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We study the John term of Fab Four cosmology in the presence of a scalar potential. We show here how 
this theory can describe a wide range of cosmological solutions. This theory has two general functions 
of the scalar field: the potential V (φ) and the John coefficient function V j(φ). We show that for very 
simple choices of those functions, we can describe an accelerated expansion, a radiation-dominated era, 
and a matter-dominated era. By means of simple modifications, it is also possible to describe nonsingular 
bouncing versions of those solutions and cyclic universes. We also address some quantum issues of that 
theory, showing that, for the most significant singular cases, the theory admits a classically well behaved 
quantization, even though the Hamiltonian has fractional powers in the momenta.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In [1–3], it is described how a cosmological theory with a 
scalar field nonminimally coupled to gravity, represented by the 
Lagrangian density

L = √−g

[
R

8π
− ∇μφ∇μφ − κGμν∇μφ∇νφ − V (φ)

]
, (1)

for V = 0, drives an inflationary epoch, followed by a “graceful” 
exit from inflation, thanks to the presence of the nonminimal cou-
pling term Gμν∇μφ∇νφ. Theories similar to (1) can be found in 
[4–6]. In (1), R is the Ricci scalar, φ is a scalar field, Gμν is the 
Einstein tensor, and κ is a coupling constant.

The theory (1) is a subclass of Horndeski modified gravity [7], 
the most general scalar-tensor gravitational theory in four dimen-
sions with second order equations of motion. Modifying gravity is 
an alternative to general relativity to explain observations of the 
accelerated expansion of the Universe [8,9]. In this sense, Horn-
deski theory is particularly important, since it is a modification 
of gravity that avoids Ostrogradsky instability [10,11] and includes 
the general theory of relativity as a particular case. The Horndeski 
action is written as
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S H =
∫

d4x
√−g(L2 + L3 + L4 + L5), (2)

where

L2 = K (φ, X), (3)

L3 = −G3(φ, X)�φ, (4)

L4 = G4(φ, X)R + G4,X (φ, X)[(�φ)2

− ∇μ∇νφ∇μ∇νφ], (5)

L5 = G5(φ, X)Gμν∇μ∇νφ − 1
6 G5,X (φ, X)[(�φ)3

− 3�φ∇μ∇νφ∇μ∇νφ

+ 2∇μ∇νφ∇λ∇μφ∇ν∇λφ]. (6)

The functions K and Gi are generic differentiable functions of the 
scalar field φ and of the kinetic term X ≡ −∇μφ∇μφ. The nota-
tion Gi,X denotes the derivative of Gi with respect to X . The greek 
indices here run from 0 to 3.

Another application of the nonminimal coupling term
Gμν∇μφ∇νφ for accelerated expansion comes from the Fab Four 
theory, which is the most general subclass of the Horndeski theory 
with a self-tuning mechanism able to deal with the cosmological 
constant problem [12]. In [12–14], it is shown how the non-
minimal coupling represented by the so-called “John” Lagrangian,
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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L john = V j(φ)Gμν∇μφ∇νφ, (7)

helps the other three Fab Four terms to provide all the usual 
epochs of cosmic evolution, in the presence of a matter action. 
In (7), V j(φ) is a free function of the scalar field, related with the 
coefficient function G5 of Horndeski theory (see [8], for instance) 
by V j = ∂G5/∂φ. If considered alone, without any potential, L john
represents a stiff matter-dominated universe, when the spatial cur-
vature is subdominant [14]. Another application of L john is for 
Galileon black holes [15]. Of course, those are just a few exam-
ples.

The above mentioned applications usually set the coefficient 
function V j from the start and consider (7) only as a contribu-
tion for the Lagrangian of a minimally coupled scalar field, like in 
(1). Therefore, the specific dynamics of (7) for a general V j func-
tion has not been studied yet. In this paper, we are interested in 
the theory represented by

L = √−g
[−V j(φ)Gμν∇μφ∇νφ − V (φ)

]
, (8)

where the potential was introduced to avoid trivial solutions. 
Throughout all this letter, we will consider the spatially flat 
Friedmann-Lemaître-Robertson-Walker metric

ds2 = N2dt2 − a2δi jdxidx j, (9)

where N(t) is the lapse function [16] and a(t) is the scale factor. 
Observe that (8) is still a subclass of Horndeski modified gravity 
(2), for K (φ, X) = V (φ).

The recent observational events GW170817 and GRB 170817A 
have imposed the constraint [17–19]:

−3 × 10−15 ≤ vGW − vEM

vEM
≤ +7 × 10−16, (10)

where vGW is the speed of gravity and vEM is the speed of light. 
Thus, it became possible to test alternative theories of gravity for 
tensor perturbations. In [20], it was described how linear pertur-
bations can be performed in the general Horndeski theory and 
in [21] a complete set of parameters were introduced to sim-
plify the comparison between theory and observations for those 
perturbations. Some authors (for instance, [11,22]) argue that this 
constraint completely rule out some Horndeski theories (like (1)) 
to avoid fine tuning. But some other authors argue the opposite, 
for the following reasons. First, (10) restricts vGW only for the 
low redshift range z � 0.01, as far as we know [19,23]. In other 
words, G5 may be relevant in the early universe, in accordance 
with previous works [1–3]. Second, for (1), the derivative coupling 
Gμν∇μφ∇νφ ∼ H2φ̇2, where H is the Hubble parameter, decreases 
as the universe expands, thus becoming negligible in compari-
son with the kinetic term ∼ φ̇2. Hence, for the redshift values for 
which (10) is valid, we expect that the derivative coupling gener-
ates only a tiny variation of vGW from unity [24]. Third, it is shown 
in [24] that the range of values of the mass scale M (roughly 
speaking, the inverse coefficient) of Gμν∇μφ∇νφ for which (10)
is valid is

2 × 10−35 GeV � M � 1015 GeV. (11)

Thus, there is no fine tuning in the nonminimal derivative cou-
pling.

In summary, we can say that theories with a G5 term are not 
ruled out, provided that (11) is verified. All the above discussion 
motivates us to investigate what is the specific cosmology of the 
derivative coupling alone, in order to have a better understanding 
of its effects. Strictly speaking, for a more complete description, we 
should consider (8) as a part of a more general framework, like in 
(1), but our goal here is precisely to explore the specificity of (8)
due to a possible predominant role it can play in the primordial 
universe. Thus, we will investigate the background cosmology of 
(8), which is a minimal non trivial theory containing G5. For the 
above reasons, we shall focus on the primordial universe, when 
such a theory can be more effectively relevant.

In Section 2, we start from (8) with general V (φ) and V j(φ), for 
a homogeneous scalar field φ, showing that the second order equa-
tions of motion can be integrated to become a first order system 
of equations, for any V and V j . That system has two immediate 
implications. First, the scalar field must be a time scale, because 
it is diffeomorphic to cosmic time. Second, that system is a mech-
anism to provide almost any desired functional form of the scale 
factor, if suitable V , V j are chosen. This tuning mechanism can be 
considered analogous to Fab Four’s self-tuning, even though they 
are different.

Those results for background cosmology show that the non 
minimal coupling (8) actually covers a wide range of possibilities. 
That freedom comes from the generality of the coefficient function 
V j and the potential V . As we will see in Section 2, the theory 
(8) can describe solutions analogous to perfect fluid ones, such as 
radiation-domination and matter-domination. Those solutions are 
found when V and V j are some power law functions. We then 
show how a de Sitter solution can be obtained, for exponential V
and V j . That is a first indication that (8) may be able to describe 
an inflationary phase. However, the other conditions for inflation 
need further investigations. Those solutions are all singular, but we 
will show how the functions V , V j can be slightly modified, thus 
causing the singularity to be replaced by a bounce. We also briefly 
exhibit a simple cyclic universe solution. Therefore, Fab Four John 
(8) may in principle be an alternative to describe the basic eras of 
cosmological evolution at the background level, also avoiding sin-
gularities. The remaining open questions about the viability of this 
theory will be investigated in future works.

We also present a first quantum approach to (8). In Section 3, 
we sketch a quantization for power law V , V j , with Bohmian in-
terpretation of quantum mechanics [25–27], that can be trivially 
generalized for the case when V , V j are both exponential func-
tions. We apply that interpretation because some authors [28–30]
argue that standard quantum mechanics should not be applied to 
primordial universe. In brief, they say that classical exterior do-
main hypothesis (an implicit assumption of standard interpretation 
related with measurement [31]) becomes a problem when the sys-
tem under consideration is the whole universe. In this sense, new 
approaches to quantum cosmology have been developed with al-
ternative interpretations, particularly with Bohmian quantum me-
chanics [25,26]. In [29,32] it is shown that Bohmian interpretation 
is an alternative for quantum cosmology in various situations, be-
cause it avoids the conceptual measurement issue and the problem 
of time. In practice, in that theory, time is recovered by the guid-
ance equations and the measurement problem is avoided because 
the same guidance equations provide a way to calculate determin-
istic solutions. For a review of conceptual problems in quantum 
cosmology and quantum gravity, see [33]. In our case, the pre-
liminary quantum result we found is that a consistent Bohmian 
quantization can be applied to (8), at least when V , V j are power 
law functions. That is a consequence of the existence of a quantum 
potential of order ∼ h̄2 that vanishes when classical solutions are 
recovered. Finally, in section 4 we make some remarks as conclu-
sion.
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2. Classical cosmology of Fab Four John

Taking the usual connection satisfying ∇α gμν = 0, for (9), we 
obtain the Ricci tensor components

R00 = 3
ȧ

a

Ṅ

N
− 3

ä

a
, (12a)

R0i = 0, (12b)

Rij = δi j
a2

N2

(
2

ȧ2

a2
+ ä

a
− ȧ

a

Ṅ

N

)
, (12c)

where the dot denotes derivation with respect to the time t . 
Since the scalar field φ = φ(t) is homogeneous, it follows from 
g = det(gμν) = −N2a6 and from (12) that the Lagrangian (8) is 
written in the minisuperspace as follows:

L = −3aV j(φ)
ȧ2φ̇2

N3
− Na3 V (φ). (13)

Then, the Euler-Lagrange equations for N, a, φ can be written as:

ȧ2φ̇2

a2
− V

9V j
= 0, (14a)

ä

a
+ 2

ȧ2

a2
− V ′ȧφ̇

V a
= 0, (14b)

φ̈ − 3
ȧφ̇

a
+ φ̇2

2

(
V ′

j

V j
+ V ′

V

)
= 0, (14c)

where f ′ ≡ df /dφ, and we have chosen the cosmic time coordi-
nate by fixing N = 1 after deriving the equations. Equation (14a)
is a constraint over ȧ and φ̇ , (14b) is the cosmological acceleration 
equation, and (14c) is a Klein-Gordon like equation, describing the 
dynamics of the scalar field φ. Equation (14a) also impose a condi-
tion over V and V j : they must always have the same sign in order 
to avoid imaginary solutions for a and φ. Defining α ≡ ln a, system 
(14) becomes:

α̇2φ̇2 − V /9V j = 0, (15a)

α̈ + 3α̇2 − α̇(ln V )̇ = 0, (15b)

φ̈ − 3α̇φ̇ + 1
2 φ̇[ln(V j V )]̇ = 0. (15c)

Dividing (15b) by α̇ and (15c) by φ̇, and then integrating, (15) be-
comes a first order system:

α̇ = e−3α V (φ), (16a)

φ̇ = 1
3 e3α[V (φ)V j(φ)]−1/2, (16b)

where the factor 1/3 comes from the constraint (15a). Notice that 
the systems (15) and (16) are equivalent, for any V , V j , up to an 
integration constant that we have set to unity.

It follows from equation (16b) that the scalar field φ neces-
sarily represents a time scale, if the product V V j never vanishes. 
In mathematical terms, if V (φ)V j(φ) > 0 for all values of φ, then 
the right-hand side of (16b) is always positive, which implies that 
φ is a monotonic increasing real function defined on real line. 
It thus follows from a well-known theorem of real analysis that 
φ(t) is a diffeomorphism. In other words, a time scale. Hence, we 
can restrict the discussion to the simplest possible interpretation 
φ(t) = t , which is true up to a diffeomorphism. In the following, 
we show the basic singular, bouncing and cyclic solutions obtained 
from (16).
2.1. Singular universes

Taking

V (φ) = V 0φ
1−w
1+w , (17)

V j(φ) = V 0

4
(1 + w)2φ

3+w
1+w , (18)

where w and V 0 are positive real constants, we obtain the follow-
ing power law solutions

a(t) = (t/t0)
2

3(1+w) , (19)

where φ(t) = t and t0 = [2/3V 0(1 + w)] 1+w
2 . The constant w is 

analogous to the equation of state parameter, at least regarding 
time evolution of scale factor. For, if w = 1 the universe is stiff 
matter-dominated, if w = 1/3 the universe is dominated by radia-
tion, and if w = 0, the universe is dominated by dust. Setting now

V (φ) = V 0e3γ φ, (20)

V j(φ) = V 0

9γ 2
e3γ φ, (21)

we can also obtain a de Sitter solutions

a(t) = a0eγ t, (22)

where γ , and V 0 are positive real constants, a0 = (V 0/γ )1/3, and 
again φ(t) = t . This shows that John Lagrangian with a scalar po-
tential is able to give basic background cosmological solutions. 
Notice that (19) and (22) are singular solutions. For (19), the sin-
gularity is at t = 0; for (22) there is an asymptotic singularity for 
t → −∞.

2.2. Bouncing universes

The power laws for V , V j found above can be modified to give 
a nonsingular solution. For

V (φ) = V 0φ(φ2
0 + φ2)

−w
1+w , (23)

V j(φ) = V 0

4φ
(1 + w)2(φ2

0 + φ2)
2+w
1+w , (24)

we obtain

a(t) = a0

[
1 + (t/φ0)

2
] 1

3(1+w)
, (25)

where φ(t) = t . The quantities φ0, V 0 are positive constants and 
a0 = [3V 0(1 + w)φ

2/(1+w)

0 /2]1/3. The solution (25) is a correction 
to (19), because for t � φ0, they are the same, but for t = 0, scale 
factor (19) is singular, while (25) represents a bouncing universe 
with minimum radius a0 > 0. Bounces are an important class of 
nonsingular cosmological solutions. For a review about bounces in 
cosmology, see [34]. The potentials (23) are consistent with (17), 
for t � φ0. The de Sitter solution above can also be replaced by a 
bouncing, avoiding the singularity at t → −∞. Choosing

V (φ) = V 0 sinh(γ φ) cosh2(γ φ), (26)

V j(φ) = V 0 cosh4(γ φ)

9γ 2 sinh(γ φ)
, (27)

we find

a(t) = a0 cosh(γ t), (28)

where V 0, γ are positive constants, φ(t) = t , and a0 = (V 0/γ )1/3. 
In fact, this scale factor represents a bouncing universe that for 
large values of t reduces to (22). Note that the potentials (26) also 
reduce to (20), for large values of φ.
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2.3. Cyclic universes

There are some cosmological theories that predict a cyclic uni-
verse to avoid initial singularity (see for example [35]). For (8) it is 
also possible to obtain such type of solution. Taking, for example,

V (φ) = V 0 sin(ωφ)
{

am + V 0
ω [1 − cos(ωφ)]

}2
, (29)

V j(φ) =
{

am + V 0
ω [1 − cos(ωφ)]

}4

9V 0 sin(ωφ)
, (30)

we obtain the oscillating scale factor

a(t) = am + A[1 − cos(ωt)], (31)

where V 0 > 0, A = V 0/ω is the amplitude of oscillation, ω is the 
frequency, and am is the minimum value of a(t).

3. Quantum cosmology of Fab Four John

In this section, we briefly show the Hamiltonian formulation 
of (8), that has the fractional power 2/3 in the momenta. Since 
canonical quantization replaces the momentum by a derivative, 
the momentum would thus become a fractional derivative. But 
there are, in fact, several definitions of fractional derivatives [36]. 
To avoid this ambiguity, we perform a canonical transformation. 
In this first quantum approach, we will consider only the case in 
which both V and V j are power law functions of φ. Then, after a 
short review of basic principles of Bohmian quantum mechanics, 
we apply a Bohmian quantization to the transformed Hamilto-
nian. We conclude this section showing the equivalence between 
classical and quantum equations, for a null quantum potential. 
This result is expected, because it is the first step to construct a 
Bohmian quantization. The generalization for the case in which 
both V and V j are exponentials follows from the redefinition of 
the scalar field ϕ ≡ eφ , since for ϕ the Hamiltonian reduces to the 
former case. Physically, this means that the quantum theory be-
low makes sense for the de Sitter, the radiation-dominated, and 
the matter-dominated solutions. In this first quantum approach, 
we will not analyse the nonsingular solutions above, because the 
canonical transformation described in subsection 3.2 imposes a 
technical restriction.

3.1. Hamiltonian

The Hamiltonian follows from the usual Legendre transforma-
tion H(q, p) = ∑

q̇i(q, p)pi − L(q, p), where q = (N, a, φ) are the 
generalized coordinates and p = (pN , pa, pφ) are the conjugated 
momenta. It follows from the definition of the momenta that

ȧ = −N(6aV j)
−1/3 p−1/3

a p2/3
φ , (32a)

φ̇ = −N(6aV j)
−1/3 p2/3

a p−1/3
φ . (32b)

Therefore, the Hamiltonian is

H = N

[−3p2/3
a p2/3

φ

2 3
√

6aV j(φ)
+ a3 V (φ)

]
≡ NH. (33)

Since pN ≡ ∂L/∂ Ṅ = 0, it follows from Hamilton equation ṗN =
−∂ H/∂N the constraint below:

p2/3
a p2/3

φ = 2

3
a3 V [6aV j(φ)]1/3. (34)

From (34), it follows also that we can rewrite (32) as
ȧ = −2Na3 V

3pa
, (35a)

φ̇ = −2Na3 V

3pφ

. (35b)

The system (35) will play a fundamental role in Bohmian quanti-
zation, as we shall see next.

3.2. Canonical transformation

The generating function

F (q, P , t) = −ρal Pm
x − φr Pn

y + N P z (36)

defines a canonical transformation by [37]:

pi = ∂ F

∂qi
, (37a)

Q i = ∂ F

∂ Pi
, (37b)

H̃(Q , P , t) = H(q, p, t) + ∂ F

∂t
, (37c)

where Q = (x, y, z) and P = (P x, P y, P z) are the new coordinates 
and momenta, respectively, and H̃ is the transformed Hamiltonian. 
The powers r, l, m, n ∈R − {0, 1} will be fixed later, as well as the 
positive constant ρ . The canonical transformation thus defined is 
quite restrictive, because the old coordinates become a mix of new 
coordinates and momenta. Hence we will restrict the discussion 
for power law V and V j :

V (φ) = V 0φ
ε, V j(φ) = V j0φ

δ. (38)

It thus follows from (37) that

H̃ = z

[
− f P

2
3 + m−1

l
x P

2
3 + 2+δ

3 · n−1
r

y + g P
3
l (1−m)

x P
ε
r (1−n)
y

]
, (39)

where

f = 3

2

[
(ρlr)2

6V j0

]1/3( −x

ρm

) 2
3 − 1

l
(−y

n

) 2
3 − 2+δ

3r

, (40)

g = V 0

( −x

ρm

) 3
l
(−y

n

) ε
r

. (41)

From (39), we can see H̃ is a constrained Hamiltonian system, 
since P z = pN = 0 implies that 0 = Ṗ z = −∂ H̃/∂z. Thus,

P
2
3 +4 m−1

l
x P

2
3 + 2+δ+3ε

3 · n−1
r

y = g

f
≡ λ. (42)

For simplicity, we can choose

l = 6 and r = 1
2 (2 + δ + 3ε), (43)

so that λ is a positive constant:

λ = 2V 0

3

[
V j0

6(rρ)2

]1/3

. (44)

Now, if we require that quantization gives a second order par-
tial differential equation and that (36) is not degenerate, we must 
choose m = n = 3/2. Then constraint (42) becomes

P x P y = λ. (45)

Now canonical quantization P̂ j = −ih̄∂ j can directly be applied, 
leading to the Wheeler-DeWitt equation
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∂2ψ

∂x∂ y
= − λ

h̄2
ψ, (46)

where ψ(x, y) is the stationary wave function of the Universe. The 
basic solution is the plane wave

ψk(x, y) = ei(kx+ωy)/h̄, (47)

where k �= 0 is a real constant and ω ≡ λ/k. Let us now briefly 
review the core ideas of Bohmian interpretation of quantum me-
chanics to apply them to (46).

3.3. Bohmian interpretation

As an answer to the incompleteness of quantum mechanics 
claimed by A. Einstein, B. Podolsky, and N. Rosen in [38], some 
authors argued in favor of standard interpretation, like N. Bohr 
[39] and L. E. Ballentine [40] later. However, this criticism inspired 
also an alternative interpretation of quantum mechanics, suggested 
by D. Bohm in [25,26]. Bohmian mechanics provides a method 
to associate a deterministic dynamics for an individual quantum 
system, thus avoiding the incompleteness pointed out in [38]. To 
illustrate those ideas, consider Schrödinger equation for a single 
particle

− h̄2

2m
∇2ψ + V (x)ψ = ih̄

∂ψ

∂t
, (48)

where ψ(x, t) is the wave function and V (x) is a potential. Since 
ψ is complex, it can be written as ψ = ReiS/h̄ , where R and S
are real functions. Thus, the imaginary and the real parts of (48)
become, respectively

∂ R2

∂t
+ ∇ ·

(
R2∇ S

m

)
= 0, (49a)

∂ S

∂t
+ |∇ S|2

2m
+ V (x) + Q (x) = 0, (49b)

where

Q (x) = − h̄2

2m

∇2 R

R
. (50)

Equation (49a) is a continuity equation. As for (49b), except for the 
term Q , it is a Hamilton-Jacobi equation with S playing the role of 
the Hamilton principal function. D. Bohm suggested in [25,26] to 
interpret that as follows: the quantum ∇ S can be associated with 
the classical momentum of the particle by

p = ∇ S = h̄ Im
∇ψ

ψ
, (51)

in analogy with Hamilton-Jacobi formalism, and the additional 
term Q is understood as being a quantum contribution (of order 
h̄2) to the total amount of energy. Because of that, Q is called 
the quantum potential. Now, since p = mẋ, it follows that (51)
gives a method to obtain deterministic trajectories for the parti-
cle. Thus, for each solution ψ , there is a whole family of possible 
trajectories. That is why ψ is sometimes called the pilot wave that 
guides the solution through the trajectories and (51) is called the 
guidance equation. In standard quantum mechanics, the recovery 
of classical dynamics follows from the correspondence principle 
[39]. In Bohmian quantum mechanics, it follows from the quan-
tum Hamilton-Jacobi equation (49b) that the classical mechanics is 
recovered when Q = 0.

It can be shown that Bohmian interpretation can describe all 
basic numerical features of standard quantum mechanics [27,41,
42]. Further discussions and applications can be found in [43–45]. 
As mentioned in the introduction, there are some conceptual ar-
guments in favor of Bohmian mechanics in quantum cosmology. In 
the references [29,46–49], it is shown how to generalize the above 
Bohmian formalism to models of quantum gravity and quantum 
cosmology. Among other things, they show how that formalism 
exhibits quantum effects, but also describes scalar and tensor per-
turbations in spacetime. We will now apply that formalism to (46).

In what follows, the comma denotes partial derivative. Let us 
write ψ(x, y) = R(x, y)eiS(x,y)/h̄ , where R and S are real functions. 
Thus, the imaginary and real parts of (46) are, respectively,

R S,xy + R,x S,y + R,y S,x = 0, (52a)

−S,x S,y + λ + h̄2

R
R,xy = 0, (52b)

where we have set N = z = 1 (cosmic time). Equation (52a) is the 
analogous of the continuity equation (49a). Now, rearranging (52b)
to compare it with classical stationary Hamilton-Jacobi equation 
for H̃ , the quantum potential is given by

Q = h̄2 f S
− 1

4
,x S

− ε
2r

,y
R,xy

R
, (53)

and the guidance equations are

P x = S,x, and P y = S,y . (54)

3.4. Recovering classical solutions

For the plane wave (47), R = 1 and S = kx + ωy, so the 
quantum potential (53) vanishes. Therefore, in analogy with the 
Bohmian interpretation for Schrödinger equation, we expect that 
for a null quantum potential the classical solutions are recovered. 
If that is the case, we can say the quantum formalism here devel-
oped is consistent. In fact, from (37) and (54), we can recover the 
quantum values of the momenta, given by guidance equations

pa = −6ρk3/2a5, (55)

pφ = −r(λ/k)3/2φr−1. (56)

Then, from those quantum relations and from (35), we obtain the 
following system:

ȧ = V 0

9ρk3/2

φε

a2
, (57a)

φ̇ = 2V 0

3r

(
k

λ

)3/2

a3φ− 1
2 (δ+ε). (57b)

Hence, setting

ρ = 1/9k3/2, (58)

the quantum system (57) becomes entirely equivalent to classical 
system (16), for power law potentials (38), for any powers δ, ε. 
In other words, for the solution (47), that gives a null quantum 
potential, the classical equations are recovered, as was expected. 
This result can be extended to the case where both V and V j are 
exponentials, by defining ϕ ≡ eφ in (13) and adapting all calcu-
lations, as we mentioned above. Thus, we can say, in particular, 
that classical solutions are recovered in the classical limit of the 
Bohmian formalism for power law (19) and de Sitter (22) solutions. 
Therefore, Bohmian interpretation can be successfully applied for 
those cases of (8). In physical terms, we proved that the quantum 
model is consistent for de Sitter, matter-dominated, stiff matter-
dominated, and radiation-dominated solutions for the scale factor.
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4. Conclusions

In this letter, we have explored some aspects of the background 
cosmology of Fab Four John theory (8). Due to its structure, the 
dynamics is governed by the first-order system (16), from which 
we found a big variety of cosmological solutions, including basic 
phases of the evolution of the universe, such as accelerated ex-
pansion, radiation-dominated, and matter-dominated eras. We also 
have shown that bouncing and cyclic universes are possible in this 
theory. All those solutions follow from the structure of the poten-
tial V (φ) and from the scalar field interpretation as a time scale. 
This last result is a direct consequence of (16).

For that derivation, we have set φ = t for simplicity, but the 
scalar field can be any differentiable increasing function defined on 
real line. Thus, φ may, in principle, represent any strictly increasing 
physical quantity. In that case, different choices must be made for 
V and V j , in order to keep all solutions above. Thanks to the sim-
ple structure of (16), this is always possible, if the diffeomorphism 
condition is still satisfied by φ. We have to stress that this letter 
is intended to be a background analysis, so further questions con-
cerning perturbations are still a matter of investigation for future 
works.

We have also presented a preliminary quantum approach to Fab 
Four John. Because of the odd structure of the Hamiltonian, the 
quantization is not straightforward. The John kinetic term is pro-
portional to (pa pφ)2/3, thus a canonical transformation must be 
performed. But we have shown as a first result that, at least for 
power law and exponential functions V , V j , the quantization is 
well behaved, in the sense that the classical solutions are recov-
ered when the quantum potential vanishes.

In conclusion, we can say that the big variety of solutions for 
the nonminimal derivative coupling L john here studied raises some 
questions. What should be the cosmological solutions if the cou-
pling constant κ in (1) is replaced by the general function V j(φ)? 
Is it possible to obtain such results when that coupling is only a 
contribution? Since (1) does not contradict the gravitational waves 
constraint, those are important questions to investigate in future 
works.
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