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Abstract We study chaotic inflation with a Galileon-like
self-interaction G (¢, X)Ol¢p, where G (¢, X) « X". Gen-
eral conditions required for successful inflation are deduced
and discussed from the background and cosmological per-
turbations under slow-roll approximation. Interestingly, it
is found that in the regime where the Galileon term domi-
nates over the standard kinetic term, the tensor-to-scalar ratio
becomes significantly suppressed in comparison to the stan-
dard expression in General Relativity (GR). Particularly, we
find the allowed range in the space of parameters character-
izing the chaotic quadratic and quartic inflation models by
considering the current observational data of Planck from
the ns — r plane. Finally, we discuss about the issue if the
Galileon term is dominant by the end of inflation, this can
affect the field oscillation during reheating.

1 Introduction

During the longest part of its lifetime, the universe has under-
gone a decelerating expansion, being dominated first by radi-
ation and then by matter. However, there are two phases of
accelerated expansion in the history of the universe at very
early times and late-times as well. The first accelerating phase
corresponds to inflation [1-4], which is widely accepted as
the standard paradigm for describing the physics of the early
universe. The first reason is due to the fact that several long-
standing puzzles of the hot big-bang model (HBB), such as
the horizon, flatness, and monopole problems, find a natu-
ral explanation in the framework of inflationary universe. In
addition, and perhaps the most intriguing feature of inflation,
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is that it gives us a causal explanation of the origin of the cos-
mic microwave background (CMB) temperature anisotropies
[5], while at the same time it provides us with a mechanism
to explain the large-scale structure (LSS) of the universe,
since quantum fluctuations during the inflationary era may
give rise to the primordial density perturbations [6—11].
The dynamics of inflation can be studied under the so-
called the slow-roll approximation (see, e.g. [12]). When the
slow-roll approximation breaks down inflation ends and the
universe enters into the radiation era of standard hot big-
bang cosmology. The transition era after the end of inflation,
during which the inflaton is converted into the particles that
populate the universe later on is called reheating [13,14],
the physics of which is complicated, highly uncertain, and
in addition it cannot be directly probed by observations.
One may obtain, however, indirect constraints on reheat-
ing according to the following strategy: First we parametrize
our ignorance assuming for the fluid a constant equation-of-
state w,. during reheating, and then we find certain relations
between the duration of reheating N, and the reheating tem-
perature T, with w,, and inflationary observables [15-17].
The second accelerating phase of the universe corresponds
to the current cosmic acceleration supported from type la
Supernovae data [18,19], CMB data [20-22] as well as
Baryon Acoustic Oscillation data [23,24]. The most econom-
ical ACDM model, which is based on a positive cosmological
constant and cold dark matter, suffers from the cosmological
constant problem [25]. Large-scale modifications of General
Relativity (GR), such as f(R) theories of gravity [26,27],
Brans—Dicke theory (BD) [28], DGP brane model [29] and
Galileon gravity [30], are capable of explaining the late-time
acceleration of the universe without a cosmological constant.
For a review on modified gravity and Cosmology see e.g.
[31]. In a little known paper in 1974 Horndeski found the
most general scalar-tensor theory having second order equa-
tions of motion [32]. It turns out [33] that Horndeski’s theory

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7368-1&domain=pdf
mailto:matias.lopez.g@mail.pucv.cl
mailto:jorge.maggiolo.t@mail.pucv.cl
mailto:nelson.videla@pucv.cl
mailto:pgonzalezv@uta.cl
mailto:grigorios.panotopoulos@tecnico.ulisboa.pt

839 Page2of9

Eur. Phys. J. C (2019) 79:839

includes both the canonical scalar field and k-essence [34],
while at the same time accommodates f(R) theories, BD
theory and galileon gravity [35-38]. The Horndeski theory
provides us with a general framework to accounting for the
current accelerated expansion of the universe and the infla-
tionary phase of the very early universe as well. For a review
on current status of Horndeski’s theory see e.g. [39], while for
a detailed classification of cosmologies with Kinetic Gravity
Braiding (KGB) G (¢, X) ~ X [40,41] see [42].

Regarding the observational constraints, specially those
coming from measurement of the speed of gravitational
waves (GWs) cgw, restrict dramatically Horndeski’s theory.
The nearly simultaneous detection of gravitational waves
GW170817 and the y-ray burst GRB 170817A provides a
tight constraint on cgw [43,44]

“3x 1075 < cgw—1 <7 x 10710, )

which basically means that GWs propagate at the speed
of light. It is worth mentioning that [45,46] were the first
papers to study the implications for modified theories of
gravity from an electromagnetic counterpart measurement
to a LIGO/VIRGO gravitational wave emitted by a neutron
star merger. Then, in order to have cgw = 1 irrespective of
the background cosmological evolution within Horndeski’s
theory, its Lagrangian is restricted to be [47—-49]

L=f(@R+K@ X)—GC(p,X)Up, @

leaving this theory constructed only with non-minimally cou-
pling, k-essence, and cubic Galileon sectors.

Although single-field slow-roll inflation in GR provides
us with the best fit to the data [50], considering alterna-
tive, non-standard scenarios, are motivated by the fact that
certain scalar potentials for the inflaton coming from Par-
ticle Physics [51-53], such as the chaotic quadratic or the
chaotic quartic ones [54], are ruled out by current data. More
generally, the monomial potential V(¢) = Vo(¢p/Mp)?
is ruled out by Planck 2018 data for p > 2 [50]. For
instance, a non-minimal coupling to gravity can save the
chaotic potential [55-58]. Potential-driven Galileon infla-
tion was studied in [59,60] for a Galileon-self coupling of
the form G(¢, X) = —X/M?3, bringing chaotic inflation
to be compatible with current observations on the tensor-
to-scalar ratio available at that time [20]. Nevertheless, the
latest data from the Keck Array/BICEP2 and Planck collab-
orations [61] constraints robustly the tensor-to-scalar ratio.
In this direction, the authors in [62] studied the phenomeno-
logical consequences of a Galileon self-coupling of the form
G(¢, X) « f(¢)X, reconciling the chaotic potential with
current observations with a particular choice of f(¢). In
[63] it was studied G-inflation with a generalized expres-
sion for the Galileon-self interaction given by G (¢, X) o X"
(suggested for the first time in [64]), while in [65] the authors
proposed the generalization G(¢, X) o« ¢" X". In both

@ Springer

aforementioned works, it was found that the effect of the
power n is to suppresses the tensor-to-scalar ratio, which can
be used to explore the viability of certain scalar potentials for
the inflaton, e.g. chaotic one, which is ruled out by current
data.

In this way, the main goal of the present work is to
study the viability of chaotic monomial potential V (¢) =
Vo(¢/M ;)P within the G-inflation scenario (2) with the fol-
lowing expression for the Galileon self-interaction

G(p, X) = X" (3)

MAn—1
The plan of our work is as follows: In the next section we
briefly present the dynamics of Galileon inflation, and we
summarize the basic formulas we shall be using. In Sect. 3
we apply the general framework presented in previous sec-
tion to the chaotic potential, then we discuss our numerical
results for the particular cases of chaotic quadratic and quar-
tic potentials, and we finally summarize our findings and
presents our conclusions in the fourth section.

2 G-inflation

In this section we give a brief review on the background
dynamics and the cosmological perturbations in the frame-
work of G-inflation with a power-law Galileon self-coupling.

2.1 Background dynamics

Our starting point, is the action for the Galileon scenario (2)
2

M
with minimal coupling to gravity, i.e. f(¢) = T’”, which
becomes

Mg, .
S=/«/—g 7R+K(¢,X)—G(¢,X)D¢ d'x.
“4)

Here, g corresponds to the determinant of metric tensor g,
M p; is the reduced Planck mass, R denotes the Ricci scalar
and X = —g"V9,,¢0,¢/2. The scalar field is denoted by ¢
and the functions K and G have an arbitrary dependence on
X and ¢.

By assuming a spatially flat Friedmann-Lemaitre—
Robertson—Walker (FLRW) metric and a homogeneous
scalar field ¢ = ¢(¢), then the modified Friedmann equa-
tions can be written as [35,36]

3MyH> + K +¢*(Gy — Kx) —3HGx $* =0, (5
and

— M3 (20 +3H2) + K = §%(Gy + Gx$) =0, (©)
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where H = % corresponds to Hubble rate and a denotes

the scale factor. In the following, we will consider that the
dots denote differentiation with respect to cosmic time and
the notation Ky denotes Kx = 0K /dX, while Kxx corre-
sponds to Kyx = 32K /9 X?, and Gy means Gy = 9G/0¢,
etc.

From variation of the action (4) with respect to the scalar
field we have

3HGx ¢* + ¢ [3HGXX ¢ — $*(Gyx — Kxx)
+6HGy ¢ —2Gy + KX]

+3HGyx ¢° + ¢*(OH*Gx — Gyp + Kgx) — Ky
~3H$p(2Gy — Kx) = 0. (7)

In the specific cases in which the functions K = X — V (¢)
(with V (¢) being the effective potential for the scalar field)
and G = 0, standard single field inflation in the context of
general relativity (GR) is recovered.

In order to study the model of G-inflation, for the function
K (¢, X) we choose

K(p, X) =X —V(9), (®)
while for the Galileon self-coupling G(¢, X), following
Refs. [63-65], we take a generalized expression

G, X) = X", C))

C
MAn—1
where c is a dimensionless constant to be fixed, M is a mass
scale, and n is a positive integer power. The case n = 1 was
studied previously in Ref. [60] for chaotic inflation, whose
theoretical predictions were consistent with data available at
that time.

Following Ref. [35], we will consider the model of G-
inflation under the slow-roll approximation. In this sense,
the effective potential dominates over the functions X,
|G x H$?|. Thus, under this approach, the Friedmann equa-
tion given by Eq. (5) can be approximated to

3M}H? ~ V(9). (10)

In context of slow-roll approximation, we can introduce the
set of slow-roll parameters for G-inflation, defined as [35]

5 KxX 5 Gx¢X
X = [y ) GX = =
M} H? M} H
H ¢
gl =———=, € =——F=—04. 11
1 H? 2 Ho ¢ (11)

From the parameters defined above and combining with the
Friedmann equations (5) and (6), the slow-roll parameter &
can be rewritten as

g1 =08x +386x — 8pdGx- (12)

Now, from the functions K (¢, X) and G(¢, X) given by
Egs. (8) and (9), respectively, and considering the slow-roll
parameters from Eqs. (11) and (12), the equation of motion
for the scalar field is rewritten as

3nc

—1 75252
M4n_1X" H ¢~ (3 — ] —2ney) = =V .

13)

3H(1 — e3/3) +

Within the slow-roll analysis, we are going to consider that
the slow-roll parameters |¢1], |e2]| < 1, see Ref. [35]. Then,
a leading order of slow-roll approximation, the equation of
motion for the scalar field, given by Eq.(13), yields

3HP(1+A) ~ -V, (14)

where A being a function defined as follows

3cn

_ SGx .
A=Y T ame?

H. (15)
dx
By combining Eqs. (10) and (14), the slow-roll parameter § x

may bew rewritten as
€

dx

M? 2,
where € = sz (%) is the usual slow-roll parameter for
standard inflation. Accordingly, the slow-roll parameter ¢

now becomes

H

€1 =-g = (1 4+ A)dy ~ XA
As it can bee seen from Eq. (17), the conventional slow-roll
inflation corresponds to the limit A — 0, in whiche| >~ € ~
8x. For small M, there appears a regime where the Galileon
self-interaction dominates over the standard kinetic during
inflation, i.e. A > 1 (8gx > Jx), and the evolution of ¢
slows down relative to those in standard inflation.

An important issue is the appearance of ghosts and Lapla-
cian instabilities in the regime A 3> 1 (see , e.g. Ref. [66]
for an extensive analysis). From Eq.(15), and noting that,
during inflation, V4 > 0 and q) < 0, in order to avoid the
appearance of ghosts and Laplacian instabilities, we demand
the condition cd)zn’1 > 0 (¢ = —1). From Eq.(17), the end
of inflation is now determined by

GV((pend) =1+ A(¢end)~ (18)

The number of e-folds in the slow-roll approximation we
obtain

a7

1 o Voo

N =~ — (1+A)Fd¢’ (19)
pl Pend R0)

where ¢, and ¢.,4 are the values of the scalar field when

the cosmological scales crosses the Hubble-radius and at the

end of inflation, respectively. As it can be seen, the number

of e-folds is enhanced due to an extra term of (1 + A). This

@ Springer
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implies a more amount of inflation, between these two values
of the field, compared to standard inflation.

2.2 Perturbations

In the following, we present a brief review of the basic
relations governing the dynamics of cosmological perturba-
tions in the framework of G-inflation, based mainly on Refs.
[35,67,68].

Regarding the power spectrum of the primordial scalar
perturbations Pg, in the slow-roll approximation it can be
written as

1/2
H? gy’

2

Ps (20)

- 2 32 ’
871Mpl €g ekl

where the functions g; and s are defined as

qs = Ml%l (5)( +28xx + 63gx +68gxx — 25G¢) ) 21

and
Sx 448 28 here & KxxX>
&g = - ,  where ===
s = 8x GX G XX Mﬁz e
Gxx$pX?
and § = — 22
GXX M;2;1H (22)

Here, cf is the propagation speed of a scalar mode squared,
which is defined through the relation

2=5p, 23)
qs

In this form, by assuming the explicit form of functions K
and G, given respectively by Egs. (8) and (9), it is found that
the functions ¢, and €5 are rewritten as

X X !
o= g (20 s = s (1454
(24)

From Eq.(20) and considering functions already defined
above, the scalar power spectrum in the slow-roll approx-
imation results

N H*(1 +2nA)!/?
82M8x (14 4A/3)3/2
V31 + A)2(1 +2nA4)!/2

Ps

~ , 25
12n2M;’;, Vi1 +44/3)3? (23)
and the scalar propagation speed squared becomes
1+4A4/3
K 1+2nA — (26)
In particular, in the limit A > 1, cf reduces to
2
2
~ —, 27
¢~ 5 @7)

@ Springer

where the power n is such that n > 2/3. Then, the back-
ground dynamics evolves such that Egs. (24) and (26) yield
qs > 0 and C? > 0, avoiding Laplacian instabilities and
ghosts.

In the limit A >> 1, the scalar power spectrum, given by
Eq. (25), becomes approximately

_3H*en _ JenV3A

Ps =~ ~ :
57 64nIXA T 32a2M5, V]

(28)

Also, the scalar spectral index ns associated with the tilt
of the power spectrum, characterizes its scale dependence

and it is defined as ng — 1 = %ﬁ
csk=aH

Eq. (25) and considering that under slow-roll approximation
dlInk >~ Hdzt, the scalar spectral index yields

. Thus, from

ne ~ 1 — 6e 2n

ST T AT I+ A
+A[ G S ] (29)
H|14+A 14+2nA 144473

where € and n are the standard slow-roll parameters, defined
as

M? rv,\? v,
__rfre _ 2 Voo
€ = T (7) s and n= Mpl 7, (30)

respectively. Here, we observe that in the limit A — 0, the
scalar spectral index given by Eq.(29) coincides with the
expression obtained in standard inflation in GR, where ng >~
1 — 6¢ + 2. On the other hand, in the limit A > 1, where
the Galileon term dominates the inflaton dynamics, the scalar
index ng results

(s ) (e )2 (31)
ng>~1-— - )= — )= .
S n) A 2n) A

Regarding tensor perturbations in the framework of G-

inflation, the expression for the power spectrum becomes
similar to those obtained in standard inflation in GR

2H?

Pr=——.
272
nMpl

(32)

Accordingly, the tensor-to-scalar ratio, defined as r =
Pr1/Ps, in the framework of G-inflation under slow-roll
approximation can be written as

r=7)—7216e|:
Ps

3/2
(1+4A4/3) } 33

(1+ A1 +2nA)1/2

Again, we note that in the limit A — 0, the tensor-to-scalar
ratio coincides with the expression obtained in standard infla-
tion, where r =~ 16¢. Now, in the opposite limit, .4 > 1, the
tensor-to-scalar ratio r is approximated to
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42 16¢
r—= —,
B2 A

which is suppressed by a factor ~ /i A in comparison to
the standard expression in GR. Moreover, the expression of
above agrees with Ref. [60] for n = 1. With is, Galileon
inflation becomes phenomenologically distinguishable from
standard inflation, which enables us to explore the viability
of certain scalar potentials for the inflaton, such as monomial
one, which is ruled out by current data.

(34)

3 G-inflation with a chaotic potential: results for A > 1

For concreteness and comparison with previous works, we
are going to study chaotic inflation, characterized by a poten-
tial of the form

V(®) = Volg/Mp)”, (p>0), (35)

where Vj and p are real constants and M, is the reduced
mass Planck. In addition, we shall consider the presence of
the Galileon-like self-interaction given by Eq.(9). In order
to derive analytical expressions for the quantities which
describe the background dynamics, we restrict ourselves to
the regime dominated by the Galileon term, A > 1 (M —
0). Otherwise, the full analysis of the model requires numeri-
cal solving of the background as well as perturbation dynam-
ics.

For the background dynamics of our concrete model, it is
found that A4 as a function of the inflaton fields is given by

1(1 1 ! o Sl
A(¢):6§(;-1)Mp1,ﬂm<ﬁ>z (ﬂ)z Y36

M? My My

After replacing the equation of above into Eq. (18), we may
compute the value of the scalar field at the end of inflation
Qend, yielding

1
311—1 2n+1 M M4n T+n(2+p)
Pond _ [ = . (37)

My 2+ M\ VZ

Then, analytical integration of Eq. (19) gives us an expression
for the scalar field at the Hubble-radius crossing ¢, in terms
of N and the parameters characterizing our model.

Substituting the previous solution (not shown) into Eq. (28)
and using the Planck normalization Ps = 2.169 x 102 [50],
we find

p(1—4n)
VO (Mpl> 2n+1
— |\ =
Mpl M

(2.169 x 10972 p)' T+
)l+n(2+3p)

2n+1

. (38)

= [e1))
(H i +ne+p1+%

where o is a constant defined as

o = (i)p o 11422n42p+13np nw. (39)
9p

Itis worth to mention that Eq. (38) evaluated atn = 1 reduces
to those found on Ref. [60]. If the power n of the generalized
expression of the Galileon-self coupling has a fixed value, V
tends to be larger for smaller M. Now, when the mass scale
M is fixed, Vj tends to be smaller for larger n.

The predicted scalar spectral index (31) and the tensor-to-

scalar ratio r (34), both expressed in terms of the number of
e-folds \V, become

. 1+Q+3pn
S T Uk )N +np’ 0)
L o4/6 pvn @1

9 (1+nR+pHIN+np

Again, these expressions reduced to those obtained in Ref.
[60] for n = 1. Before study some particular cases, we way
analyse the effect of the power n on the values for ng and
r. In particular, for larger n, the scalar spectral index tends
to GEPN-20+D) " while the tensor-to-scalar ratio tends to

Q+pN+p o
zero. For concreteness, we shall study the quadratic potential

(p = 2) and the quartic one (p = 4) separately.
3.1 p=2

In first place, we shall focus on chaotic quadratic inflation
(p = 2). Then, ngs (40) and r (41) are certain functions of
the number of e-folds N and the power n. In this way, we
plot parametrically r versus ng, by varying " and n simul-
taneously in a wide range, in the same plot with the allowed
contour plots of the latest Planck data as well the theoretical
predictions for standard chaotic quadratic inflation (yellow
line), as is shown in Fig. 1. On the ng —r plane, as n increases
for a fixed \V the shown curves lead to lower tensor-to-scalar
ratio. Hence, the theoretical prediction lies inside the 95 %
C.L. region from Planck 2018 [50] when the power n takes
the following values:

e For N = 50,

nz8. (42)

n> 4. (43)

nzs. (44)

@ Springer
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Fig. 1 Allowed contours at the 68 and 95 % C.L., from the latest Planck
data [50] and theoretical predictions in the ns — r plane for chaotic
quadratic inflation (p = 2) in our model (green-shadow region) and the
standard scenario (yellow-line)

Asitcan be seen from Fig. 1, forn = 1 the tensor to-scalar
ratio becomes slowly decreased in comparison to the standard
scenario, e.g., for N' = 60 we have that » ~ 0.115, which
agrees with Ref. [60]. Nevertheless, this former result was
supported by last data of WMAP [20], the current available
data at that time. Otherwise, for n >~ 4, the scalar spectral
index and tensor-to-scalar ratio becomes ng =~ 0.968 and
r >~ 0.07 at N = 60, being supported by current bounds of
latest Planck data.

Considering that the lower bound on n for NV = 60 is
n > 4, Eq.(36), leads to the following relation

10/3
A:&meﬁ(yﬁ>/, (45)

M

which means that, in order to be within the regime A > 1,
the mass scale is such that M < 1.42 x 1073 M ;. Accord-
ingly, the Planck normalization (38) yields Vo > 8.49 x
10712 m il' Now, From the expression for the inflaton poten-
tial (35), if we identifying Vo ~ m? Mﬁl, the former con-
straint on Vj translates into a lower bound for the mass of
the inflaton given by m > 2.91 x 1076 M%l. In this context,
the mass for the inflaton field can be even larger than those
predicted in standard inflation.

32 p=4

Now, we turn on the theoretical predictions for the particular
case of chaotic quartic inflation (p = 4). In similar fashion
as we did for the chaotic quadratic potential, we plot para-
metrically r (41) versus ng (40), by varying N and n simul-
taneously in a wide range, in the same plot with the allowed
contour plots of the latest Planck data, as is shown in Fig. 2. In
this case , the theoretical prediction of standard chaotic quar-
tic inflation is not shown explicitly, since the value of the
tensor-to-scalar ratio r is well outside the range constrained
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Fig. 2 Allowed contours at the 68 and 95 % C.L., from the latest Planck
data [50] and theoretical predictions in the ns — r plane for chaotic
quartic inflation (p = 2) in our model (green-shadow region)

by Planck 2018 data. As it can be seen from Fig. 2, as the
power n increases for a fixed V, the shown curves lead to
lower tensor-to-scalar ratio. Moreover, the curve for N/ = 50
is always outside the 95 % C.L. region for any value of n.
Otherwise, for NV = 60 and ' = 70, the theoretical predic-
tions enter to the 95 % C.L. region from Planck 2018 when
the power n takes the following values:

e For N/ = 60,

n=o. (46)
e For N =70,

n> 6. (47)

For a sake of comparison, the tensor-to-scalar ratio for
n=1latN = 60isr >~ 0.164, whichagrees with those found
in Ref. [60], being also supported by current observational
data at that time [20], but incompatible with current Planck
data. Recall that, in order to be in agreement with the current
upper bound on the tensor-to-scalar ratio, the power n of the
Galileon coupling must satisfy the lower bound n 2 9, for
N = 60. Particularly, for n >~ 9, the scalar spectral index
and tensor-to-scalar ratiobecomesng >~ 0.962 and r =~ 0.06,
being supported by current bounds of latest Planck data.

With regard to the consistency of the dynamics evolving
according to the Galileon dominated regime .4 > 1, from
Eq. (36) itis found that the mass scale M for N" = 60 satisfies
M « 1.61 x 1073 M ;. On the other hand, by identifying
Vo ~ A M;l, Planck normalization (38) and the lower limit
for M set a lower bound for %, yielding A > 3.67 x 10715,
Hence, the prediction for the coupling A within standard infla-
tion becomes smaller than those we already found in our
generalized Galileon scenario.
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3.3 The issue of instabilities when A > 1

As we have seen, for both chaotic quadratic and quartic poten-
tial, the tensor-to-scalar ratio r gets smaller, yielding that the
theoretical curves lie inside the 95% C.L. as well as 68%
C.L. observational contours. Nevertheless, if the Galileon
self-interaction is still dominating over the standard kinetic
term after the end of inflation, the coherent oscillations of the
inflaton field are spoiled [60]. Roughly speaking, ¢ passes
from ¢ > 0to ¢ < 0, which translates into a negative prop-
agation speed squared of a scalar mode, c? < 0, leading in
turn to the instability of small-scale perturbations.

A possible way out of the issue of above is to study
the dynamics of our scenario in a full regime, without any
approximation. As a first approach, we solve numerically the
full background equations of motion (5), (6), and (7) from
inflation up to the oscillatory regime. We restrict ourselves to
the case p = 2, and as a first approach, the parameter values
characterizing the model are assumed that do not differ from
those already obtained in the regime A > 1.

The numerical procedure is summarized as follows: we
rewrite Egs. (5), (6), and (7) in terms of the the number of
e-folds N, which relates to the Hubble rate H through dN =
Hdt. Recall that Egs. (5), (6), and (7) are not independent,
hence me may solve a system of two coupled differential
equations for ¢ (N) and H (N). Considering that slow-roll
is an attractor, the initial conditions for ¢, ¢, and H can
be derived from the slow-roll equations themselves. Then,
after solving for ¢ (N) and H (N), we compute the slow-roll
parameter €1, the scalar propagation speed squared cs2 as well
as the function g;. In order to get 60 e-folds of inflation and
the behaviour of the solutions shown in Figs.3 and 4, we
choose the following set of values for the specific chaotic
quadratic potential (p = 2) model:

n=4, M=11x107 My, Vo=202x 107" M@48)

The upper plot of Fig.3 shows the evolution of inflaton
field for the last 5 e-folds of inflation and the subsequent
oscillatory stage. As it can seen, the transition from inflation
and the time when damped oscillations take place is almost
instantaneous. In practice, the duration of last stage is around
one e-fold before the numerical computation stops. The lower
plot depicts the evolution of the slow-roll parameter 1 (12)
for the last 5 e-folds of inflation and the subsequent oscilla-
tory stage. Note that during slow-roll inflation &1 < 1 and
at the end of inflation it becomes equal to one at N = 60.
Shorty after the end of inflation takes place the kinetic epoch
and then, &; becomes to oscillate during around one e-fold
before the numerical computation stop. Since there is no cou-
pling of the inflaton to other matter components, e.g. a radi-
ation fluid, & will oscillate and does not stabilize to a fixed
value (see Ref. [69] for a further analytical and numerical
analysis).

3.0F ]

20 1
15¢ 1
10 1

/My

05F ]
0.0 A

-05 b
55 56 57 58 59 60 61

N

Fig. 3 Upperand lower plot depict the evolution of slow-roll parameter
&1 and the inflaton field from the last 5 e-folds on inflation and the end
of oscillatory stage, respectively
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Fig. 4 Upper and lower plot depict the evolution of the scalar propa-
gation speed squared ¢2 and the function ¢; during inflation as well as
during the oscillatory stage, respectively
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The behaviour of the scalar propagation speed squared
cf, during inflation as well as during the oscillatory stage is
shown in upper plot of Fig. 4. In the same plot we compare the
full expression for c% (blue line) with those obtained under
the slow-roll approximation within the regime A > 1 (27),
which after evaluated at n = 4 gives cf = 1/6 (yellow line).
As it can be seen, the full expression for cs2 remains constant
and positive during the whole inflationary stage, then right
after inflation it is suppressed and then rapidly becomes equal
to one, and stars to oscillate during around one e-fold before
the computation stops. In addition, lower plot shows how
the function g, evolves during inflation as well as during the
oscillatory phase. In particular, g5 increases during the last
e-folds of inflation, reaching a maximum value shortly after
the end of inflation and then starts to oscillate, always taking
positive values. In this way, we find that the inflaton oscillates
if the mass scale is such that

M > 1.1 %107 My, (49)

which in turn provides that the conditions ¢ > 0 and g5 > 0
are satisfied during and after inflation. It is worth mention-
ing that the above results are within the range obtained for
chaotic quadratic inflation forn = 1inRef. [60]. At this point
we would like to stress that previous analysis is intended to
be a first approach to overcome the issue of instabilities. In
this direction, a further numerical treatment of perturbative
dynamics and the transition from unconventional Galileon-
dominated regime to the standard phase as well, go beyond
the scope of the present work.

4 Conclusions

To summarize, in the present work we studied the viability
of chaotic potentials within G-inflation scenario, where the
Galileon self-coupling has a power-law form G (¢, X) =
M+1_1X”, with M and n being a mass scale and a posi-
tive integer power and M, respectively. Firstly, we devel-
oped the theoretical framework of potential driven inflation
with this generalized Galileon self-coupling at background
as well as perturbative levels under the slow-roll approxima-
tion. In particular, we derive the expression for the observ-
ables as the scalar power spectrum, scalar spectral index and
the tensor-to-scalar ratio. Interestingly, it was found that in
the regime where the Galileon term dominates over the stan-
dard kinetic term A > 1, the tensor-to-scalar ratio becomes
significantly suppressed by a factor ~ /n A in comparison
to the standard expression in GR. This distinguishability, at
phenomenological level, enabled us the explore the viability
of certain scalar potentials for the inflaton, such as monomial
one V(¢) = Vo(¢p/Mp;)?, which is ruled out by current data
for p > 2. Accordingly, for this monomial potential, we
analysed the effect of the power n on the values for ng and

@ Springer

r. In particular, for larger n, the scalar spectral index tends
to %%, while the tensor-to-scalar ratio tends to
zero. As a specific examples, we studied the cases of chaotic
quadratic (p = 2) and quartic quartic (p = 4). For cases, in
order to obtain analytic expressions for the background quan-
tities and observables as the scalar power spectrum, scalar
spectral index and the tensor-to-scalar ratio as functions of the
number of e-folds, we restrict ourselves to the regime where
the Galileon term dominates over the standard kinetic term.
For each case, by means the current observational bounds
on the inflationary observables, we found constraints on the
power n, the amplitude of the potential V), and the mass
scale M which characterizes the Galileon self-coupling. In
this way, monomial potential is bring to be compatible with
current observations in this generalized Galileon scenario
for A > 1. However, the issue of instabilities arises if the
Galileon term is still dominating over the standard kinetic
term after the end of inflation, leading to a negative prop-
agation speed squared of a scalar mode, cf < 0, and sub-
sequently to the instability of small-scale perturbations. In
order to clarify this issue, as first approach, we restrict to solve
numerically the full background equations for the chaotic
quadratic (p = 2) potential and it was found that, in order
to avoid the appearance of ghosts and Laplacian instabilities
during the subsequent post-inflationary stage, the mass scale
M must satisfy the condition M > 1.1 x 1073 M pi- This
ensures the coherent oscillations of the inflaton field during
reheating and the transition to standard radiation-dominated
era of Hot Big-Bang. In this direction, a more detailed anal-
ysis of the post-inflationary phase should be performed in
order to obtain additional constraints on this class of mod-
els, particularly from the duration of reheating N,, and the
reheating temperature 7,.. We hope to be able to address this
point in a future work.
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