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1 The case for universal, background-independent quantum gravity

To describe physically relevant spacetimes, such as black holes or Friedmann-Lemaitre-
Robertson-Walker spacetimes, it is necessary to go beyond General Relativity, where these
spacetimes feature singularities. Such singularities are expected to be resolved once quan-
tum fluctuations of spacetime are properly accounted for. Yet, this is a particularly chal-
lenging task if it is to be compatible with the background-independence at the heart of
our modern understanding of gravity. Background-independence implies that no configu-
ration of spacetime should be singled out a priori from all configurations that enter the
path integral. This is incompatible with perturbative techniques around a fixed space-
time, which single out a special background to perturb around, and which do not provide
a predictive quantum field theory of gravity. Instead, one is led to introduce an infinite
number of independent local counterterms to cancel divergences at each loop order [1-3].
This motivates that background independence should be taken seriously in the search for
an ultraviolet complete definition of the gravitational path integral. Thus, we aim at an
implementation of the path integral without auxiliary geometric background structures.! A
promising route to construct a background independent path integral consists of making a
transition to discrete building blocks, as in dynamical triangulations [5], Regge calculus [6],
matrix/tensor models [7-9], spin foams [10] and causal sets [11]. This allows to construct a
discrete approximation of all random geometries (and potentially additional configurations
with no interpretation as a spacetime geometry) that enter the path integral for quantum
gravity. These discrete building blocks are typically not viewed as physical, “fundamental”

! An alternative route makes use of an auxiliary background structure at the technical level while ensuring
the independence of physical results from this background structure, see, e.g., [4].



building blocks of spacetime. Rather, they are auxiliary, unphysical entities, allowing to
define a regularized path integral in analogy to lattice gauge theories for non-gravitational
quantum field theories. One might object that quantum spacetime might be fundamentally
discrete, which might suggest that the use of discrete building blocks is appropriate at a
physical level. Yet, this would require us to guess exactly the right, physical form of the
discretization and might feature a predictivity problem, see, e.g., the discussion in [12].
Further, naive discretizations are likely to break spacetime symmetries see, e.g., [13, 14]
for discussions of diffeomorphism symmetry in discrete settings. Therefore, a universal
continuum limit is actually a key demand in order to ensure that one is exploring robust
predictions of the quantum-gravity model, instead of specialized artefacts of one particular

discretization.?

Thus, in this framework it is insufficient to search for the continuum-
approximation (in the sense of fgisc < ¢, where fq4isc is the discreteness scale and ¢ is the
physical distance scale of interest). The continuum approximation will carry non-universal
imprints of the details of the theory at fg;sc, in the form of contributions which are functions
of the finite ratio fgis./¢ and which typically come with infinitely many free parameters.
In contrast, a universal continuum limit, in which fg;s./¢ — 0, ensures that the details
of the discretization do not matter and the physics of the model depends on only finitely
many free parameters. This is exactly the spirit in which lattice field theories are set up
in non-gravitational field theories. We argue that robust physical predictions should be

extracted from the gravitational path integral in a similar manner.

2 Tensor models as a framework for background-independent quantum
gravity

One potential route to evaluate the effect of quantum gravitational fluctuations in a
background-independent setting is provided by the tensor-model approach [15-23]. A ten-
sor model is a zero-dimensional quantum field theory of rank d tensors whose indices range
from 0 to N’. The relation between tensor models and the Euclidean gravitational path
integral is provided by the mapping illustrated in figure 1. The first step maps the path
integral over all spacetimes to the sum over all triangulations A by discretizing all con-
figurations in terms of discrete, equilateral building blocks, such as, e.g., triangles in two
dimensions, tetrahedra in three dimensions and so on. Geometric information is encoded
in the way that these building blocks are glued to each other, following the spirit of Regge
gravity [24]. For instance, in two dimensions, curvature is encoded in the deficit angle
around a vertex, which is only zero if there are exactly six triangles surrounding the ver-
tex. The inverse map, from the dynamical triangulations to the path integral for quantum
gravity, is via the continuum limit. Searching for the continuum can be tackled, e.g., by
Monte Carlo simulations [25-32] at the level of the triangulation.

2A continuum limit does not preclude the emergence of physical or dynamical discreteness, e.g., in the
spectra of certain geometric operators. These different notions of discreteness should not be mixed, and
in particular the presence of physical discreteness cannot be used to infer that one should not be taking a
continuum limit at the level of (unphysical) configurations in the path integral.
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Figure 1. We show the relation between the generating functional for quantum gravity in the
continuum, dynamical triangulations and tensor models.

Alternatively, one can go one step further to arrive at a purely combinatorial model.
In such a tensor model, the building blocks of space are mapped to tensors. The way in
which discrete building blocks are glued together to form a discretized configuration of
spacetime is encoded in the tensorial interaction structure. More specifically, the Feynman
diagram expansion of the tensor model generates all possible triangulations of pseudo-
manifolds [33, 34]. Such a correspondence between combinatorial models and the path
integral for quantum gravity constitutes a success-story in two dimensions with matrix
models (see [7] for a review). Tensor models, first proposed in [15-17], generalize matrix
models to higher dimensions.

In detail, the mapping between a Feynman diagram in a tensor model and a triangu-
lation works as follows: for each Feynman diagram of the tensor model, one can construct
the dual: each of the four indices of a tensor is associated to one side of a tetrahedron,
cf. figure 2. This forms a building block of three-dimensional space. To construct a building
block of four-dimensional space, several tetrahedra have to be glued together. This is en-
coded in a contraction of indices of tensors. For instance, Tg,b,c1dy Laybycids Lasbocads Lasbscady
encodes how neighbouring tetrahedra are glued together along three/one triangles in a
pairwise fashion. For purposes of illustration, we show the analogous construction in one
dimension lower in figure 3. In summary, the interactions of the rank-4-tensor model
are dual to building blocks of four-dimensional space, whereas the tensors themselves are
dual to building blocks of three-dimensional space. In the Feynman diagram expansion
of the tensor model, these interactions are glued together along propagators, forming tri-
angulations of four-dimensional space. In this way, tensor models encode the discretized
configurations of spacetime that enter the path-integral in a combinatorial way.

The action St only depends on tensor invariants (under orthogonal /unitary transfor-
mations of the tensors), such as, e.g., TypedTuped, With summation over repeated indices



Figure 2. We show the correspondence between a tensor and a building block of space.

Figure 3. The interaction Ty, p,c,TusbycoLasbyes Larbac, cOrresponds to a gluing of four triangles
to form a “chunk” of three-dimensional space. We show the corresponding building block of space
viewed “from the front” and “from the side”. The identification of indices of two tensors corresponds
to identification of the corresponding edges of the corresponding two triangles. This interaction is
known as a “melonic” one in the literature due to the possible association of a melon with the
right-hand diagram.

implied, but the tensors are not functions of spacetime. In this sense, such tensor models
are pre-geometric models. One might wonder how such a simple setting can be rich enough
to reproduce the intricacies of quantum gravity. The answer lies in the observation that
each equilateral triangulation of space is fully determined by how its building blocks are
glued to each other. This “gluing” information is combinatorial information and random
tensors are an efficient way of capturing it. At finite N’, the tensor models encode the
finitely many degrees of freedom of regularized quantum gravity, i.e., discrete random ge-



ometries. In the N’ — oo limit, the infinitely many local degrees of freedom of quantum
gravity are expected to emerge. A well-defined 1/N’ expansion is therefore a key prerequi-
site for the recovery of gravity from this approach. In [18-20, 22, 23, 34, 35], it was shown
that a class of models, the (un)colored models, admits a 1/N’ expansion. For such models,
the interactions are invariant under independent orthogonal (unitary) transformations of
each index of the real (complex) tensors. In this paper, we restrict our attention to this
subclass of tensor models.

Studies of the so-called loop equations enabled by the 1/N’ expansion seem to in-
dicate a continuum limit for tensor models which resembles a branched-polymer phase
and it is thereby unphysical [21, 36]. It has been shown that one can go beyond the
branched-polymer phase to recover the continuum limit of 2d-quantum gravity from ten-
sor models [37]. This is tied to a modified scaling of interactions with N’, that allows
to recover different phase structures [37, 38]. In order to search for a four-dimensional
universal continuum limit, it seems necessary to explore novel critical points in which not
only N’ is taken to be large, but also a set of couplings is tuned to a critical value and in-
teractions exhibit non-canonical scaling with N’. Following the development of functional
renormalization group tools for discrete models in [39, 40], different continuum limits were
charted with these techniques also in the related group-field theories [41-57]. For reviews
see [58, 59]. In the present paper, we provide first hints for such continuum limits for
real rank-4 models by discovering a potential universality class that is new from a tensor-
model point of view but appears to be not incompatible — within the respective systematic
uncertainties — with results for the Reuter universality class in quantum gravity.

3 Universality and the link between tensor models and asymptotically
safe gravity

A key property of a viable continuum limit is universality. In the sense of statistical physics,
it implies the independence of physical results from unphysical microscopic choices. In
quantum-gravity models based on regularizations in terms of discrete building blocks, this
implies the independence of the continuum limit from the choice of building blocks (at
least within certain classes, defined, e.g., by the emergent symmetries). This implies that
certain classes of tensor models should all encode the same continuum limit. For instance,
as in [37], in [56], a certain type of large N’ critical behavior of rank-3-models has been
found to agree (within the estimated systematic errors) with that of matrix models for
two-dimensional quantum gravity through a form of dimensional reduction in which the
universal continuum limit becomes independent of the microscopic dimensionality of the
building blocks. Yet, universality implies even more, namely that the same universality
class can be obtained from a discrete model as well as from a continuum setting. To
elaborate this point, let us use the analogy of Yang-Mills theory, which can be explored on
the lattice or in the continuum. The lattice spacing corresponds to a UV cutoff which can be
imposed equivalently as a momentum cutoff in the continuum. A Renormalization Group
(RG) fixed point implies the existence of a universal continuum limit. Specifically, on the
lattice side one tunes the relevant bare couplings (i.e., the relevant couplings evaluated at



the lattice scale) to the critical surface of the fixed point, such that the physics becomes
that of an RG trajectory that can be extended arbitrarily far into the UV, i.e., towards
vanishing lattice spacing. The continuum limit is thus enabled by an RG fixed point which
can equally well be uncovered by using continuum RG techniques. For quantum gravity,
a similar relationship is expected to hold: if a universal continuum limit can be taken
in (causal) dynamical triangulations, this is enabled by an RG fixed point which should
be discoverable using continuum RG techniques. Tensor models allow to search for this
fixed point on the discrete side, but in a completely pre-geometric, combinatorial setting,
where N’ provides the notion of scale. The arguable simplest hypothesis about the form
of the continuum RG fixed point that a potential large N’ fixed point in tensor models
corresponds to is that of the Reuter universality class, underlying the asymptotic-safety
program, see [60—64] for recent reviews and introductions.

Three comments are in order about this hypothesis: firstly, in the example of Yang-
Mills theory both, the discrete as well as the continuum description, feature the same
gauge symmetry. In our scenario, it is not immediately obvious whether the continuum
limit in tensor models automatically recovers diffeomorphism invariance. For instance,
lattice gravity might also feature a continuum limit determined by the smaller group of
foliation-preserving diffeomorphisms. Similarly, on the continuum side, results are actually
obtained in a gauge-fixed setting. Secondly, there is the question of topological fluctuations,
which are typically to some extent included in tensor models (although they might be
suppressed in the large N’ limit), but are not expected to be included in the continuum
path integral. This potential mismatch has to be addressed. We stress that a comparison
of universality classes obtained in the two settings implicitly provides information about
the importance of topological fluctuations for the continuum limit. More generally, the
configuration spaces that the path integral is defined on in the discrete and the continuum
setting, respectively, should, if they are not in one-to-one agreement, at least include the
same effective degrees of freedom relevant for the continuum limit. Thirdly, the agreement
in the dimensionality — an important ingredient to ensure universality in field-theoretic
settings — might be more subtle in quantum gravity: the microscopic dimensionality
associated with the discrete building blocks need not correspond to the dimensionality of
the emergent spacetime. The branched-polymer phase is a good example, as it leads to
a Hausdorff dimension of 2 and can in fact be obtained from tensor models of various
rank (i.e., various, microscopic dimensionality), see [36]. Additionally, the comparison of
dimensionality is subject to additional subtleties in quantum gravity, as different notions
of dimensionality need not agree in quantum gravity (see [65] for an example) and a scale-
dependent notion of dimensionality is generally expected across many different approaches
to quantum gravity, see [66] for a summary.

Therefore, we formulate our expectation that a universal continuum limit in tensor
models should also be accessible in a continuum language. In the simplest scenario, the
Reuter fixed point, defining a gravitational universality class in the continuum [4, 67-80],
see [60-64] for recent reviews and introductions, should be reproducible from tensor mod-
els. The open questions highlighted above imply that it is not a priori clear whether a
simple rank-four tensor model is sufficient to achieve this or whether one needs to restrict



the corresponding configuration space (e.g., with an appropriate multi-tensor model, gen-
eralizing the two-matrix model underlying the restricted configuration space of CDTs [81])
by a more intricate choice of tensor model. As the key result of our paper we will find hints
for universal critical behavior in tensor models that is not incompatible with the Reuter
universality class (given the systematic uncertainties on both sides).

4 Functional renormalization group techniques for tensor models

To discover a universal scaling limit, we use RG techniques adapted to the discrete set-
ting [39, 82], based on the idea in [83]. N’ serves as our notion of RG scale, with N/ — oo
constituting the limit of infinitely many degrees of freedom, i.e., the UV limit. This no-
tion of scale differs from the standard notion of scale in the RG, where momentum/energy
scales are used. These correspond to the implementation of the RG as a coarse-graining
procedure in which one averages fluctuations over local “patches” — just as in the original
block-spin idea. In quantum gravity, momentum scales fluctuate since the metric fluctu-
ates. Therefore, a different notion of coarse-graining is more suitable. In fact, in a strictly
background-independent setting, there is no unique local notion of RG scale. Accordingly,
a more abstract notion of scale, tied to the number of effective degrees of freedom, is
used here. It can be motivated by a more abstract view of the block-spin procedure: by
averaging fluctuations over local “patches” and summarizing many microscopic degrees of
freedom in effective, macroscopic degrees of freedom, block-spin takes us from many degrees
of freedom in the UV to fewer degrees of freedom in the IR. This notion of coarse-graining
is implemented in tensor models by viewing the tensor size N’ as the RG scale.

Universal critical behavior at large N’ implies that couplings scale with N’ in a par-
ticular way. We generalize the so-called double-scaling limit from matrix models [84-87],
where the coupling g is tuned concertedly with N’, schematically

1
(9 — Gerit)? N' = const, (4.1)

as ¢ — gerit and N’ — oo. This equation leads to the interpretation of the tensor size N’
as the RG scale, as it resembles in structure the scaling equation g(k) = g« + (k/ko)™°
in the local RG, where k is a momentum scale, g, the fixed-point value and 6 the critical
exponent. To implement the idea of an RG flow in N’ in practice, one could follow [83] to
explicitly integrate out the outermost “layers” of tensors in a Gaussian approximation to
derive a perturbative RG flow. Instead, we implement the RG procedure more generally
by writing an explicit cutoff term into the generating functional and deriving an equation
that encodes the change of the effective dynamics with N as in [82]. To this end, we define

Zn[J] = DT e*S[THJabchabcd*%TabcdRN(avbvcvd)Tabcd _ (4.2)

N
The regulator function Ry (a,b,c,d) suppresses the integration of the tensors entries with
a+b+c+d < N implementing the aforementioned “integration of layers” of the tensor. It
actually implements an infrared cutoff, which we highlight by distinguishing the RG scale
N from the UV cutoff N’. By a modified Legendre transform, we define the flowing action



'y, which agrees with the standard effective action I' in the limit N — 0. The flowing
action I'y then reads

1
In[T)=sup(J-T —InZy[J]) — ETRN(a,b, ¢,d)T, (4.3)
J

where the bold symbols J and T are a shorthand notation for rank-4 tensors. The scale
dependence of I'y is encoded in a functional Renormalization Group equation [82], closely
resembling its continuum counterpart in [88-90] in structure:

1

§°r
N&NFN = iTI“ N

-1

where we omitted the explicit index-dependence of the regulator. The derivative with
respect to N should be understood within the large-N regime. For finite N, it must be
replaced by finite difference equation. One of the key features of the above equation is that
universality holds at the fixed points of the effective action I'y, where a 1/N expansion
is possible.

An equivalent approach to RG flows in tensor models, based on the Polchinski equation,
was developed in [91, 92].

Solving eq. (4.4) exactly is equivalent to completely solving the underlying path integral
of the model. Therefore, in practice, one needs to set up approximations to derive a solution
of eq. (4.4). Controlled approximations can be devised following an ordering principle for
the various terms that can occur in I'y. For instance, in many examples in local quantum
field theories, a reliable approximation to the full lowing action is obtained by including
all local terms up to some value of the canonical dimension of the associated coupling. The
reliability of the results is tested by enlarging such truncations and checking for stability
of the results. In the case of tensor models, such an ordering principle is missing a priori
since one lacks dimensional analysis: the RG parameter N is just a dimensionless number,
and the pregeometric nature of tensor models implies the complete absence of a notion of
scaling under changes of length/momentum scales. Yet, a notion of canonical dimension for
a given coupling in a tensor model can be derived, closely tied to the requirement of a well-
defined, but non-trivial large N limit. The flow equation (4.4) allows for the computation
of beta function of the couplings, i.e., for the running of each coupling with the RG scale
N. In general, this system of beta functions is non-autonomous, i.e., it depends explicitly
on N. Given the existence of the 1/N-expansion for (un)colored tensor models, we rescale
the couplings §; = N%g; in such a way that the system of beta functions is compatible with
the 1/N-expansion. In particular, this implies that for the rescaled couplings, the r.h.s.
of the beta functions can at most scale with N°. The powers d; are thus the “canonical
dimensions” and the couplings g; are called dimensionless couplings. The beta function g;
associated to the coupling g; has the general structure 3; = —d; g + F(g), where the first
term of the right-hand side corresponds to the canonical scaling of the coupling and F(g)
is a function of the couplings of the theory arising from quantum fluctuations.

A universal continuum limit is possible at fixed points of the RG flow. They are
characterized by the simultaneous vanishing of all beta functions ;. Associated to the fixed



points are the universal critical exponents defined by minus the eigenvalues of the stability
matrix given by M;; = 08;/0g;. The critical exponents associated to a fixed point define
a universality class. Different microscopic descriptions which lead to the same continuum
limit belong to the same universality class. Thus, determining the critical exponents of
fixed points is crucial to establish an explicit comparison between the continuum limit of
tensor models and other formulations of the path integral for quantum gravity, e.g., in the
continuum asymptotic-safety framework.

5 The model

We explore a real rank-4-model, with an O(N') ® O(N') ® O(N’) ® O(N') symmetry,
i.e., each index can be rotated independently. Thus, there is no symmetry that connects
the distinct index positions of a tensor. This property was crucial to first establish a
well-behaved large N’ limit, although more recently more general models have been con-
sidered, see, e.g., [93, 94]. Moreover, the model we consider here features a maximally-
enhanced scaling for the non-melonic interactions.®> Tensor models featuring enhanced
scaling have also been addressed in [37, 95, 96]. We approximate the effective dynam-
ics, i.e., the flowing action I'y, by all terms up to sixth order in the tensors which are
compatible with the O(N")®* invariance, adding a subset of interactions at eighth order,
namely the so-called melonic couplings, see below. In total, we take into account 170 (in-
cluding the kinetic term) distinct combinatorial structures. Comparing with [97], where
the authors compute the number of all possible interactions of a rank-4 O(N) model at
each interaction order (see [98] for the complex case) provides a nontrivial benchmark
of our calculation. Most interaction structures single out a preferred index position,
such that these combinatorial structures occur in several incarnations which are related
by a permutation of the index position. In this case, we assign the same coupling to
all combinatorially equivalent interactions. For instance, the so-called (quartic) cyclic
melonic interactions Tg,b,c,dy Laibrcads Lasbacads Lasbicrdrs Tarbierds Tasbicads Tasbocads Tarbocids s
Tarbyerdy Tasbocrds “Tasbocods Larbready @A Taybicydi Lasbocads Tasbocods “Tarbicrds, all come with
the same coupling in this model, but nevertheless all have to be included in the effective
dynamics. In [59] index permutation was treated anisotropically. In many cases, color-
anisotropic fixed points feature an enhanced symmetry which implies the reduction of the
effective dynamics to lower-rank tensor models [56], motivating us to explore the model
with isotropy under index permuations. For completeness let us add that all interactions
have an even number of fields as a consequence of the O(N') ® O(N') ® O(N') ® O(N')-
symmetry and no additional symmetry (e.g., a Zo symmetry) needs to be imposed.

3Within the FRG setup, the canonical scaling dimensions are bounded from above, but can be chosen
below the upper bound for some classes of interactions, as lower bounds only exist for some couplings.
Whether a non-truncated setup features lower bounds for all couplings is an open question. The choice
of canonical dimension in which all upper bounds are saturated appears to agree with what has been
called “maximally-enhanced” scaling. Other scaling choices lead to the decoupling of certain classes of
interactions. Let us stress that a decoupling of so-called multitrace interactions is not possible in this way,
see the discussion in [56].



For the computation of the beta functions, we employ a Litim-type regulator [99], i.e.,

N
B(a,b,c.d) =2y <+b++d - 1)
N
o ————1 5.1
. <a+b+c+d )’ (5-1)

where Zy denotes the wave-function renormalization. This choice of regulator implies
that the anomalous dimension 7 = —NOy In Zn occurs on the right-hand-side of the flow
equation. We will set such terms to zero, which is self-consistent within our truncation
scheme that requires that n cannot be too large.

We highlight that the introduction of a regulator that depends on N entails a breaking
of the previously referred to orthogonal/unitary symmetry of the model, implying the
existence of non-trivial Ward identities that have been explored, e.g., in [49, 55].

Details on the calculation and additional results of our study will be presented in a
forthcoming paper.

6 Interacting fixed point

We find an interacting fixed which is characterized by two positive critical exponents,
012 =2.79 £1.4871, (6.1)

in the T® truncation. All remaining critical exponents are negative with 3 = —0.21 being
the negative critical exponent with the smallest absolute value.

A key feature of a physical fixed point in distinction to an artefact of the truncation
is the behavior under extensions of the truncation. We observe that the leading critical
exponents remain reasonably stable, while the anomalous dimension, fourth critical expo-
nent and fixed-point values of the couplings exhibit what one might tentatively interpret
as a first hint for the onset of apparent convergence, cf. table 1 and figure 5.

Figure 5 exemplifies the self-consistency of our truncation scheme: we work under the
assumption that operators which are higher-order in the number of tensors constitute in-
creasingly irrelevant interactions. Our explicit results for the critical exponents follow this
expectation. Therefore, we expect that adding higher-order operators to the truncation
will not result in additional critical exponents close to # = 0. The total number of relevant
directions might nevertheless change under such extensions, since the numerical value of
the most relevant critical exponents depends on the (indirect) impact of higher-order oper-
ators.* We provide a tentative estimate of the systematic error induced by our truncation
by comparing the change of critical exponents under extensions of the truncation. This
results in the tentative conclusion that our estimate for 63 is also compatible with a positive
third critical exponent.

Let us caution that within the non-perturbative approximation (including the full non-
polynomial structure of the anomalous dimension), we have not found a real extension of

4Operators with n tensors only couple directly in beta functions for couplings of interactions with
m > n — 2 tensors due to the nonperturbative one-loop structure of the flow equation.

~10 -
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Table 1. We find a fixed point characterized by two relevant directions. Within the estimated
systematic error it appears possible that the third critical exponent, 3, could become positive
under extensions of the truncation. Our notation for the couplings follows that used in [40, 56]:
the first lower index denotes the number of tensors in the interaction, e.g., g4 denotes all quartic
interactions. The second lower index denotes the number of connected components of an interaction.
The upper index indicates the number of “melonic” parts it includes. Melonic refers to the fact
that the interactions are characterized by a summation over three of the four distinct indices
of neighbouring tensors, leading to the distinct (1-index)-(3-indices) interaction structure clearly
exhibited in figure 4. Additional lower indices denote distinct characteristics of an interaction
structure. All other couplings that exist at quartic, hexic and octic order in tensors vanish exactly
at the fixed point we explore here.
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Figure 4. We depict all nonvanishing couplings and the corresponding interaction structures at the
fixed point. The distinct indices are distinguished by different colors and thick/thin/dashed/dotted
lines. All remaining couplings feature a vanishing fixed-point value.
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Figure 5. We show the real parts of the critical exponents in the T* (large cyan dots), T° (medium
light blue dots) and T® (small blue dots) truncation.

the fixed point found in the largest truncation. Instead, the fixed point lies at slightly
complex fixed-point values in this case. We tentatively conjecture that this is an artefact
of the additional zeros of the beta functions that arise in this approximation and can cause
fixed-point collisions resulting in complex fixed-point values. We defer further extensions
of the truncation, which will provide a check of this conjecture, to future work due to the
required technical sophistication to deal with such a large number of interactions.

At the fixed point, only the melonic interactions are non-zero, as shown in figure 4,
where all non-zero couplings at the fixed point are depicted together with their correspond-
ing interaction. In [21, 36] is has been discussed that a simple large N’ limit dominated
by melonic interactions leads to a continuum limit corresponding to the branched-polymer
phase, known also from dynamical triangulations. Here, we conjecture that going beyond
this limit and exploring interacting fixed point with several relevant directions, such as the
present one, might constitute a way to go beyond the branched polymer phase. Yet we cau-
tion that probes of the emergent geometry are necessary in order to comprehensively answer
this question. In [38], the complex rank-4 model was studied using a perturbative approach
and within a single-trace sector.” There, no continuum limit was found that corresponds
to quantum gravity beyond two dimensions. At least in the matrix-model case, multi-trace
interactions actually encode higher-order curvature terms, see, e.g., [100, 101]. Results in
continuum studies of asymptotically safe gravity suggest that higher-order curvature terms
are relevant, see, e.g., [70, 72, 73, 102-107]. We therefore tentatively suggest that including
multitrace interactions might be important to escape the branched polymer phase.

5We borrow terminology from matrix models, where interactions of the form M, MyeMeqMyq are single-
trace, in contrast to MapMyq MceqaMge. Similarly, we refer to To 6, c1d; Taybyeidy Lasbocods Lasbycods @S & multi-
trace interaction, in analogy to the matrix-model case.
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It is rather intriguing to observe that a gravitational universality class is known which
features rather similar — within the respective systematic errors — critical exponents to
those that we find here, namely the Reuter fixed point underlying asymptotically safe
quantum gravity, see, e.g., table 2 in [63] for an overview. It also shares the property of
a complex pair of relevant critical exponents, found in most truncations, with the present
fixed point.® In particular, using an exponential parametrization for the continuum metric
the authors of [75, 109, 110] found a fixed point with two relevant directions to describe
the universality class of the asymptotic safety scenario for gravity. Moreover, hints for
the existence of a fixed point with two relevant directions were found in a unimodular
setting, see [111]. We reiterate that the systematic uncertainties for 65 are too large to
robustly conclude that it cannot become positive. The Reuter fixed point and the potential
universality class for tensor models we find here appear to be not incompatible, i.e., within
the systematic errors we cannot exclude that they are in fact the same universality class.
This motivates extended studies aimed at reducing the systematic error in order to be able
to make an informed decision about the agreement of the two tentative universality classes.

Drawing direct conclusions about the emergent geometry from the tensor model is
challenging. Once agreement with a continuum universality class is established, it is of
course much simpler to access the geometric properties through calculations on the con-
tinuum side. Reducing the systematic error of studies such as the present one to enable a
robust comparison to the Reuter universality class is therefore a promising route to learn
about the emergent geometries. Using matter as an additional probe, enabling, e.g., the
extraction of a spectral dimension, could be an additional possibility.
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