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Abstract In this work, starting from a spherically symmet-
ric polytropic black hole, a rotating solution is obtained by
following the Newman–Janis algorithm without complexi-
fication. Besides studying the horizon, the static conditions
and causality issues of the rotating solution, we obtain and
discuss the shape of its shadow. Some other physical features
as the Hawking temperature and emission rate of the rotating
polytropic black hole solution are also discussed.

1 Introduction

After the historical direct detection of gravitational waves
from a black hole (BH) merger by the LIGO collaboration in
2015 [1], and the first image of the supermassive BH located
at the centre of the giant elliptical galaxy Messier 87 (M87)
by the Event Horizon Telescope (EHT) project [2] only a
few weeks back, there is currently a lot of ongoing research
in investigating the properties of BHs in several different
contexts. The LIGO direct detection provided us with the
strongest evidence so far that BHs do exist in Nature and that
they merge, while at the same time it offers us the tools to
test strong gravitational fields using radio wave astronomy.
However, the LIGO detection has provided us with no infor-
mation about the horizon of the BH, which after all is its
defining property.

The gravitational field produced by a BH is so strong that
nothing, not even photons, can escape. Therefore, a BH can-
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not be seen directly. There is, however, the possibility of see-
ing a dark shadow of a BH via strong gravitational lensing and
photon capture at the horizon, if the BH stands between the
observer and nearby light sources. The photons emitted from
the source, or of the radiation emitted from an accretion flow
around the event horizon of the BH, are expected to create a
characteristic shadow-like image, that is a darker region over
a brighter background. Indeed, recently the EHT project, a
global very long baseline interferometer array observing at
a wavelength of 1.3 mm, announced and showed the first
image of the supermassive BH located at the centre of M87
[3], while the corresponding image from the centre of the
Milky Way is yet to come. For instrumentation, data pro-
cessing and calibration, physical origin of the shadow, etc,
see [4–8].

The observation of the shadow probes the spacetime
geometry in the vicinity of the horizon, and therefore it tests
the existence and properties of the latter [9]. It should be
noted, however, that other horizonless compact objects that
possess light rings also cast shadows [10–17], and therefore
the presence of a shadow does not by itself imply that the
object is necessarily a BH. Therefore, strong lensing images
and shadows offer us an exciting opportunity not only to
detect the nature of a compact object, but also to test whether
or not the gravitational field around a compact object is
described by a rotating or non-rotating geometry. For a recent
brief review on shadows see, [18].

Within the framework of Einstein’s General Relativity
[19] the most general BH solution is the Kerr–Newman
geometry characterized by its mass, angular momentum and
electric charge, see e.g., [20]. Since, however, astrophysical
BHs are expected to be electrically neutral, the most inter-
esting cases to be considered are either the Schwarzschild
[21] or the Kerr geometry [22]. More rotating BH solutions
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may be generated starting from non-rotating seed spacetimes
applying the Newman–Janis algorithm (NJA), described in
[23,24].

Non-rotating solutions have been obtained in non-standard
scenarios, such as polytropic BHs [25,26] or BHs with
quintessencial energy [27], to mention just a few. Over the
years the shadow of the Schwarzschild geometry was consid-
ered in [28,29], while the shadow cast by the Kerr solution
was studied in [30] (see also [31]). Shadows of Kerr BHs
with scalar hair and BH shadows in other frameworks have
been considered in [32,33] and [34–47], respectively.

To explore the physics behind the so-called BH shadows,
an alternative tool is provided by the well-known NJA. As
already mentioned, this method allows one to pass from a
static spherically symmetric BH solution to a rotating one. To
be more precise, in the present work we will take a variation
of the usual NJA, the only difference being the omission of
one of the steps of the NJA, namely the complexification of
coordinates [27]. Instead of this, we will follow an “alternate”
coordinate transformation, which will be explained in the
next section.

In the present work we propose to investigate the shadow
of the rotating polytropic BH. The non-rotating, static, spher-
ically symmetric geometry was obtained in [25]. The metric
tensor is a solution to Einstein’s field equations with negative
cosmological constant, and the thermodynamics of the BH
precisely matches that of a polytropic gas. One one hand, as
stated in [26], from the point of view of a possible astro-
physical tests of the non-rotating polytropic solution, the
so-called static radius, which defines the equilibrium region
between gravitational attraction and dark energy repulsion,
would be of importance [48]. On the other hand, in the rotat-
ing case, which will be studied in the present work by using
the NJA, the computation of the shadow would constitute a
valuable tool in order to confirm or refute theoretical predic-
tions regarding the intimate structure of space and time at the
strong field regime.

The plan of our work is the following. After this introduc-
tion, we briefly summarize how the NJA works in the next
section. In Sect. 3 we study the conditions leading to unsta-
ble null trajectories for a general parametrization of a rotating
BH while Sect. 4 is devoted to the study of the Hawking tem-
perature and the emission rate of a generic 3+1 rotating BH.
In Sect. 5 we construct the rotating solution starting from a
static and spherically symmetric polytropic BH as the seed
geometry and we study some features of the solution as for
example horizon and static conditions, causality issues, BH
shadow, Hawking temperature and emission rate. Finally we
conclude our work in the last section. We adopt the mostly
negative metric signature (+,−,−,−), and we choose nat-
ural units where c = 1 = G.

2 Newmann–Janis algorithm without complexification

In this section we review the main aspects on the NJA to
generate rotating solutions introduced by Azreg-Aïnou [49]
where the author performed modifications in the algorithm
with the purpose to avoid the complexification process. As it
is well known, the complexification of the radial coordinate
in the original NJA to bring the final solution in the Boyer–
Linquist coordinates is not unique and depends on how it
appears in the metric functions used as a seed to generate a
rotating solution. Examples of the above mentioned are

r2 → (r + ia cos θ)(r − ia cos θ) = r2 + a2 cos2 θ (1)

1

r
→ 1

2

(
1

r + ia cos θ
+ 1

r − ia cos θ

)
= r

r2 + a2 cos2 θ

(2)

r2 → r
√

(r + ia cos θ)(r − ia cos θ) = r
√

r2 + a2 cos2 θ

(3)

It is worth mentioning that the first two complexification
listed above are used to generate the Kerr solution starting
from the Schwarzschild metric. Even more, if we only use
one of this complexifications, the generated rotating solution
will not coincides with form of the Kerr BH.

In order to avoid the ambiguities which arise from com-
plexification procedure, the original protocol must be modi-
fied as follows.

As usual, the starting point is a static spherically symmet-
ric metric parametrized as

ds2 = G(r)dt2 − dr2

F(r)
− H(r)(dθ2 + sin2 θdφ2). (4)

The next step consists in introducing the advanced null coor-
dinates (u, r, θ, φ) defined by

du = dt − dr/
√

FG, (5)

from where, the non-zero components of the inverse metric
can be written as gμν = lμnν + lνnμ − mμm̄ν − mνm̄μ with

lμ = δμ
r , (6)

nμ = √
F/Gδμ

u − (F/2)δμ
r , (7)

mμ = (δ
μ
θ + i

sin θ
δ
μ
φ )/

√
2H , (8)

and lμlμ = mμmμ = nμnμ = lμmμ = nμmμ = 0 and
lμnμ = −mμm̄μ = 1. Now, introducing the complex trans-
formation

r → r + ia cos θ, (9)

u → u − ia cos θ, (10)

and assuming that

G(r) → A(r, θ, a), (11)
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F(r) → B(r, θ, a), (12)

H(r) → Ψ (r, θ, a), (13)

we obtain

lμ = δμ
r , (14)

nμ = √
B/Aδμ

u − (B/2)δμ
r , (15)

mμ = (δ
μ
θ + ia sin θ(δμ

u − δμ
r ) + i

sin θ
δ
μ
φ )/

√
2Ψ . (16)

Using the above transformations, the line element, in the so-
called rotating Eddington–Finkelstein coordinates reads

ds2 = Adu2 + 2

√
A

B
dudr + 2a sin2 θ

(√
A

B
− A

)
dudφ

− 2a sin2 θ

√
A

B
drdφ − Ψ dθ2

− sin2 θ

(
Ψ + a2 sin2 θ

(
2

√
A

B
− A

))
dφ2. (17)

In order to write the metric (17) in the Boyer–Lindquist coor-
dinates, we proceed to perform the global coordinate trans-
formation

du = dt + λ(r)dr, (18)

dφ = dφ + χ(r)dr, (19)

where λ and χ must depend on r only to ensure the integra-
bility of Eq. (18). As it is well known, in the original NJA
the next step in the construction of the rotating metric, con-
sists in complexifying r . However, in order to circumvent the
complexification, Azreg–Aïnou (see Ref. [49]) proposed an
ansatz for the unknown functions involved. Namely, taking

λ = − (K + a2)

F H + a2 , (20)

χ = − a

F H + a2 , (21)

where

K =
√

F

G
H, (22)

and

A(r, θ) = F H + a2 cos2 θ

(K + a2 cos2 θ)2 Ψ, (23)

B(r, θ) = F H + a2 cos2 θ

Ψ
, (24)

the metric (17) takes the Kerr-like form

ds2 = Ψ

ρ2

(
Δ

ρ2 (dt − a sin2 θdφ)2 − ρ2

Δ
dr2 − ρ2dθ2

− sin2 θ

ρ2 (adt − (K + a2)dφ)2)

)
, (25)

with

ρ2 = K + a2 cos2 θ, (26)

Δ = F H + a2 (27)

where a = J/M , with M, J being the mass and the rotation
speed, respectively, of the black hole.

At this point some comments are in order. First, note that
the function Ψ (r, θ, a) remains unknown but it must satisfy
the following differential equation

(K + a2 y2)2(3Ψ,rΨ,y2 − 2Ψ Ψr,y2) = 3a2 K,rΨ
2 (28)

which corresponds to imposing that the Einstein tensor sat-
isfies Grθ = 0. Second, it can be shown (see appendix A in
Ref. [49]) that the metric (25) satisfies Einstein’s field equa-
tions Gμν = 8πTμν with the source given by

T μν = εeμ
t eν

t + pr eμ
r eν

r + pθeμ
θ eν

θ + pφeμ
φ eν

φ, (29)

with

eμ
t = (r2 + a2, 0, 0, a)√

ρ2Δ
, (30)

eμ
r =

√
Δ(0, 1, 0, 0)√

ρ2
, (31)

eμ
θ = (0, 0, 1, 0)√

ρ2
, (32)

eμ
φ = − (a sin2 θ, 0, 0, 1)√

ρ2 sin θ
. (33)

Even more, in order to ensure the consistency of Einstein’s
field equations, the unknown Ψ must satisfy another con-
straint, namely

(K 2
,r + K (2 − K,rr ) − a2 y2(2 + K,rr ))Ψ,

+(K + a2 y)(4y2Ψy2 − K,rΨ,r ) = 0. (34)

Finally, the above expressions can be simplified in the par-
ticular case G = F and H = r2. Indeed, in this case it can
be shown that one solution of Eq. (28) is given by

Ψ = r2 + a2 cos2 θ, (35)

and the metric (25) takes the form

ds2 =
(

1 − 2 f

ρ2

)
dt2 − ρ2

Δ
dr2 + 4a f sin2 θ

ρ2 dtdφ

−ρ2dθ2 − Σ sin2 θ

ρ2 dφ2, (36)

with

ρ2 = r2 + a2 cos2 θ, (37)

2 f = r2(1 − F), (38)

Δ = −2 f + a2 + r2, (39)

Σ = (r2 + a2)2 − a2Δ sin2 θ. (40)
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It is easy to verify that when a = 0 we recover the non
rotating black hole solution. It is worth mentioning that the
modified NJA here developed allows not only to skip the
complexification procedure but to introduce more physical
arguments and symmetry properties. Of course, the modified
protocol and the standar NJA leads to the same solution as
occur in the case of the generation the Kerr BH. However,
this modified procedure allows to find rotating solutions in
situations in which the original NJ algoritm fails.

3 Null geodesics around the rotating black hole

In this section we implement the standard Hamilton–Jacobi
formalism to separate the null geodesic equations in the rotat-
ing space-time. Our main goal here is to obtain the celestial
coordinates parametrized with the radius of the unstable null
orbits and to study the shadow of a generic rotating solution.

Let us start with the Hamilton–Jacobi equations [50]

∂S

∂τ
= 1

2
gμν∂μS∂ν S, (41)

where τ is the proper time and S is the Jacobi action. As
usual, if we assume that Eq. (41) has separable solutions, the
action takes the form

S = −Et + Φφ + Sr (r) + Sθ (θ), (42)

where E andΦ are the conserved energy and angular momen-
tum respectively. Now, replacing (42) in (41) we obtain that

Sr =
r∫ √

R(r)

Δ
dr, (43)

Sθ =
θ∫ √

Θ(θ)dθ, (44)

where

R(r) = ((r2 + a2)E − aΦ)2 − Δ(Q + (Φ − aE)2), (45)

Θ(θ) = Q − (Φ2 csc2 θ − a2 E2) cos2 θ, (46)

where Q is the so-called Carter constant. As it is well-known,
the unstable photon orbits in the rotating space-time must
satisfy the constraints R = 0 and R′ = 0 which lead to

(
a2 − aξ + r2

)2 −
(

a2 + r2 F
) (

(a − ξ)2 + η
)

= 0,

(47)

4
(

a2 − aξ + r2
)

−
(
(a − ξ)2 + η

) (
r F ′ + 2F

) = 0,

(48)

where ξ = Φ/E and η = Q/E2 correspond to the impact
parameters. Hence,

ξ = −4
(
a2 + r2 F

)
a(r F ′ + 2F)

+ a + r2

a
, (49)

η =
r3

(
8a2 F ′ − r

(
r F ′ − 2F

)2
)

a2 (r F ′ + 2F)2 . (50)

It is worth mentioning that, in the above expressions, r cor-
responds to the radius of the unstable null orbits.

Now, the apparent shape of the shadow is obtained by
using the celestial coordinates which are defined as [51]

α = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

∣∣∣∣
(r0,θ0 )

)
, (51)

β = lim
r0→∞

(
r2

0
dθ

dr

∣∣∣∣
(r0,θ0)

)
, (52)

where (r0, θ0) correspond to the coordinates of the observer.
Finally, the after calculating the limit in the above expres-
sions, the celestial coordinates read

α = − ξ

sin θ0
, (53)

β = ±
√

η + a2 cos θ2
0 − ξ2 cot2 θ0 , (54)

and the shadow corresponds to the parametric curve of α and
β with r as a parameter.

4 Hawking temperature and emission rate of a rotating
black hole

In Ref. [52], the author derived the Hawking temperature
of a general four-dimensional rotating BH using the null-
geodesic tunneling method developed by Parikh and Wilczek
[53–55]. In this section we shall summarize the main result
obtained in [52].

First of all, the radiated particles are considered as s-waves
because for an observer at infinity the radiation is spherically
symmetric whether the BH is rotating or not. Now, the tun-
nelling rate of a s-wave from the inside to the outside of the
BH is given by

Γ = Γ0e−2I mI , (55)

where I is the action of the tunnelling particle and Γ0 the nor-
malization factor. Moreover, as it is well-known, the emission
rate satisfies

Γ = Γ0e−βE , (56)

where E is the energy of the emitted particle, β = 2π/κ and
κ is the surface gravity of the horizon. Now, from (55) and
(56) we arrive to
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κ = π E

I mI , (57)

from where the Hawking temperature can be derived form
the standard relation

TH = κ

2π
. (58)

In order to obtain an expression of the Hawking tempera-
ture in terms of the components of the metric we proceed to
consider a generic rotating line element of the form

ds2 = −gtt dt2 + grr dr2 + gθθdr2 + gθθdθ2

+gφφdφ2 − 2gtφdtdφ. (59)

It can be demonstrated that (see, Sect. 2 of Ref. [52] for
details)

I mI = 2π E√
G ′

t t (r+, θ0)grr ′
(r+, θ0)

, (60)

where the prime stands for derivative respect to the radial
coordinate, r+ is the horizon radius and

Gtt = gtt + 2gtφΩ+ − gφφΩ2+, (61)

with Ω+ the angular velocity of the event horizon, which is
a constant defined by

Ω+ = gtφ

gφφ

∣∣∣∣
r=r+

. (62)

Finally, replacing (60) in (57) an using (58), the Hawing
temperature takes the form

TH =
√

G ′
t t (r+, θ0)grr ′

(r+, θ0)

4π
, (63)

which can be written alternatively as

TH = 1

4π
lim

r→r+

∂r Gtt√
Gtt grr

. (64)

Please, notice that the Eq. (64) is a generalization of the
standard formula for the Hawking temperature. In particular,
when the angular velocity is taken to be zero, we recover the
well-known formula, namely:

TH = 1

4π
lim

r→r+

∂r gtt√
gtt grr

. (65)

In what follows, we shall study the emission rate of a
rotating BH. It is well-known that in the high energy regime,
the cross-section oscillates around a constant value. For black
holes endowed with a photon sphere, the limiting constant
value coincides with the geometrical cross-section of this
photon sphere [56–59], and it can be expressed as

σ ≈ π R2
s . (66)

Since the shadow measures the optical appearance of a black
hole, it is, in fact, equal to the limiting constant value of the
high-energy absorption cross-section. Therefore, although it
is possible in principle to perform a complete analysis to com-
pute the exact cross-section through the calculation of all the
partial waves, as was done for instance in [60] by Kokko-
tas et al. in the present work we shall adopt the geometrical
approximation following previous works, e.g., [57,61] and
[62], which suffices for our purposes. Indeed, our figure for
the emission spectrum, Fig. 3, is very similar qualitatively
to Fig. 5 of [61] and [62], and to Fig. 8 of [57]. Following
these remarks, we conjecture that the black hole shadow cor-
responds to its high energy absorption cross-section for the
observer located at infinity 1

In Eq. (66), Rs is the radius of the photon sphere defined
by (see, [56])

Rs = (αt − αr )
2 + β2

t

2|αt − αr | . (67)

In the previous expression, the quantities αt , αr , βt corre-
spond to particular values of the celestial coordinates [see
Eqs. (53) and (54)] In particular, αr corresponds to the most
right value of α and the pair (αt , βt ) stands for coordinates
of the top of the shadow [63]. With all the quantities defined
in this section, the emission rate [56,61,64–69] can be cal-
culated by

d2 E

dωdt
= σlim

eω/TH − 1

ω3

2π2 , (68)

where ω represents the frequency of photons. In the next
section we obtain the Hawing temperature and the emission
rate for a rotating polytropic BH.

5 Rotating polytropic black hole solution

In this section we construct the rotating BH solution from
a static and spherically symmetric polytropic BH. Then we
shall study some of its physical properties as well as the BH
shadow and its emission.

As a starting point, we consider the polytropic BH solution
obtained in [25]

ds2 = Fdt2 − F−1dr2 − r2dΩ2, (69)

where F =
(

r2

L2 − 2M
r

)
, L2 = −3/Λ, with Λ being the cos-

mological constant, and dΩ2 = dθ2 + sin2 θdφ2 is the line
element of the unit two-dimensional sphere. It is worth men-
tioning that F in (69) has the same form of the black string

1 However, a more thorough and detailed analysis is necessary for the
derivation of the exact greybody factors and radiation spectra from the
black hole here studied.
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solution found in [70,71] in the context of plane symmetric
solutions of Einstein’s equations [20].

Now, using F = G = r2

L2 − 2M
r , the line element (36)

reads

ds2 =
(

1 − r2

ρ2

(
1 − r2

L2 + 2M

r

))
dt2 − ρ

Δ
dr2 − ρ2dθ2

+2ar2 sin2 θ

ρ2

(
1 − r2

L2 + 2M

r

)
dtdφ

−Σ sin2 θ

ρ2 dφ2, (70)

with

Δ = a2 + r2
(

r2

L2 − 2M

r

)
. (71)

At this point some comments are in order. First, the horizons
are solutions of Δ(r±) = 0 which, in this particular case,
corresponds to

a2 + r2±

(
r2±
L2 − 2M

r±

)
= 0. (72)

It is worth mentioning that from the horizon condition we
can obtain a bound on the spin parameter, namely a/M . In
this case, the allowed values are constrained by

a

M
<

31/2

22/3

(
L

M

)1/3

. (73)

Note that above result differs from the obtained in the case
of the Kerr solution, where the constraint is given by a/M <

1. Second, the static limit, namely, the surface from where
observers can remain static, corresponds to gtt = 0. More
precisely,

a2 cos2(θ) + r2
st

(
r2

st
L2 − 2M

rst

)
a2 cos2(θ) + r2

st
= 0. (74)

Note that, the event horizon, r+, coincides with the static
radius rst at the poles θ = 0 and θ = π as in the Kerr
solution. Third, note that causality violation and closed time-
like curves are possible if gφφ > 0. To be more precise, the
condition is

− Σ sin2(θ)

ρ2 > 0, (75)

from where, given that sin2(θ)/ρ2 is positive, the sign of
Σ plays a crucial role in the analysis. What is more, the
condition to avoid causality violation and closed time-like
curves is to impose Σ > 0. In the particular case of the
rotating polytropic BH, the condition on Σ reads

a2 sin2(θ)

(
−a2 − r4

L2 + 2Mr

)
+

(
a2 + r2

)2
> 0, (76)

It is worth mentioning that, in contrast to Kerr solution, the
causality issues can be avoided for particular choices of the
parameters. For example, taking a = L , the above condition
reduces to

L4 + 2L2 Mr sin2 θ + 2L2r2 + r4
(

1 − sin2 θ
)

> L4,

(77)

which is trivially satisfied given that all the coefficients
involved in the left hand side are positive.

Now, we shall focus our attention in the construction
of the BH shadow. Replacing the metric function F(r) =
− 2M

r + r2

L2 in Eqs. (49) and (50), the impact parameters (ξ, η)

associated to the unstable null geodesics around the rotating
BH are given by

ξ = L2r
(
2a2 − 3Mr

)
a

(
L2 M − 2r3

) + a, (78)

η = L2r3
(
4a2

(
L2 M + r3

) − 9L2 M2r
)

a2
(
L2 M − 2r3

)2 , (79)

from where, assuming θ0 = π/2, the celestial coordinates
read

α = −a + L2r
(
3Mr − 2a2

)
a

(
L2 M − 2r3

) , (80)

β = ±
√√√√ L2r3

(
4a2

(
L2 M + r3

) − 9L2 M2r
)

a2
(
L2 M − 2r3

)2 . (81)

In Fig. 1 the shadow of the rotating BH is shown for differ-
ent values of a/M and L/M . In the upper row we also have
included the shadow of a Kerr black hole (black solid line). It
is noticeable that the size of the silhouette of the polytropic
solution increases when a/M and L/M increases. More-
over, it is straightforward that the extra degree of freedom,
L/M , of the polytropic solution plays an important role in the
description of the shadow. Indeed, the only consequences on
the Kerr BH given by the increasing of a/M is a slight shift
of the shadow to the right. Note also that the shadow of the
polytropic BH undergoes a deformation as a/M increases.
Indeed, for a/M = 1.7 the silhouette of the polytropic BH
losses its symmetry and looks like an oval instead of an
ellipse. What is more, this value of a/M is near the upper
bound given by Eq. (73) which for L/M = {7, 7.5, 8} is
given by

31/3

22/3

(
L

M

)1/3

≈ 2. (82)

In this sense, the shadow of the rotating polytropic BH under-
goes a deformation when a/M approach its upper limit as
occurs in the Kerr BH case.

The dependence of the BH sadow on the angular momen-
tum is shown in Fig. 2. It is worth noticing that the behaviour
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Fig. 1 Silhouette of the shadow
cast by the rotating polytropic
BH for a/M = 0.1 (left upper
panel) with L/M = 3.7 (blue
line) L/M = 4 (gray line)
L/M = 4.3 (orange line) and
a/M = 0.5 (right upper panel),
a/M = 1.1 (left down panel)
and a/M = 1.7 (right down
panel) with L/M = 7 (blue
line), L/M = 7.5 (gray line)
and L/M = 8 (orange line). The
black solid line in the plots of
the upper row corresponds to the
shadow of the Kerr solution

of the shadow coincides with the usually encountered for
increasing values of the angular momentum, namely, the
shadow undergoes a shifting to the right and deformation of
its shape. However, the shifting and deformation correspond-
ing to the Kerr BH is remarkably greater in comparison to
the polytropic solution.

The hawking temperature for this rotating BH is given by

TH = −a2
(
L2(M + r+) − 2r3+

) + L2 Mr2+ + r5+
2π L2

(
a2 + r2+

)2 , (83)

where r+ is the event horizon radius obtained from the con-
dition (72), which reads

r+ =

√
− 2 3√6a2 L2

d(a,M,L)
+ 6L2 M√

3√6a2 L2
d(a,M,L)

+ 1
2 d(a,M,L)

− d(a, M, L)

25/6 3
√

3

+
√

2 3√6a2 L2

d(a,M,L)
+ d(a, M, L)

25/6 3
√

3
, (84)

with

d(a, M, L) = 3
√√

3
√

27L8 M4 − 16a6L6 + 9L4 M2.

(85)

Now, for particular values of the parameters (a, L , M),
the Hawking temperature can be computed and Rs can be
obtained from Eq. (67). Finally, replacing (83) and (67) in
(68), we can study the behaviour of the emission rate as a
function of the frequency ω. The emission rate profile, com-
puted under the previously mentioned geometrical approxi-
mation, is depicted in Fig. 3. The solid black line corresponds
to the emission of the Kerr black hole which results to be
much greater than the emission given by the polytropic solu-
tion for the same value of a/M . The detailed behaviour of the
emission rate corresponding to the polytropic BH is shown
in the zoomed region, where it can be shown that it decreases
as L/M growths.

123



802 Page 8 of 10 Eur. Phys. J. C (2019) 79 :802

Fig. 2 Silhouette of the shadow cast by the rotating polytropic BH
for L/M = 7 with a/M = 0.1 (green), a/M = 0.4 (blue), a/M =
0.7 (grey), a/M = 0.9 (orange). The dashed lines corresponds to the
polytropic BH while the solid ones indicate the behaviour of a Kerr
solution

Fig. 3 Emission rate of the rotating polytropic BH for a/M = 0.5
and L/M = 7 (solid blue line), L/M = 7.5 (dashed gray line) and
L/M = 8 (dotted orange line). The solid black line corresponds to the
emission of a Kerr BH

6 Conclusions

In this work we have reviewed the main aspects related to the
Newman–Janis algorithm without complexification, the con-
struction of unstable null orbits and the computation of the
Hawking temperature and emission rate for general rotating
black holes and we have used these tools to construct a rotat-
ing polytropic black hole solution. It is worth mentioning
that, to the best of our knowledge, the construction of such a
rotating solution has not been considered before. Besides, we

have studied some physical properties as the position of the
horizons and the static limit which defines the ergosphere as
well as the causality condition. We have obtained that, in con-
trast to the Kerr solution, the causality issues can be avoided
for certain choice of the black hole parameters, namely a, M
and L . Additionally, we have demonstrated that, in contrast
to the Kerr black hole, the bound on the spin parameter a/M
can be grater that one because the condition of the appearance
of horizons entails that this bound is proportional to L/M .
We have also analysed the shadow of the rotating polytropic
solution finding that its shape can change while increasing
L/M . As a final result, we have studied the emission rate,
showing that it decreases for large values of L/M .

Finally, it would be interesting to investigate how the prop-
erties of the solution here obtained are modified in light of
the so called scale-dependent scenario. In such cases, the
coupling constants acquire a dependence on the scale with a
free parameter which encodes the quantum features (which is
called scale-dependent parameter). Thus, given that the black
hole shadows give observational evidence for black holes,
we could establish bounds on the aforementioned parameter
(see, [72–87]and references therein). We hope to be able to
address this issue in a future work.
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