shown in Sec. 3.3. Since there are many operat-
ors in Egs. (54)—(56), it is impractical to remove the mix-
ing using the improvement procedure.

2) If the lattice theory breaks chiral symmetry, then
the dimension-three nonlocal quark bilinear Or.(d67)
mixes with

103101-6
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(1+G3(I))0y,r+(62). (57)
The operator Or..(6z) not only mixes with all the oper-
ators in Eqgs. (54) —(56), but also with Q?"(_)(éz, 67),
Q?"(_)(dz, 67') and Q?’[(dz) for all possible values of 67’ sat-
isfying 0 < 6z’ < 6z.
This study is particularly relevant for the quasi-PDF
approach, which receives power corrections in inverse
powers of hadron momentum. It is important to find a

window where hadron momentum is large enough to sup-
press power corrections, but at the same time the mixing

with p type dimension-four operators is under control.
For future work, in light of the similarity between the

Wilson line and the heavy quark propagator, it would be
valuable to apply techniques developed for the heavy
quark effective field theory on the lattice [61, 62] and the
associated treatments to improve lattice artifacts [63—68].
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