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We outline the evaluation of n-dimensional fermion traces (n ∈ N) built by products of Dirac-γ matrices
suitable for a uniform dimensional continuation. Such a continuation is needed for calculations employing
a dimensional regulator whenever intrinsically integer dimensional tensors yield nonvanishing contribu-
tions. A prime example for such a tensor is given by γ5 for n ¼ 4. The main difference between dimensional
regularization (DREG) and a dimensionally continued regularization (DCREG) is that DCREG does not
attempt to lift the algebra to continuous d dimensions (d ∈ R). As a consequence one has to properly deal
with evanescent structures in order to ensure the uniform application of the regulator. In basic steps we
identify evanescent structures in fermion traces and show that their proper treatment is crucial for example
when calculating the VVA anomaly in four dimensions. We checked that the performed considerations
enable the evaluation of Standard Model Z factors within DCREG up to including three loops.
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I. INTRODUCTION

Dimensional regularization (DREG) [1] is a very power-
ful regularization scheme that keeps internal and external
symmetries like Lorentz symmetry intact, without increas-
ing the number of scales present in Feynman integrals, as is
the case for example in a Pauli-Villars regularization. This
keeps the appearing integrals simple enough to perform
amplitude evaluation at the multiloop order.
A commonly accepted application of DREG is however,

restricted to the case where the amplitudes considered do
not contain contributions made up by intrinsically integer
dimensional tensors like ε tensors, because in this case one
can safely lift the algebra to a general noninteger dimension
d. Basically this continuation to d dimensions is then
already performed at the level of Lagrangians. Doing so
one greatly benefits from the fact that existing Ward
identities are promoted to d dimensions and ensures that
bare results do not violate them. It further ensures that the
continuation to d dimensions is automatically carried out in
a uniform way. There are many example applications of
such a lifting to d dimensions across various integer
dimensions n. Further it has been shown for many cases,
that the regulated amplitudes are very suitable for the
process of renormalization and infrared subtractions. For a
recent review of dimensional regulators and schemes
see Ref. [2].

However, in case one encounters an intrinsically integer
dimensional tensor structure in an amplitude, a generically
applicable dimensional scheme is not well established.
Meaning for specific cases there exist treatments of ε
tensors that are known to not work for the general case.
Specifically there are many known ways (see Ref. [3]) how
to treat ε tensors at the one-loop level, because one
encounters for example only global UV divergences. In
more detail, there is no need for a renormalization of
subdiagrams.
For calculations beyond the one-loop order there have

been general proposals how to treat ε tensors within DREG.
However, to the best of the author’s knowledge, there is no
prescription available that leads to unambiguous results for
an arbitrary physical observable. In fact the lack of a
consistent treatment of ε tensors within DREG is the main
reason why up to now the Standard Model (SM) β
functions are fully known at three-loop order [4–8], but
only partially known up to four loops [9–11], although the
computational abilities nowadays allow for a five-loop
evaluation for example of the QCD β function [12–24].
In this context one has to mention that it has already been

proven that a dimensional regulator can be used for a
dimensional renormalization in the presence of γ5 including
the aforementioned ε-tensor contributions for arbitrary loop
orders in Ref. [25]. However, the employed treatment of
fermion traces known as the ’t Hooft-Veltman scheme
requires us to distinguish intrinsically four- and d-dimen-
sional vectors and it is known to require Ward-identity
restoring counterterms. The first point is for an actual
multiloop calculation feasible but very costly, because it
tremendously increases the number of terms. The second
point is an actual conceptual problem at the multiloop level,
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which is not discussed at all in the publication. One has to
figure out how to systematically obtain the required
subtraction terms. We claim that it is impossible to
systematically subtract the required terms at the integrand
level without breaking the used algebra, because it in
general requires the inclusion of evanescent terms, as we
will see in Sec. V.
An explicit application of DREG to amplitudes involv-

ing a single γ5 was carried out for the computation of the
3-loop QCD corrections to the pseudoscalar1 and axial-
vector current [26]. However, it is well known that the
method used involving Ward-identity restoring finite sub-
traction terms cannot be applied to a general problem
involving γ5, because the amplitude is required to have a
special structure in order to allow for integrated, finite
overall subtraction terms. All of which is not discussed at
all in Ref. [26]. However it provides a very clear description
of the carried out procedure.
We do not intend to give a complete review of the

existing literature dealing with the problem of γ5 in DREG,
but just reference a selection [27–35].
However, none of the papers provides a self-consistent

all order/all process prescription for the treatment of
intrinsically integer dimensional tensors such that a dimen-
sional regularization at multiloop order becomes viable.
In this article we start from scratch and restrict ourselves

to the evaluation of fermion traces, only. Here we identify
evanescent contributions as a potential threat to the uni-
formity of trace results when dealing with intrinsically
integer dimensional tensors in the dimensional regulariza-
tion framework. We show that a consistent elimination of
these contributions can remove this threat.
This article is organized as follows: We introduce our

notation and remind the reader of important properties of
the vector and spin representation of SOðNÞ in Sec. II. We
recommend Ref. [36] for a more complete introduction to
group theory aspects.
In Sec. III we introduce the concept of dimensional

continuation of fermion trace results and the concept of
evanescent tensors/contributions.
In Sec. IV we systematically find all evanescent con-

tributions within trace results evaluated for arbitrary
dimension employing a maximal decomposition.
In Sec. V we elaborate how to deal with different kinds of

vector index types—continuous and integer dimensional
ones—in order to preserve the symmetries of the correspond-
ing integer dimensional space during a trace reduction.
In Sec. VI we show that evanescent contributions are

able to break the expected symmetries of integer dimen-
sional traces and thus their elimination is required.
In Sec. VII we give a blueprint for a fermion trace

reduction that yields results that can be used for a dimen-
sionally continued regularization.

In Sec. VIII we recalculate thewell-knownVVA anomaly
arising in four space-time dimensions using our prescription.
We use Sec. IX to discuss the implications following

from our analysis and conclude with a summary in the last
section.

II. BASIC PROPERTIES OF SOðNVÞ
VECTORS AND SPIN

A. Basic relations involving the vector representation

In the following we are mainly dealing with the algebra
and elements of the special orthogonal Lie group SOðNVÞ.
All elements of the groups keep a symmetric and real tensor
of rank two invariant, the metric tensor η, meaning:

GTðωÞ · η · GðωÞ ¼ GðωÞ · η ·GTðωÞ ¼ η: ð1Þ

Here GðωÞ is an element of the group. For convenience we
just require η to be Euclidean2 and obey

η · η ¼ η: ð2Þ

Further we introduce the vector representation indices
fμ; ν;…g which run from 1 to NV . We can then write
the above invariance condition of the metric tensor follow-
ing Einstein’s summation convention as

Gμ
νðωÞGσ

ρðωÞηνρ ¼ ημσ: ð3Þ

Note that upper and lower indices do not transform
differently, but are only used to indicate a proper implicit
summation. The trace of the metric tensor is given by the
dimension of the irreducible vector representation:

ημνη
νμ ¼ NV: ð4Þ

Investigating the transformation properties of the dyadic
product η ⊗ η reveals that it can be decomposed into three
different irreducible representations (irreps). The decom-
position can be described by

V ⊗ V ¼ 1 ⊕ V̂2 ⊕ Ṽ2: ð5Þ

On projector level the decomposition reads explicitly:

ην1μ1η
ν2
μ2 ¼

1

NV
ην1ν2ημ1μ2 þ

1

2
ðην1μ1ην2μ2 − ην1μ2η

ν2
μ1Þ

þ
�
1

2
ðην1μ1ην2μ2 þ ην1μ2η

ν2
μ1Þ −

1

NV
ην1ν2ημ1μ2

�
: ð6Þ

Here the first term is the projector on the singlet irrep (1)
and the second term is the projector on the antisymmetric

1See the preprint version.

2One can continue all our results to be applicable forMinkowski
case.
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two-vector index irrep (V̂2). The third term projects onto
the traceless symmetric two-vector index irrep (Ṽ2). The
dimension of each representation can be calculated by
taking the trace of each projector by identifying the indices
μ1 with ν1 and μ2 with ν2. One obtains the dimensions:

NV ×NV ¼ 1þ1

2
NVðNV −1Þþ1

2
ðNV þ2ÞðNV −1Þ: ð7Þ

It turns out that the antisymmetric two-vector index irrep is
in fact the adjoint representation with dimension NA ¼
NV̂2

¼ 1
2
NVðNV − 1Þ. To see this we first write the group

elements in terms of exponentiated generators GðωÞ ¼
expðiTV · ωÞ and expand them for small transformations:

GðωÞμν ≈ ηνμ þ iðTa
VÞμνωa: ð8Þ

In linear order of any ω we obtain the following invariance
condition for η:

ðTa
VÞT · ηþ η · Ta

V ¼ 0: ð9Þ

Multiplying from left and right with η yields

η · ½ðTa
VÞT þ Ta

V � · η ¼ 0: ð10Þ

This equation is fulfilled as long as the generators are
antisymmetric under the exchange of the two vector
indices:

½ðTa
VÞT �μν ¼ ðTa

VÞνμ ¼ −ðTa
VÞμν: ð11Þ

Because the dimension of the antisymmetric two-vector
index irrep is given by NA, the adjoint index a runs from 1
to NA. We further have the reduction identity:

XNA

a¼1

ðTa
VÞν1ν2ðTa

VÞμ1μ2 ¼
I2;V
2

½ην1μ1ην2μ2 − ην1μ2η
ν2
μ1 �: ð12Þ

Here I2;V is called the second index of the vector repre-
sentation and it depends on the normalization of the
generators Ta

V . A convenient choice is I2;V ¼ 2. We further
see that the generators perform the transition into an
eigenbasis of the adjoint subspace. Their entries are special
cases of Clebsch-Gordan coefficients.
In the following we will be using the irrep of n fully

antisymmetric vector indices V̂n. The projector from the n
vector index space onto V̂n is given by the antisymmetrizer
Anðν1;…νn; μ1;…; μnÞ which is a vector index tensor of
rank 2n. The antisymmetrizer is fully antisymmetric under
the permutation of the first and last n vector indices. Further
it is symmetric under the full exchange of the first n with
the last n indices. For example:

Anðν1; ν2;…νn; μ1;…; μnÞ ¼ −Anðν2; ν1;…νn; μ1;…; μnÞ;
ð13Þ

Anðν1;…νn; μ1; μ2;…; μnÞ ¼ −Anðν1;…νn; μ2; μ1;…; μnÞ;
ð14Þ

Anðν1;…νn; μ1;…; μnÞ ¼ Anðμ1;…; μn; ν1;…νnÞ: ð15Þ

Further it fulfills the projector condition An · An ¼ An:

Anðν1;…νn; μ1;…; μnÞAnðμ1;…; μn; ρ1;…ρnÞ
¼ Anðν1;…νn; ρ1;…ρnÞ: ð16Þ

As special cases we have

A0 ¼ 1; ð17Þ

A1ðν; μÞ ¼ ηνμ; ð18Þ

A2ðν1; ν2; μ1; μ2Þ ¼
1

2
ðην1μ1ην2μ2 − ην1μ2η

ν2
μ1Þ: ð19Þ

Higher rank An’s can be recursively defined through lower
rank ones using

Anðμ1;…; μn; ν1;…; νnÞ

¼ 1

n
½þημ1ν1An−1ðμ2;…; μn; ν2; ν3;…; νnÞ

− ημ1ν2An−1ðμ2;…; μn; ν1; ν3;…; νnÞ þ…

þ ð−1Þnημ1νnAn−1ðμ2;…; μn; ν1;…; νn−1Þ�: ð20Þ

In total there are n terms inside the bracket on the rhs of the
equation. The sign of the terms in the sum is alternating
when ordered as indicated. From the recursive construction
it immediately follows that An contains n! terms.
The dimension of the irrep V̂n can be calculated via the

trace of the corresponding projector operator:

NV̂n
¼ Anðμ1;…μn; μ1;…; μnÞ ¼

�
NV

n

�
¼ NV!

n!ðNV − nÞ! :

ð21Þ

In case of noninteger dimension NV this expression can be
analytically continued using the gamma function via
m! → Γðmþ 1Þ. Beside the antisymmetrizers An we can
also define the symmetrizers Sn which are totally sym-
metric under permutation of representation indices.
However, the Sn do not project onto irreducible represen-
tations of the SOðNÞ groups because they have a non-
vanishing overlap with the singlet (see the decomposition
of V ⊗ V above).
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Besides keeping η invariant the group elements further
have the property that their determinant is given by
det½GðωÞ� ¼ þ1. The determinant can be written by

ANV
ðν1;…; νNV

; μ1;…; μNV
ÞGðωÞμ1ν1…GðωÞμNV

νNV ¼ þ1:

ð22Þ
When NV takes integer values NV > 1 this condition
induces another invariant tensor of vector index rank NV .
In order to see this, one has to notice that the dimension of the
irrep V̂NV

in this case is given by NV̂NV
¼ 1 and thus is a

singlet. We are then able to write the projector with the help
of the following factorizing Clebsch-Gordan coefficients:

ANV
ðν1;…; νNV

; μ1;…; μNV
Þ

¼ 1

NV!
½εNV

�ν1;…;νNV
½εNV

�μ1;…;μNV : ð23Þ

We choose the overall normalization of 1=NV! so that the
entries of εNV

have values of �1 and 0, only. In more detail
we have

½εNV
�12…NV ¼ ½εNV

�12…NV
¼ 1: ð24Þ

Requiring the indicated transformation properties of the
new totally antisymmetric tensor of rank NV to hold:

GðωÞμ1ν1…GðωÞμNV

νNV ½εNV
�ν1…νNV

¼ ½εNV
�μ1…μNV

; ð25Þ

reduces the lhs of Eq. (22) exactly to one after using
Eq. (23), because all group elements are absorbed by one
εNV

leaving just ANV
ðμ1;…; μNV

; μ1;…; μNV
Þ the dimen-

sion of V̂NV
¼ þ1.

B. The Clifford algebra for spin representations

Besides the vector representation discussed so far one
encounters spinor representations of soðNVÞ when inves-
tigating the roots of the Klein-Gordon equation:

ð∂μ∂μ þm2Þϕ ¼ 0: ð26Þ

Dirac introduced the Dirac matrices γμ (with =∂ ¼ ∂μγ
μ) to

obtain a differential equation of first order for the spinor
wave function Ψ.

ði=∂ −mÞΨ ¼ 0: ð27Þ

When the Dirac matrices obey the Clifford algebra

fγμ; γνg ¼ 2ημν; ð28Þ

then each spinor component Ψi (i ∈ f1;…; NSg) obeys the
Klein-Gordon equation:

½ði=∂ þmÞði=∂ −mÞΨ�i ¼ −ð∂μ∂μ þm2ÞΨi ¼ 0: ð29Þ

And the dimension of the spinor space is given by NS.
The evaluation of traces made up by products of Dirac

matrices is an immediate consequence of dealing with
quantum states transforming under spinor representations
of SOðNVÞ. We are thus interested in evaluating any trace
of N Dirac matrices:

Tμ1…μN
N ¼ trfγμ1 � � � γμNg: ð30Þ

In order to do so, we use Eq. (28) to anticommute the
first γ matrix through a chain of N − 1 γ matrices. Each
anticommutation adds the value of the anticommutator on
the rhs:

γμ1 � � �γμN ¼ 2ημ1μ2γμ3 � � �γμN þ�� �þ ð−1ÞN2ημ1μNγμ2 � � �γμN−1

þð−1ÞNþ1γμ2 � � �γμNγμ1 : ð31Þ

There areN − 1 terms with alternating signs in the first line.
Sorted in the indicated order the metric tensor of the nth
term carries the index μ1 and μnþ1. We immediately see that
the obtained result yields an iterative trace reduction
algorithm in case N ¼ 2n is even, because we can use
the cyclicity of the trace:

trfγμ1 � � �γμ2ng¼1

2
trfγμ1γμ2 � � �γμ2n þγμ2 � ��γμ2nγμ1g

¼ trfημ1μ2γμ3 � � �γμN þ���þημ1μ2nγμ2 � ��γμ2n−1g:
ð32Þ

The obtained equation allows us to express traces of
products of N ¼ 2n Dirac matrices by traces of 2n − 2.
For the first four nontrivial cases one gets

Tμ1μ2
2 ¼ ημ1μ2 trf1NS×NS

g ¼ NSη
μ1μ2 ; ð33Þ

Tμ1μ2μ3μ4
4 ¼ NSðημ1μ2ημ3μ4 − ημ1μ3ημ2μ4 þ ημ1μ4ημ2μ3Þ; ð34Þ

Tμ1μ2μ3μ4μ5μ6
6 ¼ NSðημ1μ2ημ3μ4ημ5μ6 þ…½14 terms�Þ; ð35Þ

Tμ1μ2μ3μ4μ5μ6μ7μ8
8 ¼NSðημ1μ2ημ3μ4ημ5μ6ημ7μ8 þ…½104 terms�Þ:

ð36Þ

A pictorial representation can be found in terms of bird-
tracks in Fig. 1.
It turns out that T2n reduces to ð2n − 1Þ!! terms, where

each term is a tensor product of n metric tenors. Each term
has a unique pairing of the 2n vector indices. There are in
total ð2n − 1Þ!! ways of pairing 2n indices in products of
metric tensors. That means the trace contains all possible
ways of pairing 2n indices in products of metric tensors. As
a consequence the trace does not depend on the reading
direction within a trace, meaning:
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Tμ1μ2…μ2n
2n ¼ Tμ2n…μ2μ1

2n : ð37Þ
The number of terms generated by a trace grows rapidly
with n like the following table shows.

n ðn − 1Þ!!
2 1
4 3
6 15
8 105
10 945
12 10395

The sign of each term is given by the signature S of the
permutation of the indices. We have for example:

Sðημ1μ2ημ3μ4Þ ¼ Sð1; 2; 3; 4Þ ¼ 1; ð38Þ

Sðημ1μ3ημ2μ4Þ ¼ Sð1; 3; 2; 4Þ ¼ −1: ð39Þ

Here it is important to employ the symmetric property of η
in order to sort with respect to the order within each metric
tensor. That means

Sðημ2μ1Þ ¼ Sðημ1μ2Þ ¼ Sð1; 2Þ ¼ 1: ð40Þ

In the pictorial birdtracks representation one just has to
count the number of crossings of metric tensor lines in a
term in order to determine its sign. If the count is even/odd
the sign is þ1=−1.

This in principle allows us to evaluate TN for arbitrary
even N. However, in practical applications this is not very
useful, because the number of generated terms becomes too
large to be treated in a fast way, even on modern computers.
However, we want to remark here, that up to now we have
never used any information about the dimension of the
vector representationNV . That means the given reduction is
in fact independent of NV . The only dependence on NV is
hidden inside the metric tensor η.

C. Irreducible representations and Dirac bilinears

In the following we will investigate the properties of the
trace using the properties of irreducible representations.
This will allow us to evaluate traces with an odd number of
Dirac matrices. Assume we take the following contractions
of a trace with N ¼ n1 þ n2 Dirac matrices:

An1 · Tn1þn2 ·An2 ¼ An1ðν1;…;νn1 ;μ1;…;μn1ÞT
μ1…μn1ρn2…ρ1
n1þn2

×An2ðρ1;…;ρn2 ;σ1;…;σn2Þ: ð41Þ

Due to the property of the irreducible representation the
trace can only be nonvanishing if the irreps V̂n1 and V̂n2 are
equal. In literature this is often called Schur’s lemma. When
working with even or continuous NV we must have
n1 ¼ n2. We also know that the total result must be
proportional to An1 in this case, otherwise we would not
stay in the subspace of the given irrep. Up to a normali-
zation constant—which is given by the dimension of

=

= - +

= +- - +

+ +- - -

+ - + - +

FIG. 1. Results for TN in pictorial birdtracks notation. Dashed (cyan) lines represent spin contractions. Each black dot represents a
Dirac matrix. A closed loop formed by a dashed (cyan) line represents the trace of the unit matrix in spinor space and is thus equal to NS.
Every solid (magenta) line denotes a metric η tensor. An introduction to the birdtracks notation is given in Ref. [36].
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the spin space times n1!—we can write for even or
continuous NV :

An1 · Tn1þn2 · An2 ¼ NSn1!An1δn1n2 : ð42Þ

For odd NV we get further contributions on the rhs of the
above equation whenever n1 ≠ n2 but NV̂n1

¼ NV̂n2
holds.

This is the case whenever n1 þ n2 ¼ NV. As a special case
we have for example n1 ¼ 0 and n2 ¼ NV :

ANV
· TNVþ0 · A0 ¼ −iðNV−1ÞNV=2NSεNV

: ð43Þ

And in the n1 þ n2 ¼ NV case the rhs of corresponding
equation is always proportional to εNV

. The reason why this
gives a contribution in odd dimensions only, and where the
phase factor comes from, will be explained later.
When we define the Dirac bilinears

Γν1…νn
n ¼ Anðν1;…; νn; μ1;…; μnÞγμ1…γμn ; ð44Þ

where the Dirac matrices on the right are multiplied with
each other through the spinor space indices, we can rewrite
Eq. (42) in terms of Γ’s:

An1 · Tn1þn2 · An2 ¼ trfΓμ1…μn1
n1 Γ

ν1…νn2
n2 g

¼ n1!NSδn1n2An1ðμ1;…; μn1 ; νn2 ;…; ν1Þ:
ð45Þ

That means the different Γ’s are orthogonal to each other
and they form a basis of matrices in spin space. The basis
allows one to decompose any product of Dirac matrices in
terms of a linear combination of Γ’s:

γμ1…γμN ¼
X
n

cμ1…μN
n;ν1…νnΓ

ν1…νn
n : ð46Þ

The coefficients cn are in fact coefficient tensors built up by
products of metric tensors. In odd dimensions NV¼2mþ1
there may also appear the tensor ε2mþ1. The sum runs
over all values of n ¼ 0;…; NV when NV is even,
n ¼ 0;…; ðNV − 1Þ=2 when NV is odd, and from zero
to infinity for a noninteger NV. In the latter case we are thus
dealing with an infinite dimensional algebra, because there
are countable but infinitely many linearly independent
Dirac bilinears. As an example we can reduce the product
of two Dirac matrices into a sum of two terms:

γμ1γμ2 ¼ 1

2
fγμ1 ; γμ2g þ 1

2
½γμ1 ; γμ2 � ¼ ημ1μ2Γ0 þ Γμ1μ2

2 : ð47Þ

We have Γ0 ¼ 1NS×NS
. Further we note that any Γn is

irreducible with respect to Eq. (28), because the fully
antisymmetric vector indices have no symmetric subsets.

The number of linearly independent Dirac bilinears is given
by the sum of the dimensions of all independent irreps:

NB ¼
XnB−1
n¼0

NV̂n
: ð48Þ

For d¼2 (nB ¼ 3) we find NB ¼ 1þ 2þ 1 ¼ 4. For d ¼
3 (nB ¼ 2) we have NB ¼ 1þ 3 ¼ 4.
For d¼4 (nB¼5) we obtain NB¼1þ4þ6þ4þ1¼16.

The underlined number displays NA respectively. In the
literature the εNV

tensors are absorbed into the Γn’s. For
example one can choose 1NS×NS

, γμ; σμν ¼ Γμν
2 ; γ5γμ and γ5

to be the 16 Dirac bilinears in four dimensions. This has the
advantage that the coefficient tensors have a smaller rank.
We can define special scalar bilinears for any integer

dimension NV ¼ n via:

γnþ1 ¼ inðn−1Þ=2½εn�μ1…μn
Γμ1…μn
n ¼ inðn−1Þ=2γ1…γn: ð49Þ

With the chosen normalization factor (and Euclidean metric
η) one can check using Eq. (28) that γnþ1 · γnþ1 ¼ 1NS×NS

.
We further see that we have:

½γ2n; γμ� ¼ 0; fγ2nþ1; γμg ¼ 0: ð50Þ

That means for odd NV we have a scalar γNVþ1 that
commutes with all other γμ. Whereas in even NV we have
a pseudoscalar γNVþ1 that anticommutes with all other γμ.
Because γ2n commutes with all γμ it must be proportional

to 1NS×NS
. Since its square is 1NS×NS

we can only have
γ2n ¼ �1NS×NS

. That means trfγ2ng ¼ �NS. Because we
want to follow the convention chosen in the explicit
representation of γμ for NV ¼ 3 given by the Pauli matrices
we have to stick with the plus sign. This is in fact the reason
for the phase factor in Eq. (43). Thus contracting Eq. (43)
with ε2n and using the definition of γ2n yields its rhs.
We already found a case in odd dimensions where a trace

of an odd number of Dirac matrices yields a nonvanishing
result. Are there more cases for lower n < NV? The short
answer is: No, because one has to have sufficiently many
vector indices to saturate the rank NV of εNV

. And it is the
only invariant tensor with an odd number of vector indices.
To prove this intuitive statement we can calculate for
integer N:

NV trfΓμ1…μN
N g ¼ trfγνγνΓμ1…μN

N g
¼ 2NtrfΓμ1…μN

N g þ ð−1ÞN trfγνΓμ1…μN
N γνg

¼ 2NtrfΓμ1…μN
N g þ ð−1ÞNNV trfΓμ1…μN

N g:
ð51Þ

Here we used Eq. (31) in order to anticommute γν through
Γμ1…μN
N . Splitting the above equation into even N ¼ E > 0

and odd N ¼ O case yields
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ðO − NVÞtrfΓμ1…μO
O g ¼ 0; trfΓμ1…μE

E g ¼ 0: ð52Þ

So only for NV ¼ O the trace is allowed to have a non-
vanishing result. And this is exactly the case of trfγ2ng. But
that means a trace of an odd number n of Dirac matrices for
oddNV is only nonzero for n ≥ NV. However, the source of
such a nonvanishing result is only given by the coefficient
tensor of the Γμ1…μNV

NV
bilinear in the bilinear decomposition.

In this case the coefficient tensor cNV−m is not linearly
independent to cm for m ∈ f0; 1;…; NVg. For m ¼ 0 we
have for example:

cν1…νN
NV;μ1…μNV

iNVðNV−1Þ=2ε
μ1…μNV
NV

¼ cν1…νN
0 : ð53Þ

Which is why for oddNV the sum of Eq. (46) runs only from
zero to ðNV − 1Þ=2. For example forNV ¼ 3we see that A2

projects onto the same irrep likeA1.We can immediately see
this, because the generators of SOð3Þ are given by
Tρ
μν ∼ ϵμνρ, which means for SOð3Þ the vector index μ

agrees with the adjoint index a and thus NA ¼ NV .
Due to the discussed property of γ2n one can always

reduce a trace with an odd number of Dirac matrices to a
trace with an even number. Because we have

Tμ1…μ2nþ1

2nþ1 ¼ TNVþ1μ1…μ2nþ1

2nþ1þNV
¼ trfγNVþ1γ

μ1…γμ2nþ1g: ð54Þ

For evenNV the pseudoscalar γNVþ1 allows us to split the
spinor space into distinct subspaces, because one can
construct the projectors:

P� ¼ 1NS×NS
� γ2nþ1

2
; ð55Þ

which project onto the left- and right-handed spinor
representations.
In order to investigate the possible results for traces with

a single γ2nþ1 we calculate:

NV trfγ2nþ1Γ
μ1…μN
N g ¼ trfγ2nþ1γ

νγνΓ
μ1…μN
N g

¼ 2Ntrfγ2nþ1Γ
μ1…μN
N g

− ð−1ÞNNV trfγ2nþ1Γ
μ1…μN
N g: ð56Þ

In the last line we have again used Eq. (31) to anticommute
γν through Γ

μ1…μN
N . Further we used the cyclicity of the trace

and the anticommutativity of γ2nþ1 (which gives one
additional minus sign). Splitting the even N ¼ E and
odd N ¼ O case we get the following constraints:

ðNV − EÞtrfγ2nþ1Γ
μ1…μE
E g ¼ 0; trfγ2nþ1Γ

μ1…μO
O g ¼ 0:

ð57Þ

Thus we can only have a nonvanishing result of the trace of
a single γ2nþ1 when we have at least NV ¼ E ¼ 2n many

other Dirac matrices in it. As important special case we
have:

trfγ2nþ1g ¼ 0: ð58Þ

Which is why Eq. (43) does only apply for odd NV . Or in
other words in odd dimensions the antisymmetrizer ANV

projects onto the singlet/scalar irrep. In even dimensions
the antisymmetrizer ANV

projects on a pseudosinglet/scalar
irrep, which is not equivalent to the singlet/scalar irrep.
However, when one deforms the dimension away from

integer values for example into the real numbers—like it is
done during any dimensional regularization—one cannot
obtain any fully anti-symmetric εNV

tensor, if one considers
γNVþ1 to be naively (anti-) commuting when the traces are
cyclic. Because the trace can only be nonzero when the
prefactor is zero. That means following a naive (anti-)
commuting prescription for γNVþ1 in generic NV ∉ N
dimensions forces one to set all traces with a single γNVþ1

in it to zero, if one obeys the Clifford algebra. In fact this is a
major obstacle for the continuation of for example NV-
dimensional amplitudes into d dimensions, because there is
no smooth limit of the abstract d-dimensional Clifford
algebra to an integer dimensional one, that does preserve
all intrinsically integer dimensional contributions.

III. DIMENSIONAL CONTINUATION
IN PRESENCE OF εNV

Equation (52) and Eq. (57) indicate that one cannot carry
out the Clifford algebra in noninteger d ¼ NV dimensions
and retain any εNV

contributions if one believes that
cyclicity of the trace and naive-(anti-) commutativity of
γNVþ1 is required in order to retain the symmetries of the
original N̂V integer dimensional traces.
We will call N̂V target dimension, because we are

interested in limits of the form NV → N̂V . For example
for N̂V ¼ 4 one often uses NV ¼ 4 − 2ϵ where ϵ → 0 is a
small parameter and regulates divergent quantities in terms
of inverse powers of 1=ϵ.
In order to have a regulator that respects the N̂V-

dimensional symmetries (which is important for the pres-
ervation of Ward identities) we must require that any
traces that are equivalent due to cyclicity or the (anti-)
commutation property of γNVþ1 in N̂V dimensions must be
continued in the same way to NV dimensions. Otherwise
we break the assertion that a symmetry preserving regulator
has to continue N̂V → NV in a uniform way. This means
γNVþ1 has to be treated to (anti-) commute with all other γμ.
Further cyclic reordering of traces must not change the
result.
At first sight the given requirements seem to be easily

obeyed. One just uses the N̂V-dimensional Clifford algebra
[where γNVþ1 (anti-)commutes] to reduce fermion traces in
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terms of η̂ (the hat indicates that the dimension of η is given
by the integer N̂V) and εNV

. Using a proper projection in
terms of εNV

allows us to eliminate it in favor of ANV
[see

Eq. (23)]. Then one is free to trivially continue η̂ → η.
This is what for example can be done and was done in

order to evaluate the SM β function at three-loop level for
N̂V ¼ 4 [4–6]. Meaning the traces can be evaluated using
the trace4 algorithm implemented in the computer algebra
program FORM [37–39] when one declares all appearing
vector indices and vectors to be noninteger dimensional.
We have even checked that the trace4 algorithmworks for

the chiral-XY Gross-Neveu-Yukawa model up to including
four loops for N̂V ¼ 4. That means in this case we obtain the
sameZ-factor results likewhen using a naive-anticommuting
γ5 prescription previously employed in Ref. [40].
The function trace4 eliminates all trace internal con-

traction indices and the appearance of two equivalent
vectors using the anticommutation relation via Eq. (31).
In case it identifies four-dimensional vector indices in the
trace further NV ¼ 4-dimensional reduction rules3 are
applied. After that any trace TN contains N different
indices and/or vectors and the NV ¼ 4-dimensional rule4

γμ1γμ2γμ3 ¼ γ5γν½ϵ̃4�μ1μ2μ3ν þ ημ1μ2γμ3 − ημ1μ3γμ2 þ ημ2μ3γμ1

ð59Þ

is used to further reduce them. Equation (59) resembles the
four-dimensional bilinear decomposition of a product of
three Dirac matrices.
However, the results obtained by trace4 for traces

appearing in a four-loop SM Z-factor calculation turn
out to be not suitable for a proper dimensional continuation
in the general case.
To proceed we first have to understand the difference

between traces reduced assuming a continuous and integer
dimensional algebra. In a first step we do this for traces that
do not contain intrinsically N̂V-dimensional tensors. Further,
for simplicity we use N̂V ¼ 2, but the obtained insight
generalizes to any N̂V.
Calculating the trace Tpqrstu

6 using Eq. (35) in NV
dimensions yields in total 15 terms. Taking the limit
Tpqrstu
6 jNV→2 by explicitly plugging in two-dimensional

vectors for p, q, r, s, t and u as well as replacing η → η̂
with η̂ ¼ diagð1; 1Þ yields 32 terms. One of them is for
exampleþp1q1r1s1t1u1. These 32 terms remain unchanged
whendropping a collectionof six of the original 15 terms. For
example the six terms contained in

6A3ðp; q; r; u; t; sÞ
¼ ½ðp · uÞðq · tÞðr · sÞ − ðp · tÞðq · uÞðr · sÞ þ…� ð60Þ

do the job (here and in the followingweusep · q ¼ p · η · q).
That means

Tpqrstu
6 jNV→2 ¼ ðTpqrstu

6 − 6NSA3ðp; q; r; u; t; sÞÞjNV→2:

ð61Þ

Clearly we must have

A3ðp; q; r; u; t; sÞjNV→2 ¼ 0: ð62Þ

The reason for this identity is that one cannot antisymmetrize
more than two indices in two dimensions, because any third
index carries either the value of the first or second one and is
thus linearly dependent. For general N̂V we have

ANð…;…ÞjNV→N̂V
¼ 0; ∀ N > N̂V: ð63Þ

In the following we call tensors or contributions that obey
the above equation evanescent tensors or contributions.
And as soon as we do not eliminate appearing evanescent
contributions which are exactly zero for NV ¼ N̂V we risk
breaking the required uniformity of the continuation to
noninteger NV dimensions. In the language of the authors
of Ref. [25] an expression that has gone through a complete
elimination of all appearing evanescent structures is said to
be in “normal form.” Like these authors already pointed out,
there is (unfortunately) not a unique normal form. Because
one has the choice which tensor contraction is eliminated in
favor of the others. Back to our example with A3 one can for
example eliminate

ðp · uÞðq · tÞðr · sÞ → −6A3ðp; q; r; u; t; sÞ
þ ðp · uÞðq · tÞðr · sÞ; ð64Þ

the first terms on the lhs of Eq. (60) in favor of the remaining
ones. Thus the first term will not appear in the expression
anymore. But one could also choose to eliminate the second
term and so on. Of course any consistent elimination requires
that one always eliminates exactly the same conventionally
chosen term. But before one is able to eliminate evanescent
contributions one has to identify them in a completeway.We
perform this task in the next section.

IV. MAXIMAL DECOMPOSITION
OF SPINTRACES

In order to avoid the appearance of evanescent structures
during the evaluation of spin traces TN , one might have the
idea to use the iterative decomposition of products of Dirac
bilinears over the finite set of nB Γi ’s available in N̂V
dimensions [employing Eq. (46)]:

Γn1Γn2 ¼
XnB−1
i¼0

cn1n2i Γi: ð65Þ3What they are in detail can be read off the online manual [41].
4ϵ̃4 is defined like in FORM and agrees up to a phase with ϵ4.
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Here we suppressed all vector indices and assume a
multiplication in spin space on the lhs of the equation.
However, example evaluations for N̂V ¼ 4 have shown,
that doing so, the coefficient tensor of Γ0 emerging from the
very last decomposition contains an evanescent contribu-
tion in the result of TN starting from N ¼ 10, because the
obtained result was given by a sum of 9!! ¼ 945 terms and
exactly agreed with the result of a generic NV-dimensional
reduction and therefore no terms have been eliminated. It is
clear that in the generic NV-dimensional result one can
group up 5! terms to form an N̂V ¼ 4 evanescent anti-
symmetrizer A5.
For the calculation of T2N forN ≤ N̂V however, the finite

basis decomposition yields evanescent free results usable
for dimensional continuation. Here the decomposition

keeps γNVþ1 (anti-) commuting, because it does not allow
for a decomposition of the type

½ϵNV
�ν1…νNV

Γν1…νNV
NV

Γμ
1 ∼ ½ϵNV

�ν1…νNV
Γν1…νNV

μ
NVþ1 þ…: ð66Þ

The ellipsis indicates a nonevanescent ΓNV−1 bilinear con-
tribution. Because such a decomposition would immediately
run into an evanescent contribution just from merging the
product γN̂Vþ1γ

μ.
For N > N̂V we suggest to proceed as follows in order to

gain control over the evanescent contributions. We generate
the full result TN and perform a maximal decomposition in
the sense that we pack as many terms as possible into
antisymmetrizers starting with the one of maximal rank
N=2. For example we can choose

Tμ1μ2μ3μ4
4 ¼ NS½ημ1μ4ημ2μ3 − ημ1μ3ημ2μ4 þ ημ1μ2ημ3μ4 � ¼ NS½2A2ðμ1; μ2; μ4; μ3Þ þ A1ðμ1; μ2ÞA1ðμ3; μ4Þ�; ð67Þ

Tμ1μ2μ3μ4μ5μ6
6 ¼ NS½6A3ðμ1; μ2; μ3; μ6; μ5; μ4Þ þ 4A2ðμ1; μ2; ν; μ3ÞA2ðν; μ4; μ6; μ5Þ

þ 2A2ðμ3; μ4; μ6; μ5ÞA1ðμ1; μ2Þ þ 2A2ðμ1; μ2; μ4; μ3ÞA1ðμ5; μ6Þ
þ A1ðμ1; μ2ÞA1ðμ3; μ4ÞA1ðμ5; μ6Þ�; ð68Þ

Tμ1μ2μ3μ4μ5μ6μ7μ8
8 ¼ NS½24A4ðμ1; μ2; μ3; μ4; μ8; μ7; μ6; μ5Þ þ 18A3ðμ2; μ3; μ4; μ1; ν1; ν2ÞA3ðμ8; ν1; ν2; μ7; μ6; μ5Þ

þ 12A2ðμ5; μ6; ν1; μ7ÞA3ðμ4; μ3; μ2; ν1; μ8; μ1Þ þ 12A2ðμ4; μ3; ν1; μ2ÞA3ðν1; μ1; μ8; μ5; μ6; μ7Þ
þ 6A1ðμ3; μ4ÞA3ðμ2; μ1; μ8; μ5; μ6; μ7Þ þ 6A1ðμ5; μ6ÞA3ðμ2; μ3; μ4; μ1; μ8; μ7Þ
þ 8A2ðμ2; μ3; ν1; μ4ÞA2ðμ1; ν1; μ8; ν2ÞA2ðν2; μ5; μ7; μ6Þ þ 4A2ðμ2; μ1; μ3; μ4ÞA2ðμ5; μ6; μ8; μ7Þ
þ 4A1ðμ2; μ3ÞA2ðμ4; μ1; ν1; μ8ÞA2ðν1; μ5; μ7; μ6Þ þ 4A1ðμ6; μ7ÞA2ðν1; μ1; μ5; μ8ÞA2ðμ2; μ3; ν1; μ4Þ
þ 2A1ðμ2; μ3ÞA1ðμ6; μ7ÞA2ðμ1; μ4; μ8; μ5Þ þ 2A1ðμ3; μ4ÞA1ðμ1; μ2ÞA2ðμ5; μ6; μ8; μ7Þ
þ 2A1ðμ5; μ6ÞA1ðμ7; μ8ÞA2ðμ1; μ2; μ4; μ3Þ þ A1ðμ1; μ2ÞA1ðμ3; μ4ÞA1ðμ5; μ6ÞA1ðμ7; μ8Þ�: ð69Þ

A pictorial representation of the selected solutions for the
first three decompositions is shown in Fig. 2. The ordering
of terms in the figure is in agreement with the one in the
equation. μ1 is chosen to be the index in the lower left
corner of each graph.
The decomposition is nothing but a special partition of

terms made up by products of metric tensors that appear in
the trace result. Because all ways of finding the maximal
rank N=2 antisymmetrizer in a trace result share the same
“inversion contraction” term,5 which stays invariant under
every cyclic rotation, one can only have one subset
containing a maximal antisymmetrizer in the decomposi-
tion. It is further clear, that one can build only finitely many
antisymmetrizer of rank N=2 − 1 from the remaining terms
of a trace and so on.

We call the displayed decomposition maximal, because
the number of subsets represented by a product of anti-
symmetrizers (η ¼ A1) is minimal. We do not attempt to
prove this statement here, but just note that the minimal
number of subsets is given by the number of planar
diagrams appearing in the pictorial birdtracks representa-
tion of the traces in Fig. 1. This is so, because a product of
antisymmetrizers can only contain a single planar contri-
bution. It can be obtained by removing all black bars
indicating antisymmetrizers. The number P of planar
birdtracks graphs in dependence of the even number N
of γ matrices is given by

PðNÞ ¼ N!

ð1
2
NÞ!ð1

2
N þ 1Þ! : ð70Þ

The number of planar graphs grows moderately fast with N
as the following table shows.5For T4=T6 it is given by the second/8th term shown in Fig. 1.
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N PðNÞ
2 1
4 2
6 5
8 14
10 42
12 132

Another property of a maximal decomposition is that it
always contains a single subset containing only one term, a
planar product of metric tensors. Of course there is in
general not a unique solution for a maximal decomposition
and in general it would be interesting to find all possible
solutions, their properties and relations.
The displayed solutions have an additional, very impor-

tant property which can be immediately discovered in the
birdtracks graphs. They are symmetric with respect to
mirror operations along the vertical axis. That means either
the drawn subset transforms into itself, because it is mirror
symmetric, or a pair of subsets transforms into each other.
Besides the identification of evanescent contributions

another benefit of the maximal decomposition is that one
gets a handle on the symmetries of the full trace results.
That means most of the time it is possible to eliminate
complete subsets at once, because the external tensors are
not sufficiently antisymmetric to sustain higher rank anti-
symmetrizers. Such an elimination can be carried out at
subset level and does not require an explicit, time and term
heavy expansion of the contained An’s. For example one
can easily calculate the trace Tpppppppp

8 . Because it is not

possible to saturate any An for n > 1 we are immediately
left with the last term of the decomposition in Fig. 2. The
result is thus given by Tpppppppp

8 ¼ NSðp · pÞ4.

V. TRACES FOR DIMENSIONAL CONTINUATION

In this section we are going to determine how to evaluate
traces such that they are suitable for a dimensional
continuation in more detail. We do this by carrying out
simple example evaluations in order to find a suitable
reduction prescription.
First we evaluate the following trace for the explicit

target dimension N̂V ¼ 2:

Tt1 ¼ trfγ3γ3g ¼ −
1

4
½ϵ2�μ1μ2 ½ϵ2�μ3μ4 trfγμ1γμ2γμ3γμ4g

¼ −
1

4
½ϵ2�μ1μ2 ½ϵ2�μ3μ42NSA2ðμ1; μ2; μ4; μ3Þ: ð71Þ

Here we immediately dropped the last term of the decom-
position of T4, Eq. (67), because contracting an antisym-
metric tensor with a symmetric one yields zero. Using
Eq. (23) to eliminate the ϵ2’s yields

Tt1 ¼ −NSA2ðμ1; μ2; μ3; μ4ÞA2ðμ1; μ2; μ4; μ3Þ: ð72Þ

Using the projector property A2 · A2 ¼ A2 allows us to
write

FIG. 2. Results for decompositions of TN for the first 3 nontrivial N in the pictorial birdtrack notation already used in Fig. 1. A black
bar connected with 2n solid (magenta) lines correspond to an antisymmetrizer An.
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Tt1 ¼ −NSA2ðμ4; μ3; μ3; μ4Þ ¼ NSA2ðμ4; μ3; μ4; μ3Þ

¼ NSNV̂2
¼ NS

1

2
NVðNV − 1Þ: ð73Þ

Only for NV ¼ N̂V ¼ 2 we obtain the expected result of
Tt1 ¼ NS for an anticommuting γ3. Thus we need to require
that the indices carried by ϵNV

tensors have to be N̂V

dimensional, if we want to keep the symmetries of the N̂V-
dimensional space. Thus from now on we indicate intrinsi-
cally N̂V-dimensional indices with a hat like μ̂ in order to
distinguish them from continuous dimensional indices,
which are carried by trace external tensors like momenta
or vector indices carried by propagating vector bosons.
We then compute

Tt2 ¼ trfγ3pγ3q g

¼ −
1

4
pν1qν2 ½ϵ2�μ̂1μ̂2 ½ϵ2�μ̂3μ̂4 trfγμ̂1γμ̂2γν1γμ̂3γμ̂4γν2g: ð74Þ

Plugging in the maximal decomposition for T6 [Eq. (68)]
and dropping all terms that yield zero due to symmetry
yields

Tt2 ¼ −
1

4
pν1qν2 ½ϵ2�μ̂1μ̂2 ½ϵ2�μ̂3μ̂4NS½6A3ðμ̂1; μ̂2; ν1; ν2; μ̂4; μ̂3Þ

þ 4A2ðμ̂1; μ̂2; ρ? ; ν1ÞA2ðρ? ; μ̂3; ν2; μ̂4Þ
þ 2A2ðμ̂1; μ̂2; μ̂3; ν1Þημ̂4ν2 �: ð75Þ

The question mark above the internal symmation index ρ
indicates that up to now it is not clear if it should wear a hat.
Using Eq. (23) to eliminate the ϵ2’s and contracting the
obtained A2 yields

Tt2 ¼ þ 1

2
pν1qν2NS½6A3ðν1; μ̂1; μ̂2; ν2; μ̂1; μ̂2Þ

þ 4A2ðμ̂1; μ̂2; ν1; ρ?ÞA2ðρ? ; μ̂1; ν2; μ̂2Þ
þ 2A2ðμ̂1; μ̂2; ν1; μ̂1Þημ̂2ν2 �: ð76Þ

Before we can simplify this expression further we have to
define the relation between hatted (integer) and unhatted
(continuous) dimensional indices. There are two possible
prescriptions:
(1) The index μ can only take a subset of values of the

index μ̂: μ ⊆ μ̂. That means the hatted index range is
bigger than the one without hat:

ημν̂ ¼ ημ̂ν ¼ ημν; ð77Þ

η̂μν̂ ¼ η̂μ̂ν ¼ ημν; ð78Þ

η̂ · η ¼ η: ð79Þ

(2) The index μ̂ can only take a subset of values of the
index μ: μ̂ ⊆ μ. That means the hatted index range is
smaller than the one without hat:

ημν̂ ¼ ημ̂ν ¼ ημ̂ ν̂ ¼ η̂μ̂ ν̂ ¼ η̂μν; ð80Þ

η̂ · η ¼ η̂: ð81Þ

In the first case the hats are “loose” and any metric tensor
without hat hitting a metric with hat will make the hat drop
off. In the second case the hats are “sticky” and any metric
tensor with a hat will never lose it.
Evaluating Tt2 for the first case with loose hats immedi-

ately kills the evanescent contribution of A3:

6A3ðν1; μ̂1; μ̂2; ν2; μ̂1; μ̂2Þ ¼ ην1ν2ðN̂V − 1ÞðN̂V − 2Þ ¼ 0:

ð82Þ

The second term inside the bracket of Tt2 yields

4A2ðμ̂1; μ̂2; ν1; ρ?ÞA2ðρ? ; μ̂1; ν2; μ̂2Þ

¼ 2A2ðρ? ; ν1; ν2; ρ?Þ ¼ −ην1ν2ðN
?

V − 1Þ: ð83Þ

And the last term in the bracket yields

2A2ðμ̂1; ν2; ν1; μ̂1Þ ¼ −ην1ν2ðN̂V − 1Þ: ð84Þ

That means, for lose hats we get

Tt2 ¼ −NSðp · qÞ
�
1

2
ðN̂V þ N

?

VÞ − 1

�
: ð85Þ

This result only agrees with the intrinsically N̂V ¼ 2-
dimensional one when we allow the internal contraction
index ρ—appearing in the decomposition—to wear a hat:

ρ
?
→ ρ̂:

Tt2 ¼ −NSðp · qÞ: ð86Þ

Evaluating Tt2 for the second case with sticky hats calling it
T̂t2 does not kill the evanescent contribution of A3:

6A3ðν1; μ̂1; μ̂2; ν2; μ̂1; μ̂2Þ
¼ ην1ν2N̂VðN̂V − 1Þ − 2η̂ν1ν2ðN̂V − 1Þ: ð87Þ

The second term inside the bracket of Tt2 yields

4A2ðμ̂1; μ̂2; ν1; ρ?ÞA2ðρ? ; μ̂1; ν2; μ̂2Þ
¼ 2A2ðμ̂2; ν̂1; ν2; μ̂2Þ ¼ −η̂ν1ν2ðN̂V − 1Þ: ð88Þ
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Note that in this case the result is independent of the
presence of a hat on the internal contraction index ρ,
however we suggest to not give a hat to it in general. For the
last term inside the bracket we obtain

2A2ðμ̂1; ν̂2; ν1; μ̂1Þ ¼ −η̂ν1ν2ðN̂V − 1Þ: ð89Þ

We thus obtain

T̂t2 ¼ þ 1

2
NSðN̂V − 1Þ½ðp · qÞN̂V − 4ðp̂ · q̂Þ�

¼ NS½ðp · qÞ − 2ðp̂ · q̂Þ�: ð90Þ

For ðp · qÞ → ðp̂ · q̂Þ this result also reproduces the N̂V-
dimensional result. However, it shows that γ3 does not
anticommute with all the γμ in continuous NV dimensions
and thus does not share the tensor structure of the result in
two dimensions.
In fact prescription two turns out to be the ’t Hooft-

Veltman prescription introduced in Ref. [1] and worked out
in Ref. [25]. One can reproduce the result above by
introducing the evanescent metric η̃:

η ¼ η̂þ η̃: ð91Þ

Which means

η̃ · η̂ ¼ 0; η̃ · η̃ ¼ η̃; η̃ · η ¼ η̃: ð92Þ

With the corresponding index decomposition we find
(employing the definition of γ3)

fγ3; γμ̂g ¼ 0; ½γ3; γμ̃� ¼ 0: ð93Þ

Applying these rules to Tt2 yields

T̂t2 ¼ trfγ3pγ3qg ¼ trfγ3ð=̃pþ =̂pÞγ3ð=̃qþ =̂qÞg
¼ trfð=̃p − =̂pÞð=̃qþ =̂qÞg
¼ trf=̃p=̃qg − trf=̂p=̂qg ¼ NS½ðq̃ · p̃Þ − ðq̂ · p̂Þ�
¼ NS½ðq · pÞ − 2ðq̂ · p̂Þ�: ð94Þ

Comparing the two result Tt2 and T̂t2 makes clear that only
Tt2 obtained with the “loose hat” prescription obeys our
initially stated requirement that one should obtain the
continued trace result, by calculating it for N̂V dimensions
and then continuing the result by replacing η̂ → η, without
changing the structure of the result. That means the fact that
the two εNV

tensors automatically eliminate evanescent
structures is not just a feature, but is required for the cases,
where the remaining external tensors of the trace cannot
sustain an evanescent antisymmetrizer on their own.
Unfortunately this is clearly not the case for the

’t Hooft-Veltman prescription. Here the algebra requires

the presence of evanescent contributions. This is because
the algebra distinguishes between evanescent and intrinsi-
cally N̂V-dimensional index space at the level of reduced
traces. Such an additional burden can only be carried by
an infinite dimensional Clifford algebra, because the
dimension of η̃ is given by Nϵ ¼ NV − N̂V and is thus not
an integer.
We conclude that we have to apply the loose hat

prescription in order to reach our goal of evaluating the
traces such that they retain the N̂V-dimensional structure.
As required benefit of the prescription we are allowed to
(anti)-commute γNVþ1 and use γNVþ1 · γNVþ1 ¼ 1 within
each trace, provided we do eliminate evanescent contribu-
tions in a consistent way, whenever their contribution spoils
the (anti-) commutativity of γNVþ1. We are going to present
an explicit example of the latter case in the next section.

VI. RESTORING THE (ANTI-)
COMMUTATIVITY OF γNV + 1

In this section we will give an explicit example where
evanescent contributions prevent a single γNVþ1 from (anti)-
commuting freely in a fermion trace. In order to keep the
appearing expressions as short as possible we will work in
N̂V ¼ 2 dimensions. However, all obtained strategies and
results can be generalized for any higher target dimension,
as long as the maximal decomposition is known.
In the following we use

γ3 ¼ ½ε̃2�μ̂1μ̂2Γ
μ̂1μ̂2
2 : ð95Þ

We are going to investigate the result of the following trace:

Te1 ¼ trfγ3p1p2p3p4g:

Plugging in the definition of γ3 yields a trace that can be
evaluated with the help of the decomposition for T6 in
Eq. (68). Keeping the order of arguments in the trace like
displayed in each term and not eliminating any evanescent
structure yields for Te1 and all its cyclic reorderings (we use
FORM to expand the terms):

Te1 ¼ NS½−ðp1⋆p2Þðp3 · p4Þ þ ðp1⋆p3Þðp2 · p4Þ
− ðp1⋆p4Þðp2 · p3Þ − ðp2⋆p3Þðp1 · p4Þ
þ ðp2⋆p4Þðp1 · p3Þ − ðp3⋆p4Þðp1 · p2Þ�: ð96Þ

We use the shorthand pi⋆pj ¼ ½ε̃2�pipj
. The result was

expected to be invariant under cyclic reorderings, because
the generic NV-dimensional trace is cyclic by definition.
However, calculating a naive-anticommuted version of Te1 :

Te2 ¼ −trfp1γ3p2p3p4g;

yields
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Te2 ¼ NS½−ðp1⋆p2Þðp3 · p4Þ þ ðp1⋆p3Þðp2 · p4Þ
− ðp1⋆p4Þðp2 · p3Þ þ ðp2⋆p3Þðp1 · p4Þ
− ðp2⋆p4Þðp1 · p3Þ þ ðp3⋆p4Þðp1 · p2Þ�: ð97Þ

Because the sign of the last three terms of Te2 is opposite to
the ones of Te1 , we can conclude that γ3 does not anti-
commute when using the full NV-dimensional result of the
trace. However, when we label the terms that originate from
the expansion of the evanescent antisymmetrizerA3 withOE
we obtain

Te1 ¼NS½−ðp1⋆p2Þðp3 ·p4Þþðp1⋆p3Þðp2 ·p4Þ
− ðp1⋆p4Þðp2 ·p3Þ− ðp2⋆p3Þðp1 ·p4ÞOE

þðp2⋆p4Þðp1 ·p3ÞOE− ðp3⋆p4Þðp1 ·p2ÞOE�; ð98Þ

Te2 ¼NS½−ðp1⋆p2Þðp3 ·p4Þþðp1⋆p3Þðp2 ·p4Þ
− ðp1⋆p4Þðp2 ·p3Þþðp2⋆p3Þðp1 ·p4ÞOE

− ðp2⋆p4Þðp1 ·p3ÞOEþðp3⋆p4Þðp1 ·p2ÞOE�: ð99Þ

That means γ3 anticommutes through p1 when we eliminate
all evanescent contributions ∼OE. One could also say γ3
anticommutes modulo OE terms. It turns out that for each
step of anticommutation one gets another set of terms that in
the sum yield zero. When we perform all possible anti-
commutation steps we in total end upwith three independent
elimination equations:

½ε̃2�μ̂1;μ̂2A3ðp1; μ̂1; μ̂2;p2; p3; p4Þ ¼ 0; ð100Þ

½ε̃2�μ̂1;μ̂2A3ðp1; p2; μ̂1;p3; p4; μ̂2Þ ¼ 0; ð101Þ

½ε̃2�μ̂1;μ̂2A3ðp1; p2; p3;p4; μ̂1; μ̂2Þ ¼ 0: ð102Þ

These equations are known as Schouten identities and the
knowledge of the maximal decomposition allows us to
generate all of them hiding inside the trace result.
We are free to choose terms that should be eliminated

within each Schouten identity. A smart choice is to not
eliminate the terms in Te1 that are left after the OE → 0
limit is performed. For example we can choose the
replacement:

ðp2⋆p3Þðp1 ·p4Þ→ ðp1⋆p3Þðp2 ·p4Þ− ðp1⋆p2Þðp3 ·p4Þ;
ð103Þ

ðp2⋆p4Þðp1 ·p3Þ→ ðp1⋆p4Þðp2 ·p3Þ− ðp1⋆p2Þðp3 ·p4Þ;
ð104Þ

ðp3⋆p4Þðp1 ·p2Þ→ ðp1⋆p4Þðp2 ·p3Þ− ðp1⋆p3Þðp2 ·p4Þ:
ð105Þ

That means applying these replacement rules to Te1
(indicated by jE), yields

Te1 jE ¼ Te1 jOE→1jE ¼ Te1 jOE→0jE ¼ Te1 jOE→0: ð106Þ

Applying them to the results of all possible cyclic permu-
tation or/and anticommutation versions of Te1 , we find for
all of them:

Tei jE ¼ Te1 jOE→0: ð107Þ

We can also calculate all variants of

Te−1 ¼ −trfγ3p4p3p2p1g:

With the above elimination equations we obtain

Te−i jE ¼ Te1 jOE→0: ð108Þ

This result is required, because the trace result may not
depend on the reading direction. That means the result has
to be invariant under Eq. (37). At leading evanescents this is
trivially granted, however at higher evanescent levels this
restricts the solution of the decomposition to be one of
the aforementioned mirror symmetric ones. We have
checked that the statements made here remain unchanged
when working in higher dimensions N̂V ∈ f3; 4g. We also
checked for N̂V ¼ 2 that similar eliminations work at the
next to leading evanescent level, which means including an
evanescent antisymmetrizer of rank N̂V þ 2. Having no
inversion symmetric decomposition for T10 and T12 at
hand, we could only check the next to leading evanescent
elimination for N̂V ¼ 4 without the inversion relation
of Tei ↔ Te−i .
We can conclude that a consistent elimination of evan-

escent structures in traces TN with a single γNVþ1 is
necessary in order to retain the (anti-) commutativity of
γNVþ1 for N ≥ 2N̂V þ 2 for even N̂V and N ≥ N̂V þ 2 for
odd N̂V . Moreover, we justified the statement that one is
allowed to (anti-) commute γNVþ1 and use the cyclicity of
the trace beforehand as long as one sticks to a specific
elimination convention. In fact one does not need to
generate the full set of elimination rules, one can just stick
to a convenient normal form of a trace and drop its
evanescent contributions afterwards. Convenient means
that the jOE→0 operation eliminates sufficiently many terms,
just to make sure that the surviving terms can be spared
from all elimination replacements. We can only claim that
such a choice is always possible using a heuristic argument.
Explicit proofs of this statement would be very welcome.
As a final example we investigate the bilinear decom-

position property of the product γ3γμ for N̂V ¼ 2 using our
prescription of evaluating the trace. We have
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γ3γ
μ ¼ ½ε̃2�ν̂1ν̂2Γ

ν̂1ν̂2
2 Γμ

1: ð109Þ

In NV dimensions we have the complete decomposition
(OE ≠ 0):

Γν1ν2
2 Γμ

1 ¼ 2Γρ
1A2ðν1; ν2; ρ; μÞ þ Γν1ν2μ

3 OE: ð110Þ

The last term is an evanescent contribution. We can now
check the bilinear orthogonality using T6 of Eq. (68):

TΓ2γΓ2γ ¼ trfγ3γμγνγ3g ¼ ½ε̃2�ρ̂1ρ̂2 ½ε̃2�ρ̂3ρ̂4 trfγρ̂1γρ̂2γμγνγρ̂3γρ̂4g
¼ NSημν: ð111Þ

Dropping the evanescent pieces (OE ¼ 0) of the decom-
position in Eq. (110) after contracting with ½ε̃2� has to yield
the same result:

TΓ1Γ1
¼ ½ε̃2�ρ̂μtrfγρ̂γσ̂g½ε̃2�νσ̂ ¼ NSημν: ð112Þ

We can also check the result dropping only a single OE
term using T4 of Eq. (67):

TΓ2γΓ1
¼ trfγ3γμγσ̂g½ε̃2�νσ̂ ¼ NSημν: ð113Þ

We see that in this case the evanescent contributions ∼OE
are automatically removed, because all three results are in
agreement with the two-dimensional one after the continu-
ation η̂ → η.

VII. BLUEPRINT OF A REDUCTION
PRESCRIPTION

We can now formulate how a fermion trace TN has to be
evaluated in order to allow for a uniform dimensional
continuation. Note that the given prescription is just a
blueprint. That means it is not guaranteed to work for all
possible cases.
(1) If N̂V is odd: Use Eq. (54) to obtain a trace that

contains an even number of Dirac matrices.
(2) If N̂V is even: Discard all traces containing an odd

number of Dirac matrices.
(3) (Anti-) commute γNVþ1 to the left and use

γNVþ1 · γNVþ1 ¼ 1. After that one is left with traces
that contain one or zero γNVþ1.

(4) Use Eq. (31) to eliminate all trace internal contrac-
tion indices or multiple appearances of the same
vector. The elimination should be implemented in
the same way like it is done in the trace4 function
of FORM.6

(5) Bring the obtained trace in a normal form. Thatmeans
all variations of the trace that can be generated
using the cyclicity, inverting the reading direction

[see Eq. (37)] and/or (anti-) commuting of the single
γNVþ1 have to be mapped onto the same trace
expression.

(6) Use

γnþ1 ¼ inðn−1Þ=2½εn�μ̂1…μ̂n
Γμ̂1…μ̂n
n ð114Þ

to express the remaining γNVþ1 in terms of Dirac
matrices.

(7) Eliminate all ½εn� tensors originating from different
traces and/or projectors using

½εNV
�ν̂1;…;ν̂NV

½εNV
�μ̂1;…;μ̂NV

¼ N̂V!ANV
ðν̂1;…; ν̂NV

; μ̂1;…; μ̂NV
Þ: ð115Þ

When more than three ½εNV
� tensors appear (includ-

ing the ones in a potential projector), one has to
perform the pairing in a standard way. For example
an average over all possible combinations of pair-
ings does the job. Left over ½εNV

� tensors have to be
set to zero.

(8) Use the maximal decomposition of TN given in
Eqs. (67)–(69)] to express the traces in terms of
antisymmetrizers.

(9) Ensure that all problematic evanescent contributions
originating from antisymmetrizers AN with N ≥
N̂V þ 1 do not contribute.

(10) Expand the remaining AN’s using their recursive
definition of Eq. (20) following the loose hat pre-
scription of Eqs. [(77)–(79)]. All internal contraction
indices appearing in the maximal decomposition
have to be treated to be N̂V dimensional. All external
indices andmomentawhich appear in propagators are
to be treated continuous NV dimensional.

VIII. CHECKING THE VVA ANOMALY

We have implemented the reduction prescription in a
self-written FORM program to perform checks. One of the
checks we went through is the calculation of the VVA
anomaly appearing for N̂V ¼ 4. The anomaly is responsible
for the nonconservation of the axial-vector current jμAV ¼
ψ̄γ5γ

μψ even in the case of massless fermions ψ , when one
takes into account quantum corrections. That means

∂μj
μ
AV ≠ 0 ð116Þ

independent of the mass of the fermions. At classical level
(no loop corrections) the axial-vector current is conserved
for vanishing fermion mass. That means all terms appearing
on the rhs of Eq. (116) on classical level have an explicit
fermion mass dependence. For simplicity we discuss the
anomaly only for the case of an Abelian gauge theory, thus
we are only dealing with the singlet axial-vector current.

6The elimination is motivated by requirements imposed by
renormalization and goes beyond the scope of this article.
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In order to calculate the anomaly we evaluate the two
Feynman diagrams in Fig. 3 with the help of our FORM

program. We keep all appearing couplings equal to one.
Because we only want to obtain the anomaly in momentum
space we contract the amputated Green’s function with
pμ3
3 ¼ pμ3

1 þ pμ3
2 . If the axial vector was conserved this

should nullify the Green’s function. We keep the calcu-
lation as simple as possible and expand naively in small
external momenta p1 and p2 and keep a large fermion
mass m. We can also assume the on-shell conditions
p2
1 ¼ p2

2 ¼ 0. Then all appearing integrals reduce to the
class of massive one-loop tadpole integrals and can be
evaluated in NV ¼ d dimensions. Employing a simple
tensor reduction allows us to reduce scalar products like
k · p1 and k · p2 to scalar products p1 · p2 times scalar
products k · k. The latter ones can be written in terms of
inverse massive propagators. To get rid of the tensor
structure and to follow our prescription ε4 · ε4 → A4 we
use the projector:

P̂μ̂1μ̂2 ¼ N̂ ε̃p1p2μ̂1μ̂2
4 ; ð117Þ

in order to directly project on the coefficient ĉA of the
anomaly structure

T̂ μ̂1μ̂2 ¼ ε̃p1p2μ̂1μ̂2
4 : ð118Þ

That means we keep the vector indices of external particles
four-dimensional. The projector normalization is then

given by N̂ ¼ −2ðp1 · p2Þ−2. Note that ε̃4 is equivalent
to e− used in FORM. When we follow the full trace
calculation prescription and drop all mass dependent terms
after taking the small 2ϵ ¼ N̂V − NV ¼ 4 − d limit ϵ → 0,
we obtain:

ĉA ¼ 8L ¼ 1

2π2
; ð119Þ

where the loop factor is given by L−1 ¼ ð4πÞ2. One obtains
the same result when using the FORM function trace4 for the
evaluation of traces. This is a well-known text book result

[see for e.g., Eq. (2.7.24) of Ref. [42]]. In fact we can skip
any of the steps three, four and five of the prescription
and still obtain this result. Skipping step four however,
will require us to use a decomposition for T10. It is very
important to notice that even in this case no evanescent
terms∼OE stemming from an A5 appear in ĉA. We even can
do any cyclic reordering of the trace before we plug in the
decompositions. This is because the two ε̃4 tensors carrying
N̂V ¼ 4-dimensional indices automatically eliminate any
evanescent contributions in the trace, similar to the T̂t2
example we already investigated.
We can go one step back and decide to use only

continuous NV-dimensional indices for the projector:

Pμ1μ2 ¼ N ε̃p1p2μ1μ2
4 : ð120Þ

This changes the projector normalization to

N ¼ ð1þ ϵÞð1þ 2ϵÞN̂ : ð121Þ

Still replacing γ5 in the usual way and not changing its
initial position within the trace (see Fig. 3) yields

cA ¼ 0: ð122Þ

This is not the naively expected result, but it is the correct
result one has to obtain when using a purely NV ¼
d-dimensional Clifford algebra, because we take into
account all evanescent contributions through a “bad”
positioning of γ5 within the trace. Labeling the terms
stemming from A5 of the T10 decomposition with OE
indeed reveals

cA ¼ ð1 − 1 ·OEÞL; ð123Þ

where both diagrams contribute in a fully symmetric way.
Thus the anomaly is only nonvanishing when evanescent
terms are properly dropped. Therefore the discussed VVA
anomaly is an intrinsically four-dimensional object.
However, sticking to the d-dimensional approach and

anticommuting γ5 to the left of each trace (indicated by
double arrows in Fig. 3) right in front of γμ2 in the first
diagram and γμ1 in the second diagram before using the
trace decomposition one obtains again

ĉ0A ¼ 8L ¼ 1

2π2
: ð124Þ

The result is free of OE terms and both diagrams still
contribute in a fully symmetric way. That means we
eliminated all evanescent contribution just by performing
a naive anticommutation in each diagram. In more detail we
have chosen a position of γ5 in the trace where the
antisymmetrizer A5 cannot contribute, when its first quintet
of indices is contracted through four indices with ϵ̃4 and

FIG. 3. Feynman diagrams relevant for the VVA anomaly in
N̂V ¼ 4 dimensions. The propagator labeled with loop momen-
tum k does not carry any external momentum. Black circles
correspond to vector couplings ∼γμ. Black rectangles indicate the
position of γ5. The double arrows indicate the starting point of the
trace chosen in our setup.
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one index with μ1 or μ2 (depending on the diagram). But for
its second quintet of vector indices we only have left k, p1,
p2 and μ2 or μ1. That means we cannot saturate the second
quintet of indices with five different sources and thus the A5

contribution will vanish. So through a smart positioning of
γ5 within a trace it is possible to automatically eliminate
evanescent contributions. This is in fact the approach
Kreimer’s prescription [28,29,31] follows. It is a very
elegant approach, because it only requires the reduction
of Dirac chains in continuous NV ¼ d dimensions.
However, to the best of the author’s knowledge, it has
not been proven that one can always eliminate any harmful
evanescent contributions just by a naive anticommutation
of γ5. Especially for the case of purely virtual fermion
traces—where the lack of external particles makes a unique
designation of a reading point quite difficult—one can have
doubts that there is always a configuration at hand which
automatically cancels the evanescent contributions in the
sum of all contributing diagrams. Especially for the case
where ten different vectors or vector indices appear within a
single trace. Here there is clearly no positioning of γ5
available such that A5 does vanish within this trace and the
cancellation (if it does take place) has to happen in the sum
of all traces.
We leave the check that the singlet VVA anomaly does

not receive radiative corrections beyond the one-loop order
for future work. It would also be interesting to reevaluate
the results of Ref. [43] within our prescription.
Besides the VVA anomaly analysis, we applied and

checked our prescription in multiloop Z-factor calculations,
which we are going to discuss in the next section.

IX. DISCUSSION

Weare now in the position to discuss various prescriptions
used in literature comparing to the prescription defined in
this article.
Comparing the trace4 algorithm implemented in the

computer algebra program FORM to our prescription only
yields different results for traces TN with N ≥ 10 and more
than four different external indices/vectors. Like the FORM

manual states it provides very short results. This means that
it does not just discard the contribution of evanescent
antisymmetrizers appearing in the decomposition of the
NV-dimensional trace result, but in fact uses all available
evanescent equations to eliminate as many terms as
possible. In fact trace4 does not do this explicitly but
implicitly by the application of the four-dimensional
reduction of Eq. (59). However, the eliminations performed
are not suitable for the renormalization program, because it
eliminates too many terms of the traces.
Having identified evanescent contributions in a trace we

are in the position to understand why the very ad hoc
prescription introduced by Larin [26] does work. In order to
calculate the pure QCD corrections for the nonsinglet piece
of the axial-vector current

Jμ5a ¼
1

2
ψ̄ ½γ5; γμ�taψ ; ð125Þ

he rewrites 1
2
½γ5; γμ� in terms of ½ε̃4�μν1ν2ν3Γ3;ν1ν2ν3 and uses a

projector proportional to the same structure. This reduces the
calculation of the axial-vector current coefficient to a trace
calculation. Before evaluating the trace he uses Eq. (23) to
eliminate the two ε̃4 tensors in favor of A4 which is then
treated to contain continuous NV-dimensional η tensors.
This then allows us to evaluate the trace in continuous NV
dimensions. Clearly, Larin’s prescription does not induce an
anticommuting γ5 and the fact that it does not anticommute
implies that it takes into account and includes N̂V ¼ 4
evanescent contributions, because one evaluates the trace
with an infinite dimensional Clifford algebra. That means
one has to evaluate tracesTN withN ¼ 10 already at the one-
loop level. Because the evanescent contributions have a
lower degree of divergence, they do not affect the renorm-
alization of the leading UV poles. Moreover, after perform-
ing the subdivergence subtraction explicitly via insertion of
explicit wave function and vertex counterterms, they are
only made finite due to the remaining overall divergence.
But since the overall divergence can be absorbed by a
multiplicative renormalization constant Zns

MS, all evanescent
contributions can be subtracted by an inclusive finite
renormalization constant Z5

ns which then restores the
Ward identity that connects the nonsinglet vector current
with the nonsinglet axial-vector current. However, Larin’s
prescription of subtracting evanescent contributions at the
integrated level with a finite correction factor cannot be
straightforwardly applied to amplitudes which are not
renormalized by a single, overall Z factor, once the sub-
divergences have been subtracted. In this case the factori-
zation ansatz for the finite renormalization cannot be used,
because different terms of the amplitude contain different
amounts of evanescent contributions. This is for example
already the casewhen one considers massive fermions in the
loops that require a mass renormalization. Notice that the
mass terms in the numerators of propagators undergo a
completely different reduction and divergence power count-
ing than the slashed momenta during the trace evaluations.
In any case removing evanescent contributions at the
integrated level is to be considered a quite pragmatic
approach and should be abandoned as soon as one gets a
handle on them at the integrand level.
Our prescription justifies the approach to anticommute

γ5 and obtained ε4 tensors like in four dimensions for the
evaluation of β functions in the SM up to including three
loops in Refs. [4–6], because the divergent pieces of the
three-loop calculation are not sensitive to evanescent
contributions when following either our prescription or
simply using the function trace4 in FORM to reduce the
appearing traces. We checked the absence of evanescent
contributions at three-loop level in the Z factors required
for the calculation of βαs the strong coupling β function, the
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β function of the Yukawa-coupling for top βαt and bottom
quark βαb , as well as the Higgs self-coupling βλ by an
explicit calculation, taking into account all corrections
proportional to αs, αt, αb and λ.
We can also comment on the recent evaluation of the

four-loop Yukawa β function in Refs. [9,10]. Both groups
use Kreimer’s prescription [28,29,31] for dealing with γ5
within DREG. The first group also uses the ’t Hooft-
Veltman prescription elaborated in Ref. [25] in order to
validate the problematic non-naive contribution.
The obtained results by both groups indicate reading point

dependent results for the β function. That means different
places where γ5 is naively anticommuted to before the trace
evaluation takes place yield different results. There already
appeared publications [44,45] about how to resolve this
intrinsic ambiguity with the help of Weyl consistency
conditions obtained from curved space-time considerations.
With the insight obtained in this article, we suggest that

the reading point dependence could arise due to the missing
elimination of evanescent contributions, which we checked
already appear at the three-loop level in finite parts of the
amplitudes involved. There we start to run into traces TN
with N ≥ 10 with six different trace external momenta/
indices and a single γ5 when following our reduction
prescription. However, for traces TN with N < 10 our
prescription yields the same results as Kreimer’s prescrip-
tion when calculating β functions. The major difference is
that our prescription does not attempt to embed the four-
dimensional algebra in a continuous NV-dimensional one,
but continues the trace external momenta and indices—
appearing in the trace result—to continuousNV dimensions,
trying to avoid the contamination of N̂V evanescent
contributions.
Last but not least we understand why trace4 is applicable

for a Z-factor calculation within the chiral-XY Gross-
Neveu-Yukawa model up to including four loops. Simply
because there are not sufficiently many (N < 10) Dirac
matrices in the trace TN to create any evanescent contri-
butions for N̂V ¼ 4.

X. SUMMARY

In this article we have been investigating how the results
of fermion trace evaluations in integer dimensions N̂V can
be continued to noninteger dimensions NV in a uniform
way. Such a continuation is required for a dimensional
regulator in the presence of γNVþ1.
This approach is conceptually very different to the one

where one lifts the soN and Clifford algebra from integer
dimensions to generic noninteger dimensions like this is

done in DREG. We claim that the latter only works when
intrinsically integer dimensions contributions like the ones
∼ε are allowed to be dropped. In order to distinguish both
methods we call regulators employing dimensional con-
tinuation dimensionally continued regularization.
We identified evanescent contributions appearing in

fermion traces TN for N ≥ N̂V and noticed that their
presence can stop the intrinsic integer dimension Dirac
matrices γNVþ1 from (anti)-commuting. In order to allow a
uniform continuation and respect the (anti-) commutativity
of γNVþ1 a systematic elimination of these evanescent
contributions has to be carried out. We worked out that
the proper treatment of N̂V- and NV-dimensional vector
indices is given by the loose hat prescription, which does
not correspond to the ’t Hooft-Veltman prescription elab-
orated in Ref. [25].
A successful construction of a dimensional regulator that

does not need symmetry restoring finite renormalization
factors requires full control over all present evanescent
contributions. We do not claim that the decomposition of
fermion traces is sufficient to achieve this goal for any
amplitude, but showed that it is a relevant ingredient.
The performed application of our prescription up to the

three-loop level in the SM and four-loop level in the chiral-
XY Gross-Neveu-Yukawa model could indicate that a
symmetry preserving, dimensional regulator exists and an
all order formulation might be in reach. The steps performed
in this paper can thus be understood as very basic steps on the
way to a dimensional solution of the “γ5 problem.”
However, we leave the explicit elimination of evanescent

structures which are beyond the loose hat prescription and
all its impact on an actual multiloop calculation, like in the
determination of the SM β functions at the four-loop level
and the calculation of radiative corrections to the VVA
anomaly for future work. Of course this also includes the
explicit discussion of the constraints on the evaluation of
traces due to renormalization. One further major obstacle is
the determination of complete and symmetric decomposi-
tion of TN with higher values of 10 ≤ N < 20.
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