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Abstract

We study a five-dimensional non-relativistic gravity theory whose action is composed of a gravitational
sector and a sector of matter where the gravitational sector is given by the so called Newton—Chern—Simons
gravity and where the matter sector is described by a perfect fluid. At time to do cosmology, the obtained
field equations shows a close analogy with the projectable version of the Horava—Lifshitz theory in (3 +
1)-dimensions. Solutions and their asymptotic limits are found. In particular a phantom solution with a
future singularity reminiscent of a Litlle Big Rip future singularity is obtained.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In Ref. [1] was studied a five-dimensional Einstein-Chern-Simons gravity whose action S =
S¢ + Sy is composed of a gravitational sector and a sector of matter, where the gravitational
sector is given by a particular Chern-Simons gravity action [2] instead of the Einstein-Hilbert
action and where the matter sector is given by the so called perfect fluid.

The corresponding Chern-Simons Lagrangian of Ref. [2] is a Lagrangian for the so called B
algebra whose generators {J,p, Py, Zap, Z4} satisfy the commutation relation given by in the first
equation of Ref. [1]. This Lagrangian can be constructed from the one-form gauge connection
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1 1 1 1
A= Ew“”Jab + Ye“Pa + Ek“”Zab + 7haza, 1)
and the two-form curvature
1 1 1 1
F:ER“bJa,,Jr?T“Pa+5K“bzab+7H“za, )

where 79 = D¢, R = dw?® + o .0 ?, HY = D, h% + kpe®, K% = D, k% + llze“eb, are
the corresponding “curvatures”. In fact, using the extended Cartan’s homotopy formula [3,4],
and integrating by parts, we find that the five-dimensional Chern—Simons lagrangian for the 5
algebra is given by [1]

. 2 : : :
LE)s = a1l€apeae R R e + a3€qpede <§R”be‘edee + 217k RATC + l2R“bR“’he)
4
+dBiys. 3)
where the surface term nghS’ given by

4 (2 1
Biths = a1 €apedee” o <§dw"e + Ewdfwf6>

2 1
T 03€abede I:ZZ (hawbc + kahec) <§dwde + Ea)dfa)fe)

+12kP e <§dee + %a)dfee> + ée“ebecwd{l . 4

In the above mentioned reference [1] and also in Ref. [5] was shown that:

(7) the field equations can be obtained from the Lagrangian L = L(Csﬁs + « Ly, where Ly =
Ly(e?, h®, @) is the matter Lagrangian and « is a coupling constant related to the effective
Newton’s constant. In fact, the variation of the lagrangian (3) w.r.t. the dynamical fields vielbein
e“, spin connection @, h? and k9, leads to the following field equations

. SLy SLy
EabcdeRubeced =4ks ( Set +o She > s &)
SLy 12 b ocd
She = %SabcdeRa R¢ s (6)
SabcdeRCdDa)he =0, @)

where we have imposed the conditions 7% = 0, k** = 0 and 8L /8w = 0 and where k5 =
k/8a3 and o = —aq /3. Note that the equation (5) is analogous to Einstein’s equation, where
8Ly /8h® correspond to the energy-momentum tensor for the field i¢.

In the case where the equations (5)-(7) satisfy the cosmological principle and the ordinary
matter is negligible compared to the dark energy, we find that corresponding the FLRW equations

take the form
-2
k
6(“ > >=:<sap“”, @®)
a

.. .2 k
3 [ﬁ + (a —; >i| = —Ksolp(h), )]
a a
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32 (a2 +k\°
L) = o
3124 (a2 +k
EE( 7 >=—p<’”, (1)
a’+k a .
( — )[(h—h(O))E+h:|=O. (12)

These field equations were completely resolved in reference [1] for the age of dark energy,
where was found that the field 4¢ has a similar behavior of a cosmological constant.

(i1) The equations (8)-(12) have solutions that describe an accelerated expansion for the three
possible cosmological models of the universe. Namely, spherical expansion (k = 1), flat ex-
pansion (k = 0) and hyperbolic expansion (k = —1) when the constant « is greater than zero.
This mean that the FRW-Einstein—Chern-Simons field equations have as a of their solutions an
universe in accelerated expansion. This result allows us to conjecture that these solutions are
compatible with the era of Dark Energy and that the energy-momentum tensor for the field A¢
corresponds to a form of positive cosmological constant.

In summary in Refs. [1,5] were studied the implications of replacing in the action S = S, + Sy
the Einstein—Hilbert action by the Einstein—Chern—Simons action on the cosmological evolution
for a Friedmann—Lemaitre—-Robertson—Walker metric (FLRW). In the case that the matter action
Sy is the action for a perfect fluid, was found that the FRW-Einstein—Chern—Simons field equa-
tions have solutions that describe an accelerated expansion for the three possible cosmological
models of the universe.

On the other hand, in Ref. [6] was found that the non-relativistic limit of Einstein—Chern—
Simons gravity action is given by the so called Newton—Chern—Simons gravity action. This
action is invariant under the so called non-relativistic algebra GBs, which can be obtained as
the non-relativistic limit of the generalized Poincaré algebra ‘Bs.

One of the purpose of this article is to find a non-relativistic limit of the results found in
references [1,5], i.e., some cosmological solutions for the field equations which can be obtained
from the Newton—Chern—Simons action studied in Ref. [6].

This paper is organized as follows: In Section 2 we obtain the field equations for the La-
grangian L = L(CS}:S +« Ly, where L(ngs is the Newton—Chern—Simons Lagrangian and Ly is the
corresponding matter Lagrangian. These field equations correspond to the non-relativistic limit
of the field equations studied in Refs. [1,5]. In Section 3 we find the field equations for a Newton—
Chern—Simons cosmology. In Section 4 it is shown that the Newton—Chern—Simons cosmology is
a sort of analogue of the projectable version of the Horava—Lifshitz theory in (3 + 1)-dimensions,
although one of the terms is not present. Solutions and their asymptotic limits are found, which
show interesting properties. In particular a phantom solution with a future singularity reminis-
cent of a Litlle Big Rip future singularity is obtained. Finally, a brief revision of the adiabaticity
in the cosmic evolution is made.

2. Newton—Chern—-Simons gravity

In this section we will make a brief review of the so-called Newton—Chern—Simons gravity.
The non-relativistic algebra G®85 has the following commutation relation [6] (see also [7]),

[ijs Sl = nij Jir + mij ki — nwi Jji — mii Jxj»
[Jij, Kil=njkKi —nitKj, [Ki, Pjl=—6;;M,
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[Jij, Pkl =njx Pi — nik Py, [Ki, Hl=—F;,

Uijs Zl = ki Zit +n1j Zki — ki Zji — M1i Zij»
[Jij, Zol =njkZio — nikZjo, [Ki, Zj]1=—36ijN,

[Zij, Kil=njkZio —nikZjo, [Ki, Zol=—2;,

Ui, Zil=njxZi —nixZj, [Zio, Pj1=—6;jN,

[Zij, Prl=njxZi —nixZj, [Zio, Hl=—Z;,

[Pi, H]= Zio. (13)
The one-form gauge connection A valued in the G35 algebra is given by
1

c 1 . c. 1. . 1
A=-tH+-Pi+-1tZo+-hZi+ —mM + —nN
l l l [ cl cl
1 1, [T L
—i—;a) Ki-i-;k Zi0+§w Jij+§k Zij, (14)
where / and ¢ are parameters of dimensions of length and velocity respectively. The correspond-
ing 2-form curvature F = dA + AA is then given by [6]
c 1 _; c 1. 1
F= YR(H)H + TRI(Pi)Pi + YR(ZO)ZO + YRI(Zi)Zi + ER(M)M

1 1 . 1. 1. 1 ..
+ ER(N)N + ER’ (K) K; + ZR’ (Zio) Zio + ER” (Jij) Jij + ER” (Zij) Zij, (15)
where
R(H)=dt, R((P) =T — o'z,
R(Zp)=d%, R(M)=dm —o'e;,
R'(Zi) =Dh' — o't — k't + k' e/,
R(N)=dn —o'h; —k'e;,
R'(Zio) = Dk +v?e't + k' j0/, R'(K;) = Do,
RY(Jij)=RY, RU(Z;;)= Dk, (16)
withv=c/l, T' =de' + w'/e; and RV = dw'/ + o' oM.
From the gauge connection transformation for A, A =dA + [A, A], with

v oo 1 ; v I ; 1 1
A=-0CH+ -0 Pi+—-p Zo+5p' Zi+ oM+ —yN
I [ I l vl vl

1, 1 1 . 1
+ -1 K+ —x Zl-0+—MJij+—XfZ,-j, (17
v v 2 2
it is direct to find the variations of the different gauge fields [6]
ot :d;“o, st =Dt — a)i§0 —Aijej + 1Al
Shi =Dp' — ' p® — A+ hON + kT g; — k0 — xe;+ X!,
édm=do —a)iéi +eiki, S’ = DA! —kija)j,
sn=dy —k't;+h'ri — o' p; + ¢ xi, h® = dp°,
Ski =Dy —AVk; — X"«";u,- +kp; e 0 — ¢t S0l = DAY,
8k = DxV + K\ AN 4+ 10k, (18)
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where the derivative D is covariant with respect to the J-transformations.

From (18) we can see that only the gauge fields elf, Ty, My, hlj, hg and n,, transform under P
and H transformations. These are the fields that should remain independent, while the remaining
fields will be dependent upon the aforementioned fields. This can be achieved with the following
constraints

R(H)=dt=0, R(P)=T'—w't=0,
R(M)=dm —w'e; =0, R(Zy)=dh’=0,
R'(Zi)=Dh' — o' h® — k't + kel =
R(N)=dn —ao'h; —k'e; =0. (19)
Using the subspaces separation method introduced in Ref. [4], was found that, except for
surface terms, the so called Newton—Chern—Simons lagrangian is given by
LNRChS = @1k (—2RUT"wl - gRijwkwlr + 2RV Dokel — R"fR"lm)

4 y 4 4 )
+ o3€ijk (gsz”ekelt 2R Dh* ! — §R’-’kka)lr - gR”a)ka)lr

. 4 .. 2 ..
+2RY Do h! — 5 DK T 0! — Dk o* 't — RVTKM dm — 3R”kklema)m
2 .. 4 .. L. L. 4 ..
—gR”a)]fnkmlm L T*Do' — k' Do*w't — 2RV T I — gR”a)kklr
2 . 2 - .
~|—§R’/kk”’wmel + 3k Dote! — RV RMp — ZR’/wkmkmel> : (20)

where v, a1, a3 are parameters of the theory and « is a constant (for detail see [1,5,6]).
In the next section we will consider obtaining the equations of motion associated with the
action whose Lagrangian is given by the eq. (20).

3. Newton—Chern-Simons field equations

In presence of matter, the complete Lagrangian of the theory is

L =« Ly + LNRChS (21)

where Lnrchs is the Newton—Chern—Simons lagrangian given in (20) and Ly is the correspond-
ing matter Lagrangian.
The field equations obtained from the action (21) are given by

4 4 SL
&ijkl (—galR”a) o + 30[31)2le ek l) :K(S—;W, 22)
8L
k l M
5()(38,'/](11?’]6() w =— 5f , (23)
. 4 . SL
26kl a1 RV Do* — —a3v? RV kv | =« M, (24)
3 el
SL
2360 RV Do = =L (25)

Sht’
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8Ly
—2

alsijklRinkl =— sm (26)
e SL
a381jk1R” RM = — 5—:[, (27
2 . . 2 - e SL
dejju (ga] Rkt —ay RUT* + §a3R”wkf —azRY th> =K (Sa)ﬂl/[’ (28)
4 8
&ijkl (—Zale'"emwl — 4, T* Do — §a1a)ka)ldr — gqua)kwlr + 200 R¥" oy
8 4
—201 RMdm + §v2a3Tkelr + §a3ekeldr — 2a3kahma)l — 4053thle
4 . 8 . SL
—gaga)kwldr - gangkwlr + 203 R w,,h! — 053Rkldn> =K Ba)?;’ (29)
where we have imposed the k/ = k' = 0 conditions, and used
SL SL
T, = M , To=+ =M
det 8t
From (19) and Bianchi identities we find
DT'=Dw't, RUej=Do't. Ry, ey; = (Dpoy) o). (30)
epi (Dywy))' =0. (31)

For simplicity we will assume that the torsion vanishes. In this case 8L j;/8w’/ = 0. Using the
constraint (19) we find that (28) takes the form

Aeijnl (%Rijwkt + %Rijwkf) =0,
o
T=—-=1. 32
3 (32)

Introducing (30), (31) in (29) we have
10 8
&ijki (—%Dwkwlt + 20 R el — gvzagwkrelr — o R¥dm

10
+2a3 R @, ! — ?a3Dwkwlf — a3Rkldn>

=0. (33)
Since 72 = 0 we can write
Eijkl —TDa) a)r—?ong o't ) =0, (34)

which means that this equation is satisfied identically and therefore the space is a flat manifold
as can be seen from the equations (26), (27).
Introducing egs. (23) in (22) and (25) in (24), we obtain

iy 6 oL SL
kI __ M M
ek = 5 (252 — a2 ).

. 3 SL SL
y ke — 2 (g, o2M _ 0EM
SZJkIRue T = 2 <k1 5ol o ST > (35)
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Taking into account that

#(T0)8t = det(g)85 T 87°,dx>, (36)
eijkoR"Y ke 5T =2 det(g) (85 R — 2R 5) 87°dx°, (37)
eijkioR"Y ¥ T8¢! = —2det(g) (8§ R — 2R%5) 8¢’ ydx°, (38)

and using Tgf)) =pM, TE?) =4p™ /2 we find (with R = 0)

Roo = (klp(e) — Otkzp(h)) , (39)

212
3
Roo=—— (kup'® = akap®). (40)
where (39) coincides with the results found in [6]
3 .
V== ki p' —akap™), 41)

with v =c/l, B1 = B =«, k1 =k/8a3 =87 G5, ky = k /243, o = 31 /a3, k1 = 3ky. From
(39), (40) we have,

2k p© — 2aky p™ = (kuo(e) -~ akzp(’”) 2,

200 o
2p© — ?p(m — (p<e) _ §p(h)> 2 (42)
Defining a density and an effective pressure as
p= PO @ g
2 6 ’
(e)
o o
=2 gp(h)’ (43)
we find
2
pc
== (44)
and from (32), we have
3
pM =—=p. (45)
o
From (39), (40) we can see
3 P© o
- () _ (h) L £
Roo = 12 <k1p ¢ —akyp' + 2k ) 2aky el K
3k 2p
Roo = V2¢ = 2 (,0 + C_z) . (46)

On the other hand, the interaction between the fluids is described by the following state equa-
tions

PO = @ @2,

P = ® 2 = 3 0 e 2 47
o
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2k1w(€)p(€) _ 20tk2a)(h),o(h) — k],O(e) _ (xkzp(h),

2 (kla)(") + 3k2w(h)) p© = (ky + 3k2) p©, (48)
W — (k1 +3k2) k_]w(e)’
6k 3k,
=1— 09, (49)

In the next section we will study a possible non-relativistic version of the results obtained in
Ref. [1].

4. Newton—Chern—-Simons cosmology

Following the formalism used in [8], we denote with (t,xi), the local coordinates where
i=1,23,4and t =dx°, h =873 ® 3 ; are the temporal and spatial metric respectively. The
matter is modeled as an ideal fluid with velocity u, which is a timelike unit vector. The vorticity
Q2 and the (rate of) strain ©% relative to a timelike unit vector field V, where (V) = 1, i.e.,
Ty = 8up VA, are given by

1
QP = 2y —ul 1),

1
O = S WM +uli ). (50)
The expansion rate and the (rate of) shear is the trace-free part of the strain are given by
1
gzhaﬁ@aﬂ, gz@_zgh (51)
respectively.

It is possible to show that & = u?_ and that the covariant derivative of the velocity can be
decomposed as [8]

haattly = Oup + Qup + hapV uls gpo VO, (52)

and with the help of this last equation we can obtain the so called Raychaudhuri equation in the
Newton—Chern—Simons gravity. Following Ref. [9] we start from the known identity (see also

[10D
o o _ pa o
Wipy = Uiy;p = Roypu”
B
iy = (u0),, — s = Ropru”. (53)
where the two first terms on the right are given by [8]

(uﬂu‘;"ﬂ);a =div(V,u),

ul %y =" h (0 ppOa + QopQa), (54)
and the last terms on the right is given by
3k 2
p_ 2N 4
Repuu? = 21 <p+ z ) (55)

where we have used (46) together to the equations
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_3k1 2p
Rug = 2 ,0+C—2 TaTB,

TaT8 = ao 8ppu° u”. (56)

These results allow us to find the five dimensional Raychaudhuri equation for the Newton—
Chern—Simons gravity

div(Vu) = V,0 + 162 QU Qs + 2K 2p 57
iv(Vyu) = +4 +0%Poug — aﬂ+22 p+c—2 . (57)

4.1. FLRW background

In this section we study the non-relativistic FLRW equations in the context of the Newton-
Chern-Simons gravity.
The calculation of the Ricci tensor from its definition leads to the following result

... 1 ... : - N
Roo = =5 (hhij).o = Zhljhjkhklhli +2hY koj,i + Y ki,

3k 2p
=52 <P + C—2> )
Roi = h'*ii,j =0,

Rij =0. (58)

The first equation is equivalent to the Raychaudhuri equation (57) for u =V, while the second
equation is equivalent to 2 J . =0 for u =V, since for any u

1
Qup = 3 (hacu hbcu — 2/cab) . 59)
For the other kinematical quantities we find
1
Oup = 5 (hacu hbcu + hab) (60)
a 1 aby,
9=u’a+§h hap, (61)
div(Vyu) = 1% + 20 koap + 20" kacu’,
+hb"uflbfzac + u“uf’ab + uf‘bu{’a. (62)

For an ideal fluid with pressure, the continuity equation and the Euler equation are respectively
given by [11],

. Py 1 L P

,0+[(p+c—2)u’]’i+5h”h,-j (o+5)=0. (63)
and

.i joi ij j Loks ik p\~! ij

il +uul 4 20y + 200 (S g+ +<,0+C—2> hilp =0 (64)

When «;; =0, we find that the equations (63), (64) and (58) take the form
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. .o -1 .
u’+u’ufl/=—<p+c£2> pi+ég,

; 3k 1 2 %
~8i= 53 <P + c_z) : (65)
where g/ = —2«(;. So that we have arrived to the equations for Newton—Chern—Simons gravity

coupled to an ideal fluid.
If now we assume that p and p are only functions of # (homogeneity), then the Euler equation
implies

-1
Vo =— (p + %) div(ph) =0, (66)

and the continuity equation (63) shows that u’l depends only of the time 7. These results lead to
the following simplifications of the equation (57)

| 3k 2
6+ -0+ 0%, — QP+ L (p+ 22 ) =0. 67)
4 212 c?
Since we have used the fact that 6 is a function that depends only on time, we have that (61) and
(63) imply
,0'+9<,0+£2>=0. (68)
c

Let us now consider a homogeneous and isotropic flat-FLRW background in the context of
Newton—Chern—Simons gravity. This model is found using the following Ansatz

V=u, hj=a*t)sj, Q=0, (69)
which leads to
. . _ .2
0=42, 54 =0, 9‘:4(““ - ) (70)
a a

Here, a is the cosmic scale factor. Introducing these results in the equations (68) and (67) we
obtain

1 3k, 2p
6+-02=—2L(p+ L),
*3 212 <p+ c2>

i 3k 2p
a__ LAY 71
a 8v2 ('O+ c2> D

In the following Section we will use the equations (71) to visualize the cosmologies that can
be derived from the present five-dimensional scheme

4.2. Cosmological solutions

From now on we use units k1 = 8mGs5 =1 =c¢ and v = 1//. The equations (71) are the
conservation equation and the equation for the acceleration, respectively, where p is the pressure,
p the energy density, 8 =4H, H = a/a is the Hubble parameter and a is the cosmic scale factor.
We immediately visualize the absence of the Friedmann constraint. This situation is analogous
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to what happens in the projectable version of the Hofava—Lifshitz theory in (3+1)-dimensions
[12]. From equations (71) it is possible to obtain the first integral

8 C
VHY = p+ 3, (72)
3 a
where Cj is an integration constant. The term Co/a” is not dark matter in the usual sense, but
gravitationally behaves like a fluid whose pressure is p = — (1/2) p which, as we shall see, cor-

responds to an evolutionary scheme with zero acceleration, which is a Milne universe. In General
Relativity in (3+1)-dimensions, dark matter corresponds to p (a) = p (ap) (ap/ a)3. A term of this
form is present in the Hotava—Lifshitz theory in (34 1)-dimension through C (¢) / a’. InRef. [13],
a realization of the Horava—Lifshitz gravity as the dynamical Newton—Cartan geometry was dis-
cussed.

The scheme of equations in the projectable version of Horava—Lifshitz theory in (3+1)-dimen-
sions is given by the equations

3 (26 +3H2) = p, (73)
where 7 is a dimensionless constant parameter associated with invariance under diffeomorphisms

and Q represents the amount of energy non-conservation [14]. Here there is no Friedmann con-
straint. From these equations, it is straightforward to find the first integral

t
C(t
377H2:p+% with C(t):C0+/dta3Q, (74)

fo

and C (1) /a> is not a real dark matter, but gravitationally it behaves like a fluid with p = 0.
Now, we return to the equations given in (71), which can be written in the form

p+4H (p+p)=0, (75)
a . 3
a 8v
Considering the barotropic relation p = wp, we can write (75) and (76) in the form

p+4H (1 +w)p =0, (77)

from which it is direct to obtain

p@=pa ()" (78)
a
and
H+H2=—i(a)+l),o (79)
42 2)7

from which we can see that a E 0 and that = —1 /2.
The equations (72) and (77), with 1 + z = ag/a where z is the redshift parameter, implies that
the Hubble parameter can be written as

8v?2

We consider now some particular cases:

H()= \/3" D (14 pytro 4 <H2 ) — 355?) (1+27%. (80)
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(1) Case when w = 0. In this case p (z) = p (0) (1 4+ z)* and

H(z)z\/3p(f) <1+z>2+(m«»—3p(§’))<1+z>, (81)
8v 8v
where we can see that

H(z—>o0)—> o0 and H(z— —1)— 0. (82)

(2) Case when w = —1/2. In this case p (z) = p (0) (1 + z)* and
H(Z)=H@O)(1+z)=—a=0, (83)

which correspond to a Milne universe.

(3) Case when w = —1. In this case p (z) = p (0) = const., but according to (80)

30(0 30(0
H(Z)Z\/ ’;52)+<H2(0)— gv(z)>(1+z)2, (84)

from which we see

3p(0)
8v2 7
and unlike to General Relativity in (3+1)-dimensions, we have H (z) # const. for p (z) = const.

H(z—>o)—>o0 and H((z—> —-1)— (85)

(4) Case when w < —1. In this case p (z) = p (0) (1 + z)~*(®I=D and

H(z—>oo)—>‘/H2(O)—ng(;))(1+z)—>oo, (86)

3p(0)
8v2
We note that H (z — —1) diverges, when p (z — —1). However this not happens in a finite time
how it happens in General Relativity in (3 4 1)-dimensions when we think, for instance, in a
Little Big Rip future singularity [15].
Now, the first and second law of thermodynamics tell us, respectively,

H(Gz— -1)— (14 z)~20el=D 5 oo, (87)

TdS=d(pV)+ pdV = (p+ p)dV + Vdp, (88)
ds _
T =VIp+4H (p+p)l. (89)

Since, according to (75), p+4H (p + p) =0, we have an adiabatic evolution. This means that in
Newton—Chern—Simons cosmology there is no Friedmann constraint and we have adiabatic evo-
Iution. On the other hand in Horava—Lifshitz theory in (34 1)-dimensions there is no Friedmann
constraint and, unlike of Newton—Chern—Simons cosmology, the evolution is non-adiabatic since
0 +4H (p + p) = —Q # 0 and therefore dS/dt # 0.

In summary we can say that we have presented cosmological schemes from the five-
dimensional Einstein-Chern-Simons gravity theory. It could be interesting to use some process
of compactification to project these results to (3 4 1)-dimensions and then compare them with
the results obtained in the context of general relativity.
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5. Final remarks

We have considered a five-dimensional action S = [ Lg}is + « Ly which is composed of a
gravitational sector and a matter sector, where the gravitational sector is given by a Newton—
Chern—Simons gravity action instead of the Einstein—Hilbert action and the matter sector is
described by a perfect fluid. We have studied the implications of replacing the Einstein—Hilbert
action by the Newton—Chern—Simons action on the cosmological evolution for a FLRW metric.

We have showed that the Newton—Chern—Simons cosmology is a sort of analogue of the pro-
jectable version of the Horava—Lifshitz theory in (3+1)-dimension, although a term that contains
Q is not present. We have found solutions and their asymptotic limits which show interesting
properties. In addition, a phantom solution with a future singularity reminiscent of a Litlle Big
Rip future singularity has been obtained. Finally, a brief revision of the adiabaticity in the cosmic
evolution was made.

As we said at the end of the previous section, an interesting thing would be to do a compact-
ification of five to four-dimensions in order to obtain generalized non-relativistic cosmologies
to be compared with the respective schemes studied in the context of general relativity (work in
progress).
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