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1 Introduction

The asymptotically anti-de Sitter (AdS) black holes are very fascinating objects. They

have much richer and more diverse structures than the asymptotically flat black holes. The

topology of event horizon can be spherical, toroidal, and hyperbolic. This allows that the

incorporation of scalar hairs is much easier and thus they can be readily used to probe the

physics of the dual conformal field theory (CFT). By the AdS/CFT correspondence [1, 2],

AdS black holes provide a powerful tool to study various strongly coupled CFTs including

relevant or marginal deformations at finite temperature.

The motivation of our work comes from recently constructed supesymmetric mod-

els deformed by a spatially dependent sources [3, 4], which are called Inhomogeneously

mass-deformed ABJM (ImABJM) models. Those are based on the ABJM theory [5] and
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the mass-deformed ABJM (mABJM) theory [6, 7]. As is well known, the ABJM the-

ory describes N M2-branes probing an orbifold C4/Zq and it is the N = 6 non-Abelian

Chern-Simons (CS) matter theory with the gauge group U−q(N)× Uq(N) at the CS level

q. For lower q-levels, the supersymmetry of the theory is enhanced to N = 8 supersymme-

try. The gravity dual of the ABJM theory is known as the 11-dimensional supergravity on

AdS4×S7/Zq. This ABJM theory is conformal and allows the supersymmetric mass defor-

mation without loss of supersymmetry. Thus this deformation results in the non-conformal

N = 6 mABJM theory.

The physical origin of the mass term is well understood in the M2 brane worldvolume

picture [8]. It turns out that the mass parameter m̂ can be identified with the four-form

field strength FABCD of the 11-dimensional supergravity, which is turned on along the

perpendicular directions to the worldvolume of the M2-branes. Here the indices ABCD

denote C4 directions. Thus the four-form field strength can be regarded as a scalar on the

world volume. Suppose the four-form allows the dependence of a worldvolme coordinate

x, then the mass parameter becomes a function m̂(x) and another component of the field

strength FxA′B′C′ ∼ m̂′(x) should be turned on by the Bianchi identity [3]. Here the

indices A′B′C ′ again stand for some perpendicular directions. This is actually regarded

as a one-form field strength on the worldvolume point of view. Thus this one-form field

strength1 induced by the inhomogeneity can be dualized to a two-form field strength. In the

dual gravity picture, this becomes a three-form field strength including the radial direction

and carries a brane charge. We show this structure by a field redefinition of the complex

scalar field in the action (2.1). Although we focused mainly on the AdS Q-soliton with a

complex scalar hair, a part of study on the black branes has been done recently without

introduction of the brane charge in [9].

In order to describe deformed ABJM theories in the strong coupling limit, we consider

the corresponding gravity action. Since, as we mentioned, the vacuum of the ABJM theory

is dual to AdS4×S7/Zq, one can consider a consistent truncation of the D = 11 supergravity

on S7 naturally. This truncation leads to the N = 8 SO(8) gauged supergravity in 4-

dimensions [10]. Also, a further truncation can be taken and the final resultant theory

becomes the N = 4 SO(4) gauged supergravity in 4-dimensions [11]. Therefore the gravity

duals to the ImABJM models can be expected to be solutions of an action which belongs

to the N = 4 gauged supergravity and also the SO(4) × SO(4) invariant sector of N = 8

gauged supergravity.

In [12, 13], the authors considered a special case of the N = 4 supergravity action

coupled to a single chiral multiplet. See (2.1) for the bosonic part of the action. This

action also belongs to N = 1 supergravity theory in 4-dimensions.2 In those works, the

authors conjectured that the gravity solutions they found are dual to the N = 3 ImABJM

models [3] with spatially modulated mass functions. In particular, the supersymmetric

domain wall solution with the, so-called, Q-lattice ansatz [12, 16] shows a novel boomerang

RG flow. They also showed that the gravity solutions are consistent with Ward identities

1In the bulk picture this one-form is equivalent to a massless scalar which would be explained in section 2.
2This action can also be obtained from the N = 2 STU gauged supergravity [14, 15].
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and the physical quantities in the ImABJM models. It deserves to note that the solutions

in this 4-dimensional action can be uplifted to the D=11 supergravity theory. So it would

be a promising direction to find the 11-dimensional origin of the gravity solutions.

On the other hand, it is also interesting to study the gravity duals of the ImABJM

models at finite temperature. In this paper, we are devoted to this problem. In order

to make the ploblem simpler, we focus on solutions of the bosonic action (2.1) for the

sinusoidal mass function. As a natural analysis of the system, we use the field redefinition

(equation (2.3) z = tanh ρeiχ) mentioned earlier. Then we can introduce the dualized three-

form field strength from the phase of the complex scalar. A nontrivial three-form carrying

the brane charge renders the thermodynamics of the black branes much richer than the

vanishing charge configuration corresponding to a homogeneous system. We complete the

thermodynamics of the black brane with the complex scalar hair, or equivalently the real

scalar and the three-form field strength, describing relevant and marginal deformations.

Also, the inhomogeneity considered in the deformations induces anisotropic structure

of the thermodynamics, even though we introduce a little bit simple form of the inho-

mogeneity, Q-lattice ansatz. Interestingly, the bulk pressure3 and the charge encode the

inhomogeneity successfully. In addition we identify the pressure with the bulk pressure at

the horizon and this prescription leads to a consistent thermodynamic volume. This is the

first work of the hairy bulk pressure with numerically generated black brane solutions.

The black hole thermodynamics is completed by the first law and the Smarr rela-

tion [19]. We use the off-shell Abbott-Deser-Tekin (ADT) formalism invented and devel-

oped in [20–25] to find the first law. In addition the reduced action formalism [26–28] is

considered to obtain the Smarr relation. We provide the thermodynamic first law not only

for the bulk system but also for the boundary field theory, which, in general, is not easy to

achieve with numerical solutions. The Smarr relation relates data of the boundary of AdS

space to those at the horizon. In the bulk side, it gives the consistent relation between

the horizon quantity, such as the Bekenstein-Hawking entropy, the Hawking temperature,

and the pressure at the horizon, and the physical quantities evaluated at the boundary, the

black hole mass and the brane charge carried by the three-form field strength. In the dual

field theory, the Smarr relation gives us correct expressions of the thermodynamic poten-

tials. In particular, we analyze the thermodynamics of the Q-lattice black brane which is

dual to a N = 3 ImABJM model with a relevant deformation related to mass function,

m̂(x) = m̂0 sin kx. This is the first study of the ImABJM model at finite temperature

accompanied by our preliminary study for the Q-lattice black brane [9].

This paper is organized as follows. In section 2 we define a field redefinition which

makes it easy to introduce the three-form field strength. In addtion we provide various

physical quantities and find numerical solutions. In section 3 we summarize the off-shell

ADT formalism and the reduced action formalism and find the first law and the Smarr

relation of the black brane solutions. In section 4 we focus on the neutral black brane

case with the vanishing modulation or brane charge and we discuss the prescription about

3The cosmological constant was introduced as the pressure to extend the bulk AdS black hole thermo-

dynamics [17]. See also for a recent review [18].

– 3 –



J
H
E
P
0
2
(
2
0
2
0
)
0
6
2

determination of the black hole mass for marginal and relevant deformations. In section 5

we reveal the thermodynamics of the charged black branes in terms of the bulk and the

boundary interpretations. In section 6 we investigate the thermodynamics of the N = 3

ImABJM model with the sinusoidal mass function. In section 7 we summarize our work

and provide future directions.

2 Black brane solutions

In this section we present solutions of the action included in SO(4)×SO(4) invariant sector

of the N = 8 gauged supergravity in 4-dimesions. The solutions have scalar hair describ-

ing the two-form gauge field charge. The neutral solution corresponds to the marginal

deformation in the dual conformal field theory (CFT) [29]. The other charged solution,

which was recently found in [9], is dual to a mass-deformed ABJM theory which is gen-

erated by spatially dependent source functions. It can also be regarded as dual to the

3-dimensional CFT in the background of non-trivial charge distribution and corresponding

chemical potential.

2.1 The supergravity action and the brane configuration

Our starting action is the bosonic part of the supergravity action which is given by4

SB =
1

2

∫
d4x
√
−g
(
R− 2

(1− |z|2)2
∂µz ∂

µz̄ +
2(3− |z|2)

1− |z|2

)
. (2.1)

The vacuum solution is the 4-dimensional AdS spacetime with the cosmological constant

Λ = −3. The mass of the complex scalar field z = X + iY is given by m2 = −2 and

thus in the hairy solutions the scalar field can have two normalizable complex modes at

the boundary, one of which is interpreted as the source of the dual boundary operator and

the other its expectation value. In [9], the numerical black brane solutions were found in

which the complex scalar field z is found to be in the Q-lattice configuration as

z(r, x) = |z|eikx , (2.2)

to see the modulation effect in the dual mass-deformed ABJM model. In this paper we

give an alternative form of the action which is connected with the action (2.1) by the field

redefinition and use both action to describe the thermodynamics of the bulk gravity as well

as of the boundary CFT.

The complex scalar field z can be decomposed as the modulus and the phase as

z = tanh ρ eiχ . (2.3)

The action (2.1) can be rewritten in terms of these fields as

SB =
1

2

∫
d4x
√
−g
(
R− 2(∂ρ)2 − 1

2
sinh2(2ρ)(∂χ)2 + 2(2 + cosh(2ρ))

)
. (2.4)

4We use the conventions: 8πG = 1, l = 1.
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There is no potential term for the phase field and thus the equation of motion for the scalar

field χ,

∇µ(sinh2(2ρ) ∂µχ) = 0 , (2.5)

suggests that we can introduce a two-form gauge field Cµν whose field strength is Poincaré

dual to χ as

F(3) ≡ dC = sinh2(2ρ) ∗ dχ . (2.6)

In terms of this two-form gauge field, the alternative form of the bulk action can be

written as

S =
1

2

∫
d4x
√
−g
(
R− 2(∂ρ)2 − 1

2
sinh−2(2ρ) |dC|2 + 2(3 + 2 sinh2 ρ)

)
. (2.7)

One may note that the two-form gauge field is effectively decoupled at the AdS vacuum as

the scalar field ρ vanishes and so does the effective gauge coupling.

2.2 The neutral black brane solution with scalar hair

In this subsection, we consider the neutral black brane solution with a real scalar hair. The

metric ansatz of the black brane solution with planar symmetry can be taken as

ds2 = −U(r)e2W0(r)dt2 +
dr2

U(r)
+ r2(dx2 + dy2) (2.8)

with non-vanishing scalar field ρ(r). The regularity condition for the scalar field at the

horizon (r = rh) is given by

ρ′(rh) = − 2 sinh(2ρh)

rh(2 + cosh(2ρh))
, (2.9)

where ρ′(r) denotes the derivative of the scalar field ρ(r) with respect to the coordinate r.

The asymptotic expansions of the metric and the scalar field are given by

U(r) ∼ r2 + ρ2
1 −

m

r
+

2ρ2
2

r2
− mρ2

1

6r3
+ · · · ,

W0(r) ∼ − ρ2
1

2r2
− 4ρ1ρ2

3r3
+ · · · ,

ρ(r) ∼ ρ1

r
+
ρ2

r2
− ρ3

1

6r3
+ · · · . (2.10)

The temperature and the entropy density of this black brane are determined as

T =
1

4π
eW0(rh)U ′(rh) =

rh
4π
ew0

(
2 + cosh(2ρh)

)
, s = 2πr2

h , (2.11)

where the second equality in the expression of the temperature T comes from the equation

of motion. We choose that the fields, ρ(r) and W0, vanish as they approach the asymptotic

boundary, and introduce the values of those fields at the event horizon as ρh = ρ(rh) and

w0 = W0(rh). This solution was given and analyzed in [29].
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2.3 The charged black brane solution with scalar hair

Now we present the charged black brane solution dual to the massive deformation of ABJM

model with spatially dependent mass. We turn on the phase scalar field as χ = kx. In the

dual two-form field perspective, the quantum number k corresponds to the charge of the

two-form gauge field. Therefore the configuration is that the charged branes spanning in

the y-direction are located periodically in the x-direction. As alluded in the introduction,

from the perspective of 11-dimensional supergravity on AdS4 × S7/Zq, this arises as the

turning on the non-trivial four-form field strength. This would correspond to the insertion

of the additional k M5-brane wrapping 4-cycles in S7/Zq and stretching in the y-direction.

The ansatz for the metric is taken as

ds2 = −U(r)e2W0(r)dt2 +
dr2

U(r)
+ r2(e2W1(r)dx2 + dy2) , (2.12)

where we need to add the metric function W1(r) to incorporate the anisotropy due to the

non-vanishing two-form gauge field. The regularity condition for the scalar field at the

horizon is given by

ρ′(rh) = −
sinh(2ρh)(2r2

h − e−2w1k2 cosh(2ρh))

2r3
h(2 + cosh(2ρh))

, (2.13)

where the metric function W1 is chosen to vanish at the asymptotic boundary by taking

an appropriate value w1 = W1(rh) at the event horizon. The asymptotic behavior of the

fields is found to be

U(r) ∼ r2 + ρ2
1 −

m

r
+

2ρ2
2

r2
+

8k2ρ1ρ2 −mρ2
1

6r3
+ · · · ,

W0(r) ∼ − ρ2
1

2r2
− 4ρ1ρ2 + 3kω

3r3
+ · · · ,

W1(r) ∼ kω

r3
− k2ρ2

1

2r4
+ · · · ,

ρ(r) ∼ ρ1

r
+
ρ2

r2
+

3k2ρ1 − ρ3
1

6r3
+ · · · . (2.14)

The behavior of these functions on the radial coordinate r is plotted in figure 1 for a

numerical solution. For more numerical results on this black brane solution, see [9]. The

temperature and the entropy density of this charged black brane are computed as

T =
1

4π
eW0(rh)U ′(rh) =

rh
4π
ew0

(
2 + cosh(2ρh)

)
, s = 2πr2

he
w1 . (2.15)

By the Noether method, the electric charge per unit length of the two-form gauge field

C is given by

q ≡ 1

2

∫
sinh−2(2ρ) ∗ dC =

1

2

∫
dχ =

1

2
k , (2.16)

which is nothing but the number of branes stretching along the y-direction per unit length

in the x-direction. This could be regarded as the ‘magnetic’ charge of the phase scalar field
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Figure 1. A numerical solution of the black branes with k = 0.8 rh, ρh = 0.2, w0 = −0.0176 and

w1 = 0.0096.

χ. In this charge configuration, the non-vanishing component of the two-form gauge field

is given by

Cty(r) = k

∫ r

rh

dr′ eW0−W1 sinh2(2ρ) , (2.17)

that is chosen to vanish at the horizon to satisfy the regularity condition of the gauge field.

Then the associated chemical potential of the charge density q is defined as

Φ ≡ Cty(∞) = k

∫ ∞
rh

dr eW0−W1 sinh2(2ρ) = 6ω . (2.18)

The asymptotic expansion of Cty is given by

Cty(r) = k

∫ ∞
rh

dr′ eW0−W1 sinh2(2ρ)− k
∫ ∞
r

dr′ eW0−W1 sinh2(2ρ)

= Φ− 4kρ2
1

r
+ · · · , (2.19)

where the leading term corresponds to the chemical potential while the coefficient of the

next-to-leading term does to the charge.

3 Bulk conserved charges and reduced action formalism

In this section, we establish the black brane thermodynamics by finding bulk charges which

satisfy the thermodynamic first law. The infinitesimal expressions of bulk charges can be

integrated with proper boundary condition. We also obtain the relation which connects
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the parameters at the horizon and those at the asymptotic boundary by using the scaling

symmetry in the reduced action formalism.

3.1 Bulk conserved charges

We construct the well-defined conserved charge densities of the black brane, which play the

role as thermodynamic variables and satisfy the first law of black hole thermodynamics.

In this paper, we use the off-shell ADT formalism developed in [23, 24, 30–32] to obtain

these conserved charges.

Let us start with the brief review of the off-shell ADT formalism we use. In the original

ADT formulation [20, 21], total conserved charges, like mass and angular momentum, are

constructed via linearization of the gravitational field equation denoted by δEg, and the

corresponding current

J µ = δEµνg ξν ,

is introduced for isometry generated by a Killing vector ξ. By using the fact that this

current is conserved for the on-shell configuration, one can get the total charge expression

which is given by the integration at the asymptotic boundary. As is well known, the entropy

of the black hole can be interpreted as the Noether charge at the Killing horizon [33, 34].

One may introduce quasi-local charges and extend the ADT formalism to incorporate the

conserved charge at the event horizon as well as the conserved charges defined at the

asymptotic infinity.

In order to achieve this extension, we promote the current, J µ, to identically conserved

current satisfying ∇µJ µADT = 0, which does not need equations of motion. This current

is constructed by adding appropriate terms, which will be clarified soon. This allows us

to have the off-shell ADT potential, QµνADT, which is defined as J µADT ≡ ∇νQ
µν
ADT. We

would like to note that the potential is related to the linearized Noether potential and

the surface terms introduced in Wald’s formulae in [33, 34]. Therefore, we can obtain the

conserved charges in a pure gravity theory by integrating the off-shell ADT potential on a

codimension-2 hypersurface including the Killing horizon of the black holes.

Now we follow the procedure described in [23] where quasi-local conserved charges are

constructed in the gravity theory coupled to matter fields. The generic variation of the

action (2.7) with respect to the metric and matter fields can be expressed as

δS =
1

2

∫
d4x
√
−g
(
Egµνδgµν + Eρδρ+ EµνC δCµν + ∂µΘ

µ(δg, δρ, δC)
)
, (3.1)

where Egµν , Eρ and EµνC denote the expressions of the field equations and Θµ stands for the

surface term. The explicit expressions of the Einstein equation and the energy-momentum

tensors are given by

Egµν ≡ Gµν − T ρµν − TCµν ,

Gµν = Rµν −
1

2
gµνR ,

T ρµν = 2∂µρ ∂νρ+
1

2
gµν

[
−2(∂ρ)2 + 2(3 + 2 sinh2 ρ)

]
, (3.2)

TCµν =
1

4
sinh−2(2ρ)F

(3)
µαβF

(3)
ν

αβ +
1

2
gµν

[
− 1

12
sinh−2(2ρ)Fαβγ(3) F

(3)
αβγ

]
,

– 8 –



J
H
E
P
0
2
(
2
0
2
0
)
0
6
2

and the field equations for ρ and C are determined as

Eρ = 4∇2ρ+ 2 coth(2ρ) sinh−2(2ρ)F 2
(3) + 4 sinh(2ρ) ,

EµνC =
1

2
∇ρ
[
sinh−2(2ρ)F ρµν

]
. (3.3)

The surface term for each field variation can be written as follows:

Θµ(δg, δρ, δC) ≡ Θµ
g (δg) + Θµ

ρ(δρ) + Θµ
C(δC) ,

Θµ
g (δg) =

√
−g

[
gµν∇λδgνλ − gνλ∇µδgνλ

]
,

Θµ
ρ(δρ) = −4

√
−g ∂µρ δρ , (3.4)

Θµ
C(δC) = −1

2

√
−g sinh−2(2ρ)Fµαβ(3) δCαβ .

Under the diffeomorphism generated by the vector field ζ, the following off-shell iden-

tity holds:

2ζν∇µEµνg + Eρ£ζρ+ EµνC £ζCµν = ∇µ(Zµνζν) , (3.5)

where £ζ denotes the Lie derivative along ζ direction. The rank-2 tensor Zµν comes from

the matter fields due to the Bianchi identity. With a little algebra, one can show that Zµν

is proportional to the field equations of the matter fields and the only contribution comes

from the two-form gauge field as follows:

Zµν = 2EµρC Cν ρ = −∇α
(

sinh−2(2ρ)Fµαβ(3)

)
Cβ

ν . (3.6)

This appears in the following construction of the off-shell ADT current. Using the iden-

tity (3.5), the following equality holds:

[£ζ , δ ](
√
−gL) = ∂µ

[
δ

(√
−g
[
Eµνg −

1

2
Zµν

]
ζν

)
+

1

2
ωµ(£ζψ, δψ )

− 1

2

√
−gζµEαβg δgαβ +

1

2

√
−gζµEρδρ+

1

2

√
−gζµEαβC δCαβ

]
, (3.7)

where L is the Lagrangian density of our model and ψ = (gµν , ρ, C). The symplectic

current ωµ is defined as

ωµ(δ1ψ, δ2ψ) ≡ δ1Θ
µ(δ2ψ)− δ2Θ

µ(δ1ψ) . (3.8)

The left-hand side of the eq. (3.7) as well as the symplectic current vanish when the

vector ζ becomes Killing vector ξ. Naturally we can construct the ADT current JADT for

our model by

√
−gJ µADT(ξ) ≡ δ

(√
−g
[
Eµνg −

1

2
Zµν

]
ξν

)
− 1

2

√
−gξµEαβg δgαβ +

1

2

√
−gξµEρδρ+

1

2

√
−gξµEαβC δCαβ , (3.9)
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which is conserved identically. Consequently, we obtain the off-shell ADT potential from

the divergence relation J µνADT = ∇νQµνADT. In our case, the off-shell ADT potential can be

expressed separately by the contributions of each field as

QµνADT(ξ; δg, δρ, δC) = QµνADT(ξ; δg) +QµνADT(ξ; δρ) +QµνADT(ξ; δC) . (3.10)

Here we display explicit formulae for each term:

QµνADT(ξ; δg) = ξ[µ∇αδgν]α − ξα∇[µδgν]α − gαβξ[µ∇ν]δgαβ + δgα[µ∇αξν]

− 1

2
gαβδg

αβ

(
∇[µξν] − 1

2
sinh−2(2ρ)FµνσCσλξ

λ

)
+ sinh−2(2ρ)

(
δgα[µFα

ν]β +
1

2
Fµναδg

αβ

)
Cβγξ

γ ,

QµνADT(ξ; δρ) = 2 δρ
(

2ξ[µ∂ν]ρ+ coth(2ρ) sinh−2(2ρ)FµναCαβξ
β
)
,

QµνADT(ξ; δC) =
1

2
sinh−2(2ρ)

(
ξ[µF ν]αβδCαβ − FµναξβδCαβ − gµαgνβδ(Fαβγ)Cγλξ

λ
)
.

The infinitesimal expression for the conserved charges, δQΣ, associated with the Killing

vector ξ in terms of the potential QµνADT(δg, δρ, δC) is given by

δQΣ =

∫
Σ
dD−2xµν

√
−g QµνADT(δg, δρ, δC) , (3.11)

where
∫

Σ d
D−2xµν is the integration over the codimension-2 hypersurface Σ. After applying

the ansatz (2.12) to (3.10), we obtain the expression of the infinitesimal charge density on

Σ for the timelike Killing vector ξ = ∂t as

δQΣ =

∫
Σ
dxdy eW0+W1

[
r

2

(
−2− rW ′1

)
δU − 3

2
e−2W0 sinh−2(2ρ)CtyC

′
tyδW0

− 1

2

(
2rU(1 + rW ′0 − rW ′1)− r2U ′ + e−2W0 sinh−2(2ρ)C ′ty

)
δW1

− r2UδW ′1 − 2r2
(
Uρ′ + 2e−W0 coth(2ρ) sinh−2(2ρ)C ′tyCty

)
δρ

− 1

2
e−2W0 sinh−2(2ρ)CtyδC

′
ty

]
. (3.12)

At the horizon, Σ = H, it becomes

δQH =
1

2
ew0+w1 r2

h

(
2δrh + rhδw1

)(
2 + cosh(2ρh)

)
=
ew0U(rh)′

4π
δ
(
2πr2

he
w1
)

= Tδs . (3.13)

On the other hand, the infinitesimal conserved charge density at the asymptotic boundary

gives

δQ∞(δg, δρ) = δM = δm+ 3δ(kω) + 2δ(ρ1ρ2) + 2ρ2δρ1 ,

δQ∞(δC) = −Φδq = −3ωδk . (3.14)
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Let us consider the codimension-1 hypersurface C with interior boundary H at the

horizon and asymptotic boundary at r → ∞. Then the integration of the current J µADT

over this hypersurface C vanishes on-shell:∫
C
dD−1xµ

√
−gJ µADT

∣∣∣
E=0,δE=0

= 0 , (3.15)

which gives the following relation∫
∞
dD−2xµν

√
−g Qµν −

∫
H
dD−2xµν

√
−g Qµν = δQ∞ − δQH = 0 . (3.16)

This establishes the thermodynamic first law of this charged black brane as

dM = Tds+ Φdq .

In order to guarantee the integrability of the mass density, we need to impose a relation

between two normalizable modes ρ1 and ρ2 in asymptotic expansion (2.14) of the scalar

field. This relation, denoted as ρ2 = dW (ρ1)
dρ1

for some function W , is deeply related to the

deformation of the dual conformal field theory [35]. With this boundary condition, the

mass density can be integrated as

M = m+ 3kω + 2ρ1ρ2 + 2W . (3.17)

3.2 Reduced action formalism and scaling symmetry

In the numerical solution of the black hole with scalar hair, it is usually not easy to connect

the parameters at the horizon with those at the asymptotic boundary. It is not straight-

forward to obtain the Smarr relation of the black hole either. In this respect, the reduced

action formalism accompanied by ‘scaling symmetry technique’ developed in [26–28, 36–40]

is highly useful. We start with the following reduced action:

SB =

∫
drd3xLred , (3.18)

where the reduced Lagrangian Lred is obtained by plugging the ansatz (2.12) into the bulk

action (2.1). In our case, it is given by

Lred =
eW0+W1

2

[
r2U ′W ′1 + 2rUW ′0

(
1 + rW ′1

)
− 2r2Uρ′2

+
1

2
e−2W0 sinh−2(2ρ)(C ′ty)

2 + r2
(
5 + cosh(2ρ)

)]
, (3.19)

up to total derivative terms with respect to r.

Now we consider the scaling transformation of the reduced action. Generically a field

Ψ(r) with scaling weight wΨ transforms as δσΨ = wΨΨ−rΨ′. If we assign weights of those

functions (U, eW0 , eW1 , ρ) as (2,−2,−1, 0), then the variation of the reduced Lagrangian is

given by the total derivative as

δσLred = −(rLred)′ , (3.20)
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up to the equations of motion of the reduced action. Thus the action is invariant under

the scaling transformation.5 On the other hand, the general variation of the reduced

Lagrangian is given by

δLred = EΨδΨ + Θ′(δΨ) , (3.21)

where Ψ denotes functions, U,W0,W1, and ρ, collectively and EΨ is the corresponding

equation of motion operator. By equating the above two variations in eqs. (3.20) and

eqs. (3.21) for the variation under scaling along with the on-shell condition (EΨ = 0), one

obtains the relation: (
Θ(δσΨ) + rLred

)′
= 0 . (3.22)

This tells us that the quantity,

c(r) ≡ Θ(δσΨ) + rLred , (3.23)

can be regarded as a conserved ‘charge’ along the radial direction r. The charge function

c(r) can be expressed as

c(r) =
eW0+W1

2

[
r2U ′ + 2rU(−1 + rW ′0)

]
. (3.24)

Since the ‘charge’ is conserved, i.e. c′(r) = 0, it has the same value for any r, and

in particular c(rh) = c(r → ∞). At both locations, the charge function is related to

thermodynamic variables defined there and this provides a nontrivial relation between

those quantities. In our case at hand, the values of the charge function are given by

c(rh) =
1

2
r2
he
w0+w1U ′(rh) = sT ,

c(∞) =
1

2

(
3m+ 8ρ1ρ2 + 6kω

)
. (3.25)

4 The thermodynamics of the neutral black brane and its dual CFT

In order to establish the relation between the free energy and the on-shell action in the

bulk as well as in the dual conformal field theory, we need to specify the function W (ρ1),

implying the boundary condition of the scalar field, in the expression of mass density, (5.3).

It is deeply related to the deformation of the dual CFT. In this section we describe the

thermodynamics of the neutral black brane and the thermodynamics of the dual CFT.

In particular, we consider the case corresponding to the marginal deformation by the

conformal dimension three operator. In section 6, we consider the case of the deformation

from other external sources.

4.1 The black brane thermodynamics

The two non-vanishing normalizable modes, ρ1 and ρ2, of the scalar field ρ correspond

to the source and the expectation value of the operator O with the conformal dimension

5One may note that this choice of weights is not the unique choice but a convenient one.

– 12 –



J
H
E
P
0
2
(
2
0
2
0
)
0
6
2

∆ = 2 in the dual CFT, respectively. In this case, the appropriate boundary condition of

the scalar fields is given by [35]

ρ2 =
dW

dρ1
= νρ2

1 , W (ρ1) =
ν

3
ρ3

1 , (4.1)

or

ρ1 =
dW̃

dρ2
=

1√
ν

√
ρ2 , W̃ (ρ2) =

2

3
√
ν
ρ

3
2
2 . (4.2)

In the dual conformal field theory, this can be interpreted as the deformation by a marginal

operator,

ICFT → ICFT −
∫
d3x W̃ [O] (4.3)

with the operator O dual to the scalar field ρ. In this case, by plugging (4.1) into (3.17),

the mass density of black brane is given by

M = m+
8

3
ρ1ρ2 . (4.4)

Furthermore, the charge function c(r) gives the Smarr-like relation:

2sT = 3M. (4.5)

Now let us discuss the black brane thermodynamics in the extended phase space. If

the cosmological constant can be taken as a dynamical variable, it would be considered as

the pressure in the extended phase space as [17]

P ≡ −Λ = 3 , (4.6)

and its conjugate thermodynamic volume density can be determined as [41, 42]

V ≡
(
∂M

∂P

)
S

. (4.7)

The thermodynamic volume obtained in this fashion usually turns out to be the so-called

‘volume’ surrounded by the event horizon and the pressure can be regarded as the pressure

on the surface of the event horizon. This gives the interpretation of PV as the energy

required to place the black hole in the environment with the pressure produced by the

cosmological constant and the total energy M as the enthalpy, which includes not only the

internal energy but also the energy PV .

This suggests that, in the case of the AdS black hole with scalar hair, it would be better

to consider the radial pressure on the event horizon due to the scalar field. Therefore we

define the thermodynamic pressure as6

P ≡ T rr
∣∣∣
rh

= 3 + 2 sinh2 ρh . (4.8)

6This notion was explored in [43].
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By using the relation

(3 + 2 sinh2 ρh) =
2

r3
h

e−w0sT =
1

r3
h

e−w0 (3m+ 8ρ1ρ2) (4.9)

from the charge function c(r), the thermodynamic pressure can be computed as

P =
1

r3
h

e−w0 (3m+ 8ρ1ρ2) . (4.10)

Then the conjugate thermodynamic volume density, defined in (4.7), is determined as

V =
r3
h

3
ew0 , (4.11)

which, indeed, reminds the volume density of the black brane behind the horizon. Using

these quantities, the charge function c(r) gives the Smarr relation in the extended phase

space as

M = 2Ts− 2PV. (4.12)

4.2 The thermodynamics of the marginally deformed ABJM theory

In order to describe the holographic renormalization in the dual CFT, we begin with the

ADM decomposition of the metric along the radial direction:

ds2 = N(r)2dr2 + γijdx
idxj (4.13)

with the boundary coordinates xi and the boundary metric γij . The total action is given by

Stot = SB + SGH + Sct + S3 , (4.14)

where the bulk action SB is given in (2.4). The Gibbons-Hawking term SGH for the well-

posed variational problem of the bulk metric is given by

SGH =

∫
∂M

d3x
√
−γ K , (4.15)

where the extrinsic curvature is given by Kij = 1
2N γ

′
ij and K = γijKij . The counter term

Sct for the cancellation of the divergencies coming from the bulk action is given by

Sct = −2

∫
d3x
√
−γ
(

1 +
1

2
ρ2

)
. (4.16)

In addition to these usual boundary terms, we need an additional boundary term S3

S3 = −2

∫
d3x
√
−γ W (ρ) = −2

∫
d3x
√
−γ ν

3
ρ3 , (4.17)

to implement the deformation given in (4.3).

With these boundary action terms, the Euclidean on-shell action per unit volume can

be computed as
1

β
Son-shell = F = −1

2

(
m+

8

3
ρ1ρ2

)
,
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where F is the Helmholtz free energy density in the dual CFT. The boundary energy

momentum tensor defined by the variation of the total action with respect to the boundary

metric γij is given by the expression:〈
T ij
〉

= lim
r→∞

r5

(
Kγij −Kij − 1

2
γij
(

4 + 2ρ2 +
4ν

3
ρ3

))
. (4.18)

Thus the energy density in the dual CFT can be evaluated as

ε ≡ 〈T tt〉 = m+
8

3
ρ1ρ2 ,

which matches exactly with the bulk mass density M , consistent with the AdS/CFT cor-

respondence. The pressure in the dual CFT can be computed as

P = 〈T xx〉 = 〈T yy〉 =
1

2

(
m+

8

3
ρ1ρ2

)
.

The boundary energy momentum tensor T ij is conserved and traceless and thus satisfies

the Ward identities as expected. It is also clear that the thermodynamic relation in the

dual conformal field theory is established as

F = ε− sT . (4.19)

5 The thermodynamics of the charged black brane and its dual CFT

Now we turn to our main interests: the black brane geometry with modulation, or charged

black brane geometry. If it is viewed as the black brane geometry with modulated scalar

fields, the boundary CFT is the mass deformed ABJM model with spatial modulation in

the mass. Alternatively, it could be considered as the charged black brane solution and the

corresponding dual CFT would be the marginal deformation in the three-form field flux

background.

Apparently, the corresponding bulk geometries look identical, but actually they are

different as they have different scalar profile and, as a result, different mass. The black

brane with the scalar modulation has the scalar hair with two normalized scalar modes

related linearly. Namely, the asymptotic expansion of the scalar field ρ is given by

ρ(r) ∼ ρ1

r
+
αρ1

r2
+ · · · , (5.1)

where α is a proportional constant. On the other hand, the charged black brane has

the scalar fields with two modes behaving in the same manner as those in the neutral

black brane,

ρ(r) ∼ ρ1

r
+
νρ2

1

r2
+ · · · . (5.2)

In the vanishing charge limit, q → 0, it reduces to the neutral black brane described in the

previous section. Both of these solutions with k 6= 0 can be realized numerically.

In this section, we present the thermodynamics of the charged black brane and its dual

CFT with the boundary condition (5.2). In the next section we deal with the black brane

corresponding to the spatially modulated scalar field with the boundary condition (5.1).

We begin with the description of the black brane thermodynamics.
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5.1 The charged black brane thermodynamics

Since we are dealing with the charged black brane solution as the dual geometry of the

CFT with marginal deformation (4.3), we use the same relation (4.1) between two scalar

modes, ρ1 and ρ2, as the one in the neutral black brane. From the general expression in

eqs. (3.17), the mass density of the black brane becomes

M = m+
8

3
ρ1ρ2 + 3kω . (5.3)

In parallel with the discussion of the neutral black brane, we would like to describe

the black brane thermodynamics in the extended phase space. We introduce the radial

pressure on the surface of the event horizon as

P = P0 + P1 = (2 + cosh(2ρh))− k2e−2w1 sinh2 2ρh
4r2
h

, (5.4)

where the pressure P0 comes from the scalar potential, while the pressure P1 does from

the two-form gauge field. The contribution of this radiation pressure P1 would be much

smaller than the scalar pressure P0 and negligible. This can also be understood as follows.

The black brane geometry has a Killing vector ξx = ∂
∂x , which means that the distribution

of the two-form field charge or the modulation of the scalar profile in the x-direction does

not affect the geometry much. The existence of the charge distribution only gives rise to

the slight change of the pressure.

By using the relation from the charge function c(r), the pressure can be expressed as

P ' P0 =
e−w0−w1

r3
h

(3m+ 8ρ1ρ2 + 6kω) , (5.5)

and the conjugate thermodynamic volume density is given by

V ≡
(
∂M

∂P

)
S,k

'
r3
h

3
ew0+w1

m+ 8
3ρ1ρ2 + 3kω

m+ 8
3ρ1ρ2 + 2kω

.

By plugging these expressions in the charge function relation, we establish the Smarr

relation for the charged black brane as

M = 2Ts− 2PV + Φq . (5.6)

5.2 The thermodynamics of the marginally deformed ABJM theory

In order to obtain the on-shell action and the boundary energy-momentum tensor, we use

the same boundary action terms as those in the case of neutral black brane. The boundary

energy density is found to be

ε ≡ 〈T tt〉 = m+
8

3
ρ1ρ2 + 3kω , (5.7)
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which matches exactly with the bulk mass density M in eq. (5.3). The pressure in the x-

and y-directions are computed as

Px ≡ 〈T xx〉 =
1

2

(
m+

8

3
ρ1ρ2 + 6kω

)
,

Py ≡ 〈T yy〉 =
1

2

(
m+

8

3
ρ1ρ2

)
. (5.8)

The pressure anisotropy, ∆P ≡ Px − Py, comes from the existence of periodically spaced

branes in the x-direction and the corresponding chemical potential,7

∆P = qΦ = 3kω . (5.9)

With the given boundary action terms, we are working in the canonical ensemble with

the constant temperature and charge density, and therefore the Euclidean on-shell action

per unit volume is related to the Helmholtz free energy and is determined as

1

β
Son-shell = F = −1

2

(
m+

8

3
ρ1ρ2

)
.

One may note that it is related to the pressure Py in the y-direction as will be clarified in

below. By using the relation in the charge function c(r), the Helmholtz free energy density

F (T, q) in the canonical ensemble satisfies the thermodynamic relation in the boundary

CFT as

F = ε− sT = −Py . (5.10)

From the thermodynamic first law,

dε = Tds+ Φdq , (5.11)

the free energy density also satisfies

dF = −sdT + Φdq , (5.12)

as expected.

The thermodynamic potential in the grand canonical ensemble, G(T,Φ), which would

have replaced the Helmholtz free energy in relation with the on-shell action if we included

additional boundary action term on the two-form gauge field, is given by

G = ε− Ts− Φq = −1

2

(
m+

8

3
ρ1ρ2 + 6kω

)
. (5.13)

The thermodynamic potential is related to the pressure Px in the x-direction as G = −Px
and satisfies the relation

dG = −sdT − qdΦ . (5.14)

7One nice example of the pressure anisotropy is the anisotropic plasma which is described in [44], in

detail. In that system, the pressure anisotropy arises due to the dissolved D7-brane and the resultant

chemical potential as well.
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Now we include volume V = lxly of the box and define the total energy E = εV , total

entropy S = sV , total charge Q = qlx, and potential ΦC = Φly. Then the first law takes

the form

dE = TdS + ΦCdQ− lxPydly − lyPxdlx , (5.15)

where lxPy, lyPx are generalized forces corresponding to the displacement dly, dlx, respec-

tively, and are given by

lxPy = −
(
∂E

∂ly

)
S,lx,Q

, lyPx = −
(
∂E

∂lx

)
S,ly ,Q

, (5.16)

while the temperature and the potential satisfy

T =

(
∂E

∂S

)
lx,ly ,Q

, ΦC =

(
∂E

∂Q

)
S,lx,ly

. (5.17)

The total energy in the box E(S,Q, lx, ly) is an extensive quantity satisfying the scaling

relations

E(aS, aQ, alx, ly) = aE(S,Q, lx, ly) ,

E(aS,Q, lx, aly) = aE(S,Q, lx, ly) . (5.18)

By using the Euler’s theorem on the function with scaling laws,8 we establish the thermo-

dynamic relation in the dual CFT as

E = TS + ΦCQC − PxV = TS − PyV . (5.19)

This also confirms the relations, F = −Py and G = −Px.

6 The thermodynamics of the black brane with modulated scalar hair

and its dual ABJM model

In this section, we present the thermodynamics of the black brane with the spatially mod-

ulated scalar field. The black brane geometry is believed to be dual to the mass deformed

ABJM model with spatial modulation. In order to describe it as the dual geometry of the

ImABJM model, we should go back to the original action with the complex scalar field

z. The real and imaginary parts of the field z = X + i Y have different origin from the

11-dimensional supergravity as scalar and psedo-scalar, respectively. Furthermore their

dual boundary operators, OX and OY , in the massive ABJM model are given by9

{OX ,OY } =

{
MB
A tr

(
Y AY †B

)
, MB

A tr

(
ψ†AψB +

8π

q
Y CY †[CY

AY †B]

)}
(6.1)

8The Euler’s theorem states that if a function f(ω1, · · · , ωn) obeys the scaling relation

f(aα1ω1, · · · aαnωn) = apf(ω1, · · · , ωn), then the function satisfies

pf(ω1, · · · , ωn) =

n∑
i=1

αi

(
∂f

∂ωi

)
ωi .

9Here Y ’s and ψ’s denote the scalar field and the fermion field in the ABJM model and MB
A is given by

diag(1, 1,−1,−1).
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with the conformal dimension ∆X = 1 and ∆Y = 2, respectively. This means that the

role of the two asymptotic modes for the field X should be interchanged by the Legendre

transformation [45].

6.1 The thermodynamics in dual ABJM model

In the holographic renormalization with the ADM decomposition of the metric (4.13), the

momentum conjugate to the scalar field X is given by

πX = −4
√
−γ nµ ∂µX , (6.2)

where nµ denotes the normalized vector along the radial direction. The counter term (4.16)

not only cancels the divergence but also shifts the conjugate momentum of the scalar field

X as

ΠX = πX +
δSct
δX

= −4
√
−γ (nµ ∂µX +X) . (6.3)

We would like to have the operator OX dual to the scalar field X with conformal

dimension ∆X = 1. This means that the role of two normalizable modes of the scalar

field are interchanged, namely, ρ1 and ρ2 become the expectation value and the source

of the dual operator OX , respectively. This can be achieved by performing the Legendre

transformation with respect to the scalar field X. This means that we should take the

boundary term S2, instead of S3 in (4.17), which is given by

S2 =
1

2

∫
d3x
√
−γJX X . (6.4)

Here the source JX for the operator OX is defined by

JX ≡ −
1√
−γ

ΠX , (6.5)

and is determined as

JX = 4 (nµ ∂µX +X) . (6.6)

Hence the additional boundary term becomes

S2 = 2

∫
d3x
√
−γ
(
X nµ∂µX +X2

)
. (6.7)

By using our Q-lattice black brane solutions, the vacuum expectation values of the

chiral primary operators in the dual ABJM model are determined as10

〈OX〉 = lim
r→∞

1

2r2

√
−γX =

ρ1

2
cos kx , (6.8)

〈OY 〉 = lim
r→∞

2

r

(
−
√
−g 1

1− |z|2
∇rY −

√
−γY

)
= 2ρ2 sin kx , (6.9)

10Vacuum expectation values of OX and OY of the ABJM theory with a constant mass deformation in

the large N limit were obtained [46, 47] in terms of the Kaluza-Klein holography method.
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for their sources given by

JX = −4ρ2 cos kx , JY = ρ1 sin kx . (6.10)

One may note that the neutral black brane with the boundary conditions described in this

section can be found with the limit k → 0.

Generically, in finite temperature CFT, the vacuum expectation values of operators

depend on the temperature. By changing the temperature, while keeping sources given

in (6.10) fixed, the vacuum expectation values become different from the expressions given

in (6.8) and (6.9). This implies that the process would result in black brane solutions which

are not within our Q-lattice ansatz.

From the expression of the boundary energy momentum tensor,〈
T ij
〉

= lim
r→∞

r5
(
Kγij −Kij − γij

(
2 + Y 2 −X2 − 2X r ∂rX

))
, (6.11)

the average boundary energy density is evaluated as

ε ≡ 〈T tt〉 = m+ 3kω + 3ρ1ρ2 , (6.12)

and the pressure in the x- and y-directions are computed as

Px ≡ 〈T xx〉 =
1

2

(
m+ 6kω + 2ρ1ρ2

)
,

Py ≡ 〈T yy〉 =
1

2

(
m+ 2ρ1ρ2

)
. (6.13)

The boundary energy momentum tensor satisfies two Ward identities

∂i
〈
T ij
〉

= 〈OX〉 ∂jJX + 〈OY 〉 ∂jJY , (6.14)〈
T ii
〉

= (3−∆X) 〈OX〉 JX + (3−∆Y ) 〈OY 〉 JY , (6.15)

where the conformal anomaly is driven by the source. The Euclidean on-shell action per

unit volume is evaluated as

1

β
Son-shell = F = −1

2

(
m+ 2ρ1ρ2

)
,

and the thermodynamic relation in the dual mass deformed ABJM model is established as

F = ε− sT . (6.16)

All the other thermodynamic relations given in section 5.2 follow accordingly.

6.2 The black brane thermodynamics

As the geometry is dual to the spatially varying mass deformation of the ABJM model,

the boundary condition for the scalar fields should be given by the linear relation between

two normalizable modes as

ρ2 = µρ1 or W (ρ1) =
µ

2
ρ2

1 .
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In this case the mass of the black brane can be determined from the general expression in

eqs. (3.17) as

M = m+ 3kω + 3ρ1ρ2 , (6.17)

which agrees with the boundary energy density. In the extended phase space, the pressure

is given by the same expression given in (5.5) and the conjugate thermodynamic volume

density is determined as

V ≡
(
∂M

∂P

)
S,k

'
r3
h

3
ew0+w1

m+ 3ρ1ρ2 + 3kω

m+ 8
3ρ1ρ2 + 2kω

.

Therefore we obtain the same Smarr relation for this black brane:

M = 2sT − 2PV + Φq . (6.18)

7 Discussion

The Q-lattice black brane solution in 4-dimensions, which was introduced in our previous

work [9] as a numerical solution, is dual to the ImABJM model with the sinusoidal mass

function along a spatial direction x at a finite temperature. In this paper, we also considered

a charged black brane for the same spatial modulation by introducing the two-form gauge

field. Then we constructed consistent thermodynamic relations for the Q-lattice black

brane and the charged black brane in the bulk gravity and the dual CFT simultaneously.

To give a concrete physical interpretation for the spatial modulation parametrized by

k, we started from an alternative form of the action by the field redefinition of the complex

scalar field, z = tanh ρ eiχ. Then we also introduced a two-form gauge field Cµν whose

field strength is Poincaré dual to the phase scalar field χ. Turing on the phase scalar field

as χ = kx, one can give the charge q = 1
2k to the dual two-form gauge field Cµν . The

presence of the charge denotes a periodic distribution along the x-direction for charged

branes spanning in the y-direction, and so it induces the anisotropy of thermodynamic

variables in the (x, y)-plane. The brane configuration for the charge in 11-dimensional

supergravity point of view would be the periodic array of M5-branes along a worldvolume

direction of M2-branes, as we argued previously. Under this circumstance, we successfully

constructed the thermodynamic first laws and the Smarr relations in the bulk gravity

and various thermodynamic relations in the boundary dual CFT simultaneously by using

various methods, such as the off-shell ADT formalism, reduced action formalism, and

holographic renormalization method.

According to the relation between coefficients, ρ1 and ρ2, in the asymptotic expansion

of the scalar field ρ, thermodynamic variables in the bulk gravity and those in the corre-

sponding deformed CFTs can be changed, even though in all cases the same thermodynamic

relations hold. In this paper, we analyzed two cases, ρ2 = νρ2
1 and ρ2 = µρ1. The former

case corresponds to the charged (or neutral) black brane solution with the charge q and the

chemical potential Φ, which is defined by the asymptotic boundary value of Cty. We ob-

tained the first law and the mass expression of the black brane, and constructed the Smarr

relation by defining the pressure as the T rr -component and the conjugate thermodynamic
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volume at the horizon in the extended phase space. Then the dual CFT is identified as a

marginal deformation by the gauge invariant operator with conformal dimension ∆ = 3. We

obtained the Euclidean on-shell action, which is proportional to the Helmholtz free energy,

and the boundary energy-momentum tensor from the holographically renormalized bound-

ary action. The Helmholtz free energy density in the canonical ensemble satisfies the well-

defined thermodynamic relation in the boundary CFT. We also discussed the thermody-

namic relation with the anisotropic pressure on the boundary CFT by defining the thermo-

dynamic potential including the chemical potential term in the grand canonical ensemble.

On the other hand, for the Q-lattice black brane, which is dual to the ImABJM model

with the sinusoidal mass function, the boundary condition of the scalar field should be the

latter case, ρ2 = µρ1. Using the similar method with the case of the charged black brane,

we obtained the consistent thermodynamic relations in the bulk gravity and in the dual

ABJM theory.

In this paper, we constructed the thermodynamics of several representative hairly AdS

black branes with anisotropic pressures induced from the modulated mass function. To do

that, we employed the energy-momentum tensors and charges, and their conjugate variables

in the bulk gravity and the boundary CFT. It would be very interesting to generalize

our construction for more diverse anisotropic cases. For instance, one can consider the

modulation along the y-direction additionally and also extend to the higher dimensional

black holes with anisotropy. Investigating the zero temperature limit of the charged black

brane in more general setup is also interesting. We leave the problem as a future work.

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant with

grant number NRF-2016R1D1A1A09917598 (B.A., S.H., S.P.), NRF-2019R1A2C1007396

(K.K.), and NRF-2017R1D1A1A09000951, NRF-2019R1F1A1059220, NRF-2019R1A6A1A

10073079 (O.K.). K.K. acknowledges the hospitality at APCTP where part of this work

was done. S.P. acknowledges the hospitality at KIAS where part of this work was done.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[3] K.K. Kim and O.-K. Kwon, Janus ABJM Models with Mass Deformation, JHEP 08 (2018)

082 [arXiv:1806.06963] [INSPIRE].

[4] K.K. Kim, Y. Kim, O.-K. Kwon and C. Kim, Aspects of Massive ABJM Models with

Inhomogeneous Mass Parameters, JHEP 12 (2019) 153 [arXiv:1910.05044] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://arxiv.org/abs/hep-th/9803131
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803131
https://doi.org/10.1007/JHEP08(2018)082
https://doi.org/10.1007/JHEP08(2018)082
https://arxiv.org/abs/1806.06963
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.06963
https://doi.org/10.1007/JHEP12(2019)153
https://arxiv.org/abs/1910.05044
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.05044


J
H
E
P
0
2
(
2
0
2
0
)
0
6
2

[5] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[6] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons

Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].

[7] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of

M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].

[8] N. Lambert and P. Richmond, M2-Branes and Background Fields, JHEP 10 (2009) 084

[arXiv:0908.2896] [INSPIRE].

[9] B. Ahn, S. Hyun, K.K. Kim, O.-K. Kwon and S.-A. Park, AdS Q-Soliton and

Inhomogeneously mass-deformed ABJM Model, arXiv:1911.05783 [INSPIRE].

[10] B. de Wit and H. Nicolai, N = 8 Supergravity with Local SO(8)× SU(8) Invariance, Phys.

Lett. 108B (1982) 285 [INSPIRE].
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