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Abstract: We calculate the generating functions of BPS indices using their modular

properties in Type II and M-theory compactifications on compact genus one fibered CY

3-folds with singular fibers and additional rational sections or just N -sections, in order to

study string dualities in four and five dimensions as well as rigid limits in which gravity

decouples. The generating functions are Jacobi-forms of Γ1(N) with the complexified fiber

volume as modular parameter. The string coupling λ, or the ε± parameters in the rigid

limit, as well as the masses of charged hypermultiplets and non-Abelian gauge bosons are

elliptic parameters. To understand this structure, we show that specific auto-equivalences

act on the category of topological B-branes on these geometries and generate an action

of Γ1(N) on the stringy Kähler moduli space. We argue that these actions can always

be expressed in terms of the generic Seidel-Thomas twist with respect to the 6-brane

together with shifts of the B-field and are thus monodromies. This implies the elliptic

transformation law that is satisfied by the generating functions. We use Higgs transitions

in F-theory to extend the ansatz for the modular bootstrap to genus one fibrations with

N -sections and boundary conditions fix the all genus generating functions for small base

degrees completely. This allows us to study in depth a wide range of new, non-perturbative

theories, which are Type II theory duals to the CHL ZN orbifolds of the heterotic string

on K3× T2. In particular, we compare the BPS degeneracies in the large base limit to the

perturbative heterotic one-loop amplitude with R2
+F

2g−2
+ insertions for many new Type

II geometries. In the rigid limit we can refine the ansatz and obtain the elliptic genus of

superconformal theories in 5d.
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1 Introduction

In this paper we solve the all-genus topological string partition function Ztop. on compact

genus one fibered Calabi-Yau 3 folds M in a large base expansion, extending the approach

of [1, 2] to elliptic fibrations with reducible fibers and in particular to geometries that do

not exhibit a section but only N -sections.

An elliptic curve is a genus one curve with a marked point which is the zero O in the

additive group law on the elliptic curve [3]. An elliptic fibration over a base B is accordingly

defined to be a genus one fibration that has a global section which can be taken to define

the zero O on each fiber and is called the zero section. The more general term genus one

fibration refers to a geometry in which each fiber is a genus one curve, but no assumptions

about the presence of a section is made.

Elliptic fibrations can have additional rational sections and they generate the Modell-

Weil group MWM which is an Abelian group of finite rank that can have torsion parts. If

a rational section corresponds to a torsion point P with NP = O on each fiber one refers

to it as an N -torsional section and the corresponding geometric group law on the fiber

requires a specialized Weierstrass form of the Jacobian fibration [4]. On the other hand,

independent non-torsional sections correspond to independent elements in the cohomology

H2(M,Z). In the F-theory context it is well known that independent rational sections

lead to an Abelian gauge group U(1)r−1 with r = rk (MWM ) [5]. Explicit geometries

were first discussed in [6] to resolve, in compact Calabi-Yau 3-folds, the BPS degeneracies

of the E-string with respect to the flavour fugacities by breaking the flavour group E8

on the 1
2K3 with N − 1 global rational sections into G, where U(1)N−1 × G ⊂ E8 and

G = {E7, E6, D5, . . .} for N = 2, 3, 4, . . ..

An important class of fibrations that is discussed in this paper has no section but just

N -sections. An N -section is defined by N points that can be identified on each fiber and

which are transformed into each other by monodromies in the base. Accordingly, an N -

section corresponds to one element in the cohomology H2(M,Z). Genus one-fibrations that

have no section but only N -sections lead to discrete ZN gauge symmetries in F-theory. The

corresponding effective theories can be obtained via Higgsing from vacua with U(1) factors

and matter multiplets of charge N , a mechanism first described geometrically in [7, 8].

Again, N -sections that are in an appropriate sense independent lead to Abelian gauge

bosons. When we say that M is a genus one fibration with N -sections we will imply that

it does not have a section and also no N ′-sections with N ′ < N .

– 1 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

In addition to rational sections or N -sections, a genus one fibration can exhibit fibral

divisors that resolve ADE-singularities that are fibered over curves in the base. There can

be also global monodromies that identify nodes of the ADE-singularities and lead to the

reduced number of fibral divisors of non-simply laced gauge groups [9]. The corresponding

harmonic forms in H2(M,Z) lead to the Abelian gauge bosons in the Cartan of the corre-

sponding gauge group while, from the M-theory perspective, wrapped 2-branes correspond

to the W -bosons. After compactifying the F-theory vacuum on a circle, the volumes of

components of reducible fibers can be identified with scalar fields in vector multiplets of

the corresponding N = 2 theories. In the effective theory they parametrize the masses

of charged hypermultiplets and of the non-Abelian W -bosons. We therefore denote these

parameters generically by m and, for reasons that we outline below, we call them geometric

elliptic parameters.

In [1, 2] it was assumed that M is an elliptic fibration which has just the zero section

and exhibits no fiber singularities more severe than I1 in Kodaira’s classifications. In

particular, all fibers were irreducible and no fibral divisors have been present. It was

then shown that the expansion coefficients1 Zβ(τ, λ) of the topological string partition

function Ztop. on elliptic Calabi-Yau 3-folds for fixed classes β ∈ H2(B,Z) in the base

are meromorphic Jacobi forms of weight zero, where the elliptic argument τ is related to

the complexified volume of the elliptic fiber, while the string coupling constant λ appears

as elliptic argument. Moreover, Zβ(τ, λ) has an index that is given by intersections on

the base as rβλ = 1
2β · (β − c1(B)). The former fact can be argued using invariance of

Ztop. under an SL(2,Z) action that is embedded into the symplectic monodromy group

ΓW ⊂ Sp(b3(W ),Z) acting on the integral symplectic basis of periods of the mirror W of

the elliptic fibration M . The index follows by combining this action with the background

independence equation of Ztop. as a wave function [1, 10, 11], which is equivalent to the

holomorphic anomaly equation. Using the pole structure of Zβ imposed by the integral

BPS expansion of Ztop. one can argue that Zβ has a unique denominator and the numerator

is a weak Jacobi form. The ring of weak Jacobi forms is finitely generated, see [1] and in

particular reference [12]. Therefore one can fix Zβ for low base degree from the vanishing

of BPS invariants for high genus that follow from Castelnuovo bounds.2

A crucial step in generalizing the analysis of [1, 2] is to modify and extend these

monodromy arguments to genus one fibrations that do not have a section and also to

include those parameters that correspond to the volumes of fibral curves and, after circle

compactification, to the vaccum expectation values of scalars in vector multiplets. The

action of the corresponding monodromies for elliptic fibrations with reducible fibers has

been calculated in [13] and we extend the argument to fibrations without sections. Using

this generalization, we establish that for genus one fibrations with N -sections and N ≤
4, the SL(2,Z) part is broken to the finite index subgroup Γ1(N) as well as the fact

that the complexified Kähler parameters that correspond to rational fibral curves become

1See (2.3) (without the mass parameters m) for the precise definition of the expansion.
2If β2 < 0 one can argue that one can always fix Zβ [1] and the method is quite effective. For example

the E-string could be solved to seven base windings in [2].
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elliptic parameters of the coefficients Zβ(τ, λ,m).3 This analysis enables us to construct

the Zβ(τ, λ,m) in a far more general setting as meromorphic higher degree Jacobi form of

Γ1(N) with further elliptic parameters, where the numerators are now generated by the

larger rings of weak Jacobi-forms under Γ1(N), which exhibit Weyl-invariance in the m

parameters similar to the cases discussed [19]. The monodromies allow us to determine

the precise index matrix with respect to the geometric elliptic parameters m and the

elliptic transformation law then follows for these parameters already from invariance of

the topological string partition function under the corresponding monodromies. Although

the rings of weak higher degree Jacobi forms for Γ1(N) are larger, we show in examples

that one can fix Zβ(τ, λ,m) for small β and expect that the Castelnuovo bounds are again

sufficient to solve completely for classes with β2 < 0.

Calculating the monodromy group ΓW ∈ Sp(b3(W ),Z) in the B-model on W using

the complete Picard Fuchs differential ideal and a global integral symplectic basis on the

resolved complex structure moduli space Mcs(W ) is technically feasible only for models

with few complex moduli h2,1(W ). Instead we work on the stringy Kähler moduli space

Mks(M) of M directly. Extending the method of [2, 13, 23], our strategy is to identify the

Kähler moduli as central charges of 2-branes and to study auto-equivalences of the category

of branes that generate an action of Γ1(N). We will then relate those auto-equivalences

to the generic monodromies that correspond to the boundary of the geometric cone and

to the large volume limiting points and thus show that the Γ1(N) action corresponds

indeed to monodromies in the stringy Kähler moduli space.This allows us to use the known

automorphic properties of Ztop. under monodromies [24, 25] and to derive the elliptic

transformation law with respect to the geometric elliptic parameters and thus also to

identify their index matrix.

For elliptic fibrations, the most characteristic auto-equivalence is induced by the

Fourier-Mukai kernel which is the ideal sheaf I∆B
of the relative diagonal ∆B in M ×B

M [26–30] and it acts as τ → τ
Nτ+1 on the τ parameter [13]. We will call this the U -

transformation or the relative Conifold transformation. Furthermore, tensoring objects

in the derived category with the line bundle O(D), where D is an effective Cartier divi-

sor, also induces an auto-equivalence and corresponds to a shift of the B field by D. In

partiular, when D is choosen to be the “zero” N -section, it leads to the T transforma-

tion τ → τ + 1. The Weyl symmetries in the geometric elliptic parameters m arise from

monodromies around points where the Calabi-Yau develops a singularity from divisors col-

lapsing to curves [31, 32]. The corresponding Fourier-Mukai kernels have been indentified

in [33–35], see also [36].

After general explanations of the geometric structure of the fibration at the beginning

of section 3, the central charges and the symplectic pairing of the topological B-branes

are explained in subsection 3.1. The Fourier-Mukai kernels and the corresponding actions

on the brane charges are described and their action on the brane charges is calculated

in the subsections 3.2, 3.3. The calculation of the U -transformation generalizes the re-

3In the rigid limits the masses appear as fugacities in the elliptic genus of the 2d gauged linear quiver

σ model and are naturally identified as elliptic parameters [14–20]. In global threefold cases with multiple

sections, a similar behaviour has been observed in [21, 22].
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sults from [13] to genus one fibrations with N -sections and relies on a realization of the

Calabi-Yau as a complete intersection inside a compatibly fibered toric ambient space. In

subsection 3.4 we argue that the U -transformation can always be expressed in terms of the

generic Seidel-Thomas twist with respect to the 6-brane together with shifts of the B-field

and is thus a monodromy. For fibrations with bases B = P2 and Fn, n ∈ N we provide

the relations and check them via an explicit calculation of the corresponding products of

monodromies. This calculation does not rely on toric geometry and applies to all genus one

fibered Calabi-Yau threefolds over the corresponding bases. At the end of subsection 3.4

we also discuss a beautiful connection of this structure to the swampland distance and

the emergence conjectures. The Weyl monodromies that emerge when divisors collapse to

curves are discussed in subsection 3.5. In subsection 3.6 we then combine the monodromies

with the automorphic properties of the topological string partition function Ztop. and de-

rive the elliptic transformation law. A derivation of the full modular transformation law is

given for genus one fibrations without additional N -sections or fibral divisors, and where

geometric elliptic parameters are thus absent.

We explain in section 4 how to use the modular and elliptic transformations of weight

k = 0 and index rβλ under Γ1(N) as well as the pole behaviour to reconstruct Zβ . For conve-

nience of the reader we include in subsection 4.1 the definitions of the rings of holomorphic

modular forms of Γ1(N) and discuss the special class of higher degree Jacobi forms that

will appear in the topological string partition function. Subsection 4.2 contains a review

of the main results about the modular bootstrap on elliptic fibrations. In subsection 4.3

we then discuss the base degree zero part Z0 of the partition function, both on elliptic

fibrations with reducible fibers and on genus one fibrations with N -sections. We find that

the corresponding free energies Fg≥0,β=0 are Jacobi forms of weight 2g−2 and index 0. For

particular examples we derive the closed expression at all genera and the derivation can

easily be adapted to other genus one fibrations. In particular, the matter content of the

corresponding F-theory vaccum including multiplicities is entirely encoded in Z0.4 Subsec-

tion 4.4 contains the derivation of the index with respect to the topological string coupling

constant λ, using Witten’s form of the wave function equation. We then obtain the correct

Ansatz for general Zβ on general genus one fibered Calabi-Yau threefolds with N -section

from the corresponding Ansatz for elliptic fibrations by considering Higgs transitions in

F-theory, see subsection 4.5. We summarize the equations relevant for all modular Ansätze

in subsection 4.6.

Of course, the full topological partition function contains much richer BPS informa-

tion than just the massless spectrum of the corresponding F-theory vacuum. A beautiful

application to Type II/heterotic duality for Calabi-Yau 3-folds with N -section geometries

in four dimensional N = 2 theories is described in section 5. On the heterotic side one

expects [39, 40] the dual to be a CHL [41, 42] compactifictation on (K3 × T2)/ZN . This

follows from the observation that self-dualities on the heterotic side are identified with mon-

odromies in the moduli space of the Calabi-Yau target space on the Type II side [43, 44],

4Such observations have been independently made in the elliptic case by Amir Kashani-Poor [37] and

they will also expanded in [38].
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together with our general discussion of the monodromies of genus one fibrations. The Z2

CHL string exists already for S1 compactifications of the E8 ×E8 heterotic string and the

corresponding Z2 exchanges the two E8 factors while acting as a half shift xk → xk+πR on

the circle. Using a maximal supersymmetric dual pair in 6d between a Type II Z2 orbifold

on K3 and a heterotic CHL Z2 orbifold on T 4 [45], as well as an adiabatic argument on the

Type II side, the Z2 action on a dual elliptically fibered Calabi-Yau 3-fold was identified

in [39]. Indeed, this leads to a 2-section geometry with a compatible K3 fibration.

The automorphisms of K3 surfaces have been classified [46] and correspond to con-

jugacy classes of the Mathieu group M23. More generally, one can classify the discrete

symmetries of non-linear sigma models on K3, a task completed in [47, 48]. Using this

information in further T 2 compactifictions one can fully classify orbifolds of Type II com-

pactifications on K3× T 2 which yield N = 4 supergravities in four dimensions5 [49]. One

can also classify CHL orbifolds of heterotic strings on K3×T 2 which lead to N = 2 effective

supergravity actions [50, 51]. For the corresponding Type II theories on Calabi-Yau 3-folds

with N -sections and compatible K3 fibration one should be able to identify the all-genus

BPS amplitudes with a heterotic one loop integral that contains insertions of the self-dual

parts of curvature and graviphoton field strength of the form R2
+F

2g−2
+ [52–54]. The cor-

responding perturbative heterotic amplitudes can be calculated using the Borcherds lift as

in [54, 55]. Similar calculations have been performed for some CHL models in [50, 51].

In subsection 5.4 we identify novel Type II compactifications which are dual to heterotic

compactifications on CHL orbifolds that correspond to the conjugacy class 2A in M23 with

non-standard embedding of the gauge connection. We show that the corresponding one-

loop amplitudes that were obtained in [51] match our results from the modular bootstrap

on genus one fibrations in the large base limit of the compatible K3 fibration and thereby

provide a strong all genus tests of Type II/CHL duality. Since the heterotic dilaton Φhet is

identified with the Kähler parameter of the base of the K3 fibration, instanton corrections

with non-vanishing base degree contribute like qb = e−8π2Φhet and predict non-perturbative

corrections to the CHL string. Type II theory on N -section Calabi-Yau 3-folds should give

therefore the full non-perturbative description of the corresponding CHL string.

An analysis of superconcormal representation theory reveals, that six is the maximal

dimension in which superconformal field theories can exist [56]. F-theory on fibrations with

a contractable configuration of curves in a non-compact base have been used to study [5, 6]

and classify N = (2, 0) [57] and N = (1, 0) [58] superconformal field theories. Building

blocks in this classifications are minimal SCFTs studied in [15] and among the latter is a

particularly interesting one, the so called E-string. This is geometrically engineered as the

rigid F-theory limit on an elliptic Calabi-Yau 3-fold with a rational curve of self-intersection

−1 in the base. The limit decouples gravity and emerges geometrically when the normal

direction of the rational curve is decompactified, so that the compact part of the geometry

is an 1
2K3, i.e. an elliptic surface with 12 I1 fibers. The latter can also be obtained as a

nine-fold blowup of P2 [5, 6]. The topological string partition function encodes the elliptic

genera of tensionless strings that arise in the superconformal limit [15].

5This setting is very well studied in order to understand the microscopic entropy of N = 4 black holes

and because the twining elliptic genera are given by Jacobi forms, whose coefficients decompose in a simple

way into the dimensions of the largest exceptional discrete groups, a phenomenon known as moonshine.
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In section 6 we study corresponding gravity decoupling limits now in the context of

genus one fibrations with N -sections. To this end we use toric geometry to construct genus

one fibrations over the Hirzebruch surface F1. The latter is a rational fibration with fiber

F ∼ P1 with F 2 = 0 and base S ∼ P1, a section with S2 = −1. The decoupling limit

corresponds hence to the limit of large fiber F , or equivalently to contracting the base S.

Taking this limit on genus one fibrations with N -sections6 over F1, we find for N = 2, 3, 4

that, due to the additional U(1)R symmetry in the local limit, the Zk·S(τ, λ) can be refined

for k-th multi wrapping β = k · S of the base class S to Zk·S(τ, ε±). Adapting the refined

modular bootstrap approach with SL(2,Z) Jacobi forms with two elliptic parameters ε±
described in [18] to similar Jacobi forms of Γ1(N) we can extract the refined BPS invariants

Nβ
jL,JR

in the full 5d spin representations of the little group SU(2)L × SU(2)R as decribed

in subsection 6.2. In particular, to determine the elliptic index with respect to the refined

parameters ε±, we use the relation of the latter to the anomaly polynomials for the chiral 6d

space time — or quiver worldsheet theory [17, 19]. The BPS spectrum can be explained by

discrete Wilson lines on the S1 that compactifies from six to five dimension. In particular

for N = 2 we find the refined BPS invariants of the 5d theory with an Z2 discrete Wilson

line that was used in [59]. The latter was used to obtain the E-string spectrum, up to the

effect of the Wilson line, from the elliptic genus of a 2d quiver gauge theory with SO(16)

gauge theory, which has a brane description as k D2 branes stretched between a stack of

one O8- and 8 D8 branes and one NS5-brane.

Our toric construction of genus one fibered Calabi-Yau 3-folds over various bases with

N -sections as well as with Abelian and non-Abelian gauge symmetry enhancements is

illustrated with typical examples in section 7. There we apply the modular bootstrap in

detail and also discuss the manifestation of field theoretic Higgs transitions at the level of

the geometry and the partition function. We provide the toric data related to the ambient

space, study the Mori cone in the relevant phases and obtain the Picard-Fuchs differential

ideals as well as the discriminants. Longer expressions are relegated to appendix D and C.

From the toric data mirror symmetry is manifest [60, 61] and the periods at large radius

as well as the genus zero BPS invariants can be calculated from the GKZ solutions as

in [62, 63]. If all discriminant components are known, the genus one BPS invariants follow

as in [64].

We provide auxiliary data for our discussion in the appendices. Moreover, appendix A

contains a very brief review of the F-theory dictionary that we frequently employ to describe

geometric structures in terms of the physics in the corresponding F-theory vacua. In

appendix B we prove an identity between charateristic classes that is crucial to obtain the

auto-equivalences and monodoromies in subsection 3.3 as well as in the derivation of the

modular anomaly equation in subsection 4.4.

6We also consider geometries with pseudo N -sections that nevertheless exhibit Γ1(N) modularity. Those

occur when the Kähler moduli of the one or two rational sections considered for the E7×U(1) and E6×U(1)2

splitting of the E-string [6] are frozen to zero value by the toric embedding.
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2 The geometry of elliptic and genus one fibrations

Before we begin, let us briefly review the geometry of an elliptic or genus one fibered

Calabi-Yau threefold. Note that we follow the convention from the F-theory literature that

elliptic fibrations have at least one section and use the word genus one fibration for torus

fibrations that do not necessarily have a section. We will always assume that the fibration

is flat (i.e. the dimension of the fiber does not jump) and that there are no multiple fibers.

The Shioda-Tate-Wazir theorem [65] states that the homology group H4(M) of an

elliptically fibered threefold is generated by three types of divisors. These are vertical

divisors Di = π−1D̃i where D̃i ∈ H2(B) is a divisor in the base B of the fibration, fibral

divisors that consist of rational curves fibered over a divisor in B and sections. It is useful

to distinguish between holomorphic sections, that intersect every fiber in a point, and

rational sections, that intersect every smooth irreducible fiber in a point. By convention

an elliptic fibration has at least one section, holomorphic or rational, and we can choose

any section to be the zero section. Irreducible fibers can then be canonically identified

with C/(Z + τZ) where the origin is the point that corresponds to the intersection with

the zero section. Addition of points defines a group law on the fiber that can be extended

to the set of rational sections. This leads to the Mordell-Weil group MW (M). If we only

consider the zero section and sections that are linearly independent in the Mordell-Weil

group MW (M) together with a basis of vertical divisors and fibral divisors we obtain a

basis of H4(M).

In our convention a genus one fibration might not have a section but only k-sections

that intersect the generic fiber k times. The points experience monodromy along loops in

the base which distinguishes a k-section from a union of k sections. However, a genus one

fibration has an associated Jacobian fibration where every fiber is replaced by its moduli

space of degree 0 line bundles. Note that an elliptic fibration is birationally equivalent to

it’s associated Jacobian fibration and on smooth fibers the zero section can be identified
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with the trivial line bundle. The Mordell-Weil group law then locally amounts to taking

tensor products. In the case of genus one fibrations one can identify the k-sections with

degree k line bundles on the (smooth) fibers. It is then clear that the Mordell-Weil group

of the Jacobian fibration acts on the set of k-sections.

The Shioda-Tate-Wazir theorem has subsequently been generalized to genus one fibered

threefolds, i.e. fibrations that do not admit a section but only multi-sections [66]. The only

difference is that one considers k-sections (for minimal k) instead of sections. To obtain a

basis one picks a “zero k-section” and acts on it with the free generators of the Mordell-Weil

group of the Jacobian fibration.

The homology of an elliptic or genus-one fibered Calabi-Yau manifold, including the

intersection structure, is encoded in the effective theory that is associated to the Calabi-Yau

via F-theory. This provides a concise way to describe e.g. the group of divisors in terms

of the corresponding physical gauge group. We will frequently make use of this dictionary

and a brief review of the relevant entries can be found in appendix A.

For elliptically fibered Calabi-Yau manifolds there is a homomorphism from the

Mordell-Weil group to H4(M,Z) called the Shioda map

σ : MW (M)→ H4(M,Z) . (2.1)

The explicit form of this map is reviewed in appendix A but one can uniquely define it in

terms of it’s intersection properties [67]. This definition generalizes to genus one fibrations

with N -sections where the domain is of course just a set. Let us define the inner product

〈 , 〉 : H4(M)×H4(M)→ H2(B) , (S, S′) 7→ −π(S · S′) . (2.2)

For an N -section E of a Calabi-Yau threefold we then define σ(E) = E+D where D is the

unique linear combination of the zero-N -section, vertical divisors and fibral divisors such

that σ(E) is orthogonal with respect to 〈·, ·〉 to the subspace spanned by those divisors

in H4(M).

Irreducible curves in M can either arise from curves in the base, from rational curves

that are fibers of fibral divisors or from isolated rational curves over points of the base. We

will denote the latter two collectively as fibral curves. It is easy to see that the image of an

N -section under the Shioda map σ will have non-zero intersection only with isolated fibral

curves. The class of the generic fiber is irreducible if there are no reducible fibers. We can

therefore expand the topological string partition function Z = exp(
∑∞

g=0 λ
2g−2Fg) as

Z(τ,m, t, λ) = Z0(τ, λ)

1 +
∑

β∈H1,1(B,Z)

Zβ(τ,m, λ)Qβ

 , (2.3)

where we find that for an elliptic or genus one fibration with N -sections for N ∈ {1, 2, 3, 4},
the Kähler modulus τ should be choosen such that Nτ is the complexified volume of the

generic fiber (this is discussed in section 4.5). Moreover, m are complexified volumes of

fibral curves and Qβ = exp(2πi
∑

i β
iti) where ti, i = 1, . . . , h1,1(B) are shifted volumes of

curves in the base. The shift is linear in τ and its necessity for elliptic fibrations has first
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been observed by [11, 68]. It can also be derived from the action of the relative conifold

transformation [13]. We will extend this derivation to genus one fibrations in section 3.3.

The topological string coupling constant is denoted by λ.

3 Branes, derived equivalences and monodromies

In this paper we adopt the philosophy that modular properties of the topological string

partition function are consequences of the general transformation behaviour under mon-

odromies in the stringy Kähler moduli space. Here the attribute “stringy” indicates two

important differences to the classical Kähler moduli space of a Calabi-Yau. First, the

Kähler form is combined with the B-fields into the complexified Kähler form. Second, the

complexified Kähler cone is extended with the Kähler cones of other geometries and cones

that do not admit a geometric interpretation [69, 70]. A canonical example for such a

non-geometric “phase” is the moduli cone of a Landau-Ginzburg model. Together these

cones form the so-called fully enlarged Kähler moduli space. The third difference is, that

the duality group of the string compactification is quotiented out.

At least for hypersurfaces in toric ambient spaces it is relatively easy to construct

the fully enlarged Kähler moduli space. It is much harder to decide whether two points

correspond to dual compactifications. However, according to the homological mirror sym-

metry conjecture the action of monodromies in the stringy Kähler moduli space, where

we choose the large volume limit of a Calabi-Yau M as the base point, can be lifted to

autoequivalences of the category of topological B-branes on M [71]. This allows us to use

the machinery of Fourier-Mukai transformations and thus to calculate the action of certain

generic autoequivalences on the complexified Kähler moduli.

Our main interest will be in what we call the relative conifold transformation on elliptic

and genus-one fibered Calabi-Yau threefolds. For fibrations over P2 we show that the

action on the brane charges can be expressed in terms of transformations that are related

to monodromies in the complex structure moduli space of the mirror. This implies that the

corresponding points in the Kähler moduli space are identified by a duality. In the case of

elliptic fibration this duality is closely related to T-dualizing along both cycles of the elliptic

fiber. When the base is a Hirzebruch surface Fi, i = 0, 1 we observe analogous relations for

all geometries that we study in this paper. Having thus established that relative Conifold

transformations correspond to monodromies in the stringy Kähler moduli space, we relate

it to the modular properties of the topological string partition function.

We start this section with a cursory review of topological B-branes and Fourier-Mukai

transformations where we will also introduce our conventions. A pedagogical review can

be found in [72].

3.1 A brief introduction to topological B-branes

Topological B-branes on a Calabi-Yau manifold n-foldM are objects in the bounded derived

category of quasicoherent sheaves Db(M) on M [73]. An object F• in this category is a

bounded complex of quasicoherent sheaves and quasi-isomorphic complexes are identified.

– 9 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

This implies (non-trivially) that every object can be represented by a bounded complex of

locally free sheaves

F• = 0→ Em → Em+1 → · · · → 0 , (3.1)

where the superscript indicates the position in the complex.

Locally free sheaves are equivalent to vector bundles and the complex (3.1) can be

thought of as a stack of n-branes (at even positions) and anti-n-branes (at odd positions

in the complex). The identification of objects in the derived category implements the fact

that via brane/anti-brane annihilation many stacks are identified in the infrared limit. In

particular, branes that do not wrap the Calabi-Yau correspond to quasicoherent sheaves

that are not locally free and can be realized by annihilating brane/anti-brane pairs with

lower-dimensional branes dissolved on their world volumes.

The RR charges of B-branes are classified by K-theory or, since we are only interested

in geometries without torsion, by the vertical cohomology on M . For a B-brane F• the

asymptotic central charge can be calculated using the Gamma class formula [74]

Πasy(F•) =

∫
M

eωΓC(M)(chF•)∨ , (3.2)

where in terms of the Chern classes c2, c3 of M

ΓC(M) = 1 +
1

24
c2 +

ζ(3)

(2πi)3
c3 . (3.3)

The action of the operator ∨ : ⊕kHk,k(M) → ⊕kHk,k(M) is linear and determined by

δ∨ 7→ (−1)iδ for δ ∈ H i,i(M).

It has been conjectured by Kontsevich that mirror symmetry relates B-branes on M

to A-branes on the mirror W [71]. The latter are calibrated Lagrangian k-cycles L and the

central charge is determined by the holomorphic (3, 0)-form Ω as

Π(L) =

∫
L

Ω . (3.4)

The mirror map then identifies the asymptotic central charge of F• (3.2) with the logarith-

mic terms in the central charge (3.4) of the mirror brane L. Furthermore, the intersection

between two A-branes L1 ∩ L2 is equal to the open string index of the mirror branes

χ(E•,F•) =

∫
M

Td(M)ch(E•)∨ch(F•) , (3.5)

where the Todd class Td(M) can be expressed in terms of the Chern classes via

Td(M) = 1 +
1

2
c1(M) +

1

12

(
c1(M)2 + c2(M)

)
+

1

24
c1(M)c2(M) + . . . . (3.6)

Of course, for a Calabi-Yau manifold c1(M) = 0 and most of the terms vanish.
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We will now introduce a set of branes that generate the charge lattice. The structure

sheaf OM corresponds to a 6-brane, while the skyscraper sheaf Op with support on some

point p ∈M corresponds to a 0-brane. The short exact sequence

0→ OM (−D)→ OM → OD → 0 , (3.7)

implies a quasi-isomorphism between a 4-brane OD with support on the effective Cartier

divisor D and the complex of vector bundles

F•D ≡ 0→ OM (−D)→ OM → 0 . (3.8)

The position of the brane is encoded in the maps of the complex but will not be important

to us. Two-branes with support on a curve C can be obtained as K-theoretic push-forwards

C• = ι!OC
(
K

1/2
C

)
. (3.9)

Let us assume a basis of the Kähler cone is given by Ji, i = 1, . . . , h1,1(M) and denote

the dual curves by Ci = 1, . . . , h1,1(M). We expand the Kähler form ω as

ω = Jit
i , (3.10)

and, using the Gamma class formula (3.3), calculate the asymptotic central charges (see

e.g. [75] for details of the calculation)

Πasy(OM ) =
1

6
cijkt

itjtk + bit
i +

ζ(3)

(2πi)3
χ ,

Πasy(F•Ji) =− 1

2
cijkt

jtk − 1

2
ciijt

j − 1

6
ciii − bi ,

Πasy(C•i ) = ti , Πasy(Op) = −1 ,

(3.11)

where χ is the Euler characteristic of M and we introduced

cijk =

∫
M
JiJjJk and bi =

1

24

∫
M
c2Ji . (3.12)

In the remainder of this paper we will refer to the central charges of this basis as

~Π =
(

Π(6),Π
(4)
i ,Π

(2)
i ,Π(0)

)t
, (3.13)

and the Calabi-Yau M as well as the choice of basis for the Kähler cone will be clear from

the context.

3.2 Fourier-Mukai transformations and monodromies

The periods of the holomorphic (k, 0)-form can be calculated to arbitrary order in the

complex structure parameters of W and it is well known that they experience monodromy

when transported along non-contractible loops in the complex structure moduli space.

The homological mirror symmetry conjecture implies that the B-model monodromies lift,

in the A-model, to auto-equivalences of the category of B-branes. On the other hand,

– 11 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

a theorem by Orlov [76] states that equivalences of derived categories Db(X), Db(Y ) are

always expressible as Fourier-Mukai transformations

ΦE : F• 7→ Rπ1∗ (E ⊗L Lπ∗2F•) , (3.14)

where πi, i = 1, 2 are the projections from Y × X to the i-th factor and the so-called

Fourier-Mukai kernel E is a quasicoherent sheaf on Y ×X. The letters L and R indicate

that the corresponding derived version of a functor is to be taken.

It is, in general, difficult to evaluate this expression and it is often easier to obtain

the corresponding action on the brane charges. This can be done with the Grothendieck-

Riemann-Roch formula which for f : X × Y → Y states that

ch(f∗F•) = f∗ [ch(F•) · f∗Td(X)] . (3.15)

Here we already assume that X × Y and Y are smooth and neither of the associated

K-groups contains torsion such that we can work directly in cohomology.

For several important B-model monodromies the corresponding Fourier-Mukai kernel

is known to be of a generic form which allows us to calculate the corresponding action on

the brane charges. We will now discuss the transformations that are most relevant for our

discussion.

Large volume monodromies. Let us denote the embedding of the diagonal ∆ = M

into M × M by j : M → M × M . The Fourier-Mukai kernel that corresponds to the

large volume monodromy around the divisor in Kähler moduli space where we move to

infinity in the direction of a divisor D inside the Kähler cone is given by j∗O(D) [77].

The general formula (3.14) can be evaluated (see e.g. [36, 78]) and one finds that the

transformation maps

F• 7→ F• ⊗O(D) . (3.16)

At the level of the central charges this transformation just leads to a shift in the clas-

sical/logarithmic terms. In particular, the charges of 2-branes that wrap a curve C are

shifted by D · C. Of course this is nothing but a shift of the B-fields. It is easy to see,

that for large volume transformations with respect to D = Ja the brane charges (3.11)

transform as ~Π 7→Ma · ~Π, with

Ma,IJ =


1 −δaj 0 0

0 δij −caij c+
ai

0 0 δij −δai
0 0 0 1

 , c±ai =
1

2
(caai ± caii) , (3.17)

where I, J = 1, . . . , 2 + 2h1,1 and i, j = 1, . . . , h1,1 while cijk was defined in (3.12).

Seidel-Thomas twists and conifold transformations. For loops around a component

of the discriminant where the Calabi-Yau M itself or a divisor in M collapses to a point,

the corresponding transformation of B-branes is a Seidel-Thomas twist [33, 79, 80]. Here
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we will only be interested in the case where M itself collapses which is conjectured to

correspond to the principal component of the discriminant [77, 81]. We will denote the

corresponding transformation as a conifold transformation or conifold monodromy.

The Fourier-Mukai kernel is given by the ideal sheaf I∆ of the diagonal in M ×M . In

the derived category this is quasi-isomorphic to the complex

0→ OM×M → O∆ → 0 . (3.18)

One can use the Grothendieck-Riemann-Roch theorem (3.15) to translate (3.14) into an

action on the Chern characters of branes

ch(ΦE(F•)) = π1∗ (ch(E) · π∗2 [ch(F•)Td(M)]) . (3.19)

Using (3.18) and ΦO∆
(F•) = F• (see [82], p. 114) this leads to

ch(ΦI∆(F•)) = ch(F•)− π1∗π
∗
2 (ch(F•)Td(M)) . (3.20)

With the definition of the open string index (3.5) the action on the central charges then

takes the simple form

Π(F•) 7→ Π(F•)− χ(F•,OM )Π(OM ) . (3.21)

It is perhaps instructive to give some geometric intuition for this action. Note that

multiplication of the charge ch(F•) with the Todd-class Td(M) = 1 + . . . does not change

the support of the corresponding brane. Now the effect of the pull-back and push-forward

operations in the second term is to make any brane F• “wrap” the first factor of M ×M
and to project out branes that do not have point-like support on the second factor. The

only brane that survives this operation is the zero-brane corresponding to a skyscraper

sheaf Opt. which is transformed into the structure sheaf OM . Combining this with the first

term in (3.21) one can see that the zero brane is transformed into a bound state of a zero

brane and an anti six-brane while branes that do not contain embedded zero branes remain

unaffected.

Of course, this pictures receives corrections due to the presence of the Todd-class

and it is easy to evaluate (3.21) exactly. In particular, we find that our basis of brane

charges (3.11) transforms as ~Π 7→MC · ~Π, with

MC,IJ =


1 0 0 0

−κi δij 0 0

0 0 δij 0

−1 0 0 1

 , where κi =
1

6
ciii + 2bi . (3.22)

The definition of bi has been given in (3.12).

3.3 Relative conifold transformations and Γ1(N)

Given a family of complex elliptic curves, the lattice of brane charges is generated by the

zero brane Opt. and the two-brane OC . The large volume monodromy T and the conifold
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monodromy U respectively act on the vector of central charges ~Π = (Π(OC), Π(Opt.))t as

T : ~Π 7→

(
1 −1

0 1

)
· ~Π , U : ~Π 7→

(
0 1

−1 1

)
· ~Π . (3.23)

Note that the Todd-class is trivial and therefore the geometric intuition that we outlined

above applies without further modification. It is easy to see that the corresponding ma-

trices, which we will also denote by T and U , generate the modular group SL(2,Z). In

particular, the normalized volume of the curve

τ = − Π(OC)

Π(Opt.)
, (3.24)

transforms as

T : τ 7→ τ + 1 , U : τ 7→ τ

1 + τ
. (3.25)

It turns out that on an elliptic or genus-one fibration this transformation can be per-

formed fiberwise. Perhaps not surprisingly, the relevant Fourier-Mukai kernel is the ideal

sheaf of the relative diagonal I∆B
in the relative fiber product M ×B M [30]. Follow-

ing [13] we will therefore call this a relative conifold transformation. Using the singular

Riemann-Roch theorem an analogous formula to (3.20) can be derived and reads

ch(ΦI∆B (F•)) = ch(F•)− π1∗π
∗
2

(
ch(F•)TdM/B

)
, (3.26)

where TdM/B is the Todd-class of the so-called virtual relative tangent bundle.

To define the latter, one needs a local complete intersection (l.c.i.) morphism i : M →
V that embeds M into a smooth ambient space V such that V is a bundle π′ : V → B

over B and π = π′ ◦ i [83]. When M is a hypersurface or complete intersection in a toric

ambient space V , the toric ambient space itself often exhibits a compatible toric fibration

structure and the inclusion of M is an l.c.i. morphism [13]. In the rest of the paper we

will assume this to be the case. The leading behavior of the Todd-class was then found to

generically be

TdM/B = 1− 1

2
c1(B) + . . . . (3.27)

Let us now assume that M is an elliptic or genus one fibration and parametrize the

Kähler form as

ω = τ · (E0 +D) +
r∑
i=1

mi · σ(Ei) +

rk(G)∑
i=r+1

mi ·Df,i−r +

b2(B)∑
i=1

t̃i ·D′i . (3.28)

where the vertical divisors D′i are dual to the curves Ci = 1
NE0 ·Di and Di = π−1D̃i, i =

1, . . . , b2(B) is a basis of vertical divisors. Moreover, Ei, i = 0, . . . , r are independent

N -sections and D is a vertical divisor such that Ẽ0 = E0 + D is orthogonal to all of
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these curves.7 We will also assume that the fibral divisors Df,i are choosen such that they

are orthogonal to the zero-section.

Using the generic behavior of the Todd-class TdM/B (3.27) one can calculate the action

of the relative Conifold transformation R on the Kähler parameters (3.27). The action on

the normalized volumes of curves in the base t̃i, i = 1, . . . , b2(B) is

t̃i 7→t̃i +
1

1 +Nτ

(
1

2
ãiτ

2 +
1

24

∫
M
c2(M)Di +

N

2
aiτ −

N

2
mambCiab

)
= t̃i +

ãi
2N

τ − ãi
2N

τ

1 +Nτ
+

1

24

∫
M
c2(M)Di −

1

1 +Nτ
· N

2
mambCiab +A ,

(3.29)

where

A =
1

2

Nτ

Nτ + 1

(
ai −

1

12

∫
M
c2(M)Di

)
, ãi =

∫
M

Ẽ2
0 ·Di , ai =

∫
B

c1(B)Di , (3.30)

and

Ciab =
1

N
·


−π∗ (σ(Ea) · σ(Eb)) · Cβ for 1 ≤ a, b ≤ r
−π∗ (Df,a ·Df,b) · Cβ for r < a, b ≤ rk(G)

0 otherwise

, (3.31)

It was shown in [84] that A vanishes for generic elliptic fibrations. A proof that this

result extends at least to the classes of genus one fibrations studied in [85] can be found in

appendix B. We can then introduce the shifted Kähler parameters

ti = t̃i +
ãi

2N
τ , (3.32)

and find the action

U :


τ 7→ τ/(1 +Nτ)

mi 7→ mi/(1 +Nτ) , i = 1, . . . , rk(G)

Qi 7→ (−1)ai exp
(
− N

1+Nτ ·
1
2m

ambCiab +O(Qi)
)
Qi

, (3.33)

where Qi = exp(2πiti) and the action on Qi receives corrections that are double exponen-

tially surpressed in the large base limit. Note that the large volume transformation T that

shifts τ 7→ τ + 1 while leaving mi, i = 1, . . . , rk(G) invariant acts as

T :


τ 7→ τ + 1

mi 7→ mi , i = 1, . . . , rk(G)

Qi 7→ (−1)
ãi
2NQi

. (3.34)

At this point we should review the congruence subgroups Γ0(N) and Γ1(N) of Γ =

SL(2,Z). The Hecke congruence subgroup of level n is defined as

Γ0(N) =

{(
a b

c d

)
∈ Γ : c ≡ 0 (mod n)

}
, (3.35)

7Recall that independence for N -sections means that they cannot be related via the action of the Jacobian

fibration.
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while

Γ1(N) =

{(
a b

c d

)
∈ Γ : a, d ≡ 1 (mod n) , c ≡ 0 (mod n)

}
, (3.36)

and it is clear that Γ1(N) ⊆ Γ0(N) ⊆ Γ. Both groups have an interesting moduli problem

associated to it which will be relevant to us later. Namely, Γ0(N) acts on the complex

structure parameter τ of an elliptic curve such that a cyclic subgroup of order N is preserved

while Γ1(N) preserves also the generator of this group [86].

Let us now discuss generators for Γ0(N) and Γ1(N) with N ≤ 4. Using the elements

T̃ =

(
1 1

0 1

)
, ŨN =

(
1 0

N 1

)
(3.37)

we can write Γ0(N) = 〈T̃ , ŨN ,−1〉 and Γ1(N) = 〈T̃ , ŨN 〉. Note that the set of generators

is not always minimal and in particular one finds Γ0(2) = Γ1(2). Starting with N = 5 the

generating sets become more complicated and we will restrict ourselves to N ≤ 4. Because

Γ0(N) is then obtained from Γ1(N) by adjoining the matrix −1 it is clear that the action

on τ and therefore also the rings of modular forms for both groups are identical.

With these definitions we see that for N ≤ 4 the monodromies U and T generate

an action of the congruence subgroup Γ1(N) ⊆ SL(2,Z), or equivalently Γ0(N), on the

Kähler parameters. Under this action τ transforms like a modular parameter, mi transform

as elliptic parameters and the exponentiated Kähler parameters Qi transform, up to a

multiplier system, like lattice Jacobi forms of weight 0 and with index matrix given by Ciab.

Note that on the enlarged moduli space, where one does not normalize the 0-brane

charge, U and T generate an action of Γ1(N) and, for N > 2, not of Γ0(N). In the

following we will therefore talk about modularity with respect to Γ1(N) although the rings

of modular forms do not distinguish between the groups.

3.4 EZ-transformations and wall monodromies

The Seidel-Thomas twists admit several generalizations. Horja constructed so-called EZ-

transformations that arise from loci where a subvariety E ↪→M collapses onto a subvariety

Z [33, 87]. The conjectured physical interpretation is that there is a whole category of

branes becoming massless at these loci. Essentially the massless objects arise from pull-

backs of branes on Z and the induced action on any brane B binds a particular subset of

massless objects that depends on B. The explicit form of the corresponding monodromy

action is significantly more complicated than for the Seidel-Thomas twist and we refer

to [88] for a discussion that is aimed towards physicists. However, it is clear that the rel-

ative conifold transformation should correspond to an EZ-transformation that arises from

the monodromy around a locus in the Kähler moduli space where the generic fiber of the

fibration collapses to a point.

More generally, EZ-transformations are conjectured to be realized in the A-model as

wall monodromies around phase boundaries. For any Calabi-Yau variety that is a fibration

we expect that, when all Kähler parameters but the volume τ of the fiber are deep inside the

Kähler cone, the locus τ = 0 marks a boundary between the geometric cone and a hybrid

– 16 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

• Large volume limit

Orbifold phaseLandau-Ginzburg phase

Hybrid phase

Im(t1)

Im(t2)

Figure 1. Diagram of the FI-parameter space of the gauged linear sigma model that realizes

the non-linear sigma model into the degree 18 hypersurface inside P(1, 1, 1, 6, 9). The amoeba

of the principal component of the discriminant, which corresponds to a non-compact Coulomb

branch, is indicated in grey. Two geometric phases on the right are seperated by a mixed Coulomb-

Higgs-branch.

phase in the stringy Kähler moduli space. The hybrid phase can be thought of as a Landau-

Ginzberg model that is fibered over a non-linear sigma model. In general, when the volume

of the fiber of a fibration vanishes, the category of massless branes is conjectured to be

generated by pull-backs of branes in the derived category of the base along the morphism

that defines the fibration [88]. One of the branes that becomes massless is therefore in

particular the 6-brane that is the pre-image of the base itself. However, the locus in the

moduli space where the volume of the 6-brane vanishes is conjectured to correspond to

the principal component of the discriminant. The generic monodromy around this locus

is just given by a Seidel-Thomas twist with respect to the 6-brane (3.21). This implies

that in the complex structure moduli space of the mirror the point τ = 0 with all other

Kähler moduli sent to infinity cannot be a normal crossing but corresponds to a tangency

between the principal component of the discriminant and the union of the large complex

structure divisors. It was shown in [36] (and we review below) that such tangencies imply

a relation between the Seidel-Thomas twist with respect to the 6-brane and the large

volume monodromies.

We will illustrate these somewhat technical statements with an example. Consider the

well-studied Calabi-Yau threefold X18 that corresponds to a generic degree 18 hypersurface

in the weighted projective space P(1, 1, 1, 6, 9). It is elliptically fibered over the base P2

and the group of divisors is generated by a section E0 and one vertical divisor Db. A basis

of the Kähler cone is generated by J1 = E0 + 3Db and J2 = Db and we expand the Kähler

form as

ω = t1J1 + t2J2 . (3.38)
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The topological invariants (3.12) are

c111 = 9 , c112 = 3 , c122 = 1 , c222 = 0 , ~b = (17/4, 3/2) . (3.39)

In Batyrev coordinates the discriminant consists of two components

∆1 = (1− 432z1)3 − 4323 · 27 · z3
1z2 , ∆2 = 1 + 27z2 . (3.40)

The mirror maps are given by

t1 =
1

2πi
log(z1) +O(z) , t2 =

1

2πi
log(z2) +O(z) , (3.41)

where t1 is the complexified volume of the generic fiber and t2 the complexified volume of

a degree one curve in the base. Note that there is a triple tangency between ∆1 = 0 and

z3 = 0 at z1 = 1.

At leading order the complexified Kähler parameters t1, t2 can be identified with

FI-parameters of a GLSM that realizes the Calabi-Yau as a vacuum manifold. The FI-

parameter space of such a GLSM is depicted in figure 1. A geometric phase that real-

izes X18 can be found for Im(t1) � 0, Im(t2) � 0 while there is a hybrid phase around

Im(t1)� 0, Im(t2)� 0. The hybrid phase essentially corresponds to the Landau-Ginzburg

model of the elliptic fiber that is fibered over a non-linear sigma model with target space

P2. The geometric and the hybrid phase are seperated by a “tentacle” of the amoeba of

∆1 = 0.

There is a wall monodromy in the A-model that corresponds to a loop around the

boundary between the two phases that is taken deep inside the limit of large base volume,

i.e. Im(t2) � 0. To obtain the mirror transformation in the B-model we have to move

around the discriminant ∆1 = 0 close to the plane z1 = 0. This has been done for X18

in [36] and the procedure is as follows.

One considers a small 3-sphere Sε around z1 = 1, z2 = 0. The intersections L1 =

Sε ∩ {∆1 = 0} and L2 = Sε ∩ {z1 = 1} are both unknots inside Sε that form a non-trivial

link. The shape of this link can be seen directly by taking stereographic coordinates on Sε.

A plot as well as a schematic depiction of the link is given in figure 2. In the sketch on the

right the large volume monodromy corresonds to a loop around the blue line taken outside

the link while the generic monodromy around the conifold can be obtained by following a

loop around the “handle” of the red line. We now claim that the wall monodromy MW is

related to the generic conifold monodromy MC and to the large base volume monodromy

Mb is given by

MW = M−1
b ·MC ·M−1

b ·MC ·M−1
b ·MC ·M3

b , (3.42)

while referring the reader to [36] for a detailed discussion of the appropriate paths.

Now how does the wall monodromy MW act on the brane charges of X18? Using (3.17)

and (3.22) one can immediately calculate the action of MW on our period basis (3.11). It

turns out that (3.42) exactly reproduces the action of the Fourier-Mukai transformation

that is associated to the ideal sheaf of the relative diagonal.
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Figure 2. The left image shows a plot of the link that is formed by ∆1 = 0 (red) and z3 = 0 (blue)

inside a small 3-sphere around the point z1 = 1, z3 = 0 in the complex structure moduli space of

the mirror of X18. We use stereographic coordinates on the 3-sphere and the blue line closes at

infinity. The right image shows an equivalent link.

We are now going to show that this relation is generic for any elliptic or genus-one

fibration over P2 and derive an analogous relation over Hirzebruch surfaces Fn. Let us

assume that Jb is an effective Cartier divisor on any Calabi-Yau threefold M such that

J3
b = 0 , and

∫
M
c2(M) · Jb = 36 . (3.43)

We can then use (3.17) and (3.22) to obtain

(
M−1
b ·MC

)3 ·M3
b =


1 −3δbj 3cbbj 0

−cbbi x2,ij x3,ij 0

0 −δbjδbi δji + cbbjδbi 0

0 0 −cbbj 1

 ,

x2,ij =
(
2cbbi − c−bi

)
δbj + δji , x3,ij = cbbj(c

−
bi − cbbi − κi) .

(3.44)

This exactly reproduces the action of the U -transformation (3.33) on the 2-brane charges

of an elliptic or genus-one fibration over P2.

Let us now assume instead that there are two effective Cartier divisors J1, J2 and some

n ∈ N such that

J2
2 = J3

1 = J2
1J2 = J1J

2
2 = 0 ,

∫
M
c2(M) · J1 = 12(2 + n) ,

∫
M
c2(M) · J2 = 24 . (3.45)

This is satisfied when M is an elliptic or genus-one fibration over the Hirzebruch surface

Fn. More precisely, if we denote the base and the fiber of Fn respectively by B and F then
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J1 = π−1(B + F ) and J2 = π−1(F ). We can then calculate

(
M−1

1 ·MC ·M−1
2 ·MC

)2
=


1 n · δ2j c11j − n · c12j 0

−c12i y22,ij y23,ij 2c−1i − c2ii + 4c12i + c11i

0 y32,ij y33,ij 2(δ1i + δ2i)

0 0 −c12j 1

 ,

y22,ij = δ2j

(
(n− 1)c12i −

n

2
c2ii − c−1i − c11i

)
+ δ1j

(
1

2
c2ii − c12i

)
+ δji ,

y23,ij = (c12j + c11j)

(
1

2
c2ii − c12i

)
− (c−1i + κi)c12j + 2 (c2ji + c1ji) ,

y32,ij =− δ2iδ1j − δ1jδ2i + nδ2iδ2j ,

y33,ij =− δ2i(c12j + c11j)− δ1ic12j + δji ,

(3.46)

and find that

MW =
(
M−1

1 ·MC ·M−1
2 ·MC

)2 ·M2
1 ·M2

2 , (3.47)

reproduces the action of the U -transformation (3.33).

For the sake of completeness let us also discuss the case of a K3 fibration over P1.

Assume that there is an effective Cartier divisor Jb on any Calabi-Yau threefold M such that

J2
b = 0 ,

∫
M
c2(M) · Jb = 24 . (3.48)

Then from J2
b = 0 it follows that M is fibered over P1 and the intersection with c2(M)

implies that the generic fiber is a K3 [89]. We calculate

(
M−1
b ·MC

)2
=


−1 0 0 0

1
2cbjj δij + (cbjj − κj) δbi 2cbij −cbjj
δbj −δbjδbi δij 2δbj
0 −δbi 0 1

 , (3.49)

and see that the wall monodromy

MW =
(
M−1
b ·MC

)2 ·M2
b , (3.50)

corresponds, in Batyrev coordinates, to a double tangency between the principal component

of the discriminant and the large base divisor where the K3 fiber collapses to a point.

The generic form of the monodromies (3.44) and (3.47) suggests that the condi-

tions (3.43) and (3.45) are also sufficient for a Calabi-Yau threefold to be elliptic or genus

one fibered respectively over P2 or Fn. This can possibly derived from the more general

criteria by Oguiso [89] but we are not aware of any previous discussion of these criteria.
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A comment on the swampland. Let us briefly mention that there is a beautiful con-

nection of this story to the swampland distance conjectures, which posit that around loci

that are at inifinite distance in the moduli space an infinite tower of states becomes mass-

less. Moreover, according to the emergence conjecture, integrating out the tower of states is

what generates the infinite distance in the first place. The swampland distance conjecture

in the context of the stringy Kähler moduli space has been discussed in [21, 22, 90–93] and

for a recent review of the swampland program see [94]. As we discussed in great detail,

the boundary between the hybrid phase and the geometric cone corresponds to a tangency

between the discriminant and the large complex structure divisors in the complex structure

moduli space of the mirror. This implies that it is at infinite distance and it is natural to

ask what the towers of states are that become massless.

The massless states can either correspond to wrapped D-branes or to Kaluza-Klein

modes and the wrapped D-branes can become massless on their own or only relative to the

Planck scale. The states that arise from wrapped D-branes are called Ramond-Ramond

states. At the phase boundaries where the fiber of a fibration collapses we can identify a

tower of light Kaluza-Klein modes that arise from the large volume of the base. As we

discussed above, the massless branes are supported on the restriction of the fibration to

cycles in the base.

On a K3-fibered Calabi-Yau threefold there is only a finite number of Ramond-Ramond

states that become massless independently of the Planck scale, because neither multi-

wrappings of the Calabi-Yau itself nor branes that wrap the fiber over multiple points

lead to independent states in the effective theory. In particular, one can consider the

multi-scaling limit where the towers from Kaluza-Klein modes and those branes that only

become massless relative to the Planck scale decouple, i.e. one sends the Planck scale to

infinity. The remaining massless states then yield the W - and Z-bosons of an 4d N = 2

gauge theory [95]. When the Planck scale is fixed at a finite value, one expects that NS5-

branes that wrap the K3 fiber lead to a heterotic string where the tension corresponds to

the volume of the fiber [91].

However, for a genus one fibration there is a tower of states from branes that wrap the

restriction of the fibration to irreducible curves in the base [96]. For this reason there does

not appear to be a well-defined field theory limit when the Planck scale is sent to infinity

and when it is kept at a finite value, as expected from 2-fold T-duality, another Type II

string emerges [97].

An independent study of the inifinite distance limits from boundaries of the Kähler

cone where the fiber of a fibration collapses has been performed in the work [98] that

appeared during the final stage of the preparation of this paper.

3.5 When divisors collapse to curves

Another example of an EZ-twist arises when a fibral divisor collapses to the curve in the base

of the fibration [87]. It is well known that the monodromies around the corresponding locus

in Kähler moduli space generate the action of the Weyl group on the Kähler moduli that

parametrize the volumes of the components of the familiy of reducible fibers [32, 34, 35].

Let us assume that a rationally fibered fibral divisor Df collapses to a curve of genus g and
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denote the generic fiber of Df by C. Then for Calabi-Yau threefolds the corresponding

action on brane charges reads [36]

Π (F•) 7→ Π (F•)− χ
(
ODf − (1− g)OC ,F•

)
·Π (OC) + χ (OC ,F•) ·Π

(
ODf

)
. (3.51)

For the examples with fibral divisors that we consider in this paper we verified this for-

mula using matrix factorization techniques in the corresponding gauged linear sigma mod-

els [99, 100].

3.6 Monodromies and automorphic properties of Ztop

Having discussed the monodromies that generate the modular transformations of the

Kähler moduli we now want to relate this to the modular properties of the topological

string partition function Ztop.

The automorphic properties under general monodromies can be derived from the wave

function interpretation of Ztop [10]. This approach was explored e.g. in [24, 25]. The

corresponding Hilbert space arises from quantizing the symplectic vector space H3(W )

where W is again the mirror of M . Of course, one can equally well consider the symplectic

vector space structure on the quantum cohomology ring of M . If we choose the real

polarization, our positions in this phase space correspond to the central charges of a basis

of 0- and 2-branes and the conjugate momenta are central charges of 4- and 6-branes.

Let us first consider the special case that a monodromy does not mix position and

momenta or, in other words, it transforms the lattice of 0- and 2-brane charges into itself.

In that case the topological string partition function is expected to be invariant under the

corresponding action on the flat coordinates. This happens to be the case for some of the

monodromies that we discussed above: The large volume monodromies act as t 7→ t+ 1 on

the flat coordinates and the q-expansion of Ztop can be interpreted as a consequence. Less

trivial are the monodromies that generate the action of the Weyl group. They transform

the volumes of fibral curves into each other and Ztop has to be invariant under this action.

We will now show that the elliptic transformation law of the topological string parti-

tion function with respect to the geometric elliptic parameters can also be derived in this

way. The large volume transformation that shifts τ 7→ τ + 1 will again be denoted by T

and for every volume mi of a rational fibral curve there is a corresponding large volume

transformation Mi that acts as mi 7→ mi+1. The inverse U−1 of the transformation (3.33)

acts as

U−1 :


τ 7→ τ/(1−Nτ)

mi 7→ mi/(1−Nτ) , i = 1, . . . , rk(G)

Qi 7→ (−1)ai exp
(

N
1−Nτ ·

1
2m

ambCiab +O(Qi)
)
Qi

, (3.52)

where the definitions of Qi, i = 1, . . . , b2(B), ai and Ciab are as in (3.33), (3.30) and (3.31).
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Then the combination Ea = Ma · U−1 ·M−1
a · U acts as

Ea :


τ 7→ τ

mi 7→ mi , i = 1, . . . , rk(G), i 6= a

ma 7→ ma +N · τ ,
Qi 7→ exp

(
N2·τ

2 Ciaa +NCi(ab)m
b
)
Qi

. (3.53)

Note that (3.53) is exact even away from the large base limit. It is then clear that invariance

of QβZβ(τ, ~m, λ) under the action of Mi and Ei implies that

Zβ(τ,m1, . . . ,ma + κNτ + ρ, . . . ,mrk(G), λ)

= exp

[
−βi

2

(
Ciaaκ

2N2τ + 2Ci(ab)Nκm
b
)]
Zβ(τ, ~m, λ) ,

(3.54)

for all κ, ρ ∈ Z and β ∈ H2(B,Z). Therefore Zβ(τ, ~m, λ) satisfies the elliptic transformation

law for the geometric elliptic parameters mi, i = 1, . . . , rk(G) and the index matrix is given

by Ciab.

It should be possible to make a similar argument that relates the full modular transfor-

mation law to the U -monodromy, although the mixing of positions and momenta requires

a careful treatment of the transformation of Ztop. The elliptic transformation law with

respect to the topological string coupling constant would then be implied by the modular

transformation law. However, this proves to be surprisingly subtle. We will not solve this

problem here but to highlight the difficulties it is instructive to review the situation for an

elliptic fibration that leads to a trivial gauge group.

As we already discussed above, the Calabi-Yau threefold M = X18 is elliptically fibered

over B = P2. In particular, following the discussion in 3.3, we can introduce Kähler

parameters τ, t such that

T :

{
τ 7→ τ + 1

t 7→ t+ 3
2

, U :

{
τ 7→ τ

1+τ

t 7→ t+ 3
2

, (3.55)

where in the U transformation we have suppressed terms that are exponentially surpressed

in the large base limit. On the other hand, our choice of gauge for the holomorphic 3-form

Ω implies that it transforms like a modular form of weight −1, i.e.

T : Ω 7→ ±Ω , U : Ω 7→ ±1

1 + τ
Ω , (3.56)

where the sign can be fixed by studying the action of the monodromy in the complex

structure moduli space [1]. But Ω is a section of a line bundle L on the complex structure

moduli space of the mirror and λ is a section of L as well. Therefore the topological string

coupling also transforms like a modular form of weight −1. This is also clear from the

action of the monodromies on the enlarged moduli space.

We now want to relate this to the modular properties of the topological string partition

function on X18. If we consider the string partition function in holomorphic polarization
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it is invariant under monodromies [24].8 The expansion

Z(τ, t, λ) = exp

 ∞∑
g=0

λ2g−2Fg

 , (3.57)

then implies that the free energies Fg transform like modular forms of weight 2g − 2.9

It also follows from the discussion in [24] that if we take the limit where the imaginary

parts of all Kähler parameters except for τ go to infinity, then the anholomorphic free

energies will be a polynomial in (Imτ)−1. However, it is easy to see that in this limit

the partition function has to remain invariant under the action of U and under the large

complex structure monodromies. We can conclude that the anholomorphic free energies

Fg are almost holomorphic modular forms of weight 2g − 2.

Note that this implies that the coefficients Zd(τ, λ) in the expansion

Z(τ, t, λ) = Z0(τ, λ)

(
1 +

∞∑
d=1

Zd(τ, λ)Qd

)
, (3.58)

are, up to a multiplier system, almost holomorphic modular forms of weight 0. The multi-

plier system is a consequence of the non-trivial transformation of the base parameter under

U and T . It turns out that Witten’s wave function equation then implies that Zd(τ, λ) is

a weak Jacobi form of weight 0 and index m = d(d− 3)/2 [1, 101]. This can be shown as

follows.

A weak Jacobi form φk,m(τ, z) (see 4.1 for the definition) can be written as a power

series φk,m(τ, z) ∈ M̃•[[z]], where M̃• = C[E2, E4, E6] is the ring of quasi-modular forms.

It is clear that

φ̃(τ, z) = exp

(
π2

3
mz2E2(τ)

)
φk,m(τ, z) , (3.59)

transforms like a weak Jacobi form of index 0 under modular transformations of τ . This

implies that φk,m(τ, z) satisfies the differential equation(
∂

∂E2
+

(2πi)2

12
mz2

)
φk,m(τ, z) = 0 . (3.60)

On the other hand, let us denote the ring of almost holomorphic modular forms by M̂• =

C[Ê2, E4, E6] and assume that an element f̂(τ, z) ∈ M̂•[[z]] satisfies the differential equation(
∂

∂Ê2

+
(2πi)2

12
mz2

)
f̂(τ, z) = 0 . (3.61)

Then we know that

∂

∂Ê2

exp

(
π2

3
mz2Ê2(τ)

)
f̂(τ, z) = 0 , (3.62)

8Possibly up to an overall factor due to the change of gauge which is irrelevant for our discussion.
9Following [24] this sum should actually start at genus two. That the genus zero free energy of X18 also

admits an expansion in terms of quasi-modular forms hints towards the existence of an anholomorphic free

energy at genus zero.
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and the limit

f(τ, z) = lim
Imτ→0

f̂(τ, z) , (3.63)

satisfies the modular transformation law of a weak Jacobi form.

Let us introduce z = λ
2πi where λ is again the topological string coupling. The wave

function equation for X18 then reads in holomorphic polarization [11, 68](
∂

∂Ê2

+
(2πi)2

12

d(d− 3)

2
z2

)
Zd(τ, z) = 0 . (3.64)

In the holomorphic limit Zd(τ, z) therefore satisfies the modular transformation law of a

weak Jacobi form. Furthermore, the Gopakumar-Vafa formula (4.34) implies that the parti-

tion function is invariant under shifts z → z+1 and therefore admits an expansion in terms

of y = exp(2πiz). The elliptic transformation law for shifts of z by τ follows by combining

the modular transformation law and invariance under constant shifts. Assuming validity

of the wave function equation we have therefore proven that the coefficients Zd(τ, z) are

weak Jacobi forms of weight 0 and index d(d−3)/2 with a multiplier system. An analogous

argument can be made for other elliptic and genus one fibrations that do not exhibit any

fibral divisors or additional (multi-)sections. The deriviation of the corresponding modular

anomaly equations will be performed in section 4.4.

For elliptic and genus-one fibrations with reducible fibers the exponentiated volumes

of curves in the base transform like lattice Jacobi forms with non-trivial index matrix. It

is not clear to us how the above argument that relates the relative conifold transformation

to the modular properties of the partition function on X18 can be generalized. However, it

was found that generalizations of the Huang-Katz-Klemm conjecture hold for geometries

with fibral divisors [19], multiple sections [21, 22] and also for the refined topological

string [18, 19]. In this paper we study many more examples, including genus-one fibrations

with N -sections. We find that

Z ′β = Qβ · Zβ(τ, ~m, λ) , (3.65)

always transforms like a lattice Jacobi form under Γ1(N). The weight is generically zero

and the index with respect to the topological string coupling λ is 1
2β · (β − c1(B)). The

index matrix of Z ′β with respect to the geometric elliptic parameters ~m is zero.

We conjecture that if the gauge group is fully Higgsable then the topological string

partition function is of the form given in (4.29). The ansatz (4.90) for genus-one fibrations

with N -sections where N ∈ {2, 3, 4} then follows from the argument that we outline below.

4 The modular bootstrap for elliptic and genus one fibrations

In this section we want to generalize the modular bootstrap that has been developed for

elliptic fibrations to genus fibered Calabi-Yau threefolds. Based on the results from the

previous section it is already clear that instead of modular forms for SL(2,Z) we will need

to consider congruence subgroups Γ1(N). We start with a review of modular forms, Jacobi
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forms and the modular bootstrap for elliptic fibrations. By considering Higgs transitions

and the corresponding relations among topological string partition functions we are then

going to obtain the modular ansatz for genus one fibrations. We will then analyse the

base degree zero contributions and find closed expressions for genus one fibrations but also

for elliptic fibrations with reducible fibers. Finally, we will study the modular anomaly

equations.

4.1 Rings of modular forms and Jacobi forms for Γ1(N)

Much of the following will be well known to the reader. Nevertheless, in the case of modular

and Jacobi forms for congruence subgroups some details will be crucial for our discussion

and for this reason we do not relegate this section to the appendix.

We recall the definition of the congruence subgroup Γ1(N) ⊆ SL(2,Z) from 3.3

Γ1(N) =

{(
a b

c d

)
∈ Γ : a, d ≡ 1 (mod n) , c ≡ 0 (mod n)

}
, (4.1)

and note that Γ1(1) = SL(2,Z). A modular form f of weight k for the congruence subgroup

Γ ⊂ SL(2,Z) is a holomorphic function on the upper half-plane H = {τ ∈ C, Im(τ) > 0}
that is holomorphic at τ → i∞ and satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) , for

(
a b

c d

)
∈ Γ . (4.2)

We denote the vector space of modular forms of weight k for a group Γ by Mk(Γ) and use

the short-hand Mk(N) when Γ = Γ1(N). The corresponding rings of modular forms will

be denoted by M∗(Γ) or M∗(N).

The Eisenstein series E2k(τ), k > 1 are modular forms for SL(2,Z) of weight 2k and

can be written as

E2k(τ) = 1 +
2

ζ(1− 2k)

∞∑
n=1

n2k−1qn

1− qn
. (4.3)

For k = 1 one obtains the quasi modular Eisenstein series E2(τ) of weight 2. The Dedekind

η-function

η(τ) = q
1
24

∞∏
i=1

(1− qi) , (4.4)

is also not quite modular but satisfies

η(τ + 1) = e
πi
12 η(τ) , η(−1/τ) =

√
−iτη(τ) . (4.5)

However, ∆12(τ) = η(τ)24 is a modular form of weight 12 for SL(2,Z) that vanishes as

τ → i∞. To generate the rings of modular forms for congruence subgroups Γ1(N) let us

also introduce

E
(N)
2 (τ) = − 1

N − 1
∂τ log

(
η(τ)

η(Nτ)

)
, (4.6)
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which for any N is a modular form for Γ0(N) and therefore in particular a modular form for

Γ1(N). We can then generate the rings of modular forms for Γ1(N) and N ∈ {1, 2, 3, 4} as

M∗(1) = 〈E4(τ), E6(τ)〉 ,

M∗(2) = 〈E(2)
2 (τ), E4(τ)〉 ,

M∗(3) = 〈E(3)
2 (τ), E4(τ), E6(τ)〉 ,

M∗(4) = 〈E(2)
2 (τ), E

(4)
2 (τ), E4(τ), E6(τ)〉 .

(4.7)

It is important to note, that for N = 1 a modular form f ∈ Mk(1) that exhibits a zero of

order n at τ → i∞ can be written as

f(τ) = ∆12(τ)n · f ′(τ) , (4.8)

where f ′(τ) ∈ Mk−12·n(1) does not vanish at infinity. For N = 2 the corresponding

decomposition of f ∈Mk(2) is

f(τ) = ∆4(τ)n · f ′(τ) , (4.9)

with f ′ ∈Mk−4·n(2) and we introduced

∆4(τ) =
η(2τ)16

η(τ)8
=

1

192

(
E4(τ)− E(2)

2 (τ)2
)
. (4.10)

Due to the larger set of generators (4.7) an analogous factorization is not possible for a

general f ∈M∗(N) with N > 2.

The theory of Jacobi forms has been developed in [102] and was extended to multiple

elliptic parameters and general finite index subgroups of symplectic groups in [103]. We

will only be interested in the following special case. A weak Jacobi form of weight k for

Γ1(N) ⊆ SL(2,Z) and with index a symmetric matrix C ∈ Mm×m(1
2Z) is a holomorphic

function φ(τ, z) ≡ φ(τ, z1, . . . , zm) on H×Cm that satisfies the modular transformation law

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
2πi

cztCz

cτ + d

)
φ(τ, z) , (4.11)

for all a, b, c, d ∈ Z with (
a b

c d

)
∈ Γ1(N) , (4.12)

as well as the elliptic transformation law

φ (τ, z + λτ + µ) = exp
(
−2πi

[
λtCλτ + λtCz + ztCλ

])
φ(τ, z) , (4.13)

for any λ ∈ Zn and µ ∈ Zn. It admits a Fourier expansion

φ(τ, z1, . . . , zm) =
∑
n≥0

∑
r∈Zn

c(n, r)qnζr , (4.14)

with q = exp(2πiτ) and ζr = exp (2πiz · r).

– 27 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

Of particular importance will be the weak Jacobi forms

φ−2,1(τ, z) =− θ1(τ, z)2

η(τ)6
= (2πiz)2 +

1

12
E2(τ)(2πiz)4 +O(z6) ,

φ0,1(τ, z) = 4

[
θ2(τ, z)2

θ2(τ, 0)2
+
θ3(τ, z)2

θ3(τ, 0)2
+
θ4(τ, z)2

θ4(τ, 0)2

]
= 12 + E2(τ)(2πiz)2 +O(z4) .

(4.15)

of index one and respective weight −2 and 0. Recall that the Jacobi theta functions are

defined as

θ1(τ, z) =ϑ 1
2

1
2
(τ, z) , θ2(τ, z) = ϑ 1

2
0(τ, z) ,

θ3(τ, z) =ϑ00(τ, z) , θ4(τ, z) = ϑ0 1
2
(τ, z) ,

ϑab(τ, z) =
∞∑

n=−∞
eπi(n+a)2τ+2πiz(n+a)+2πib(n+a) .

(4.16)

If we denote the vector space of weak Jacobi forms of weight k and index C for a congruence

subgroup Γ by Jweak
k,C (Γ) then

Jweak
k,m (SL(2,Z)) = ⊕mj=0Mk+2j (SL(2,Z))

[
φ−2,1(τ, z)j , φ0,1(τ, z)m−j

]
. (4.17)

When we discuss the refinement of the topological string partition function over (−1)-curves

we will also need the Jacobi form

φ−1, 1
2
(τ, z) = i

θ1(τ, z)

η(τ)3
, (4.18)

of weight −1 and index 1/2.

If a weak Jacobi form φ(τ, z) for Γ1(N) satisfies the stronger condition

φ

(
τ, z +

1

N

)
= φ(τ, z) , (4.19)

i.e. c(n, r) in (4.14) vanishes for r /∈ NZ, then the elliptic transformation law follows from

the modular transformation law. This can be easily shown from

φ (τ, z + λτ + µ) = φ (τ, z + λτ)

=φ

(
τ̃

1 +Nτ̃
,

z̃

1 +Nτ̃
+

1

N
λ

)
, with τ̃ =

τ

1−Nτ
, z̃ =

z

1−Nτ
− 1

N
λ .

(4.20)

A simple example is φ(τ, z) = φ′(Nτ,Nz), where φ′(τ, z) is any weak Jacobi form

for SL(2,Z). We will encounter expressions of the form φ′(Nτ, z) that satisfy the elliptic

transformation law (4.13) only for λ ∈ NZn. They satisfy the definition after substituting

z → Nz and in an abuse of language we will also refer to those objects as Jacobi forms for

Γ1(N). Note that if the index of φ′(τ, z) is m then the index of φ′(Nτ, z) will be m/N .

Another important role will be played by objects of the form

φ(τ, z) = φ′(Nτ, τ, z1, . . . , zm−1) , (4.21)
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where φ′ is again a weak Jacobi form for SL(2,Z) of weight k and we assume that the index

C is block diagonal such that C1i = c · δi,1 for i = 1, . . . ,m. It is a priori not clear that

φ(τ, z) in (4.21) is regular at τ → i∞. However, it is easy to see that qcφ(τ, z) transforms

like a Jacobi form for Γ1(N) of weight k and with index matrix C ′ij = Ci+1,k+1/N for

i, j = 1, . . . ,m − 1. A special case are Jacobi forms that depend on a single elliptic

parameter. In particular, one can check that for any N the functions

AN =
φ0,1(Nτ, τ)

φ−2,1(Nτ, τ)
, BN =

1

q · φ−2,1(Nτ, τ)N
, (4.22)

are modular forms of respective weights 2 and 2N under the action of Γ1(N) and are holo-

morphic at τ → i∞. Making an ansatz and comparing a sufficient number of coefficients

we then derive the relations

φ0,1(2τ, τ) =
E

(2)
2 (τ)

[q∆4(τ)]
1
2

, φ−2,1(2τ, τ) = −φ0,1(2τ, τ)

E
(2)
2 (τ)

,

φ0,1(3τ, τ) =
E

(3)
2 (τ)

[q∆6(τ)]
1
3

, φ−2,1(3τ, τ) = −φ0,1(3τ, τ)

E
(3)
2 (τ)

,

(4.23)

as well as

φ0,1(4τ, τ) =
1

[q∆8(τ)]
1
4

E
(2)
2 + 3E

(4)
2

4
, φ−2,1(4τ, τ) = −4

φ0,1(4τ, τ)

E
(2)
2 + 3E

(4)
2

, (4.24)

where we introduced ∆6 ∈M6(3) and ∆8 ∈M8(4) with

∆6(τ) =
η(3τ)18

η(τ)6
= q2 + 6q3 + · · · = 1

24 · 36

[
7
(
E

(3)
2

)3

− 5E
(3)
2 E4 − 2E6

]
,

∆8(τ) =
η(2τ)8η(4τ)16

η(τ)8
= q3 + 8q4 + . . .

=
1

217 · 32 · 17

[
187

(
E

(2)
2

)4

− 144
(
E

(4)
2

)4

− 33E2
4 − E6

(
154E

(2)
2 − 144E

(4)
2

)]
.

(4.25)

The denominators of φ0,1(Nτ, τ) in (4.23) and (4.24) can be expanded into Eisenstein-like

series

[q∆2N (τ)]
1
N =

1

σ1(N − 1)

∞∑
k=1

σ1(N · k − 1)qk , (4.26)

for N = 2, 3, 4 where σk(d) is the divisor function.

4.2 The modular bootstrap for elliptic fibrations

Before we consider genus one fibrations let us review the modular bootstrap for elliptic

fibrations. The Kähler form can be expanded as

ω = τ · (E0 + c1(B)) +

r∑
i=1

mi · σ(Ei) +

rk(G)∑
i=r+1

mi ·Df,i−r +

b2(B)∑
i=1

t̃i ·D′i , (4.27)
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where E0 is the class of the zero-section, the divisors Ei, i = 1, . . . , r correspond to the

sections that generate the Mordell-Weil group, r is the rank of the Mordell-Weil group and

σ is the Shioda map (A.1). The fibral divisors are denoted by Df,i, i = 1, . . . , rk(G) and the

vertical divisors D′i, i = 1, . . . , b2(B) are dual to the curves Ci = E0 ·Di, i = 1, . . . , b2(B).

From the discussion in 3.3 it is clear that to see the modular structure we need to introduce

shifted Kähler parameters ti, i = 1, . . . , h1,1(B) that are defined as

ti = t̃i +
ãi
2
τ , with ãi =

∫
B
c1(B) · π(Di) . (4.28)

We assume that M is an elliptically fibered Calabi-Yau threefold such that on a generic

point on the Coulomb branch the gauge group is Abelian. In other words, at a generic

point in the complex structure moduli space of M there are no fibral divisors.

Then, if we expand the topological string partition function as in (2.3), the coefficients

take the form

Zβ(τ,m, λ) =
1

η(τ)12·c1(B)·β
φβ(τ,m, λ)∏b2(B)

l=1

∏βl
s=1 φ−2,1(τ, sλ)

. (4.29)

The numerators φβ(τ,m, λ) are Jacobi forms of weight

w = 6c1(B) · β −
∑
l

βl , (4.30)

and index

rβλ =
1

2
β · (β − c1(B)) +

∑
l

βl(βl + 1)(2βl + 1)

6
, (4.31)

with respect to the elliptic parameter λ. The index matrix with respect to the geometric

elliptic parameters m is

rβij =


−1

2π∗ (σ(Ei) · σ(Ej)) · β for 1 ≤ i, j ≤ r
−1

2π∗ (Df,i ·Df,j) · β for r < i, j ≤ rk(G)

0 otherwise

, (4.32)

where β is a curve of volume ti. Note that

bij = −π∗ (σ(Ei) · σ(Ej)) , (4.33)

is the so-called height pairing of the sections Ei and Ej .

The ansatz (4.29) is based on the results from [1, 19, 21, 22] and we provide additional

evidence in this paper. The Dedekind η-function in the denominator is exactly cancelling

the zero at τ → i∞ that comes from Qβ due to the shift (4.28). Moreover, the product∏b2(B)
l=1

∏βl
s=1 φ−2,1(τ, sλ) is such that for a given degree the associated Gopakumar-Vafa

invariants vanish when the genus is greater than some highest value [1]. Assuming that

Zβ is a meromorphic Jacobi form of the given weight and index therefore seems to imply

this ansatz at least modulo some assumptions on the vanishing of enumerative invariants.
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Note that a more complicated form of the denominator occured in [19] but is excluded by

our assumption on the Coulomb branch.

It can be further constrained if there are additional dualities for which we know the

transformation behaviour of the topological string partition function. This is usually the

case when a monodromy does not act on the 0-brane charge and does not transform 2-

branes into higher dimensional branes. A prime example is the action of the affine Weyl

group (see section 3.5) as was first explored in [32]. In the context of the modular bootstrap

on non-compact Calabi-Yau that engineer 6d SCFTs, this symmetry was understood as a

consequence of properties of elliptic genera [19].

More generally, in the complex structure moduli space of an elliptically or genus one

fibered Calabi-Yau M there is a sublocus such that M remains non-singular and the gauge

group G′ associated to M is “maximally non-Abelian”. On this locus the vacuum expec-

tation values of all hypermultiplets in the adjoint representation of non-Abelian factors of

G′ are set to zero. The affine Weyl groups of the non-Abelian factors of G′ act on the

geometric elliptic parameters m and Zβ(τ,m, λ) is invariant under this action.

4.3 Closed expressions for Zβ=0

We will now discuss the base degree zero contributions. For the readers convencience let

us recall that the Gopakumar-Vafa formula expresses the sum of the free energies in terms

of integer invariants ngβ via

log(Z) =

∞∑
g=0

λ2g−2Fg =
∑

β∈H2(M,Z)

∞∑
g=0

∞∑
m=1

ngβ
m

(
2 sin

(
mλ

2

))2g−2

qβm , (4.34)

where we have omitted the classical terms. The crucial observation by [1] is that the

only non-vanishing Gopakumar-Vafa invariants with degree zero in the base are at genus

zero and genus one. All the free energies for g ≥ 2 are therefore entirely determined by

multi-covering contributions from the genus zero curves. The corresponding sum can be

evaluated using

∞∑
m=1

1

m

qm(
2 sin

(
mλ
2

))2 = λ−2 · Li3(q) +
∞∑
g=1

λ2g−2(−1)g+1 B2g

2g[(2g − 2)!]
Li3−2g(q) . (4.35)

Moreover, the contributions of constant maps are given by

F const
g = (−1)gχ

B2gB2g−2

4g(2g − 2)[(2g − 2)!]
, for g ≥ 2 . (4.36)

An analysis for elliptic fibrations without reducible fibers has been performed in [1]

and we will start with a review of this simpler situation. The instanton contribution to the

genus zero free energy then takes the form

F inst
0 = −χ ·

∞∑
i=1

Li3(qi) +O(Q) , (4.37)
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where we have used Q to denote Kähler moduli of curves in the base and using

E2g−2(τ) = 1− 2(2g − 2)

B2g−2

∞∑
i=1

Li3−2g(q
i) = 1 +O(q) (4.38)

it follows that the higher genus free energies are

Fg≥2 = (−1)gχ
B2gB2g−2

4g(2g − 2)(2g − 2)!
E2g−2(q) +O(Q) . (4.39)

The only non-vanishing Gopakumar-Vafa invariants at genus 1 are in multiples of the class

of the generic fiber and given by the Euler characteristic of the base n1
T 2 = χB. However,

the corresponding free energy also receives multi-covering contributions (4.35) and reads

F inst
1 =

(
χB −

χ

12

)
·
∞∑
i=1

Li1(qi) . (4.40)

The closed modular expressions for the base degree zero contributions to the higher

genus free energies of geometries without reducible fibers rely on the somewhat miraculous

interplay between geometric and number theoretic formulas. It is therefore particularly

interesting to see how the generalization of these expressions can be derived for fibrations

with reducible fibers that lead to additional elliptic parameters.

Geometries with reducible fibers. In our more general setup the only non-vanishing

Gopakumar-Vafa invariants for base degree zero still arise at genus zero and genus one.

Instead of aiming for full generality we illustrate the situation for geometries with reducible

fibers at the example of M
(2)
2 =

(
F6 → P2

)
[U(1)]−216

3 (see section 7.2.2 for a more detailed

discussion of this geometry). The fibration has a holomorphic zero-section s0 and a rational

section s1 that generates the Mordell-Weil group. Here one finds that the base degree zero

contribution F0,β=0 to the genus zero free energy F0 = F0,β=0 +O(Q) takes the form

F0,β=0 =− χ ·
∞∑
i=1

Li3(qi)

144 · Li3(y) + 144 ·
∞∑
i=1

(
Li3(qiy−1) + Li3(qiy)

)
18 · Li3(y2) + 18 ·

∞∑
i=1

(
Li3(qiy−2) + Li3(qiy2)

)
.

(4.41)

where q = exp(2πiτ), y = exp(2πim) and m is the volume of the isolated rational fibral

curves that lead to charge one hypermultiplets.

More precisely, a contribution of Li3(y) arises from curves that intersect s1 transversely

but do not intersect s0 while Li3(y2) stems from curves C that intersect as C · s1 = −1

and C · s0 = 0. The U(1) charge of a fibral curve is counted by the intersection with

s1− s0 while the Kaluza-Klein charge corresponds to the intersection with s0.10 Therefore

10This statement is slightly modified in the presence of fibral divisors.
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the geometry contains 144 curves that lead to matter with U(1) charge one while another

18 fibral curves lead to hypermultiplets of charge two. Moreover, χ = −216 is the Euler

characteristic of M
(2)
3 . The multiplicity of matter representations is thus directly encoded

in the enumerative invariants of the geometry.

We will now derive closed expressions for the free energies at genus g ≥ 2. To avoid

unnecessary prefactors let us also introduce y = exp(z). It follows from basic properties of

the polylogarithm that

Lis(q
iyb) = Lis(q

iebz) =

∞∑
m=0

zm

m!
∂mz Lis(q

iebz) =

∞∑
m=0

(bz)m

m!
Lis−m(qi) , (4.42)

and therefore

∞∑
i=1

(
Li3−2k(q

iy−b) + Li3−2k(q
iyb)

)
= 2

∞∑
i=1

∞∑
m=0

(bz)2m

(2m)!
Li3−2k−2m(qi) (4.43)

We can then use the expansion

Lis(e
z) = Γ(1− s)(−z)s−1 +

∞∑
k=0

ζ(s− k)

k!
zk , (4.44)

which is valid for integer s ≤ 0 and |z| < 2π as well as the fact that

ζ(−n) = (−1)n
Bn+1

n+ 1
, (4.45)

for positive integers n to obtain

Li3−2k(e
bz) = (2k − 2)!(bz)2−2k −

∞∑
m=0

B2m+2k−2

2m+ 2k − 2

(bz)2m

(2m)!
(4.46)

where we have used that the Bernoulli numbers Bn vanish for odd n > 1. Putting (4.43)

and (4.46) together we find that

Φb
2k−2(τ, z) ≡Li3−2k(y

b) +
∞∑
i=1

(
Li3−2k(q

iy−b) + Li3−2k(q
iyb)

)
= (2k − 2)!(bz)2−2k −

∞∑
m=0

B2m+2k−2

2m+ 2k − 2
E2k+2m−2

(bz)2m

(2m)!
.

(4.47)

It is easy to see that Φb
2k−2(τ, z) is a weak Jacobi form of weight 2k − 2 and index 0. In

total the base degree zero parts of the free energies at genus g ≥ 2 are therefore given by

Fg≥2,β=0 = (−1)gχ
B2gB2g−2

4g(2g − 2)(2g − 2)!
E2g−2(q)− (−1)g

B2g

2g[(2g − 2)!]

∞∑
q=1

nqΦ
q
2g−2 , (4.48)

where nq is the number of hypermultiplets of charge q.
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Genus-one fibrations with multi-sections. Let us now consider the same problem

for fibrations without a section. Again, the only non-vanishing Gopakumar-Vafa invariants

for base degree zero arise at genus zero and genus one. We will restrict to the case that the

gauge group is G = ZN which means that there is only one linearly independent N -section

and there are no fibral divisors.

We start with N = 4 where the genus zero free energy takes the form

F0 =
∞∑
i=0

[
n1 · Li3(q1+4i) + n2 · Li3(q2+4i) + n3 · Li3(q3+4i) + n4 · Li3(q4+4i)

]
, (4.49)

where nm is the number of fibral curves that intersect the 4-section m times. Since the

generic fiber intersects the 4-sections four times it is clear that n1 = n3 and n4 = −χ
where χ is again the Euler-characteristic of the Calabi-Yau. The expression can therefore

be rewritten as

F0 = −χ ·
∞∑
i=1

Li3(q4i) + n1 ·
∞∑
i=1

Li3(qi) + (n2 − n1) ·
∞∑
i=1

Li3(q2i) . (4.50)

It is easy to see that for an N -section geometry we have multiplicities ni, i = 1, . . . , N and

we expect to be able to write

F0 =
N∑
m=1

nm

∞∑
i=0

Li3(qN ·i+m) =
N∑
m=1

n′m ·
∞∑
i=1

Li3(qmi) , (4.51)

where the coefficients n′m, m = 1, . . . , N are defined recursively via

n′m = nm −
∑

k<m,k|m

n′k . (4.52)

However, if we assume that the independent multiplicities are generic, this is only possible

when all 0 < k < bN2 c divide N . This is true for the five cases N = 1, 2, 3, 4, 6. For other

values of N the identity (4.51) severely constrains the spectrum of charged hypermultiplets.

If it can be satisfied we find that

N∑
m=1

n′m = nN . (4.53)

and it is always true that nN = −χ. We can than use essentially the same argument that

worked for elliptic fibrations without reducible fibers to obtain

Fg≥2 = (−1)g+1 B2gB2g−2

4g(2g − 2)(2g − 2)!

N∑
m=1

n′mE2g−2(mτ) +O(Q) . (4.54)

It might be that modularity for general N arises from a more complicated relation between

polylogarithms and modular forms for Γ1(N). Another possiblity is that in those cases the

base degree zero contribution to the higher genus free energies is not modular at all. Perhaps

the most exciting, although entirely speculative resolution would be that the identity (4.51)

puts a genuine constraint on the curves and intersections in those geometries.
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4.4 Modular anomaly equations

In this section our aim is to derive the index rλβ of the topological string partition function

Ztop with respect to the topological string coupling constant λ. As was explained in

section 3.6, this is captured by a modular anomaly equation of the form (3.64).

For ordinary elliptic fibrations, modular anomaly equations have also been derived via

duality with elliptic genera of strings and the anomaly inflow mechanism in a 6d super-

gravity theory [18–21]. Here we extend the discussion of [11, 68] and argue that whenever

M is elliptic or genus one fibered without fibral divisors or additional (multi-)sections, a

modular anomaly equation can be derived from the background independence equations

introduced in [10]. Strictly speaking, a modification of the background independence equa-

tion is necessary that will be discussed in a seperate paper which is written by a different

set of authors [2]. For the reader uninterested in technical details we summarize the main

result in the paragraph below.

For a Calabi-Yau threefold M that exhibits a genus one fibration with N -section such

that h1,1(M) = h1,1(B) + 1, the coefficient Zβ(τ, λ) in (2.3) satisfies(
∂

∂E2
+

(2πiλ)2

12
rλβ

)
Zβ = 0 , (4.55)

where

rλβ =
1

2N
β ·
(
β − c1(B)

)
. (4.56)

This implies that it is a meromorphic Jacobi form for Γ1(N) of weight k = 0 and index

rλβ with respect to the topological string coupling λ. Since the topological string partition

function is independent of complex structure deformations, this derivation also applies to

arbitrary genus one fibered Calabi-Yau 3-folds where the gauge group can be completely

Higgsed to a discrete group. Together with the derivation of the index matrix with respect

to the geometric elliptic parameters we therefore derive all indices directly from properties

of the geometry.

Recall that we denote by W the mirror dual of M . The topological string partition

function Ẑ,11 is identified with a wave function Ψ on a quantum Hilbert space. The latter

is obtained by quantizing the phase space H3(W,R) with symplectic form Σ given by its

intersection pairing. Quantum background independence of Ẑ on the complex moduli space

M of W leads to the heat equation [10] (see also [24, 25, 104])(
∂

∂tā
− λ2

2
Cbcā

D

Dta
D

Dtb

)
Ẑ = 0 . (4.57)

Here the coupling Cbcā is a section of L−2⊗Sym2
(
T

(1,0)
M

)
⊗T ∗(0,1)
M , where L is the Kähler line

bundle on M with fibers H3,0(W ). More precisely, (4.57) was derived as an infinitesimal

consequence of the freedom of choice of polarization on H3(W,R) and a change on t̄a

acts on the wave function Ẑ by a Bogoliubov transformation. A reformulation of the latter

11We reserve the hat notation for the topological string partition function in holomorphic polarization [24].
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transformation is proposed in [2]. However, in the limit case we consider, our result matches

with this proposal.

In the following we introduce some quantities, which follow from special geometry

over the complex moduli space M of W . The sections of the Kähler line bundle L are

holomorphic three forms Ω varying holomorphically over M. Moreover, one can choose a

symplectic basis in cohomology αI , β
I ∈ H3(W,Z) and a dual homology basis AI , BI ∈

H3(W,Z), I = 0, . . . , h2,1(W ), with pairings
∫
W αI ∧ βJ = −

∫
W βJ ∧ αI =

∫
AJ αI =

−
∫
BI
βJ = δJI and

∫
AJ β

I =
∫
BI
αJ = 0. Then for a given z ∈ M the holomorphic

three-form can be expanded as

Ω(z) = XI(z)αI − FI(z)βI . (4.58)

As a consequence of special geometry one can write the periods as

~Π =

(
XI

FI

)
= X0


1

tk

2F (0) − tk ∂
∂tk
F (0)

∂
∂tk
F (0)

 , (4.59)

where F (0) is the holomorphic prepotential F (X) = (X0)2F (0)(t) and one can introduce

the flat coordinates

ta =
Xa

X0
=

1

2πi
log(za) +O(z) . (4.60)

The Kähler potential K is related to the holomorphic 3-form Ω via

e−K = i

∫
W

Ω ∧ Ω̄ , (4.61)

which can be expressed in terms of the periods as

e−K = i~Π†Σ~Π = 4|X0|2
[
Im
(
F (0)

)
− ta2Re

(
∂taF (0)

)]
. (4.62)

Here ta2 := Im(ta). A straightforward calculation using (4.61) provides the leading terms

e−K =
4

3
cabct

a
2t
b
2t
c
2 +

ζ(3)χ(M)

4π3
+O(Q, Q̄) , (4.63)

where cabc denotes the classical intersection numbers on M and Qa = exp(2πita). The

Weil-Petersson metric follows from the Kähler potential and reads Gab̄ = ∂a∂b̄K. More-

over, the coupling Cbcā is related to the anti-holomorphic Yuakawa coupling C̄āb̄c̄ ∈ L̄2 ⊗
Sym3

(
T
∗(0,1)
M

)
, the inversion of the Weil-Petersson metric and the Kähler potential via

Cbcā = e2KC̄āb̄c̄G
aāGb̄b . (4.64)

In the remainder of this section we will assume that M is a genus-one fibered Calabi-

Yau threefold without fibral divisors or additional (multi-)sections. In particular, we use

the parametrization of the Kähler form (3.28)

ω = τ ·

(
Ẽ0 −

1

2N

∑
i

ãiD
′
i

)
+ tiD′i (4.65)
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where Ẽ0 and D′i, i = 1, . . . , h1,1(B) have been defined in section 3.3. The only complexified

Kähler moduli are τ and ti, i = 1, . . . , h1,1(B) where τ parametrizes the volumes of isolated

fibral curves while the shifted Kähler parameters ti parametrize the volumes of curves in

the base.

As pointed out in section 3.6, we are interested in the limit where Ẑ exhibits its

anholomorphic behaviour exclusively due to polynomials in (Im τ)−1. In addition to that,

we consider the base parameter limit Im ti ∼ 1
h →∞, where h is some real order parameter

close to zero, while keeping the fiber parameter Im τ finite. We refer to the latter limit

as the small fiber limit.12 At the end of the day, the quantity of main interest will be the

topological string partition function in the holomorphic limit

Z(τ, t, λ) = lim
Im t,τ→∞

Ẑ(τ, τ̄ , t, t̄, λ) . (4.66)

Let us define

Ê0 = Ẽ0 −
1

2N

∑
i

ãiD
′
i , (4.67)

and denote with cτab the classical intersection matrix given by the intersections Ê0 · Ja · Jb
where Ja ∈

{
Ê0, D

′
i=1,...,h1,1(B)

}
. We find that

cτab =

(
α ~0T

~0 Ncij

)
. (4.68)

Here cij = D̃′i · D̃′j is the intersection form on the base B with D′i = π−1D̃′i. The N factor

arises due to the intersection with the zero-N -section. Moreover, cτττ = α is a constant that

will drop out from the calculation. With the information obtained from (4.68), (4.63) and

taking the appropriate inversions of Gaā, we are able to compute the coupling Cabτ̄ (4.64)

in the small fiber limit. Putting everything together, the result reads

Cabτ̄ =

 α
τ2
2
V 2h

4 +O(h5) 1
6V 2τ2

2
(2ατ3

2 − χ̂)Ntj2h
3 +O(h5)

1
6V 2τ2

2
(2ατ3

2 − χ̂)Nti2h
3 +O(h5) 1

4Nτ2
2
cij +O(h)

 . (4.69)

Here V = Ncijt
itj , χ̂ = ζ(3)χ(M)

4π3 , and cij is the inverse of cij .

With this information at our disposal, we proceed applying the small fiber limit on

the wavefunction equation (4.57). Denote by LW the differential operator in (4.57). In the

small fiber limit, Witten’s wave function equation reduces to

lim
h→0
LW =

∂

∂Ê2

+
λ2

24N
cij

∂

∂ti
∂

∂tj
, (4.70)

where we used the derivative relation ∂τ̄ = − 3
2πiτ2

2
∂Ê2

. Considering the Fourier expansion

of Ẑ in the base parameters around the small fiber limit

lim
h→0

Ẑ = Ẑ0

(
1 +

∑
β∈H2(B,Z)

Ẑβ(τ, τ̄)Qβ

)
. (4.71)

12Recall from section 4.5 that only in the small fiber limit the exponentiated Kähler parameters of the

base transform like Jacobi forms under relative Conifold transformation.
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we find that

lim
h→0
LW
(
Ẑ0Q

β
)

=

[
1

2N

(
β − c1(B)

2

)2

− 1

5760

N∑
m=1

nm
N

]
Qβ . (4.72)

The first term on the right hand side of (4.72) comes from the base derivatives in LW
acting on Qβ−

c1(B)
2 . The shift c1(B) appears due to the classical contributions from Fg=1

within Ẑ0 which read

Fg=1

∣∣∣
class

= − 1

24

∑
a

ta
∫
M
c2(M) ·D′a = −1

2

∑
a

ta
∫
B
c1(B)D̃′a . (4.73)

The second term in (4.72) appears due to the action of ∂Ê2
on the base degree zero

contribution from Fg=2 which we derived in the previous section. It can be separated into

a purely modular part and a quasi-modular part. The latter reads

Fg=2,β=0

∣∣∣
quasi

= − 1

5760

N∑
n=1

nm
N
E2(τ) . (4.74)

Performing the map E2 7→ Ê2 we recover the non-holomorphic counterpart of (4.74) in

Ẑ0. Using the pure gravitational anomaly constraints for an effective supergravity in a 6d

theory, which read

H − V + 29T = 273 , 9− T = c2
1(B) , (4.75)

we are able to verify
N∑
m=1

nm = 60c2
1(B) . (4.76)

Finally, joining the pieces (4.72) and (4.76) we take the coefficient Qβ of limh→0 LW Ẑ.

The result reads (
∂

∂Ê2

+
(2πiλ)2

24N
β ·
(
β − c1(B)

))
Ẑβ(τ, τ̄) = 0 . (4.77)

Taking the holomorphic limit Im τ →∞, we obtain (4.55).

4.5 The modular ansatz for genus one fibrations with N-sections

We will now derive the modular ansatz for the topological string partition function on

genus one fibered Calabi-Yau threefolds that do not have a section but only N -sections. For

reasons that have been described in section 3.3 we restrict ourselves to N ∈ {2, 3, 4}. Then

our analysis of the monodromies in the stringy Kähler moduli space led to the conjecture

that QβZβ transforms like a weak Jacobi form of weight zero and index 1
2N β · (β − c1(B))

under the action of Γ1(N).

We could now try to derive the denominator of the ansatz following the argument for

elliptic fibrations to justify (4.29). However, this is complicated by the fact that the rings

of modular forms for Γ1(N) in general contain multiple irreducible elements that vanish
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C−1 C1 C2 C−2 C3 C−3

Figure 3. Intersections between the two rational sections and the components of the three types

of isolated fibral curves in fibrations constructed from dP1 (polytope F3). Shaded components are

wrapped by the rational section while crosses indicate a transverse intersection. The figures are

taken from [85].

at τ → i∞. Let us therefore follow a different route and derive the ansatz by considering

Higgs transitions.

We will first recall the geometric transition that corresponds to Higgsing an Abelian

gauge group into a discrete gauge group within F-theory. This will allow us to identify a

good set of Kähler parameters on the multi-section geometry and we see that the relative

conifold monodromy and a large volume monodromy generate an action of a congruence

subgroup Γ1(N) of PSL(2,Z) on the moduli. We will then use the Higgs transition and the

previously conjectured modular properties of the topological string partition function on

geometries with multiple sections to show that the topological string partition function on

fibrations that only have multi-sections can be expressed in terms of Jacobi forms for Γ1(N).

It is well known that via F-theory multi-section geometries lead to discrete gauge

symmetries. Moreover, general arguments of quantum gravity imply that discrete gauge

symmetries are always the remnant of a Higgsed continuous gauge symmetry. It is therefore

expected that for every multi-section geometry X ′ there exists a geometry X with multiple

sections such that X ′ can be obtained from X via a conifold transition. More precisely, the

geometric transition relates the five dimensional theories that are obtained after compacti-

fying the F-theory vacua on a circle. First the volume of an isolated fibral curve shrinks to

zero such that the corresponding hypermultiplets of U(1) charge q become massless. Note

that the volumes of fibral curves correspond to gauge fluxes along the S1. A subsequent

complex structure deformation can be interpreted as giving a vacuum expectation value to

the massless scalar fields in the hypermultiplets.

To be concrete let us consider a generic fibration X that can be obtained from fibers

in dP1. There are two independent rational sections s0 and s1 and we can choose s0 as the

zero-section [85]. The generic gauge group is G = U(1) which reflects the fact that there

are no fibral divisors. There are three types of isolated fibral curves and the intersections

with s0 and s1 are indicated in figure 3. Note that shaded components are wrapped by the

rational section while crosses indicate a transverse intersection. Recall that up to vertical

divisors the image of s1 under the Shioda map is given by

σ(s1) = E1 − E0 + (vertical divisors) , (4.78)

where E0 and E1 are the divisor classes of s0 and s1. For a curve C that is wrapped by si
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the intersection is Ei · C = −1. Together with the fact that an M2-brane that wraps an

isolated fibral curve C has U(1) charge

q = σ(s1) · C , (4.79)

this leads to the corresponding labels Cq in figure 3.

If we now try to Higgs the U(1) with a scalar of charge q = ±3 we have to let the

volume of C3 or C−3 shrink to zero. We parametrize the Kähler form as in (3.28). Then τ

is the volume of the generic fiber while m is the volume of C1 while ti, i = 1, . . . , h1,1(B)

are parametrizing the size of curves in the base. In particular, the sizes of C3 and C−3 are

vol(C3) = 3m− τ , vol(C−3) = 2τ − 3m. (4.80)

It turns out that if we choose τ and m 6= 0 such that 2τ − 3m = 0, the Kähler form ω is

always outside the closure of the Kähler cone. However, if m > 0 the limit τ → 3m is on

the boundary of the Kähler cone. It is then possible to deform the complex structure such

that the sections si merge with two-sections into two three-sections. The corresponding

divisor classes are equivalent up to vertical divisors.

In other words, the topological string partition function on the three-section geome-

try X ′ is obtained from the partition function on the geometry with two sections X by

substituting

τ 7→ 3τ , m 7→ τ . (4.81)

Using the ansatz (4.29) and the relations (4.23) we find that at base degree β it takes

the form

ZX
′

β (τ, λ) =
1

η(3τ)12c1(B)·β∆6(τ)
rβ
3

φ′β(τ, λ)∏b2(B)
l=1

∏βl
s=1 φ−2,1(3τ, sλ)

, (4.82)

where φ′β(τ, λ) is a weak Jacobi form for Γ1(3) of weight and index such that ZX
′

β (τ, λ) is a

meromorphic Jacobi form of weight zero and index 1
6β ·(β−c1(B)). Recall that rβ = 1

2b·β is

the index of ZX with respect to m where b is the height pairing of the section E1 with itself.

Let us denote the class of the three-section in the resulting smooth genus-one fibration

X ′ by E′. From a geometric perspective the result from the previous analysis is that there

exists a fibral curve C such that E′ · C = 1. Therefore, in order to calculate enumerative

invariants, we should parametrize the Kähler form as

ω = τ · (E′ +D) + . . . , (4.83)

where τ is now one third of the volume of the generic fiber and D is vertical divisor such

that Ẽ = E′ + D is orthogonal to a basis of curves in the base. In general, a curve that

intersects the three-section once could be absent but the ansatz remains valid.

An analogous ansatz holds for two- and four-section geometries. But before we give

the expressions, let us note that in every example we find that the factor of ∆
rβ/N
2N in the

– 40 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

denominator is compensated by a factor ∆
drβ/Ne
2N in the numerator. Cancellation of poles

then implies the congruence relation

1−
rβ
N
≡ 1

2

[
Nc1(B)− ã

N

]
· β mod 1 . (4.84)

In particular, for a genus one fibration with N -sections where N = 2, 3, 4 that does not

have additional fibral divisors or independent multi-sections we find the simplified ansatz

Z
(N)
β (τ, λ) =

1

η(Nτ)12c1(B)·β

φ′β(τ, λ)∏b2(B)
l=1

∏βl
s=1 φ−2,1(Nτ, sλ)

, (4.85)

where the numerator φ′β(τ, λ) is an element

φ′β(τ, λ) ∈M∗(N)[φ−2,1(Nτ, λ), φ0,1(Nτ, λ)] ·∆2N (τ)1−
rβ
N

mod 1 , (4.86)

such that the overall weight of Zβ is zero and the index is 1
2N β · (β − c1(B)). The rings

M∗(N) are defined in (4.7) and the exponent of ∆2N (τ) can be obtained from (4.92).

4.6 Summary of the modular bootstrap ansatz

We will now summarize the ansatz for a genus one fibered Calabi-Yau threefold M with

N -sections for N ∈ {2, 3, 4}. The Kähler form should be expanded as

ω = τ · (E0 +D) +

r∑
i=1

mi · σ(Ei) +

rk(G)∑
i=r+1

mi ·Df,i−r +

b2(B)∑
i=1

t̃i ·D′i , (4.87)

where a basis of fibral divisors is denoted by Df,i, i = 1, . . . , rk(G) and Ei, i = 0, . . . , r are

independent N -sections. The vertical divisors D′i, i = 1, . . . , b2(B) are dual to the curves

Ci = E0 ·Di, i = 1, . . . , b2(B) with Di = π−1D̃i in the sense that

D′i · Cj = N · δij . (4.88)

The “zero N -section” E0 is shifted by the unique vertical divisor D such that Ẽ0 = E0 +D

is orthogonal to all curves Ci, i = 1, . . . , b2(B). Moreover, following the discussion in

section 3.3, the shifted Kähler parameters ti, i = 1, . . . , h1,1(B) are defined as

ti = t̃i +
ãi

2N
τ , with ãi =

∫
M
Ẽ2

0 ·Di . (4.89)

We will also assume that there are no fibral divisors at a generic point of the complex

structure moduli space of M .

Then, if we expand the topological string partition function as in (2.3), the coefficients

take the form

Zβ(τ,m, λ) =
1

η(Nτ)12·c1(B)·β
φβ(τ,m, λ)∏b2(B)

l=1

∏βl
s=1 φ−2,1(Nτ, sλ)

, (4.90)
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where the numerator φβ(τ, λ) is an element

φβ(τ,m, λ) ∈M∗(N)[φ−2,1(Nτ, •), φ0,1(Nτ, •)] ·∆2N (τ)1−
rβ
N

mod 1 , (4.91)

where • stands for any elliptic parameter z ∈ {λ,m}. The exponent of ∆2N (τ) is deter-

mined by the congruence relation

1−
rβ
N
≡ 1

2

[
Nc1(B)− ã

N

]
· β mod 1 . (4.92)

The weight of φβ is given in (4.30), while the index with respect to the topological string

coupling λ is

rλβ =
1

2N
β · (β − c1(B)) . (4.93)

The index matrix with respect to the geometric elliptic parameters mi, i = 1, . . . , rk(G) is

rβij =
1

N
·


−1

2π∗ (σ(Ei) · σ(Ej)) · β for 1 ≤ i, j ≤ r
−1

2π∗ (Df,i ·Df,j) · β for r < i, j ≤ rk(G)

0 otherwise

. (4.94)

5 Duality with heterotic strings on CHL orbifolds

In this section we will argue that heterotic strings on CHL orbifolds (K3×T 2)/ZN are dual

to Type IIA strings on genus one fibered Calabi-Yau threefolds with N -sections. We will

then systematically construct Calabi-Yaus that are dual to heterotic compactifications on

(K3 × T 2)/Z2. The modular bootstrap for multi-section geometries that we developed in

the previous sections allows us to compare the topological string partition function against

the heterotic one-loop computations that have been performed in [51]. This provides an

all-genus check of our proposal.

5.1 Heterotic/Type IIA duality and topological strings

It is well known that heterotic E8×E8 string theory on K3×T 2 is dual to Type II strings on

Calabi-Yau manifolds [105]. Let us further assume that the dual heterotic theory is weakly

coupled in the geometric regime of the moduli space of the Type II compactification and

that the T 2 can be decompactified. Then one can show that the Calabi-Yau has to be a

fibration of elliptic K3 surfaces over P1 [106]. Of course, in order to specify a heterotic

vacuum one also needs to choose a gauge background on the compactification space. The

unbroken gauge symmetry, the spectrum and therefore also the dual Calabi-Yau depend

on this choice of background.

An important observable that can be matched for a given dual pair is the gravitational

coupling Fg(t, t̄), which enters via the terms

S =

∫
F̃g(t, t̄)F

2g−2R2 , (5.1)
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into the d = 4, N = 2 effective action. Here F,R are the self-dual parts of the graviphoton

and the Riemann curvature. On the heterotic side, all of these couplings are perturbatively

one-loop exact but receive non-perturbative corrections. From the Type IIA perspective,

F̃g is a g-loop correction and corresponds to the topological string free energy at genus

g [52, 53]. More precisely, the holomorphic limit of the topological string free energies

corresponds to

F top
g (t) =

1

2(2πi)2g−2
F̄ hol
g (t) , with F hol

g (t̄) = lim
t→∞

F̃g(t, t̄) . (5.2)

The heterotic dilaton can be identified with the complexified volume of the P1 that is the

base of the K3 fibration in the dual Type II compactification. The complex structure and

the complexified volume of the T 2 on the heterotic side correspond to linear combinations of

the complexified volumes of the elliptic fiber and the P1 base of the K3 fiber. Wilson lines

on the heterotic torus can be matched with volumes of fibral curves in the elliptic fibration.

For particular choices of bundles the one-loop calculation on the heterotic side has

been carried out explicitly [53, 54, 107]. The calculation involves an integral of a product

of modular forms and theta functions over the fundamental domain of PSL(2,Z). This has

been evaluated [54] using the lattice reduction theorem by Borcherds [108]. The modular

form that appears in the integrand is closely related to the new supersymmetric index [109]

Znew =
1

η(τ)2
TrR

(
(−1)FFqL0− c

24 q̄L̄0− c̄
24

)
, (5.3)

which can be expressed in terms of the elliptic genus of K3 [110]. A variant of moonshine

relates the latter to representations of the Mathieu group M24 [111] and the consequences

for compactifications on K3× T 2 were studied by [112].

The corresponding dual Calabi-Yau manifolds are K3-fibered and this makes it possible

to obtain all-genus results for the topological string at least for a restricted set of curve

classes [113]. This relies on the fact that genus g curves on elliptically fibered K3 can be

counted by focusing on certain degenerate configurations where g-tori are glued to points

of the base P1 [114]. A resolution of the moduli space of such curves together with a choice

of bundle is then given by the Hilbert scheme of g points on K3 and the enumerative

invariant is the corresponding Euler characteristic. The result for K3 can be lifted to

obtain product formulas that capture all-genus invariants of K3 × T 2 [115] which in turn

admit generalizations to regular K3 fibrations [113]. The results from both calculations

match which provides highly non-trivial evidence for the duality [113].

5.2 Genus one fibrations and heterotic strings on (K3× T 2)/ZN

Soon after heterotic/Type II duality had been established for K3 × T 2 compactifications

the arguments have been extended to heterotic strings on so-called CHL quotients (K3×
T 2)/Z2 [39]. A dual geometry was constructed by taking an elliptically fibered Calabi-Yau

with a torsional section and taking a Z2 quotient that involves the corresponding shift

along the fiber. The result is genus one fibered Calabi-Yau threefold with 2-sections.

However, a detailed discussion of heterotic CHL compactifications on (K3 × Z2)/ZN
only appeared much later [40]. Non-standard embeddings of the gauge connection for CHL
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orbifolds have subsequently been considered in [50] and also the one-loop calculation [54]

has been generalized, which led to all-genus predictions for the enumerative invariants

of dual Calabi-Yau geometries [51]. It turns out that the new supersymmetric index and

therefore also the integrand in the one-loop calculation can be expressed in terms of modular

forms for Γ1(N).

For CHL quotients of order 2 such that the element g′ ∈ M23 corresponds to the

conjugacy class 2A of M24 it was found [50] that the new supersymmetric index only

depends on the number of vector- and hypermultiplets in the spectrum. In fact, only the

conveniently normalized combination

b̂ =
1

144
(Nh −Nv + 12) , (5.4)

appears to be relevant [50]. Note that the Hodge numbers of the dual Calabi-Yau are

related to the number of vector- and hypermultiplets via

h1,1 = Nv − 1 , h2,1 = Nh − 1 . (5.5)

Two candidate Calabi-Yau duals for N = 2 CHL compactifications with b̂ = 2
3 and b̂ = 8

9

have been identified by explicitly comparing the predictions from [51] to the genus zero

enumerative invariants of Calabi-Yau threefolds with h1,1 = 3 [116]. We will show below

that those geometries are again genus one fibered with 2-sections and, using the modular

bootstrap, extend the comparison to all genera.

The action of the ZN quotient on K3×T 2 is as follows. It was shown by Mukai [46] that

the automorphisms of a K3 surface form a subgroup of the Mathieu group M23 which is in

turn a subgroup M23 ⊂M24. A smooth CHL orbifold is therefore obtained from an order N

element g′ ∈M23 that acts together with a 1/N shift along a cycle of T 2. Other quotients

are possible at the level of the CFT [47, 117] but they do not admit a straightforward

geometric interpretation. This is of course closely related to the moonshine phenomenon

that we alluded to in the previous section.

At this point we can already argue on general grounds that (K3× T 2)/ZN should be

dual to Type IIA on N -section geometries. Following the usual convention we denote the

complex structure and the complexified Kähler modulus of the T 2 respectively by U and

T . For N = 1 it is easy to see that the theory exhibits a T-duality group

Γhet = SL(2,Z)× SL(2,Z)× Z2 . (5.6)

One SL(2,Z) acts on the complex structure U and must clearly leave the theory invariant.

T-duality along one of the cycles exchanges U with T and therefore leads to the factor Z2.

Combining both transformations it follows that the theory must also be invariant under

the action of SL(2,Z) on T . In the dual Calabi-Yau geometry U is identified with the

Kähler modulus of an elliptic fiber while T is the volume of the base of a K3 fiber. We

already argued that the SL(2,Z) action is realized by monodromies in the moduli space of

elliptic fibrations and it is also known that another monodromy acts via U ↔ T [43].

How does this situation change if we consider CHL orbifolds? The orbifold group ZN
acts as an order N shift along one of the cycles of T 2 and the action of the duality group on
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the complex structure parameter of the torus has to be compatible with this action. But

the subgroup of SL(2,Z) that preserves a subgroup ZN of the torus together with a choice

of generator is Γ1(N). On the other hand, we can still perform T-duality along the cycle

that is not involved in the CHL quotient to exchange U and T . We therefore conclude that

the T-duality group of heterotic strings on a CHL orbifold (K3× T 2)/ZN is

ΓCHL = Γ1(N)× Γ1(N)× Z2 . (5.7)

From the perspective of the dual IIA compactification the action of this group should

again be realized by the monodromies in the quantum Kähler moduli space of the Calabi-

Yau. Together with our previous discussion in section 3.3 this implies that the Calabi-Yau

has to be a genus one fibration with N -sections. For explicit examples that are dual to

order 2 CHL compactifications we checked that Z2 is also contained in the corresponding

monodromy group.

It is natural to ask under which conditions a weakly coupled CHL dual exists for a

given N -section geometry. To shed some light on this question we construct all 2-section

fibration over P1 × P1 with h1,1 = 3 that can be realized as hypersurfaces in toric ambient

spaces. This leads to two additional values of b̂ for which the topological string amplitudes

match with the calculation from the heterotic side. However, the list of gauge backgrounds

that has been obtained by [50] is not exhaustive and we expect that a different construction

should provide the missing heterotic duals. The two models found by [116] are contained

in this list.

5.3 Constructing Calabi-Yau duals of CHL orbifolds

To keep the calculations tractable we focus on the case where the gauge symmetry on the

heterotic side is maximally Higgsable. This means that only the four universal vector fields

that arise from the Kaluza-Klein reduction of the metric and the B-field along the cycles

of the 2-torus remain massless. The number of Kähler moduli for the dual Calabi-Yau

manifolds is therefore h1,1 = 3.

It has been argued on general grounds [43, 118] that weakly coupled heterotic strings

can only be dual to Type IIA compactifications on Calabi-Yau manifolds that exhibit a

K3 fibration. The heterotic string arises in the IIA picture from a 5-brane that wraps the

K3 [119]. Further dualities relate the elliptic genus of this string to the topological string

partition function which in turn encodes the couplings (5.1). Moreover, heterotic string

theory on K3 × T 2 with 12 + n and 12 − n instantons embedded into the respective E8

factors is dual to a compactification on an elliptic fibration over the Hirzebruch surfaces

Fn [120]. Only for n = 0, 1, 2 the gauge theory is maximally Higgsed at a generic point of

the hypermultiplet moduli space.

All three geometries lead to the same string when a 5-brane wraps the restriction of

the elliptic fibration to the fiber of the Hirzebruch surface. To search for Calabi-Yau duals

of Z2 CHL orbifolds we are therefore constructing genus one fibrations over F1 = P1 × P1

with 2-sections. We can then study the strings from both of the P1’s and compare with

the predictions from [51].

– 45 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

Note that a genus one fibration with 2-sections can always be mapped into a fibration

of degree 4 hypersurfaces in P112 using for example the techniques that have been reviewed

in [66]. The systematic construction of elliptically and genus one fibered Calabi-Yau man-

ifolds as hypersurfaces in toric ambient spaces is reviewed in section 7.1. Following that

discussion we choose the fiber of the ambient space to be P112 and one can write down

generic GLSM charge vectors as the rows of the matrix

A =

 1 1 2 0 0 0 0

−q1 −2 −q1 1 1 0 0

−q2 −2 −q2 0 0 1 1

 , (5.8)

where qi = qi(S7 − 2S9) in the notation introduced in and below (7.6). The kernel B =

ker(A) of this matrix is generated by the points of the polytope with integral points





−1 1 0 0 X ← 2-section

−1 −1 0 0 Y ← 2-section

1 0 0 0 Z ← 4-section

0 0 1 0 a1

−2 q̃1 −1 0 a2

0 0 0 1 b1
−2 q̃2 0 −1 b2

, (5.9)

with q̃i = qi − 2. We have already indicated the names for the homogeneous coordinates

of the associated toric variety. The P1 in the base with coordinates a1, a2 will be denoted

by P1
A and the other will correspondingly be called P1

B. The Stanley-Reisner ideal is then

always given by

SRI = 〈a1a2, b1b2, XY Z〉 , (5.10)

and we denote the corresponding divisors by D1 = [a1] = [a2], D2 = [b1] = [b2], E0 = [X].

It is then easy to calculate

E2
0 ·D1 = 4− q2 , E2

0 ·D2 = 4− q1 , (5.11)

and therefore

Ẽ0 = E0 + (q1 − 2)D1 + (q2 − 2)D2 . (5.12)

We can expand the Kähler form as

ω = τ · Ẽ0 +
∞∑
i=1

(
ti −

ãi
4

)
·Di , (5.13)

with

ã1 = Ẽ2
0 ·D2 = 2q1 − 4 , ã2 = Ẽ2

0 ·D1 = 2q2 − 4 . (5.14)
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q1 q2 h1,1 h2,1 b̂1 b̂2

4 4 4 148 — —

4 3 3 131 1 —

4 2 3 115 8
9

8
9

4 1 3 99 7
9 —

4 0 3 83 2
3

2
3

q1 q2 h1,1 h2,1 b̂1 b̂2

3 3 3 123 — —

3 2 3 115 — 8
9

3 1 3 107 — —

2 2 3 115 8
9

8
9

Table 1. Values for q1, q2 in (5.9) that lead to reflexive polytopes such that the corresponding

toric variety is a P112 fibration over P1 ×P1 and the generic Calabi-Yau hypersurface has h1,1 = 3.

When the string that arises from a 5-brane wrapping the restriction of the genus one fibration to

PA or PB matches with a 2A CHL string, the corresponding value of b̂ is also listed.

Only for a small set of values for q1, q2 the convex hull of the points is a reflexive

polytope such that the corresponding toric variety is a P112 fibration over P1 × P1 and

the generic Calabi-Yau hypersurface exhibits h1,1 = 3. Moreover, two pairs of values can

lead to polytopes that are identified under a lattice automorphism. We list a complete

set of admissible values in table 1 that lead to inequivalent reflexive polytopes. The list

also includes the unique special case where h1,1 = 4 but one of the Kähler deformations

is non-toric. This corresponds to the situation where the ramification locus of a toric 2-

sections is trivial and it can be identified with the union of two independent sections. Note

that a Calabi-Yau with (h1,1, h2,1) = (3, 131) has already been proposed in [39] as the dual

geometry for a heterotic compactification on a particular (K3× T 2)/Z2 orbifold.

Let us denote the corresponding geometries by Mq1,q2 . Using the generic formula for the

Euler characteristic from [85], the number of complex structure moduli can be expressed as

h2,1(q1, q2) = 144 + h1,1(q1, q2)− 16(q1 + q2) + 8q1q2 . (5.15)

Together with (5.4) and (5.5) this implies that if a 5-brane that wraps one of the K3 fibers

in Mq1,q2 can be identified with the string of a CHL orbifold of the previously discussed

type, then the gauge background is necessarily such that

b̂ =
1

144
[160− 16(q1 + q2) + 8q1q2] . (5.16)

Indeed, using the normal form [121] for reflexive polytopes one can easily check that the two

geometries found by [116] respectively correspond to (q1, q2) = (2, 2) and (q1, q2) = (4, 0).

For any of the nine geometries we can consider the K3 fiber with base P1
A or P1

B

which we will sometimes denote by K31 and K32. This leads to eighteen base degree one

partition functions and in all of the genuine genus one fibrations with h1,1 = 3 it can either

be written as

Z
(1)
1 (τ, λ) =

∆2(τ)

η(2τ)24φ−2,1(2τ, λ)
· E(2)

2 ·
[
4(6b̂− 5) ·

(
E

(2)
2

)2
+ 2(2− 3b̂) · E4

]
, (5.17)

or

Z
(2)
1 (τ, λ) =

∆2(τ)
3
2

η(2τ)24φ−2,1(2τ, λ)
·
[
λ1 ·

(
E

(2)
2

)2
+ λ2 · E4

]
. (5.18)
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As our notation already suggests, it is the first case that matches the predictions from a

one-loop calculation in 2A CHL orbifolds with a corresponding value for b̂.

If we multiply Z1 with q
ã

2N , see (3.32), the poles at τ → i∞ are cancelled. Indeed we

find that Z
(1)
1 is a valid ansatz for K3i if

ãi ≡ 0 mod 4 , (5.19)

and otherwise Z
(2)
1 matches the genus zero and genus one invariants for an appropriate

choice of λ1, λ2. Expressions for ãi, i = 1, 2 in terms of q1, q2 have been provided in (5.14).

In the special case where h1,1 = 4 the geometry is actually elliptically fibered with

two independent sections that descend from one toric 2-section. We then find that K31 is

equivalent to K32 and the base degree one partition function reads

Z1(τ, λ) =
2

3

∆2(τ)

η(2τ)24φ−2,1(2τ, λ)
· E(2)

2 ·
[(
E

(2)
2

)2
− 4E4

]
. (5.20)

5.4 Comparison with the heterotic one-loop computation

The one-loop calculation of the couplings (5.1) has been carried out for many CHL orbifolds

with standard-embedding of the gauge connection in [51]. However, all of the bundle

dependent data that enters the result is contained in the new supersymmetric index. For

many non-standard embeddings on 2A orbifolds the index has been obtained in [50] and

takes the form

Znew = −4

1∑
r,s=0

Γ
(r,s)
2,2 f

(r,s)
2A , (5.21)

with Γ
(r,s)
2,2 a lattice sum that will not be relevant to us and

f
(0,0)
2A =

1

η(τ)24

E4E6

2
,

f
(0,1)
2A =

1

η(τ)24

1

4

[(
E6+2E

(2)
2 (τ)E4

)(
b̂
(
E

(2)
2 (τ)

)2
+

(
2

3
−b̂
)
E4

)]
,

f
(1,0)
2A =

1

η(τ)24

1

4

[(
E6−E(2)

2

(τ
2

)
E4

)( b̂
4

(
E

(2)
2

(τ
2

))2
+

(
2

3
−b̂
)
E4

)]
,

f
(1,1)
2A =

1

η(τ)24

1

4

[(
E6−E(2)

2

(
τ+1

2

)
E4

)(
b̂

4

(
E

(2)
2

(
τ+1

2

))2

+

(
2

3
−b̂
)
E4

)]
,

(5.22)

Recall that the choice of gauge background only enters via the combination b̂ (5.4) of the

numbers of vector- and hypermultiplets.

A direct evaluation of the one-loop amplitude leads to [51]

F̄ hol
g =

(−1)g−1

π2

N−1∑
s=0

∑
m

′
e−2πin2s/Nc

(n1,s)
g−1

(n1n2

2
, 0
)

Li3−2g

(
e2πim·y)+ const. , (5.23)
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d\g 0 1 2 3 4

0 512-288 b̂ 0 0 0 0

1 2376 b̂+8128 36 b̂-32 0 0 0

2 151552-11520 b̂ 576 b̂-1024 0 0 0

3 45900 b̂+1212576 -4644 b̂-16352 48-54 b̂ 0 0

4 8671232-158976 b̂ 24768 b̂-306176 1536-864 b̂ 0 0

5 493488 b̂+47890048 -105912 b̂-2474048 6840 b̂+24640 72 b̂-64 0

6 240009216-1410048 b̂ 389376 b̂-18255872 462848-39168 b̂ 1152 b̂-2048 0

7 3777570 b̂+1055720304 -1281132 b̂-103120800 174906 b̂+3768496 -8964 b̂-32992 80-90 b̂

Table 2. Gopakumar-Vafa invariants of the K3 at base degree 1.

where
∑′ is a sum over the points

n1, n2 ≥ 0 , but (n1, n2) 6= (0, 0) , and (n1,−n2) , with n2 > 0 and n1n2 ≤ N . (5.24)

and y = (T, U) contains the Kähler and complex structure of the torus. The coefficients

c
(r,s)
g−1 (l, t) are defined via

f (r,s)(τ)P2g+2(τ) =

t=g∑
l∈ Z
N
,t=0

c
(r,s)
g−1 (l, t)τ−t2 ql , (5.25)

where

P2k(τ) ≡ P2k

(
Ĝ2, . . . , G2k

)
, G2k = 2ζ(2k)E2k , Ê2(τ) = E2 −

3

πτ2
, (5.26)

and P2k(x1, . . . , xk) is related to the Schur polynomial Sk(x1, . . . , xk) by

P2k (x1, . . . , xk) = −Sk
(
x1,

1

2
x2, . . . ,

1

k
xk

)
. (5.27)

The Schur polynomials are in turn defined by

exp

( ∞∑
k=1

xkz
k

)
=

∞∑
k=0

Sk(x1, . . . , xk)z
k . (5.28)

The indices (r, s) label the twisted sectors and are considered modulo 2. From this we can

extract all Gopakumar-Vafa invariants that have base degree zero with respect to the K3

fibration of the dual Calabi-Yau up to arbitrary genus. The invariants of base degree 1

with respect to the genus one fibration of the K3 are listed in the table 2. We find perfect

agreement with the predictions from (5.17).

The higher base degrees match with the results from the genus zero and genus one

partition functions and can be used to fix the coefficients in the modular ansatz. Evaluation

of (5.23) provide the prediction of Gopakumar-Vafa invariants listed in table 3.
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d\g 0 1 2 3

0 288 b̂-32 4 0 0

1 151552-11520 b̂ 576 b̂-1024 0 0

2 158976 b̂+8387328 -24768 b̂-262464 864 b̂-128 8

3 240009216-1410048 b̂ 389376 b̂-18255872 462848-39168 b̂ 1152 b̂-2048

4 9596160 b̂+4294949632 -3870144 b̂-526389312 674208 b̂+27261728 -54720 b̂-524144

5 57704112128-54369792 b̂ 29089152 b̂-10135607296 865636352-7319808 b̂ 1016064 b̂-39292928

6 268600320 b̂+620790389760 -179967744 b̂-143003775232 59660928 b̂+17075001600 -11892672 b̂-1217397536

7 5647463645184-1191462912 b̂ 962118144 b̂-1626724835328 253765050368-397518336 b̂ 104037120 b̂-25542406144

Table 3. Gopakumar-Vafa invariants of the K3 at base degree 2.

The Gopakumar-Vafa invariants in table 3 can be used to fix the numerator in our

Ansatz for the base degree 2 partition function

Z2 =

(
∆4

η24(2τ)

)2
φ2(τ, λ)

φ−2,1(2τ, λ)φ−2,1(4τ, λ)
, (5.29)

and we find that

φ2 =
1

82944

[
384A3

(
2(6b̂−5)g3+(2−3b̂)gh

)2

+8A2Bg

(
24(62b̂−55)g6+10(95−108b̂)g4h

+(261b̂−220)g2h2+7(2−3b̂)h3

)
+AB2

(
−48

(
4320b̂2−6644b̂+2505

)
g8+8

(
36b̂(504b̂

−703)+8321
)
g6h+

(
36(1159−936b̂)b̂−11231

)
g4h2+2

(
12b̂(108b̂−109)+179

)
g2h3

+3(11−12b̂)h4

)
+4B3g

(
11g2−3h

)(
12(8b̂−7)(36b̂−25)g6+

(
216(11−8b̂)b̂−763

)
g4h

+
(

27b̂(8b̂−9)+50
)
g2h2+(5−3b̂)h3

)]
, (5.30)

where we introduced

A = φ0,1(2τ, λ) , B = φ−2,1(2τ, λ) , g = E
(2)
2 (τ) , h = E4(τ) . (5.31)

We can thus check the duality between the proposed pairs of Type IIA compactifi-

cations on genus one fibrations with 2-sections and heterotic compactifications on (K3 ×
T 2)/Z2, at least perturbatively, to arbitrary orders. The contributions to the topological

string partition function that arise from curves that also wrap the base of the K3-fibration

correspond to a highly non-trivial prediction of the non-perturbative corrections on the

heterotic side.

6 Decoupling gravity on genus one fibrations over (−1)-curves

During the last few years there has been a considerable amount of interest in the study of

topological strings on non-compact Calabi-Yau manifolds that are elliptically fibered over
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curves of negative self-intersection [6, 15, 18, 19, 122–124]. The reason is the relation to

elliptic genera of strings in so-called minimal six-dimensional (1, 0)-superconformal field

theories that serve as building blocks in a classification of all such theories [57, 58, 125].

Those strings arise in F-theory from D3-branes that wrap the curve in the base of the

fibration. A natural question is, what happens if we consider a genus one fibration with

multi-sections over a curve of negative self-intersection?

Arguably the simplest but most important building block arises from a non-compact

fibration without reducible fibers over a curve of self-intersection −1. The corresponding

topological string partition function at base degree dB encodes the elliptic genus of an

ensemble of dB E-strings and the SCFT can be used to glue theories in the atomic classi-

fication. In this section we will initiate the study of genus one-fibrations over (−n)-curves

by discussing the analogues to the E-string geometry with N -sections for N = 2, 3, 4.

6.1 The refined topological string partition function

The enumerative invariants of an elliptic or genus one fibered Calabi-Yau encode the BPS-

spectrum of particles that arise from the strings wrapped along the circle after compact-

ifying from six to five dimensions. More precisely, the Gopakumar-Vafa invariants (4.34)

correspond to a weighted sum of multiplicities of BPS states. The multiplicities themselves

are not invariant and the number of BPS states with a particular mass and spin does,

in general, jump across lines of marginal stability in the complex structure moduli space.

However, non-compact Calabi-Yau manifolds are rigid and the topological string partition

function can be refined such that it encodes the actual number of BPS states for a given

set of quantum numbers.

Physically, the situation is as follows. M-theory compactified on a Calabi-Yau threefold

M leads to a 5d supergravity with eight supercharges. The five-dimensional little group is

SO(4) = SU(2)L×SU(2)R and when gravity is decoupled an additional SU(2)I R-symmetry

emerges. The decoupling limit corresponds to a decompactification of the Calabi-Yau. Let

us denote with J∗ the Cartan generator of SU(2)∗. Then JI enables a twisting of JR such

that the degeneracies of the BPS states Nκ
jL,j

′
R

are protected [126]. In the following, jR
will denote the spin with respect to the twisted SU(2)R with Cartan generator JR + JI .

The refined BPS states with multiplicities Nκ
jL,jR

are then labeled by the mass, which is

specified by κ ∈ H2(X,Z), and the twisted spin representation [jL, jR]. They are encoded

in the index

Z(εL, εR, t) = TrBPS(−1)2(JL+JR)e−2ε−JLe−2ε+(JR+JI)eβH . (6.1)

which is called the refined topological string partition function.

From the perspective of the effective theory, Z can be obtained from a refinement of

the Schwinger-Loop calculation in [127], which was performed by [126]. The result is

log
(
Z(ε1, ε2, t)

)
=

∑
κ∈H2(X,Z)

∑
m>0

(−1)gL+gR+1
nκgL,gR
m

(
sin mε−

2

)2gL( sin mε+
2

)2gR
sin mε1

2 sin mε2
2

Qmκ ,

(6.2)
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where nκgL,gR are called refined Gopakumar-Vafa invariants and we introduced εi, i = 1, 2

with ε± = 1
2(ε1 ± ε2). They are related to the refined BPS invariants Nκ

jL,jR
via

∑
jL,jR∈N

2

Nκ
jL,jR

χjL(xL)χjR(xR) =
∑

gL,gR∈N
nκgL,gR

(
x

1
2
L − x

− 1
2

L

)2gL
(
x

1
2
R − x

− 1
2

R

)2gR

, (6.3)

where

χj∗(x∗) =
x2j∗+1
∗ − x−2j∗−1

∗

x∗ − x−1
∗

, (6.4)

and x∗ is a formal variable. One can also define refined free energies F (n,g)(t) via

log
(
Z(ε1, ε2, t)

)
=

∞∑
n,g=0

(ε1 + ε2)2n(ε1ε2)g−1F (n,g)(t) . (6.5)

In the limit ε+ → 0, (6.2) reproduces the instantons part of the unrefined topological string

partition function in (4.34) and the unrefined Gopakumar-Vafa invariants are

nβg = (−1)g
∑
gR

nκg,gR . (6.6)

The refined topological string partition function can also be expanded in terms of base

parameters Qβ , β ∈ H2(B)

Z(ε1, ε2, t, τ,m) = Z0

1 +
∑

β∈H2(B)

Zβ(ε1, ε2, τ,m)Qβ

 . (6.7)

The coefficient Zβ(ε1, ε2, τ,m) corresponds to the elliptic genus of a string that wraps the

class β in an F-theory compactification on M [6, 14, 15]. Moreover, after compactifying

on an additional circle the theory is dual to M-theory on M and the wrapped strings lead

to the BPS particles that are counted by the refined invariants.

6.2 Genus one fibrations and E-strings with Wilson lines

We construct the non-compact fibration as local geometries in compact genus one fibered

Calabi-Yau threefolds over the base B = F1. One can then show that the ramification divi-

sor of the N -section intersects the (−1)-curve and therefore we expect the local geometry

to be genus one fibered as well. We only consider maximally Higgsed geometries with only

one linearly independent N -section and no fibral divisors. It seems to be the case that the

results are then independent of the global structure of the fibration. We will therefore only

consider one Calabi-Yau for each value N = 2, 3, 4.

More precisely, we will consider three genus one fibrations with N -sections

MN =


(F4 → F1)[Z2]−224

3 for N = 2 ,

(F1 → F1)[Z3]−144
3 for N = 3 ,

(P3 → F1)[Z4]−104
3 for N = 4 .

. (6.8)
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We also consider three elliptic fibrations with “pseudo-N -section”. By this we mean ellipti-

cally fibered Calabi-Yau 3-folds that are realized as hypersurfaces or complete intersections

in toric ambient spaces but exhibit non-toric divisors such that from the toric perspective

multiple sections or merged into an N -section with trivial monodromy. The corresponding

geometries are

M ′N =


(F4 → F1)[Z2]−288

4(1) for N = 2 ,

(F1 → F1)[Z3]−192
5(2) for N = 3 ,

(P3 → F1)[Z4]−128
6(3) for N = 4 .

(6.9)

All of the geometries are hypersurfaces in toric ambient spaces except for M4 and M ′4 which

are complete intersections. We will not discuss the geometries in detail but provide the toric

data in D. In each case we want to consider the local limit of the base B̂ = O(−1)→ P1 [15].

This is achieved when Vol(CF )→∞, where CF is the class of the fiber in F1. We denote

the (−1)-curve in the base of F1 by CB and let β = b · CB ∈ H2(B̂,Z).

From our discussion of the modular ansatz for genus one fibrations in section 4.5, we

expect that one can obtain the ansatz for genus one fibrations over (−1)-curves from the

E-string ansatz [17, 18] by substituting τ → Nτ . The result is

Z(N)
β (τ, ε+, ε−) =

1

η(Nτ)12c1(B)·β
ϕβ(τ, ε+, ε−)∏b2(B)

`=1

∏β`
s=1

[
φ−1, 1

2
(Nτ, sε1)φ−1, 1

2
(Nτ, sε2)

] . (6.10)

where we have set the mass parameters of the E-string to zero. The numerator is now an

element

ϕβ ∈M∗(N)[φ−2,1(Nτ, •), φ0,1(Nτ, •)] ·∆1−
rβ
N

mod 1

2N , (6.11)

where • ∈ {ε+, ε−}, such that the overall indices of Z(N)
β with respect to ε−, ε+ are

r−β =
1

2
β · (β − c1(B)) , r+

β =
1

2
β · (β + c1(B))− 2(1 · β) . (6.12)

Recall that the exponent of ∆2N was defined via the congruence relation (4.92). The indices

of the numerator with respect to ε+ and ε− (6.12) are

r+
β =

b

3
(b2 + 3b− 4) , r−β =

b

3
(b2 − 1) . (6.13)

Let us denote the numerators in Zb·CB (τ, ε+, ε−) for MN and M ′N by φ
(N)
b and φ

(N ′)
b .

We then find that

φ
(1)
1 (τ) =− E4(τ)

η(τ)12
,

φ
(2)
1 (τ) =− 16

∆4(τ)

η(2τ)12
, φ

(2′)
1 (τ) = −2

√
∆4(τ)E

(2)
2 (τ)

η(2τ)12
,

φ
(3)
1 (τ) =− 9

∆6(τ)
2
3

η(3τ)12
, φ

(3′)
1 (τ) = − 3

216

E4(τ)− E(3)
2 (τ)2

η(3τ)12
,

φ
(4)
1 (τ) =− 1

2

∆8(τ)
1
4

(
E

(2)
2 (τ)− E(4)

2 (τ)
)

η(4τ)12
, φ

(4′)
1 (τ) = −4

√
∆8(τ)

η(4τ)12
,

(6.14)
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where N = 1 corresponds to the ordinary E-string. It turns out that the elliptic genus

Z(2)
1 already appeared in [59] where it was obtained from the E-string on a circle with a

non-zero Wilson loop for the affine E8-flavor symmetry turned on. More generally, up to

overall factors of q we obtain the expression

φ
(N)
1 (τ) = − 2

η(Nτ)12

4∑
i=2

8∏
j=1

θi

(
Nτ, v

(N)
j · τ

)
, (6.15)

with Wilson loop parameters ~v (N) given by

~v (1) = (0, 0, 0, 0, 0, 0, 0, 0) ,

~v (2) = (0, 0, 0, 0, 0, 0, 0, 2) , ~v (2′) = (0, 0, 0, 0, 0, 0, 1, 1) ,

~v (3) = (0, 0, 0, 1, 1, 1, 1, 2) , ~v (3′) = (0, 0, 0, 0, 0, 1, 1, 2) ,

~v (4) = (0, 0, 0, 1, 1, 2, 2, 2) , ~v (4′) = (0, 0, 0, 0, 1, 1, 1, 3).

(6.16)

The definition of the Jacobi theta functions θi(τ, z), i = 1, . . . , 4 was given in (4.16). E-

strings with wilson lines have also been discussed in [128].

Moreover, we provide the numerator φ
(N)
b of M2 for base degree b = 2:

φ
(2)
2 =

∆2
4

η24(2τ)

(
−

497A4
+,2A

2
−,2E

6
2,2

373248
+

29A4
+,2A

2
−,2E

4
2,2E4

124416
+

13A4
+,2A

2
−,2E

2
2,2E

2
4

41472
−
A4

+,2A
2
−,2E

3
4

13824

+
127A4

+,2A−,2B−,2E
5
2,2

93312
−

35A4
+,2A−,2B−,2E

3
2,2E4

31104
+
A4

+,2A−,2B−,2E2,2E
2
4

5184
−
A4

+,2B
2
−,2E

4
2,2

2916

+
5A4

+,2B
2
−,2E

2
2,2E4

13824
−
A4

+,2B
2
−,2E

2
4

13824
+

533A3
+,2A

2
−,2B+,2E

5
2,2

93312
−

23A3
+,2A

2
−,2B+,2E

3
2,2E4

10368
+
A2

−,2B
4
+,2E4

10368

+
A3

+,2A
2
−,2B+,2E2,2E

2
4

5184
−

257A3
+,2A−,2B+,2B−,2E

4
2,2

46656
+

55A3
+,2A−,2B+,2B−,2E

2
2,2E4

20736
+
A−,2B4

+,2B−,2E2,2

5832

−
7A3

+,2A−,2B+,2B−,2E
2
4

20736
+

29A3
+,2B+,2B2

−,2E
3
2,2

23328
−
A3

+,2B+,2B2
−,2E2,2E4

2592
−

193A2
+,2A

2
−,2B

2
+,2E

4
2,2

31104

+
25A2

+,2A
2
−,2B

2
+,2E

2
2,2E4

13824
−
A2

+,2A
2
−,2B

2
+,2E

2
4

13824
+

11A2
+,2A−,2B2

+,2B−,2E
3
2,2

1944
− 1

648
A2

+,2A−,2B2
+,2B−,2E2,2E4

−
7A2

+,2B
2
+,2B

2
−,2E

2
2,2

7776
+
A2

+,2B
2
+,2B

2
−,2E4

10368
+

59A+,2A2
−,2B

3
+,2E

3
2,2

23328
−

5A+,2A2
−,2B

3
+,2E2,2E4

7776
+
B4

+,2B
2
−,2

5832

−
23A+,2A−,2B3

+,2B−,2E
2
2,2

11664
+

7A+,2A−,2B3
+,2B−,2E4

15552
−
A+,2B3

+,2B
2
−,2E2,2

5832
−
A2

−,2B
4
+,2E

2
2,2

2916

)
. (6.17)

Here we introduced the compact notation A±,N ≡ φ−2,1(Nτ, ε±) ,B±,N ≡ φ0,1(Nτ, ε±), and

E
(N)
2 ≡ E2,N . Analogous expressions for the case M3 and M4 can be found in appendix E.

Expressions φ
(N)
b for M ′N are quite similar to the MN cases and hence we omit them.

Instead, we provide some refined BPS invariants in appendix F up to b = 2. We provide a

notebook online [129] that contains higher degree invariants up to b = 3 for all cases that

we consider.

Note that the E-string has a dual interpretation in heterotic E8 × E8 theory. From

the Horava-Witten perspective it arises from M2-branes that are stretched between an

M5 and M9 brane on the interval that is used to compactify M-theory. If we consider a

generic elliptic fibration over the Hirzebruch surface F1, the E-string arises from D3-branes

wrapping the (−1)-curve while the corresponding heterotic string arises from D3-branes
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that wrap the P1 fiber of the base. In the previous section we have matched the invariants

from the restriction of the genus-one fibration to the fiber P1 for 2-section geometries with

the one-loop calculation in a heterotic compactification on (K3 × T 2)/ZN . It is therefore

natural to expect an interpretation of the flavour group for the strings from the (−1)-

curve in terms of small instantons in the corresponding CHL-model. We leave a detailed

investigation of this question to future work.

7 Examples

In this section we will illustrate the general discussion of the previous sections with several

examples of genus one fibered Calabi-Yau threefolds. One set of geometries is related via

a chain of birational transformations that do not change the base of the fibration. In

the effective action of the corresponding F-theory compactification this is manifested as

Higgsing and un-Higgsing the gauge group. We will therefore use the name Higgs chain for

a set of genus one fibered Calabi-Yau manifolds that are related via extremal transitions

which do not involve blow ups or blow downs of the base. Moreover, when we refer to the

gauge group of a geometry this is to be understood as the gauge group of the corresponding

F-theory effective action.

All of our examples are obtained using the fiber based construction that we review in

the following section 7.1. We use the notation

(Fi → B)[G]χ
h1,1 , (7.1)

for a genus one fibered Calabi-Yau with base B such that the generic fiber is constructed

as a hypersurface in PFi The gauge group of the corresponding F-theory vacuum is G and

the hodge numbers are determined by h1,1 and the Euler characteristic χ. If some of the

divisors are not torically realized we indicate this by writing e.g. h1,1 = 3(1) if one out of

three generators is non-toric.

In general this data does not determine the geometry uniquely. The reason is that for

a given fiber polytope the geometry is determined by fixing two line bundles on the base.

Since the number of divisors and the gauge group are the same for all sufficiently generic

choices of the bundles there is only one constraint imposed by the Euler characteristic.

However, in all the cases that we discuss in this section the bundles are non-generic and

there is no such ambiguity.

This being said, we will discuss the Higgs chain that includes geometries with the data

listed in (7.2):

(F10 → P2)[SU(2)]−216
3 → (F6 → P2)[U(1)]−216

3 → (F4 → P2)[Z2]−252
2 (7.2)

But first we are going to review the general strategy to construct elliptic and genus one

fibered Calabi-Yau manifolds with the tools of toric geometry.

7.1 Eliptically fibered Calabi-Yau as toric hypersurfaces

Still the most abundant source of Calabi-Yau threefolds are hypersurfaces and complete in-

tersections in toric ambient spaces. The Batyrev construction associates a mirror pair of d-

dimensional Calabi-Yau hypersurfaces to every d+ 1-dimensional reflexive polyotope [130].
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Figure 4. The 16 two-dimensional reflexive polytopes. The image is taken from [85].

As a slight abuse of terminology we will call such varieties toric Calabi-Yau hypersur-

faces. Four dimensional reflexive polytopes have been fully classified and the complete

Kreuzer-Skarke list with 473,800,776 entries is available online [131]. On the other hand,

complete intersection Calabi-Yau d-folds of codimension m are related to nef-partitions

of d + m-dimensional reflexive polytopes [61]. For recent progress on the classification of

five-dimensional reflexive polytopes see [132].

A given Calabi-Yau X is said to be genus one fibered over a base B if there exists a

surjective map π : X → B such that the generic fiber over B is a torus. If the projection

π admits a section then the fibration is called elliptic. It is well known that the majority

of toric Calabi-Yau hypersurfaces is genus one fibered in at least one and often multiple

ways. For a recent discussion and pointers to the literature see e.g. [133]. To obtain explicit

examples of genus one fibered Calabi-Yau hypersurfaces there are three general strategies:

1. It is possible to manually engineer polytopes that correspond to toric fibrations such

that the generic hypersurface cuts out a genus one curve from the generic fiber.

2. For a given reflexive polytope one can systematically search for the toric fibrations

of the corresponding toric variety. This has been used by [134] and [132] to scan for

fibrations in the complete Kreuzer-Skarke list.

3. One can first construct an elliptic curve as a hypersurface in a toric variety. The

coefficients of the hypersurface equation can then be lifted to sections of line bundles
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a), M

X

e1

Y

Z•

b), N X4

Y 4

Z2XY Z

X3Y

X2Y 2

XY 3

X2Z

Y 2Z

Figure 5. The dual pair of polytopes F4 and F13 is shown in a) and b). We also indicate the toric

fan obtained from a complete star triangulation of F4 and labelled the homogeneous coordinates.

In the monomials that correspond to points of F13 we have set e1 = 1. The dependence can be

easily restored.

over some base that we will also assume to be toric. For every pair of fiber and base

this leads to a finite number of “reasonable” choices. This is what we refer to as the

“fiber based approach”.

The fiber based construction has the advantage that it is quite general and fibrations

with very specific properties can be engineered. A comphrehensive study of the properties

of the fibers that can be obtained from the 16 two-dimensional reflexive polytopes that

are shown in figure 4 has been performed in [85] and we will frequently refer to these

results. Furthermore, a reflexive polytope that corresponds to the total space can often be

recovered from the choice of fiber, base and bundles.

We will now review the general construction at the hand of a particular example. Note

that although we only work with hypersurfaces the discussion can be easily generalized

to complete intersections. Figure 5 shows the dual pair of reflexive polytopes F4 and F13

that are subsets of the respective lattices M and N . We construct the generic fiber as

a hypersurface in the toric variety that corresponds to the face fan of F4. In terms of

homogeneous coordinates the ambient space consists of the points

[X : Y : Z : e1] ∈ C4\ ({X = Y = 0} ∪ {e1 = Z = 0}) , (7.3)

that are identified under the equivalence relation

[X : Y : Z : e1] ∼ [λ1X : λ−1
1 λ−2

2 Y : λ2Z : λ−1
2 e1] , (7.4)

for all λ1, λ2 ∈ C∗. We will denote this space as PF4 which is in line with the conventions

of [85].13 A generic section of the anti-canonical line bundle takes the form

pF4 = e2
1(d1X

4 + d2X
3Y + d3X

2Y 2 + d4XY
3 + d5Y

4)

+ e1(d6X
2 + d7XY + d8Y

2)Z + d9Z
2 .

(7.5)

13Note that this is at odds with e.g. [135] where the name PF13 would have been used.
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At this level the coefficients di, i = 1, . . . , 9 are complex numbers and redundantly

parametrize the complex structure of the elliptic curve {pF4 = 0} ⊂ PF4 . We can construct

a genus one fibration over a base B by choosing four line bundles of which X,Y, Z, e1 are

taken to be sections. The requirement that pF4 is also a section of a well-defined bundle

and that X = {pF4 = 0} is a Calabi-Yau manifold then also fixes the bundles of which the

coefficients have to be sections. In fact, the choice of four bundles is redundant since the

equivalence relation (7.4) can be used to let e.g. X−1Z and e1 be sections of the trivial

bundle. Again following the conventions laid out in [85] we pick two line bundles S7,S9 on

B and fix the classes

[X] = H − E1 + S9 − c1(B) , [Y ] = H − E1 − S7 + S9 ,

[Z] = 2H − E1 + S9 − c1(B) , [e1] = E1 ,
(7.6)

for the toric divisors of PF4 .

The class of coefficients. The Calabi-Yau requirement imposes

[pF4 ] = c1(B) + c1(PF4) = c1(B) + [X] + [Y ] + [Z] + [e1] , (7.7)

and therefore fixes the class of the coefficient [d7] = c1(B) that corresponds to the unique

inner point of F13. It is now easy to see that the charge of the coefficient that multiplies a

monomial corresponding to any m ∈ F13 is given by

[dm] = c1(B) +
∑

ρ∈Σ(1)

〈m, ρ〉[Dρ]B . (7.8)

Here we introduced the notation Dρ for the divisor that corresponds to the generator

ρ ∈ Σ(1) and [D]B for the base part of the class of a divisor. Inserting the classes of

[X], [Y ], [Z] and [e1] this determines

[d1] = 3c1(B)−S7−S9 , [d2] = 2c1(B)−S9 , [d3] = c1(B)+S7−S9 ,

[d4] = 2S7−S9 , [d5] =−c1(B)+3S7−S9 , [d6] = 2c1(B)−S7 ,

[d7] = c1(B) , [d8] =S7 , [d9] = c1(B)−S7+S9 .

(7.9)

From now on we will assume that the base B is itself a smooth toric variety. The line

bundles on B are then determined by charge vectors in terms of a basis of effective divisors.

Let us assume that the cone of effective divisors is generated by k independent classes and

therefore the charges are elements ~q ∈ Zk. We will also assume that the cone is simplicial

i.e. k-dimensional although this assumption can be easily dropped. In any case, (7.8) can

now be read component wise. If we demand that every coefficient di, i = 1, . . . , 9 appears

in pF4 this leads to k inequalities

qj([dm]) = qj

c1(B) +
∑

ρ∈Σ(1)

〈m, ρ〉[Dρ]B

 ≥ 0 , j = 1, . . . , k , (7.10)

in terms of the k-th charges of S7 and S9 for every monomial m ∈ F12. The inequal-

ities define k polytopes in k (qi(S7), qi(S9))-planes and each one is related via a lattice

automorphism to qi(c1(B)) · F4.
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q2(S9)

q2(S7)

(2, 4)

(4, 2)

(0,−2)

q1(S9)

q1(S7)

(1, 2)

(2, 1)

(0,−1)

Figure 6. The admissible choices for (qi(S7), qi(S9)) , i = 1, 2 correspond to polytopes that are

related via a lattice automorphism and scaling to F4.

Note that if we allow some of the coefficients to generically vanish we might as well

work with the toric ambient space that is associated to the dual of the Newton polytope

of the non-vanishing monomials. Due to (7.8) it is not possible that the hull of the set of

points that correspond to coefficients in an effective class is non-convex. We can therefore

impose (7.10) wihout loss of generality.

Example B = F1. To make this somewhat abstract discussion more concrete we illus-

trate it for B = F1 = PF3 . This can be constructed as the quotient

[u : v : w : e1] ∈ C4\ ({v = u = 0} ∪ {w = e1 = 0})
∼

, (7.11)

where the equivalence relations are

[u : v : w : e1] ∼ [λ1λ
−1
2 u : λ2v : λ−1

1 w : λ1e1] , (7.12)

for all λ1, λ2 ∈ C∗. The cone of effective divisors on B is generated by u and w and the

charge of the first Chern class with respect to this basis is ~q(c1(B)) = (1, 2). The solutions

to the inequalities (7.10) are the points in the shaded regions shown in figure 6.

The properties of the resulting fibrations for a generic choice of S7,S9 have been sum-

marized in [85]. If one chooses S7,S9 such that the charge is on the boundary of both

polytopes the class of some of the coefficients di will be trivial. It is still easy to deduce

the resulting properties from the generic expressions that have been provided in [85]. In

particular the sections, multi-sections and singularities of the fibrations in various codimen-

sions have been determined for all hypersurfaces that correspond to the 16 two-dimensional

reflexive polytopes. A powerful strategy is therefore to select a fiber-polytope that leads to

the desired gauge group via F-theory of which the non-Abelian part can be further broken

down with a particular choice of S7,S9. We will now review how for any such choice of fiber,

toric base and bundles one can recover the reflexive polytope of the total ambient space.
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X Y Z e1

q1 1 1 1 0

q2 0 −1 0 0

Table 4. Charges of the homogeneous coordinates on PF4
with respect to the basis of effective

divisors on B = F1 given by u,w for the choice S7 = (1, 3) and S9 = (2, 2).

Recovering the polytope. Again we provide an example that can easily be generalized.

Let us stick to PF4 as the ambient space of the fiber and B = F1 = PF3 as the base. A

generic choice of bundles would be S7 = (1, 3) and S9 = (2, 2). From (7.4) and (7.12) can

deduce that this corresponds to the relations

[X : Y : Z : e1 : u : v : w : e′1]

∼ [λl
(i)
1 X : λl

(i)
2 Y : λl

(i)
3 Z : λl

(i)
4 e5 : λl

(i)
6 u : λl

(i)
7 v : λl

(i)
8 w : λl

(i)
9 e′1] ,

(7.13)

for all λ ∈ C∗ and i = 1, . . . , 4, where

l(1) = (1, 1, 1, 0, 1, 1, 0, −1) ,

l(2) = (0, −1, 0, 0, 0, 0, 1, 1) ,

l(3) = (1, 1, 0, −2, 0, 0, 0, 0) ,

l(4) = (0, 0, 1, 1, 0, 0, 0, 0) .

(7.14)

The last four entries of l(1), l(2) form a basis of charges for the equivalence relations that

define F1 such that u has charge 1 under l(1) and charge 0 under the relation l(1) while the

opposite holds for w. This implies that the first four entries of l(i), i = 1, 2 consist of the

charges qi(X), qi(Y ), qi(Z), qi(e1) that are listed in table 4. Those can in turn be obtained

from qi(S7) and qi(S9) via equation (7.6). The relations l(3) and l(4) directly correspond to

relations among the fiber coordinates (7.4).

Let us denote the 8 × 4 matrix of relations as Q, i.e. Qij = l
(j)
i . Note that the

exponents of the scaling relations among the homogeneous coordinates of a toric variety

directly correspond to coefficients in linear relations among the points that generate the

one-dimensional cones Σ(1) of the fan. One can often obtain a reflexive polytope from the

set of relations by considering the kernel

V = ker(Qt) , (7.15)

and then finding a basis of the sublatttice V ∩ Z8. We now take the elements of such a

basis as the columns of a matrix

A =



1 0 0 0

−1 1 0 0

−1 −1 0 0

0 0 1 0

0 0 0 1

0 1 −1 −1

−1 1 −1 0


. (7.16)
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Figure 7. Fibers of the Higgs chain Z2 ← U(1)← SU(2).

The rows of A determine a set of points in Z4 and the convex hull is the desired reflexive

polytope ∆. This algorithm to obtain the polytope from a basis of relations has been

reviewed e.g. in [136].

Looking at the points in (7.16) we see that there is a 2-dimensional sublattice L that

intersects ∆ as L ∩ ∆ = F4. On the other hand, projection on the last two coordinates

recovers the polytope F3 that correpsonds to the base of the fibration. In fact this structure

is necessary for the corresponding toric variety to be an PF4 fibration over PF3 .

7.2 The Higgs chain SU(2)→ U(1)→ Z2

As our first set of examples we study the Higgs chain that is indicated in figure 7 where the

base for all of the fibrations is B = P2. At the bottom of the chain we start with a genus

one fibered Calabi-Yau threefold Mh
1 = (F4 → P2)[Z2]−252

2 that only admits a two-section

and no fibral divisors.

This is related via an extremal transition to the elliptic fibration Mh
2 = (F6 →

P2)[U(1)]−216
3 that has two independent sections. In particular, the corresponding F-theory

effective action exhibits hypermultiplets of charge one and two. In geometric terms the

charge two matter arises from fibral curves that are wrapped by the section that generates

the Mordell-Weil group and are intersected transversely by the zero section.

On a subslice of the complex structure moduli space of Mh
2 some of the isolated fibral

curves deform into families of I2 fibers over a genus g = 10 Riemann surface in the base.

This enhances the Abelian gauge group of the corresponding F-theory vacuum into SU(2).

Other fibral curves remain isolated and lead to n = 72 hypermultiplets in the fundamental

representation. Note that the number of the charge two loci in Mh
2 is 2g − 2 = 18 while

the number of charge one loci is 2n = 144.

We construct this subslice as a hypersurface in a toric ambient space Mh
3 = (F10 →

P2)[SU(2)]−216
3 where g = 10 complex structure deformations are non-polynomial. The

discriminant becomes reducible and on one component the fibral divisor collapses to a

curve in the base.

7.2.1 Mh
1 = (F4 → P2)[Z2]−252

2

The fiber of Mh
1 is a hypersurface in PF4 and the base remains P2. Choosing the line

bundles S7 = 3H, S9 = 0 with H being the class of the hyperplane in P2 leads to the toric
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data given in (7.17),

C1 C2



x1 1 0 −1 0 0 1 ← vertical divisor Db

x2 0 1 −1 0 0 1 —"—

x3 −1 −1 −1 0 0 1 —"—

x 0 0 −1 1 1 0 ← two-section E0

y 0 0 −1 −1 1 0 —"—

z 0 0 1 0 2 3 ← four-section

0 0 0 0 −4 −6

. (7.17)

The relevant points of the polytope admit two different regular fine star triangulations.

Only one of the triangulations is compatible with the toric morphism that induces the

fibration. But the curve that is flopped when moving from one geometric phase to the

other is not contained in the generic Calabi-Yau hypersurface. Therefore the flop that

connects the two phases is ineffective and we should work with the intersection of the Mori

cones. The latter is generated by the curves C1 and C2 that are intersecting the toric

divisors as listed in (7.17).

The geometry of the image of the toric divisors on the Calabi-Yau is as follows. As

usual, Db is the class of the pullback of the hyperplane in P2. In addition there are two

equivalent two-sections {x = 0} and {y = 0} with E0 = [x] = [y] and a four section

{z = 0}. The class of the generic fiber is C ′1 = D2
b while C ′2 = E0 ·Db is the restriction of

the two-section to the generator of the Mori cone of the base. The latter is a double cover

of a P1. It is clear that E · C ′1 = Db · C ′2 = 2.

But the generic fiber is in fact not a generator of the Mori cone of Mh
1 . There are

isolated I2 singular fibers over 144 points of B and the two-sections intersect each of the

two components once [85]. Physically, this is a consequence of charge minimality and the

fact that the discrete symmetry that corresponds to the multi-section has to arise from a

Higgsed U(1) gauge symmetry. After this Higgsing, the 144 hypermultiplets with discrete

charge q = 1 are the remnants of the same number of hypermultiplets that are minimally

charged under the U(1). We will study the un-Higgsed geometry below.

To fix the numerator of the topological string partition function for the lowest base

degree, let us calculate the Gopakumar-Vafa invariants at genus zero and genus one. To

this end we choose a basis J1 = E0, J2 = Db of the Kähler cone such that∫
C′i

Jj = 2δi,j , (7.18)

and use it to parametrize the complexified Kähler form as

ω = t1J1 + t2J2 . (7.19)

Note that t1 is the volume of each component of the isolated I2 fibers while t2 is half of

the volume of C ′2. It turns out that this is the correct parametrization to obtain integer
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Gopakumar-Vafa invariants. The topological invariants (3.12) are

h1,1 = 2 , χ = −252 , ~b =

∫
Mh

1

c2

(
Mh

1

)
· ~J = (24, 36)T , (7.20)

and the only non-vanishing triple intersection number is c122 = 2. With this data the genus

zero free energy can then be obtained e.g. using the techniques reviewed in [137].

To obtain the genus one free energy we will briefly discuss the mirror geometry W .

The polynomial that determines W in the dual ambient space is of the form

P =x2
1 + (x3x4x5)4 + z1(x2x6x7)4 + z2(x5x6)6

+ (x2x3)6 + (x4x7)6 + x1x2x3x4x5x6x7 .
(7.21)

Here the coordinates z1, z2 on the complex structure moduli space are identified via mirror

symmetry with qi + O(q2), where qi = e2πiti . The Picard-Fuchs system is generated by

the operators

D1 = Θ2
1 − 4z1 (4Θ1 + 6Θ2 + 1) (4Θ1 + 6Θ2 + 3) ,

D2 = Θ3
2 − 8z2 (4Θ1 + 6Θ2 + 1) (4Θ1 + 6Θ2 + 3) (4Θ1 + 6Θ2 + 5) .

(7.22)

The discriminant is irreducible and corresponds to the vanishing locus of the polynomial

∆ = 1− 192z1 + 12288z2
1 − 262144z3

1 − 3456z2 − 663552z1z2 + 2985984z2
2 . (7.23)

We then find that the ansatz

F1 =− 1

2

(
3 + h1,1 − χ

12

)
K − 1

2
log det G−1

− 1

24

2∑
i=1

(bi + 12) log zi − 1

12
log ∆ ,

(7.24)

for the free energy at genus one leads to integer Gopakumar-Vafa invariants.

Let us now discuss the “modular parametrization” of the Kähler form. Following our

discussion in 3.3, we calculate

E0 · C ′2 = 0 (7.25)

and therefore Ẽ0 = E0. This also implies that

ãb = Ẽ2
0 ·Db = 0 . (7.26)

We therefore parametrize the Kähler form as

ω = τ · E0 + t ·Db . (7.27)

If we assume that poles in q are always cancelled we can write down the general ansatz

Zd(τ, λ) =
∆3d

4

η(2τ)36d

φd(τ, λ)∏d
k=1 φ−2,1(2τ, kλ)

, (7.28)
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dF \g 0 1 2 3

0 2496 0 0 0

1 216576 0 0 0

2 6391296 −4992 0 0

3 104994816 −433152 0 0

4 1209337344 −12797568 7488 0

5 10917983232 −211289088 649728 0

6 82279299072 −2457042432 19213824 −9984

7 538501165056 −22467667968 318449664 −866304

Table 5. Gopakumar-Vafa invariants for (F4 → P2)[Z2]−252
2 at base degree 1.

where φd is a Jacobi form of weight 4d and index

r̃dλ =
1

4
d(d− 3) +

1

2

d∑
k=1

k2 =
1

6
d(d− 1)(d+ 4) . (7.29)

Together with the dimensions of the spaces of modular forms for Γ1(2),

dimMw(2) =
⌊w

4

⌋
+ 1 , (7.30)

one find that there are

αd = r̃dλ + (r̃dλ + 1)d+

⌊
1

4
r̃dλ(r̃dλ + 1)

⌋
, (7.31)

coefficients that determine φd. Using the Gopakumar-Vafa invariants at genus zero and

genus one we can fix

φ1(τ, λ) = 192

[
12
(
E

(2)
2

)2
+ E4

]
. (7.32)

To obtain the partition function at base degree two we have to make some assumption

about the vanishing of Gopakumar-Vafa invariants. Some invariants at base degree one

that can be extracted from (7.32) are shown in table 5 and one can observe that ngdF ,1
vanishes for dF < 2g. It turns out that this does not hold for dB > 1 but at dB = 2 we can

impose that ngdF ,1 vanishes for dF < 2bg/2c. This fixes

φ2(τ,λ) =
32

9
A4 ·
(
12g2+h

)2
+A3B

4

27
g
(
1072g4−7832g2h−797h2

)
− 1

54
A2B2 ·

(
4g2−h

)(
25504g4+6924g2h+227h2

)
+AB3 ·

g
(
1425683g6+7311527g4h−733303g2h2−154563h3

)
1728

+B4 · 2550099g8−20848992g6h+2131870g4h2+885304g2h3+8887h4

6912
,

(7.33)

where we introduce

A = φ0,1(2τ, λ) , B = φ−2,1(2τ, λ) , g = E
(2)
2 (τ) , h = E4(τ) . (7.34)
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dF \g 0 1 2 3 4

0 223752 −492 0 0 0

1 152031744 69120 0 0 0

2 19638646848 104982288 −304464 −1476 0

3 1180450842624 11531535360 −214941696 207360 0

4 43199009739072 582562932240 −23399572104 308769960 −601056

5 1107266933984256 18197544339456 −1223655651840 35175416832 −430989312

6 21665294606886144 403387081306944 −40593035175168 1888636322256 −48423847008

7 342620943505772544 6879702812129280 −975207871309824 64188987386880 −2630615021568

Table 6. Gopakumar-Vafa invariants for (F4 → P2)[Z2]−252
2 at base degree 2.

7.2.2 Mh
2 = (F6 → P2)[U(1)]−216

3

The geometry Mh
1 is related via an extremal transition to what we call Mh

2 . The choice of

line bundles in the conventions of [85] is still S7 = 3H, S9 = 0 and the toric data is given

in (7.35),

C1 C2 C3



x1 1 0 −1 0 0 0 1 ← vertical divisor Db

x2 0 1 −1 0 0 0 1 —"—

x3 −1 −1 −1 0 0 0 1 —"—

v 0 0 −1 −1 1 0 0 ← two-section

e2 0 0 −1 1 −1 1 −3 ← holomorphic section E0

w 0 0 1 0 0 1 0 ← three-section

u 0 0 0 1 2 −1 3 ← rational section E1

0 0 0 0 −2 −1 −3

. (7.35)

Again we encounter the situtation that the relevant points admit two different regular fine

star triangulations. Only one is compatible with the fibration of the ambient space but the

phase boundary is lifted by the hypersurface equation. The curves Ci, i = 1, . . . , 3 in (7.35)

generate the intersection of the two Mori cones.

The geometry of the images of the toric divisors on Mh
2 is as follows. The divisor Db =

[x1] = [x2] = [x3] is again the pullback of the hyperplane class of the base. Futhermore,

e2 = 0 is a holomorphic section while u = 0 is a linearly independent rational section. We

denote the corresponding divisors by E0 = [e2] and E1 = [u]. That u = 0 is not holomorphic

manifests itself in the fact that it wraps a curve in the fiber over 18 points of the base.14

Each of these curves is transversely intersected by e2 = 0. On the other hand [v] = E1 +E0

intersects the generic fiber twice and [w] = [v] + E0 + 3Db intersects it thrice.

Let us now study the Mori cone of Mh
2 directly. It is generated by four curves. The

first, C1
b = E0 ·Db, is the restriction of the holomorphic section to the generator of the Mori

cone of the base. The second, C2
b = E1 ·Db, is the restriction of the rational section. The

other two curves arise from resolutions of singularities in the fiber. Over 18 points in the

14This can easily be determined by studying the hypersurface equation of M or, even easier, using the

general results from [85].
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base the fiber develops an I2 singularity that leads to matter with charge q = 2. Another

144 I2 singularities lead to matter with charge q = 1. In the resolved geometry there are

two spheres CqA, C
q
B over each point and the respective numerical equivalence class only

depends on the charge of the matter from that locus. The intersections are as follows:

C1
A C1

B C2
A C2

B C1
b C

2
b

E0 0 1 1 0 3 −3

E1 1 0 −1 2 −3 3

Db 0 0 0 0 1 1

(7.36)

From this we see that C1
b , C

2
b , C

1
A, C

2
A generate the Mori cone on Mh

2 .

This being said we will introduce J1 = [v], J2 = [w], J3 = Db and expand the com-

plexified Kähler form as

ω = t1 · J1 + t2 · J2 + t3 · J3 , (7.37)

where we have replaced the basis element E0 + 3Db with the element [w] from the interior

of the Kähler cone. This enables us to apply the usual machinery to calculate Gopakumar-

Vafa invariants of toric hypersurfaces.

The topological invariants (3.12) are

h1,1 = 3 , χ = −216 , ~b =

∫
Mh

2

c2

(
Mh

2

)
· ~J = (24, 126, 36)T , (7.38)

and the non-vanishing triple intersection numbers are encoded in the polynomial

J = 63J3
2 + 18J1J

2
2 + 15J3J

2
2 + 3J2

3J2 + 6J1J3J2 + 2J1J
2
3 . (7.39)

The section that determines the mirror W in the dual ambient space is given by

P =− z3 · x6
2x

6
3x

3
4 − z2 · x2

1x4x5x6 + z1 · x3
2x

2
4x

2
5x

2
6x

3
7x

3
8 + x6

10x
3
5x

6
8

+ x1x2x3x4x5x6x7x8x9x10 + x1x
3
10x

3
3x

3
9 + x4

10x2x
4
3x7x8x

4
9 + x3

6x
6
7x

6
9 ,

(7.40)

where zi, i = 1, . . . , 3 are the Batyrev coordinates on the complex structure moduli space.

The Picard-Fuchs system is comparatively simple and given in the appendix C.1. When

expressed in terms of the Batyrev variables the discriminant ∆ is irreducible and also given

in C.1. The logarithm of ∆ contributes to the genus one free energy with the usual factor

of −1/12.

We will now discuss the Shioda map and the height pairing. Let us fix {e2 = 0} as the

holomorphic zero section and {u = 0} as the generator of the Mordell-Weil group. Then

the image of the generator under the Shioda map is given by

σ({u = 0}) = E1 − E0 − 2 · π∗c1(B) = 3J1 − 2J2 , (7.41)

where we have used that π∗π∗(E1 · E0) = π∗c1(B). The corresponding height pairing is

b11 = −π(Db) · π (σ({u = 0}) · σ({u = 0})) = 12 . (7.42)
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We also calculate

E2
0 ·Db = −3 , (7.43)

and therefore introduce

Ẽ0 = E0 + 3Db , (7.44)

with

ãb = Ẽ2
0 ·Db = 3 . (7.45)

The correct modular parametrization of the Kähler form is therefore

ω = τ · Ẽ0 +m · σ({u = 0}) + t̃ ·Db

= τ · (−J1 + J2) +m · (3J1 − 2J2) + t̃ · J3 ,
(7.46)

where τ is the volume of the generic fiber, m is the volume of the isolated fibral curve C1
A

and t̃ is the volume of C1
b and C2

b . The new parameters are related to ti, i = 1, . . . , 3 via

τ = 2t1 + 3t2 , m = t1 + t2 , t̃ = t3 . (7.47)

The shifted Kähler parameter is the base is t = t̃+ 3
2τ . We can then use the Gopakumar-

Vafa invariants at genus zero and genus one to obtain

Z1(τ,m, λ) =
1

η(τ)36

φ1(τ,m)

φ−2,1(τ, λ)
, (7.48)

with

φ1 =
1

21627

[
−A6 · h(31h3 + 113g2)− 6A5B · g(115h3 + 29g2)

− 3A4B2 · h2(203h3 + 517g2)− 4A3B3 · hg(479h3 + 241g2)

− 3A2B4(51h6 + 581h3g2 + 88g4)− 6AB5 · h2g(19h3 + 125g2)

+B6 · (9h6 − 49h3g2 − 104g4)
]
,

(7.49)

where

A = φ0,1(τ,m) , B = φ−2,1(τ,m) , h = E4(τ) , g = E6(τ) . (7.50)

One can easily check that Q · Z1(2τ, τ, λ) matches the result for Q · Z1(τ, λ) from Mh
1 .

7.2.3 Mh
3 = (F10 → P2)[SU(2)]−216

3

The final geometry in the second Higgs chain describes a 101 dimensional subslice inside the

111 dimensional complex structure moduli space of Mh
2 . On this subslice the 2g − 2 = 18

isolated I2 fibers of Mh
2 that lead to matter with charge q = 2 under the U(1) deform

into a genus g = 10 curve of I2 singularities and therefore the U(1) un-Higgses into an

SU(2) gauge symmetry. The 144 charge q = 1 multiplets from Mh
2 arrange into 72 hyper
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multiplets in the fundamental representation of SU(2). Geometrically these arise from I3

enhancements of the I2 singular fibers over 72 points in the base of Mh
3 .

We realize this subslice as a hypersurface in a toric ambient space where g = 10

complex structure deformations are non-polynomial. The toric data is given in (7.51),

C1 C2 C3



x1 −1 −1 −1 0 0 0 1 ← vertical divisor Db

x2 0 1 −1 0 0 0 1 —"—

x3 1 0 −1 0 0 0 1 —"—

v 0 0 0 1 1 0 0 ← two-section

w 0 0 1 0 0 1 0 ← three-section

u 0 0 −1 −1 3 −2 6 ← fibral divisor Df

e3 0 0 −3 −2 −1 1 −3 ← holomorphic section E1

0 0 0 0 −3 0 −6

. (7.51)

In the conventions of [85] this geometry corresponds to the choice of line bundles S7 =

c1(B), S9 = 0 on B = P2. The curve of I2 fibers is in the class SSU(2) = 2S7−S9 = 2c1(B).

Note that the fibral divisor Df = [u] corresponds to the affine node that is intersected

by the holomorphic zero section E1 = [e3]. We therefore introduce D′f = SSU(2) − Df to

denote the other fibral divisor such that D′f · E1 = 0. If we introduce J1 = [v], J2 = [w]

and J3 = [x1] the topological data of Mh
3 is identical to that of Mh

2 .

In Batyrev coordinates zi, i = 1, . . . , 3 the hypersurface equation that defines the

mirror W in the dual ambient space reads

P =− z1 · x3
3x

3
4x

3
5 + z2 · x2

1 + z3 · x6
2x

6
3 + x6

5x
6
6 + x6

4x
6
7

+ x1x2x3x4x5x6x7 + x1x
3
2x

3
6x

3
7 + x6

2x
6
6x

6
7 .

(7.52)

Identifying the mirror maps we find that the Batyrev coordinates of Mh
3 can be mapped

to those of Mh
2 via

z1 7→ z′1
(1 + 2z′2)3

1 + z′2
, z2 7→ z′2

1 + z′2
(1 + 2z′2)2

, z3 7→ z′3
(1 + 2z′2)6

(1 + z′2)3
, (7.53)

where z′i, i = 1, . . . , 3 parametrize the complex structure moduli space of Mh
2 .

The discriminant of W is reducible. The principle component ∆1 is again provided in

the appendix (C.4) while the other component reads

∆2 = 1− 4z2 . (7.54)

The generators of the Picard-Fuchs system are also provided in (C.3). In this case we did

not try to simplify the operators and expect that a more economical choice can be made.

If we expand the Kähler form as

ω = τ · (E1 + c1(B)) +m ·D′f + t̃ · J3

= τ · (−J1 + J2)−m · (3J1 − 2J2) + t̃ · J3 ,
(7.55)
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where τ is the volume of the generic fiber, m is twice the volume of the fiber of Df and

CB is the volume of Cb = E1 ·Db. The new parameters are related to ti, i = 1, . . . , 3 via

τ = 2t1 + 3t2 , m = −(t1 + t2) , t̃ = t3 . (7.56)

The shifted Kähler parameter is the base is again t = t̃ + 3
2τ . Since the family Mh

3

corresponds to a subslice in the complex structure moduli space of Mh
2 , the topological

string partition functions are identical.

7.3 A genus-one fibrations over F1: (F4 → F1)[SU(2)× Z2]−144
4

Now we will demonstrate the modular bootstrap for genus one fibrations at the hand of a

2-section geometry over the Hirzebruch surface F1 that also exhibits a fibral divisor. To

engineer this geometry we can again use the fiber polytope F4. Following the discussion

in 7.1 we choose the bundles

S7 = 2B + 4F , S9 = 2B + 3F , (7.57)

where B and F are the base and fiber of the Hirzebruch surface. This leads to the following

toric data:

C1 C2 C3 C4



x1 1 0 0 0 0 1 0 0 ← vertical divisor π−1(F +B)

x2 0 1 0 0 0 0 1 0 ← vertical divisor π−1F

x3 −1 −1 −1 −1 0 0 1 0 —"—

x4 −1 0 0 0 0 1 −1 0 ← vertical divisor π−1B

x 0 0 −1 1 1 0 0 0 ← two-section E0

e1 0 0 −1 0 −2 0 0 1 ← fibral divisor D′f
y 0 0 −1 −1 1 0 −1 0 ← two-section

z 0 0 1 0 0 0 0 1 ← four-section

0 0 0 0 0 −2 0 −2

(7.58)

There are three regular fine star triangulations of the relevant points of the polytope and

we provided the data for the Mori cone that corresponds to the unique triangulation that

is compatible with the fibration.

A convenient basis of divisors to obtain the free energies at genus 0 and genus 1 is

J1 = E0 , J2 = D′1 , J3 = D′2 , J4 = [z] = D′f + 2 · E0 . (7.59)

The relevant topological invariants are

h1,1 = 4 , χ = −144 , ~b =

∫
M

c2(M) · ~J = (36, 36, 24, 68)T , (7.60)

and the triple intersections are encoded in the polynomial

J = 8J3
4 + 4J1J

2
4 + 12J2J

2
4 + 4J3J

2
4 + 2J2

1J4 + 4J2
2J4 + 6J1J2J4

+ 2J1J3J4 + 4J2J3J4 + 2J1J
2
2 + 2J2

1J2 + 2J1J2J3 .
(7.61)
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The principal component of the discriminant contains 427 terms and will be provided as

supplementary data online [129].

Let us now construct the appropriate parametrization of the Kähler form to perform

the modular bootstrap. To this end we introduce

D′1 = π−1(F +B) , D′2 = π−1(F ) , D1 = π−1(F ) , D2 = π−1(B) , (7.62)

and E0 = [x] as well as the curves Ci = E0 ·Di, i = 1, 2 such that

D′i · Cj = 2 · δij . (7.63)

Moreover, Ẽ0 = E0 −D1 is orthogonal to those curves and we can calculate

ãi =

∫
M
Ẽ2

0 ·Di =

{
0 for i = 1

−2 for i = 2
. (7.64)

From (7.5) and (7.9) we can see that the fibral divisor D′f = [e1] is fibered over a divisor

in the class

[d9] = c1(B)− S7 + S9 = 2B + 2F . (7.65)

The fibral divisor D′f = [e1] is not orthogonal to E0 but we can construct the linear

combination of fibral divisors

Df =
1

2

(
[d9]− 2 ·D′f

)
, (7.66)

such that Ẽ0 ·Df ·Di = 0 for i = 1, 2. We will then expand the Kähler form as

ω = τ · Ẽ0 +m ·Df +

2∑
i=1

(
ti −

ãi
4
τ

)
·D′i . (7.67)

The index of Zβ(λ, τ,m) with respect to the geometric elliptic parameter m is

rβ11 = (B + F ) · β . (7.68)

Using the Ansatz (4.90) and the genus zero free energy we can immediately fix the

numerators

φF =
2

9
(∆4)2 [−8A2g +AB

(
4g2 + h

)
+B2g

(
18g2 − 5h

)]
, φB = −2

√
∆4g ,

φ2B =
∆4

288

[
16A2g2 + 8ABg

(
h− 2g2

)
+B2h

(
3h− 11g2

)]
,

φB+F =
(∆4)

5
2

216

[
8A
(
8C2g2 − CDg

(
4g2 + h

)
−D2g2

(
18g2 − 5h

))
B
(
−4C2g

(
4g2 + 33h

)
+ 8CD

(
−4g4 + 14g2h+ h2

)
−D2g

(
4g4 − 331g2h+ 91h2

))]
,

(7.69)
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g\dF 1 2 3 4 5 6 7

1 56 0 0 0 0 0 0

2 276 −4 0 0 0 0 0

3 1360 −112 0 0 0 0 0

4 4718 −564 6 0 0 0 0

5 15960 −3056 168 0 0 0 0

6 46284 −11108 860 −8 0 0 0

7 130064 −40528 4976 −224 0 0 0

8 334950 −123112 18660 −1164 10 0 0

9 837872 −367552 72160 −7120 280 0 0

10 1980756 −989236 226952 −27392 1476 −12 0

11 4564224 −2603520 712128 −111360 9488 −336 0

Table 7. GV invariants n
(g)
dF ,dE=0 for (F4 → F1)[SU(2)× Z2]−144

4 with base class β = B.

where we have introduced

A = φ0,1(2τ, λ) , B = φ−2,1(2τ, λ) , C = φ0,1(2τ,m) , D = φ−2,1(2τ,m) ,

g = E
(2)
2 (τ) , h = E4(τ) .

(7.70)

To obtain expressions for other base degrees we have to use additional data. This could,

for example, be knowledge about the vanishing of certain Gopakumar-Vafa invariants as

was demonstrated in [1].

Some of the Gopakumar-Vafa invariants corresponding to β = B and β = B + F are

listed in the tables 7 and 8. We label the class of a curve C by the degrees

dF = C · Ẽ0 , dE = C ·Df , (7.71)

and a class β ∈ H2(B). The reflection symmetry along the vertical axis among the in-

variants 8 with β = B + F is a consequence of the invariance under m → −1. However,

there is also a curious periodicity which appears to be present for all genera. This is not

at all manifest in the modular expression for φB+F (7.69). It should severely constrain

the number of free parameters that have to be fixed in the ansatz and it would be very

interesting to get a better understand of the origin of this pattern.

8 Conclusion

Using homological mirror symmetry we analysed in depth the action of the integral sym-

plectic transformations on the central charges of Type II A and B strings compactified on

genus one fibered Calabi-Yau 3-folds M and their mirrors W . We considered the case that

M had multiple N -sections as well as fibral divisors, which respectively lead to Abelian

and non-Abelian gauge symmetry enhancements in the Type II — and F-theory vacua.

We established that certain auto-equivalences of the category of branes act as Γ1(N) on

the stringy Kähler moduli space and can be expressed in terms of generic Conifold and
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dF \dE −4 −3 −2 −1 0 1 2 3 4

2 0 0 0 0 0 0 0 0 0

3 0 0 0 −412 −1056 −412 0 0 0

4 0 0 −1056 −16432 −35072 −16432 −1056 0 0

5 0 −412 −35072 −72444 −73408 −72444 −35072 −412 0

6 0 −16432 −73408 4727056 9905152 4727056 −73408 −16432 0

7 −1056 −72444 9905152 108929428 202048512 108929428 9905152 −72444 −1056

8 −35072 4727056 202048512 1400552368 2439058688 1400552368 202048512 4727056 −35072

Table 8. GV invariants n
(g=2)
dF ,dE

for (F4 → F1)[SU(2)× Z2]−144
4 with base class β = B + F .

large volume monodromies. Together with monodromies that generate the Weyl group this

restricts in crucial ways the correlation function of the physical theories. In particular it

follows that the topological string partition function can be expressed in terms of Weyl

invariant meromorphic Jacobi forms under Γ1(N), N = 1, 2, 3, 4 for each base degree.

We got further insights in the properties of these topological amplitudes by considering

their behaviour under those geometric transitions that correspond physically to Higgsing

the gauge symmetries. We found that this implies very non-trivial identities among the

rings of Jacobi-Foms that occur at the different stages of the Higgsing tree, since the effect

of the Higgsing is that the Coulomb branch parameters of the gauge symmetries, which are

elliptic parameters of the Jacobi-Forms, are identified with the elliptic arguments which

becomes an N -th multiple of itself as for example in (4.81). This allows us to generalize the

Ansatz for the modular bootstrap on elliptic fibrations to genus one fibrations. At least for

low base degrees the partition function can then be fixed by additional boundary conditions.

This partition function is geometrically the most detailed information that is available

for the BPS spectrum of the effective physical theories that arise in six, five and four dimen-

sions from F-theory, M-theory and Type II compactifications respectively. For example in

6d F-theory compatifications already the BPS invariants that correspond to the rational

curves with base degree zero give the multiplicities of the matter multiplets that arise in

co-dimension two in the base.

In the future it would be very interesting to understand the modular properties for

genus one fibrations with N -sections where N > 4. Already for N = 5 the groups Γ0(N)

and Γ1(N) require more than 2 generators and it is not clear how the additional generator

manifests as a monodromy in the stringy Kähler moduli space. Also the derivation of the

modular properties of the base degree zero partition function cannot easily be generalized.

This is particularly exciting because, as we stressed above, the base degree zero part already

contains the full information about the spectrum of the corresponding F-theory vacuum.

Moreover, it appears that only genus one fibrations with N ≤ 4 can be realized as complete

intersections in toric ambient spaces. If modularity persists for geometries with N > 4, this

should imply an even more intriguing relation involving the monodromies in the stringy

Kähler moduli space, the spectra of exotic F-theory vacua, non-toric realizations of genus

one fibered Calabi-Yau manifolds and the theory of Jacobi forms. A potential starting

point to study this question are the genus one fibrations with 5- and 6-sections that have

respectively been constructed in [138] and [139].
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In the context of heterotic — Type II duality we used the general discussion of the

monodromies to argue that heterotic compactifications on CHL orbifolds (K3 × T 2)/ZN
should be dual to Type IIA compactifications on genus one fibrations with N -sections.

We then constructed novel duals of heterotic compactifications on (K3 × T 2)/Z2 where

Z2 acts as an automorphism of class 2A on the K3 and used the modular bootstrap as

well as known results for the corresponding one-loop amplitude on the heterotic side [51] to

perform all order checks of the duality. The restriction to Z2, and therefore automorphisms

of class 2A, is due to the fact that the one-loop amplitudes that can be matched with the

topological string partition function has only been calculated for non-standard embeddings

on these geometries [50, 51]. More precisely, the result of the one-loop amplitude can be

expressed in terms of the new supersymmetric index and the new supersymmetric index

has only been calculated for non-standard embedding on those geometries. Extending

the calculation of the new supersymmetric index to compactifications with non-standard

embeddings on (K3×T 2)/ZN with N > 2 should be relatively straight forward. Matching

the results for the corresponding one-loop amplitudes with the topological string partition

function on genus one fibrations with 3- and 4-sections would be a highly non-trivial check

of our proposal that we plan to perform in the future.

From the perspective of the F -theory effective theory, vacua that arise from N -section

geometries are obtained by Higgsing U(1) factors with matter of charge N . These are six

dimensional, i.e. their effective theory is a chiral six-dimensional supergravity theory with

discrete gauge group ZN [7, 8]. F -theory duals to the CHL orbifolds of the hererotic string

in 8 dimension have been constructed in [140] for N = 2, 3, 4. On the type II side they

are elliptically fibered K3 with reduced fiber monodromy and reduced rank of the gauge

group, which matches the one of the CHL orbifold on T 2 with an N shift on one of the

circles.15 A candidate construction for an F-theory/CHL duality in six dimensions could

be a fiberwise extension of these eight dimensional CHL orbifolds, similar as the one in the

heterotic bundle construction of [142] on elliptic K3. However to maintain the CHL ZN
shift symmetry the elliptically fibered K3 would have to have an N -torsional section.

In the recent literature a major amount of effort is dedicated towards a geometric

classification of 5d SCFTs [143–152]. In particular, the work [153] discusses a class of 5d

SCFTs that is obtained by deformation from KK reductions of 6d SCFTs with twists along

the compactification circle (see also [139]). The latter class of theories can be described

by M-theory compactifications on local genus one fibered Calabi-Yau threefolds without

sections. These rigid theories that come from the N -section discussed in section 6 can be

also solved by the elliptic blow-up equations similar to the theories discussed in [18, 123,

124].16 In five dimensions, the blow up equations are even more powerful in the sense that

the classical topological data is in many cases enough to reconstruct all BPS states [154], i.e.

data similar to that which is used to determine the monodromies and anomaly polynomials.

It would be very interesting to apply the modular bootstrap for genus one fibrations that

we developed in this paper, to study the BPS spectrum of these theories and in particular

15A different construction using a 2-torsional section and half-integral B-field on the P1 basis has been

proposed in [141].
16We thank Xin Wang for pointing this out to us.
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to use the 5d blow-up equations and a refined modular bootstrap approach to the ones

that involve a twisted circle compactification [153].

A A brief review of the F-theory dictionary

In this section we review the origin of gauge symmetries in F-theory and the corresponding

anomaly coefficients in six dimensions. Most readers will be familiar with the material and

can safely skip it. For a thorough review of F-theory we refer to [155] and for a review that

focuses on Abelian and discrete gauge symmetries see [156]. We mostly follow the notation

of [85].

A.1 Gauge symmetries and matter in F-theory

Up to a choice of flux and possibly T-brane data the effective physics of a given F-theory

vacuum is entirely encoded in the geometry of an elliptically or genus one fibered Calabi-

Yau variety π : X → B. We will only consider smooth threefolds X without multiple or

non-flat fibers such that the effective theory is a six-dimensional (1, 0)-supergravity. Recall

that if the theory is further compactified on a circle there is a dual interpretation via

M-theory compactified on X.

A non-Abelian gauge group GI arises for every irreducible divisor SbGI := {∆I = 0} ⊂
B in the base such that the generic fiber over SbGI is a union of rational curves that intersect

like the negative Cartan matrix −CGIij of the affine Lie algebra associated to GI .
17 All but

one component of the reducible fiber correspond to simple roots αi, i = 1, . . . , rk(GI) of

GI and will be denoted by cGI−αi . The so-called fibral divisors in X that are obtained by

fibering cGI−αi over SbGI will be denoted by DGI
i , i = 1, . . . , rk(GI).

In the M-theory interpretation the 3-form C3 can be expanded along the harmonic

forms that correspond to the divisors DGI
i . This leads to rk(GI) massless vector bosons

that gauge the Abelian subgroup U(1)rk(GI) ⊂ GI . When the volume of some cGI−αi vanishes,

additional massless gauge bosons arise from wrapped M2 branes. In the F-theory limit the

volume of the whole fiber is set to zero and one recovers the full unbroken gauge group GI .

An elliptically fibered manifold can admit a section that is a rational map ŝ : B → X

such that π ◦ ŝ = id. If X admits at least one section, we can choose a section ŝ0 and the

affine node of the affine Dynkin diagrams associated to the reducible fibers over all SbGI
such that ŝ0 does not intersect any of the cGI−αi . Then ŝ0 is called the zero-section and the

name reflects the fact that once a zero-section is chosen the sections form a group with the

zero-section as the identity. This group is called the Mordell-Weil group MW(X) of X.

According to the M-theory interpretation the harmonic form that corresponds to the

divisor of the zero-section again leads to a massless gauge boson. This can be identified

with the Kaluza-Klein gauge boson that arises from reducing the six-dimensional metric

along the circle. It disappears in the limit where the circle is decompactified and therefore

a single section does not lead to any gauge symmetry in six dimensions.

Additional sections lead to Abelian gauge symmetry if they do not correspond to

elements of finite order in the Mordell-Weil group. Given such a non-torsional section ŝ we

17Here we assume that there are no non-simply laced gauge groups.
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have to “orthogonalize” it such that M2 branes wrapping the generic fiber or the curves

cGI−αi are not charged under the corresponding gauge symmetry. In addition it has to be

compatible with the F-theory limit which requires that the dual cohomology class has “one

leg along the fiber”. Both is achieved by applying the Shioda map σ : MW(X)→ NS(X,Q),

σ(ŝ) = S − S0 + π−1([KB]− π(S · S0)) +
∑
I

(S · cGI−αi)(C
−1
GI

)ijDGI
j , (A.1)

where NS(X,Q) is the Néron-Severi group of divisors modulo numerical equivalence, S, S0

are the divisors that correspond to ŝ, ŝ0 respectively and KB is the canonical class of

the base. Note that MW(X) → NS(X,Q) is a group homomorphism and NS(X,Q) is

torsionless. This implies that the image of any torsional section will be trivial. On the

other hand, the harmonic form that corresponds to the image of a non-torsional generator

of MW(X) leads to an Abelian gauge group that survives decompactifying the circle.

However, the presence of a torsional section ŝt still has a physical effect. To under-

stand this we first recall the origin of matter in F-theory. Let us consider loci C that

are of codimension two in the base where the fiber over C is reducible with m irreducible

components. Furthermore let C be contained in n ≥ 0 divisors SbGJk
, k = 1, . . . , n with

Ja 6= Jb for a 6= b and assume that m > 1 +
∑n

k=1 rk(GJk). The components of the generic

fiber over C will intersect like the affine Dynkin diagram of a group GC with

n⊕
k=1

gJk ⊂ gC . (A.2)

The Dynkin label of the representation with respect to GJk of M2-branes that wrap com-

ponents of the fiber over C is given by

λcJk,i = D
GJk
i · c , (A.3)

for k = 1, . . . , n. Considering all possible ways in which an M2-brane can wrap components

of the fiber (while not wrapping the affine node) this leads to one adjoint representation

for every GJk and additional representations that correspond to hypermultiplets from M2-

branes wrapping e.g. a curve c and some combination of −cGJk−α for k = 1, . . . , n and α roots

of the corresponding gauge algebra. The U(1) charges of the latter can be calculated via

qj = σ(ŝj) · c , j = 1, . . . , rk(MW ) . (A.4)

Now given a torsional section ŝt we already noted that σ(ŝt) is a trivial divisor. This

implies that

c ·
∑
I

(St · cGI−αi)(C
−1
GI

)ijDGI
j =

∑
I

(St · cGI−αi)(C
−1
GI

)ijλcI,j ∈ Z , (A.5)

for every curve c. This is a non-trivial constraint on the Dynkin labels and therefore

a torsional section restricts the representations of matter that can occur. In fact, an

analogous condition arises also from non-torsional sections.
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Finally we have to discuss what happens when the fibration does not admit a section

but only n-sections with n > 1. An n-section is locally the union of n sections that are

permuted when moving around some divisor in the base. There are various dual pictures

to describe this situation but we will only discuss it from the perspective of Higgsing an

Abelian gauge group. Consider an elliptic fibration with non-zero Mordell-Weil rank and

a generating section ŝ as well as isolated fibral curves C±q that intersect with the Shioda

map as σ(ŝ) · C±q = ±q and therefore lead to hypermultiplets of charge q. One can then

tune the Kähler moduli such that the volume of one of these curves goes to zero and the

corresponding hypermultiplet becomes massless. Turning on a vacuum expectation value

for the scalar field amounts to a complex structure deformation that merges q sections and

the resulting geometry is a genus one fibration with q-sections. The U(1) factor of the

gauge symmetry that corresponded to ŝ is broken to Zq. A “Shioda map” for the multi-

sections in the genus one fibration can be obtained by orthogonalization and ensuring the

condition that it has “one leg along the fiber”.

A.2 The geometric origin of the anomaly polynomial

In a six-dimensional F-theory vacuum the gauge symmetries itself are anomalous and the

anomalies have to be cancelled by a generalized Green-Schwarz mechanism. To this end we

note that the six-dimensional spectrum also includes T = h1,1(B)−1 tensor multiplets that

contain anti-self-dual two-forms Bα, α = 2, . . . , T + 1 and another self-dual two-form B1

belongs to the gravity multiplet. Let us introduce a basis Dα, α = 1, . . . , T + 1 of divisors

on the base B and write

Ωαβ = Dα ·Dβ . (A.6)

The Green-Schwarz counterterm takes the form

SGS = −1

2

∫
M6

ΩαβB
α ∧Xβ

4 , (A.7)

with

Xα
4 =

1

2
aαtrR ∧R+ 2

∑
I

bαI
λI

trF I ∧ F I + 2
∑
a,b

bαabF
a ∧ F b . (A.8)

Here R is the gravitational field strength, F I is the field strength associated to the factor

GI of the non-Abelian gauge group and F a is the Abelian field strength associated to the

section ŝa. The anomaly coefficients aα, bαI and bαab are given by

aα = Dα · [KB] , bαI = Dα · π(SbGI ) , bαab = −Dα · π(σ(ŝa) · σ(ŝb)) , (A.9)

where Dα = (Ω−1)αβDβ and bab = −π(σ(ŝa) ·σ(ŝb)) is also called the height pairing. More-

over, λI is a group theoretical normalization constant and for GI = SU(N) we have λI = 1.

The anomalies can only be cancelled via the counterterm (A.7) if the one-loop anomaly

polynomial I8 factorizes as

I8 = −1

2
ΩαβX

α
4 ∧X

β
4 . (A.10)
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This requires non-trivial relations among the multiplicites of representations and the

anomaly coefficients. It is striking that the geometrical properties of genus one fibered

Calabi-Yau manifold seems to guarantee that these conditions are always satisfied.

B An identity of characteristic classes

In this appendix we show that∫
M
c2(M)D = 12

∫
B
c1(B)D̃ , for D = π∗D̃, D̃ ∈ H1,1(B) , (B.1)

where M is an elliptically fibered threefold that has been constructed from one of the

sixteen toric hypersurfaces that have been discussed in [85]. This implies that the relation

holds for a large class of elliptic and genus-one fibrations that exhibit In fibers, multiple

sections and multi-sections. A generic proof of this relation for elliptic fibrations has been

given in [84].

Let us denote the rays of the two-dimensional reflexive fiber polytope ∆ by ρi, i =

1, . . . , k and the corresponding divisors by Di such that they are in clockwise order. The

Chern class of the total space of the fibration is given by the restriction of

c(M) =

(1 + c1(B))
k∏
i=1

(1 +Di)

1 + c1(B) +
k∑
i=1

Di

, (B.2)

and therefore the second Chern class c2(M) is the restriction of

c2(M) = c1(B)

k∑
i=1

+

k∑
i<j

DiDj . (B.3)

For a vertical divisor Db = π∗D̃ we can therefore replace∫
M
c2(M)Db =

∫
P

Db

c1(B)
k∑
i=1

Di +
k∑
i<j

DiDj

(c1(B) +
k∑
i=1

Di

)
, (B.4)

where P is the total ambient space. Further manipulation leads to∫
M
c2(M)Db =

∫
P

Dbc1(B)

( k∑
i=1

Di

)2

+

k∑
i<j

DiDj


︸ ︷︷ ︸

A

+

∫
P

Db

k∑
i 6=j

D2
iDj

︸ ︷︷ ︸
B

. (B.5)

Since Dbc1(B) is the class of a multiple of the generic fiber we can rewrite

A =

∫
B

D̃c1(B)


∫

P∆

( k∑
i=1

Di

)2

+

k∑
i<j

DiDj




=

∫
B

D̃c1(B)

∫
P∆

(
c1(F )2 + c2(F )

)
,

(B.6)
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where P∆ is the ambient space of the fiber and ci(F ) are the corresponding Chern classes.

Now the Hirzebruch-Riemann-Roch theorem tells us that∫
P∆

Td(F ) =
1

12

∫
P∆

(
c1(F )2 + c2(F )

)
= 1 , (B.7)

where the second equality reflects that every toric surface is rational. Therefore

A = 12

∫
B

c1(B)D̃ , (B.8)

and our remaining task is to show that B = 0.

Linear equivalences among toric divisors are of the form

k∑
i=1

〈m, ρi〉Di ∼ 0 , (B.9)

for any point m ∈ Z2. If we consider a bundle where the fibers are given by the toric

variety, the right hand side is replaced by Dm = π∗D̃m. Note that the map m 7→ Dm has

to be linear. Furthermore note that only the divisors that correspond to neighboring rays

in the two-dimensional fan have non-zero intersection.

Let us extend our notation such that Dk+1 = D1 and D0 = Dk. Then

B =

∫
P

Db

k∑
i=1

[
D2
iDi+1 +D2

iDi−1

]
. (B.10)

Let us denote by mi the ray that is dual to the edge that contains Di and Di+1, i.e.

〈mi, ρi〉 = 〈mi, ρi+1〉 = −1. Then we can use the linear equivalence corresponding to mi

and replace D2
iDi+1 with −DiD

2
i+1 +DiDi+1Dmi . But this implies

B =

∫
P

Db

k∑
i=1

DiDi+1Dmi =

∫
B

D̃

k∑
i=1

∫
P∆

DiDi+1

 D̃mi

=

∫
B

D̃
k∑
i=1

D̃mi .

(B.11)

By linearity of the map m 7→ D̃m we only have to show that

k∑
i=1

mi = 0 . (B.12)

One can easily verify this for the sixteen reflexive two-dimensional polytopes but let us

give an easy argument why this has to be true. As was explained in [157] the intersection of

a toric divisor that corresponds to the vertex of the polytope with the generic anti-canonical

hypersurface is equal to the number of points on the dual edge minus one. Therefore (B.12)

is nothing but the sum over the vertices of ∆◦ where each vertex is weighted with the
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number of intersections of the corresponding divisor with that curve. Note that the divisors

on P∆◦ that correspond to points in the interior of facets do not intersect that curve.

Therefore
k∑
i=1

mi =
k′∑
i=1

(D′i · C)ρ′i , (B.13)

where ρ′i are the points on the boundary of ∆◦, D′i are the corresponding divisors and C is

the class of the anti-canonical hypersurface. But the intersections of toric divisors with a

curve correspond to the coefficients in a linear equivalence among the corresponding rays.18

Therefore the sum has to vanish and (B.1) follows.

C Discriminants and Picard-Fuchs systems

C.1 (F6 → P2)[U(1)]−216
3

Picard-Fuchs operators

D1 =Θ2
1+z1 (Θ1+1)(Θ1−Θ2+3Θ3)

−2z1z2 (2Θ1+Θ2+3Θ3+1)(3Θ1+Θ2+3Θ3+3)−2z2 (2Θ1−Θ2+3Θ3)Θ1 ,

D2 =Θ1 (Θ2−3Θ3)−z1 (Θ1−Θ2+3Θ3)(Θ2+3Θ3)

−2z1z2 (2Θ1+Θ2+3Θ3+1)(4Θ1+Θ2+3Θ3+3)−4z2Θ1 (2Θ1−Θ2+3Θ3) ,

D3 =Θ2 (Θ1−Θ2+3z2Θ3)+(2Θ1−Θ2+3Θ3)(2Θ1+Θ2+3Θ3+1) ,

D4 =Θ1 (2Θ1−Θ2+3Θ3−1)(2Θ1−Θ2+3Θ3)

+z1 (Θ1−Θ2+3Θ3)(2Θ1+Θ2+3Θ3+1)(2Θ1+Θ2+3Θ3+2) ,

D5 =−Θ1Θ2 (2Θ1−Θ2+3Θ3)

+z1z2 (2Θ1+Θ2+3Θ3+1)(2Θ1+Θ2+3Θ3+2)(2Θ1+Θ2+3Θ3+3) .

(C.1)

Discriminant
∆ = 1 + 3z1 + 3z2

1 + z3
1 + 3z2 − 84z1z2 − 258z2

1z2 − 252z3
1z2 − 81z4

1z2

+ 3z2
2 − 465z1z

2
2 + 1782z2

1z
2
2 + 7110z3

1z
2
2 + 7047z4

1z
2
2 + 2187z5

1z
2
2

+ z3
2 − 858z1z

3
2 + 18939z2

1z
3
2 + 10500z3

1z
3
2 − 55161z4

1z
3
2 − 65610z5

1z
3
2

− 19683z6
1z

3
2 − 672z1z

4
2 + 56064z2

1z
4
2 − 194112z3

1z
4
2 − 456192z4

1z
4
2

− 209952z5
1z

4
2 − 192z1z

5
2 + 76032z2

1z
5
2 − 955008z3

1z
5
2 − 1057536z4

1z
5
2

− 139968z5
1z

5
2 + 49152z2

1z
6
2 − 1978368z3

1z
6
2 − 995328z4

1z
6
2 + 12288z2

1z
7
2

− 2138112z3
1z

7
2 − 331776z4

1z
7
2 − 1179648z3

1z
8
2 − 262144z3

1z
9
2

+ 27z3 − 2268z1z2z3 − 5832z1z
2
2z3 + 65448z2

1z
2
2z3 − 3456z3

2z3

− 9072z1z
3
2z3 + 307152z2

1z
3
2z3 − 699840z3

1z
3
2z3 − 10368z4

2z3

− 355104z1z
4
2z3 − 657072z2

1z
4
2z3 − 5458752z3

1z
4
2z3 + 944784z4

1z
4
2z3

− 10368z5
2z3 − 1684800z1z

5
2z3 − 2592000z2

1z
5
2z3 − 12177216z3

1z
5
2z3

− 3456z6
2z3 − 2996352z1z

6
2z3 − 2954880z2

1z
6
2z3 − 8118144z3

1z
6
2z3

− 2322432z1z
7
2z3 − 1990656z2

1z
7
2z3 − 663552z1z

8
2z3 − 663552z2

1z
8
2z3

− 93312z3
2z

2
3 − 9517824z1z

4
2z

2
3 − 16796160z1z

5
2z

2
3 − 15116544z2

1z
5
2z

2
3

+ 2985984z6
2z

2
3 + 6718464z1z

6
2z

2
3 + 8957952z7

2z
2
3 + 4478976z1z

7
2z

2
3

+ 8957952z8
2z

2
3 + 2985984z9

2z
2
3 + 80621568z6

2z
3
3 .

(C.2)

18A nice explanation of this fact can be found in [158].
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C.2 (F10 → P2)[SU(2)]−216
3

Picard-Fuchs operators

D1 =−Θ2 (−Θ1+Θ2−3Θ3)+z2 (3Θ1−2Θ2+6Θ3−1)(3Θ1−2Θ2+6Θ3) ,

D2 =Θ1 (3Θ1−2Θ2+6Θ3)+z1 (Θ1−Θ2+3Θ3)(3Θ1+2Θ2+6Θ3+3)

−2z1z2

(
9Θ2

1+6Θ2Θ1+36Θ3Θ1+24Θ1−4Θ2
2+36Θ2

3−8Θ2

+12Θ2Θ3+48Θ3+3) ,

D3 =2Θ2
1−(Θ1−Θ2+3Θ3)(3Θ1+2Θ2+6Θ3+3)z1

2

+2z2

(
9Θ2

1+6Θ2Θ1+36Θ3Θ1+24Θ1−4Θ2
2

+36Θ2
3−8Θ2+12Θ2Θ3+48Θ3+3

)
z1

2

−16z2
2 (2Θ2+3)(3Θ1−2Θ2+6Θ3)z1+

(
−Θ2

1+2Θ1−2Θ2+6Θ3

)
z1

−4z2

(
9Θ2

1+18Θ3Θ1+12Θ1+4Θ2
2+2Θ2+18Θ3+3

)
z1 ,

D4 =−Θ1Θ2 (3Θ1−2Θ2+6Θ3)

+3z1z2 (Θ1+2Θ3+1)(3Θ1+6Θ3+1)(3Θ1+6Θ3+2) ,

D5 =8Θ3
3+738Θ3

3z1
4+3072z2Θ3

3z1
3−256Θ3

3z1
3+1728z2

2Θ3
3z1

2−1176z2Θ3
3z1

2

+3z3 (Θ1−Θ2+3Θ3)
(
381Θ2

1+80Θ2Θ1+288Θ3Θ1−48Θ1

+16Θ2
2+144Θ2

3+48Θ2+48Θ2Θ3+144Θ3+63
)
z1

2

−6z2z3

(
531Θ3

1+138Θ2Θ2
1+2178Θ3Θ2

1+1317Θ2
1−64Θ2

2Θ1

+2988Θ2
3Θ1−68Θ2Θ1+384Θ2Θ3Θ1+3336Θ3Θ1+771Θ1−32Θ3

2+1944Θ3
3

−144Θ2
2+1512Θ2

3−190Θ2+96Θ2
2Θ3+480Θ2Θ3+1290Θ3+81

)
z1

2

+z3

(
141Θ3

1+12Θ2
2Θ1−144Θ2Θ1−32Θ1−648Θ3

3+72Θ2
2−648Θ2

3

+32Θ2−96Θ3)z1+8z2z3

(
537Θ3

1−408Θ2Θ2
1+2241Θ3Θ2

1−180Θ2
1

−94Θ2
2Θ1+2538Θ2

3Θ1+223Θ2Θ1+57Θ1−96Θ3
2+1944Θ3

3−238Θ2
2

+1350Θ2
3−191Θ2+279Θ3−30

)
z1+8z2

2z3

(
351Θ3

1−96Θ2Θ2
1+3834Θ3Θ2

1

+738Θ2
1−488Θ2

2Θ1+11124Θ2
3Θ1−1776Θ2Θ1−408Θ2Θ3Θ1+5796Θ3Θ1

−837Θ1+384Θ3
2+9720Θ3

3+1384Θ2
2−432Θ2Θ2

3+8640Θ2
3+1224Θ2

−1152Θ2
2Θ3−4296Θ2Θ3−1242Θ3+216

)
z1

+2592z2
2z3

2Θ1 (2Θ2+3)(3Θ1−2Θ2+6Θ3)

−1296z2z3
2Θ1 (Θ1−Θ2+3Θ3)(5Θ1+2Θ2+6Θ3)

+64z2
3z3

(
1296Θ3

1−1800Θ2Θ2
1+5076Θ3Θ2

1−585Θ2
1+600Θ2

2Θ1+4752Θ2
3Θ1

+228Θ2Θ1−3600Θ2Θ3Θ1−1440Θ3Θ1−219Θ1+8Θ3
2−432Θ3

3+72Θ2
2

−540Θ2
3+100Θ2−144Θ2Θ3−438Θ3−15

)
+24z2z3

(
11Θ3

1−12Θ2
2Θ1−25Θ2Θ1−16Θ1+4Θ3

2−108Θ3
3+12Θ2

2−108Θ2
3

+14Θ2−42Θ3)+8z3

(
−Θ3

2+3Θ1Θ2
2−3Θ2

2+6Θ1Θ2−2Θ2+27Θ3
3+27Θ2

3

+2Θ1+6Θ3)+48z2
2z3

(
261Θ3

1−136Θ2Θ2
1+1062Θ3Θ2

1−72Θ2
1−100Θ2

2Θ1

+1116Θ2
3Θ1+86Θ2Θ1+57Θ1−8Θ3

2+216Θ3
3−40Θ2

2+360Θ2
3−48Θ2+144Θ3

)
.

(C.3)
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Discriminant components

∆1 = 1 + 3z1 + 3z2
1 + z3

1 − 108z1z2 − 297z2
1z2 − 270z3

1z2 − 81z4
1z2

+ 4536z2
1z

2
2 + 11016z3

1z
2
2 + 8667z4

1z
2
2 + 2187z5

1z
2
2 − 1296z2

1z
3
2

− 95904z3
1z

3
2 − 187920z4

1z
3
2 − 113724z5

1z
3
2 − 19683z6

1z
3
2

+ 93312z3
1z

4
2 + 1143072z4

1z
4
2 + 1469664z5

1z
4
2 + 472392z6

1z
4
2

− 2239488z4
1z

5
2 − 8118144z5

1z
5
2 − 4723920z6

1z
5
2 + 559872z4

1z
6
2

+ 20715264z5
1z

6
2 + 25194240z6

1z
6
2 − 20155392z5

1z
7
2 − 75582720z6

1z
7
2

+ 120932352z6
1z

8
2 − 80621568z6

1z
9
2 + 27z3 − 324z2z3 − 2268z1z2z3

+ 1296z2
2z3 + 25920z1z

2
2z3 + 65448z2

1z
2
2z3 − 5184z3

2z3 − 103680z1z
3
2z3

− 740016z2
1z

3
2z3 − 699840z3

1z
3
2z3 − 186624z1z

4
2z3 + 1632960z2

1z
4
2z3

+ 7138368z3
1z

4
2z3 + 944784z4

1z
4
2z3 + 5038848z2

1z
5
2z3

− 18475776z3
1z

5
2z3 − 18895680z4

1z
5
2z3 − 15676416z2

1z
6
2z3

− 15676416z3
1z

6
2z3 + 151165440z4

1z
6
2z3 + 80621568z3

1z
7
2z3

− 604661760z4
1z

7
2z3 + 1209323520z4

1z
8
2z3 − 967458816z4

1z
9
2z3

− 93312z3
2z

2
3 + 1119744z4

2z
2
3 − 9517824z1z

4
2z

2
3 − 4478976z5

2z
2
3

+ 116453376z1z
5
2z

2
3 − 15116544z2

1z
5
2z

2
3 + 8957952z6

2z
2
3

− 474771456z1z
6
2z

2
3 + 241864704z2

1z
6
2z

2
3 + 644972544z1z

7
2z

2
3

− 1451188224z2
1z

7
2z

2
3 + 3869835264z2

1z
8
2z

2
3 − 3869835264z2

1z
9
2z

2
3

+ 80621568z6
2z

3
3 − 967458816z7

2z
3
3 + 3869835264z8

2z
3
3 − 5159780352z9

2z
3
3 ,

∆2 = 1− 4z2 .

(C.4)

D Toric data for geometries with local limits

Multi-section geometries:

(F4 → F1)[Z2]−224
3 

1 0 −1 0 0 1 0

−1 0 −1 0 0 1 −1

−1 1 −1 0 0 0 1

0 −1 −1 0 0 0 1

0 0 −1 −1 1 0 0

0 0 −1 1 1 0 0

0 0 1 0 2 2 1

0 0 0 0 −4 −4 −2


(D.1)
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(F1 → F1)[Z3]−144
3 

1 0 0 0 0 1 0

−1 0 0 0 0 1 −1

−1 1 0 0 0 0 1

0 −1 0 0 0 0 1

0 0 1 0 1 0 0

0 0 0 1 1 0 0

0 0 −1 −1 1 0 0

0 0 0 0 −3 0 0


(D.2)

(P3 → F1)[Z4]−104
3 . The label ∆i, i ∈ {1, 2} indicates to which part of the nef-partition

the corresponding point belongs:



∆2 1 0 0 0 0 0 1 0

∆1 −1 0 0 0 0 0 1 −1

∆2 −1 1 0 0 0 0 0 1

∆1 0 −1 0 0 0 0 0 1

∆1 0 0 1 0 0 1 0 0

∆1 0 0 0 1 0 1 0 0

∆2 0 0 0 0 1 1 0 0

∆2 0 0 −1 −1 −1 1 0 0

0 0 0 0 0 −4 0 0

(D.3)

Pseudo multi-section geometries:

(F4 → F1)[Z2]−288
4(1) 

1 0 −1 −1 0 1 0

−1 0 −1 −1 0 1 −1

−1 1 −1 −1 0 0 1

0 −1 −1 −1 0 0 1

0 0 −1 −1 1 −2 −1

0 0 −1 1 1 0 0

0 0 1 0 2 0 0

0 0 0 0 −4 0 0


(D.4)

(F1 → F1)[Z3]−192
5(2) 

1 0 1 0 0 1 0

−1 0 1 0 0 1 −1

−1 1 1 0 0 0 1

0 −1 1 0 0 0 1

0 0 1 0 1 −2 −1

0 0 0 1 1 0 0

0 0 −1 −1 1 0 0

0 0 0 0 −3 0 0


(D.5)
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(P3 → F1)[Z4]−128
6(3) . The label ∆i, i ∈ {1, 2} indicates to which part of the nef-partition

the corresponding point belongs:



∆1 1 0 0 0 1 0 1 0

∆1 −1 0 0 0 1 0 1 −1

∆2 −1 1 0 0 1 0 0 1

∆1 0 −1 0 0 1 0 0 1

∆1 0 0 1 0 0 1 0 0

∆1 0 0 0 1 0 1 0 0

∆1 0 0 0 0 1 1 0 0

∆2 0 0 −1 −1 −1 1 0 0

0 0 0 0 0 −4 0 0

(D.6)

E Modular expressions for refined partition functions

φ
(3)
2 =

∆
4
3
6

η24(3τ)

(
−

145A4
+,3A

2
−,3E

3
2,3E6

1417176
−

21313A4
+,3A

2
−,3E

2
2,3E

2
4

181398528
−

1549A4
+,3A

2
−,3E2,3E4E6

34012224
−

3847A4
+,3A

2
−,3E

3
4

1088391168

−
A4

+,3A
2
−,3E

2
6

419904
+

77A4
+,3A−,3B−,3E

3
2,3E4

209952
+

2501A4
+,3A−,3B−,3E

2
2,3E6

7558272
+

2749A4
+,3A−,3B−,3E2,3E

2
4

30233088

+
A4

+,3A−,3B−,3E4E6

139968
−

295A4
+,3B

2
−,3E

2
2,3E4

1119744
−

257A4
+,3B

2
−,3E2,3E6

1259712
−

49A4
+,3B

2
−,3E

2
4

1259712

+
847A3

+,3A
2
−,3B+,3E

3
2,3E4

839808
+

5089A3
+,3A

2
−,3B+,3E

2
2,3E6

7558272
+

3719A3
+,3A

2
−,3B+,3E2,3E

2
4

30233088
+
A3

+,3A
2
−,3B+,3E4E6

279936

−
1555A3

+,3A−,3B+,3B−,3E
2
2,3E4

559872
−

1157A3
+,3A−,3B+,3B−,3E2,3E6

629856
−

1535A3
+,3A−,3B+,3B−,3E

2
4

5038848

+
55A3

+,3B+,3B2
−,3E

3
2,3

15552
−

25A3
+,3B+,3B2

−,3E2,3E4

31104
−
A3

+,3B+,3B2
−,3E6

7776
−

965A2
+,3A

2
−,3B

2
+,3E

2
2,3E4

373248

−
643A2

+,3A
2
−,3B

2
+,3E2,3E6

419904
−

751A2
+,3A

2
−,3B

2
+,3E

2
4

3359232
+

35A2
+,3A−,3B2

+,3B−,3E
3
2,3

2592
+

85A+,3A2
−,3B

3
+,3E

3
2,3

15552

−
A2

+,3A−,3B2
+,3B−,3E6

2592
−

13A2
+,3B

2
+,3B

2
−,3E

2
2,3

3456
+
A2

+,3B
2
+,3B

2
−,3E4

3456
−

7A2
+,3A−,3B2

+,3B−,3E2,3E4

2592

−
31A+,3A2

−,3B
3
+,3E2,3E4

31104
−
A+,3A2

−,3B
3
+,3E6

7776
−

47A+,3A−,3B3
+,3B−,3E

2
2,3

5184
+

5A+,3A−,3B3
+,3B−,3E4

5184

− 1

864
A+,3B3

+,3B2
−,3E2,3−

17A2
−,3B

4
+,3E

2
2,3

10368
+
A2

−,3B
4
+,3E4

5184
+

1

864
A−,3B4

+,3B−,3E2,3+
B4

+,3B
2
−,3

288

)
. (E.1)

φ
(4)
2 =

∆
1
2
8

η24(4τ)
(E2,2−E2,4)2

(
7079A2

−,4E
3
4A

4
+,4

14495514624
+

179B2
−,4E

2
4A

4
+,4

63700992
+

3287A2
−,4E

2
2,4E

2
4A

4
+,4

1207959552

−
5263A−,4B−,4E2,2E

2
4A

4
+,4

11777605632
+

64067A−,4B−,4E2,4E
2
4A

4
+,4

4416602112
−

1025A2
−,4E2,2E2,4E

2
4A

4
+,4

37748736

+
261481A2

−,4E
2
6A

4
+,4

5087925633024
+

30527A−,4B−,4E
3
2,4E4A4

+,4

368050176
+

407B2
−,4E

2
2,4E4A4

+,4

5308416
−

1015B2
−,4E2,2E2,4E4A4

+,4

7077888

−
61265A2

−,4E
3
2,4E6A4

+,4

2944401408
+

28385A−,4B−,4E
2
2,4E6A4

+,4

509607936
+

198677A−,4B−,4E4E6A4
+,4

317995352064

−
649B2

−,4E2,2E6A4
+,4

191102976
−

2197B2
−,4E2,4E6A4

+,4

63700992
+

4837A−,4B−,4E2,2E2,4E6A4
+,4

1019215872

−
156265A2

−,4E2,2E4E6A4
+,4

282662535168
−

1177459A2
−,4E2,4E4E6A4

+,4

141331267584
+

215B+,4B2
−,4E

3
2,4A

3
+,4

359424

+
1741A−,4B+,4B−,4E

2
4A

3
+,4

63700992
−

7057A2
−,4B+,4E2,2E

2
4A

3
+,4

11777605632
+

133669A2
−,4B+,4E2,4E

2
4A

3
+,4

4416602112

+
71113A2

−,4B+,4E
3
2,4E4A3

+,4

368050176
+

3649A−,4B+,4B−,4E
2
2,4E4A3

+,4

5308416
+

1693B+,4B2
−,4E2,2E4A3

+,4

103514112
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J
H
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P
1
1
(
2
0
1
9
)
1
7
0

−
185B+,4B2

−,4E2,4E4A3
+,4

2156544
−

175A−,4B+,4B−,4E2,2E2,4E4A3
+,4

131072
−

1127B+,4B2
−,4E6A3

+,4

310542336

+
58735A2

−,4B+,4E
2
2,4E6A3

+,4

509607936
−

6023A−,4B+,4B−,4E2,2E6A3
+,4

191102976
−

10297A−,4B+,4B−,4E2,4E6A3
+,4

31850496

+
17603A2

−,4B+,4E2,2E2,4E6A3
+,4

1019215872
+

293707A2
−,4B+,4E4E6A3

+,4

317995352064
+

35A−,4B2
+,4B−,4E

3
2,4A

2
+,4

14976

−
25B2

+,4B
2
−,4E

2
2,4A

2
+,4

10368
+

1025A2
−,4B

2
+,4E

2
4A

2
+,4

42467328
+

37B2
+,4B

2
−,4E2,2E2,4A2

+,4

20736
−

5B2
+,4B

2
−,4E4A2

+,4

62208

+
2021A2

−,4B
2
+,4E

2
2,4E4A2

+,4

3538944
+

35A−,4B2
+,4B−,4E2,2E4A2

+,4

718848
−

7A−,4B2
+,4B−,4E2,4E4A2

+,4

22464

−
2695A2

−,4B
2
+,4E2,2E2,4E4A2

+,4

2359296
−

107A−,4B2
+,4B−,4E6A2

+,4

6469632
−

3427A2
−,4B

2
+,4E2,2E6A2

+,4

127401984

−
5903A2

−,4B
2
+,4E2,4E6A2

+,4

21233664
+

115A2
−,4B

3
+,4E

3
2,4A+,4

119808
−

65A−,4B3
+,4B−,4E

2
2,4A+,4

15552
+
B3

+,4B
2
−,4E2,2A+,4

23328

−
B3

+,4B
2
−,4E2,4A+,4

3888
+

83A−,4B3
+,4B−,4E2,2E2,4A+,4

31104
−

7A−,4B3
+,4B−,4E4A+,4

93312

+
1667A2

−,4B
3
+,4E2,2E4A+,4

103514112
−

263A2
−,4B

3
+,4E2,4E4A+,4

2156544
−

2297A2
−,4B

3
+,4E6A+,4

310542336
+
B4

+,4B
2
−,4

1458

−
5A2

−,4B
4
+,4E

2
2,4

7776
−
A−,4B4

+,4B−,4E2,2

23328
+
A−,4B4

+,4B−,4E2,4

3888
+

23A2
−,4B

4
+,4E2,2E2,4

62208
−
A2

−,4B
4
+,4E4

186624

)
. (E.2)

F Refined BPS invariants

N
(1,0)
j−j+

2j+ =0

2j− =0 16

N
(1,1)
j−j+

2j+ =0

2j− =0 128

N
(1,2)
j−j+

2j+ =0 1

2j− =0 576

1 16

N
(1,3)
j−j+

2j+ =0 1

2j− =0 2048

1 128

N
(1,4)
j−j+

2j+ =0 1 2

2j− =0 6320

1 592

2 16

N
(1,5)
j−j+

2j+ =0 1 2

2j− =0 17536

1 2176

2 128

N
(2,0)
j−j+

2j+ =0 1

2j− =0 1

N
(2,1)
j−j+

2j+ =0 1

2j− =0 128

N
(2,2)
j−j+

2j+ =0 1 2 3

2j− =0 1942

1 1 121

2 1

N
(2,3)
j−j+

2j+ =0 1 2 3

2j− =0 15616

1 128 2176

2 128

N
(2,4)
j−j+

2j+ =0 1 2 3 4 5

2j− =0 93163 121

1 2063 19408 1

2 122 2199

3 1 121

4 1

N
(2,5)
j−j+

2j+ =0 1 2 3 4 5

2j− =0 455808 2176

1 17792 124416 128

2 2304 19840

3 128 2176

4 128

Table 9. Refined BPS invariants N
(b,d)
j−,j+

of M2, for base degree b ≤ 2 and fiber degree d ≤ 5.
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1
7
0

N
(1,0)
j−j+

2j+ =0

2j− =0 9

N
(1,1)
j−j+

2j+ =0

2j− =0 36

N
(1,2)
j−j+

2j+ =0

2j− =0 126

N
(1,3)
j−j+

2j+ =0 1

2j− =0 324

1 9

N
(1,4)
j−j+

2j+ =0 1

2j− =0 801

1 36

N
(1,5)
j−j+

2j+ =0 1

2j− =0 1764

1 126

N
(2,0)
j−j+

2j+ =0

2j− =0

N
(2,1)
j−j+

2j+ =0 1

2j− =0 9

N
(2,2)
j−j+

2j+ =0 1 2

2j− =0 126

N
(2,3)
j−j+

2j+ =0 1 2

2j− =0 756

1 36

N
(2,4)
j−j+

2j+ =0 1 2 3

2j− =0 3838

1 9 333

2 9

N
(2,5)
j−j+

2j+ =0 1 2 3

2j− =0 12852

1 126 1890

2 9

Table 10. Refined BPS invariants N
(b,d)
j−,j+

of M3, for base degree b ≤ 2 and fiber degree d ≤ 5.

N
(1,0)
j−j+

2j+ =0

2j− =0 8

N
(1,1)
j−j+

2j+ =0

2j− =0 16

N
(1,2)
j−j+

2j+ =0

2j− =0 56

N
(1,3)
j−j+

2j+ =0

2j− =0 112

N
(1,4)
j−j+

2j+ =0 1

2j− =0 248

1 8

N
(1,5)
j−j+

2j+ =0 1

2j− =0 464

1 16

N
(2,0)
j−j+

2j+ =0

2j− =0

N
(2,1)
j−j+

2j+ =0 1

2j− =0 2

N
(2,2)
j−j+

2j+ =0 1

2j− =0 28

N
(2,3)
j−j+

2j+ =0 1

2j− =0 140

N
(2,4)
j−j+

2j+ =0 1 2

2j− =0 532

1 28

N
(2,5)
j−j+

2j+ =0 1 2 3

2j− =0 1702

1 2 130

2 2

Table 11. Refined BPS invariants N
(b,d)
j−,j+

of M4, for base degree b ≤ 2 and fiber degree d ≤ 5.

N
(1,0)
j−j+

2j+ =0

2j− =0 2

N
(1,1)
j−j+

2j+ =0

2j− =0 56

N
(1,2)
j−j+

2j+ =0 1

2j− =0 268

1 2

N
(1,3)
j−j+

2j+ =0 1

2j− =0 1136

1 56

N
(1,4)
j−j+

2j+ =0 1 2

2j− =0 3620

1 270

2 2

N
(1,5)
j−j+

2j+ =0 1 2

2j− =0 10688

1 1192

2 56

N
(2,0)
j−j+

2j+ =0

2j− =0

N
(2,1)
j−j+

2j+ =0

2j− =0

N
(2,2)
j−j+

2j+ =0 1 2

2j− =0 133

1 1

N
(2,3)
j−j+

2j+ =0 1 2

2j− =0 1936

1 112

N
(2,4)
j−j+

2j+ =0 1 2 3 4

2j− =0 15607 1

1 134 2210

2 1 137

3 1

N
(2,5)
j−j+

2j+ =0 1 2 3 4

2j− =0 93200 112

1 2048 19328

2 112 2160

3 112

Table 12. Refined BPS invariants N
(b,d)
j−,j+

of M ′2, for base degree b ≤ 2 and fiber degree d ≤ 5.
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J
H
E
P
1
1
(
2
0
1
9
)
1
7
0

N
(1,0)
j−j+

2j+ =0

2j− =0 3

N
(1,1)
j−j+

2j+ =0

2j− =0 27

N
(1,2)
j−j+

2j+ =0

2j− =0 81

N
(1,3)
j−j+

2j+ =0 1

2j− =0 243

1 3

N
(1,4)
j−j+

2j+ =0 1

2j− =0 594

1 27

N
(1,5)
j−j+

2j+ =0 1

2j− =0 1377

1 81

N
(2,0)
j−j+

2j+ =0

2j− =0

N
(2,1)
j−j+

2j+ =0 1

2j− =0

N
(2,2)
j−j+

2j+ =0 1 2

2j− =0 27

N
(2,3)
j−j+

2j+ =0 1 2

2j− =0 237

1 3

N
(2,4)
j−j+

2j+ =0 1 2

2j− =0 1296

1 9 81

N
(2,5)
j−j+

2j+ =0 1 2 3

2j− =0 5400

1 27 621

2 27

Table 13. Refined BPS invariants N
(b,d)
j−,j+

of M ′3, for base degree b ≤ 2 and fiber degree d ≤ 5.

N
(1,0)
j−j+

2j+ =0

2j− =0 4

N
(1,1)
j−j+

2j+ =0

2j− =0 16

N
(1,2)
j−j+

2j+ =0

2j− =0 40

N
(1,3)
j−j+

2j+ =0

2j− =0 96

N
(1,4)
j−j+

2j+ =0 1

2j− =0 204

1 4

N
(1,5)
j−j+

2j+ =0 1

2j− =0 400

1 16

N
(2,0)
j−j+

2j+ =0

2j− =0

N
(2,1)
j−j+

2j+ =0

2j− =0

N
(2,2)
j−j+

2j+ =0 1

2j− =0 10

N
(2,3)
j−j+

2j+ =0 1

2j− =0 64

N
(2,4)
j−j+

2j+ =0 1 2

2j− =0 286

1 6

N
(2,4)
j−j+

2j+ =0 1 2

2j− =0 960

1 64

Table 14. Refined BPS invariants N
(b,d)
j−,j+

of M ′4, for base degree b ≤ 2 and fiber degree d ≤ 5.
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[90] R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The Refined Swampland Distance

Conjecture in Calabi-Yau Moduli Spaces, JHEP 06 (2018) 052 [arXiv:1803.04989]

[INSPIRE].

[91] S.-J. Lee, W. Lerche and T. Weigand, Modular Fluxes, Elliptic Genera and Weak Gravity

Conjectures in Four Dimensions, JHEP 08 (2019) 104 [arXiv:1901.08065] [INSPIRE].

[92] D. Erkinger and J. Knapp, Refined swampland distance conjecture and exotic hybrid

Calabi-Yaus, JHEP 07 (2019) 029 [arXiv:1905.05225] [INSPIRE].

[93] A. Joshi and A. Klemm, Swampland Distance Conjecture for One-Parameter Calabi-Yau

Threefolds, JHEP 08 (2019) 086 [arXiv:1903.00596] [INSPIRE].

[94] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037

[arXiv:1903.06239] [INSPIRE].

[95] P.S. Aspinwall and R.L. Karp, Solitons in Seiberg-Witten theory and D branes in the

derived category, JHEP 04 (2003) 049 [hep-th/0211121] [INSPIRE].

[96] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195

[hep-th/9603150] [INSPIRE].

[97] P. Corvilain, T.W. Grimm and I. Valenzuela, The Swampland Distance Conjecture for

Kähler moduli, JHEP 08 (2019) 075 [arXiv:1812.07548] [INSPIRE].

[98] S.-J. Lee, W. Lerche and T. Weigand, Emergent Strings from Infinite Distance Limits,

arXiv:1910.01135 [INSPIRE].

[99] M. Herbst, K. Hori and D. Page, Phases Of N = 2 Theories In 1+1 Dimensions With

Boundary, arXiv:0803.2045 [INSPIRE].

[100] D. Erkinger and J. Knapp, Hemisphere Partition Function and Monodromy, JHEP 05

(2017) 150 [arXiv:1704.00901] [INSPIRE].

[101] S. Katz, Elliptically fibered Calabi-Yau threefolds: mirror symmetry and Jacobi forms, July,

2016, https://indico.cern.ch/event/375104/contributions/2153264/.

[102] M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in mathematics, Birkhäuser,
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