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We construct charged soliton solutions around spherical charged black holes with no angular momentum 
in asymptotically flat spacetime. These solutions are non-linear generalizations of charged scalar clouds, 
dubbed Q-clouds, and they do not contradict the non-existence theorem for free (linear) scalar clouds 
around charged black holes. These solutions are the first examples of O(3) solutions for Q-clouds around 
a non-extremal and non-rotating BH in the Abelian gauge theory. We show that a solution exists with 
an infinitely short cloud in the limit of extremal black holes. We discuss the evolution of Q-cloud in 
a system with fixed total charge and describe how the existence of Q-clouds is related to the weak-
gravity conjecture. The reason that the no-hair theorem by Mayo and Bekenstein cannot be applied to 
the massive scalar field is also discussed.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The strong gravitational effects of black holes (BHs) allow us 
to study the connections between theories of gravitation and 
quantum-field theory. One of the most important implications of 
the conjunction of quantum field theory and BHs is Hawking radi-
ation [1], which is emitted because of the creation of particle pairs 
near the surface of BHs. Several conjectures have been proposed 
through the analysis of BHs [2–5], and these serve as guides to-
ward important insights into fundamental theories of physics. In 
particular, the weak-gravity conjecture [6] addresses the inconsis-
tency of theory with BH remnants [2,7–9] and the non-existence 
of global symmetries in string theory [10]. The latter fact is con-
sistent with the no-hair theorem, which states that a BH can be 
described with only a finite number of parameters, like its mass, 
angular momentum, and gauge charge.

In relation to quantum field theory, the possibility of the ex-
istence of scalar cloud around a BH is an interesting avenue for 
research. As scalar fields can construct solitonic objects through 
self-interactions or gravitational interactions, BHs may have an ex-
tended scalar cloud outside their event horizons. Much effort has 
been devoted to finding such a stable solution around a BH, and 
there exist many solutions around rotating BHs [11–17]. This is 
because the angular momentum prevents the field from being ab-
sorbed into the BH. One may expect that a Coulomb repulsion can 
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play the same role for a charged BH. However, free-field theories 
include a non-existence theorem for scalar clouds around a non-
rotating charged BH [18–21] (see also Refs. [12,16,22,23]). This can 
be understood by noting that both gravitational and electric po-
tentials behave as ∼ 1/r (at least at a large distance from a BH) 
while the effective potential due to the angular momentum be-
haves as ∼ 1/r2. We cannot make a local minimum by using the 
former two potentials while we can make the one by adding the 
latter potential.

In this paper, we demonstrate the first examples of O(3) solu-
tions for Q-clouds around a non-extremal and non-rotating BH in 
the Abelian gauge theory with a complex scalar field, which are 
realized by introducing the self-interaction of the scalar field.1 We 
consider a charged BH and introduce an attractive self-interaction 
in the charged scalar field. The attractive self-interaction of the 
scalar field allows the flat spacetime to form a localized conden-
sate, known as Q-ball [36–38]. This solution may hold even in the 
presence of a BH at the center of the Q-ball, which state is dubbed 
a Q-cloud around a BH. The Q-cloud may be unstable in this case 
as the BH absorbs the scalar field at its horizon. However, the 
gauge interaction prevents the charged scalar field from being ab-
sorbed into the charged BH if the Q-cloud and the BH have charges 
of the same sign. We find that a stable solution can be constructed 
when these effects are in balance. We also discuss the evolution of 

1 Yang-Mills hair around a charged BH was studied in Refs. [24–29], Proca clouds 
were studied in Ref. [30], and scalar hair around an extremal charged BH was stud-
ied in Refs. [31,32]. For Q-clouds around a Kerr (rotating) BH, see Refs. [33–35].
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the Q-cloud and show that an initially near-extremal BH evolves 
into a non-extremal BH with Q-cloud. The existence of such Q-
cloud is supported by the weak-gravity conjecture.

2. Charged BH and O(3) Q-cloud

We consider a Reissner-Nordström BH, which is a non-rotating 
charged BH. It is described by the following metric:

ds2 = −�

r2
dt2 + r2

�
dr2 + r2dθ2 + r2 sin2 θdφ2. (1)

We use the Planck unit G = c = h̄ = 1 throughout this paper. We 
define

� ≡ r2 − 2MBHr + Q 2
BH, (2)

where MBH and Q BH are the mass and charge of the BH, respec-
tively. The horizons become the zeroes of �, which are given as

r± ≡ MBH ±
√

M2
BH − Q 2

BH. (3)

The charge of the BH induces an electrostatic potential outside the 
horizon.

We introduce a complex scalar field � that has charge q under 
the same Abelian gauge symmetry:

L = (∇μ + iq Aμ)�∗(∇μ − iq Aμ)� − V (�), (4)

where ∇μ denotes the covariant derivative for Reissner-Nordström 
metric, Aμ is U(1) gauge field, and V (�) is a potential of the scalar 
field specified later. This scalar field induces an electrostatic poten-
tial A0 in the outer region. We denote the energy and number of 
the scalar field as Eφ and Nφ , respectively, where

Nφ = −2
∫

d3x
r2

�
Im

[
�∗(∂0 − iq A0)�

]
. (5)

The electric charge of the scalar field is given by Q φ = qNφ . After 
adopting the following ansatz,

�(x) = 1√
2
φ(r)e−iωφt, (6)

which is motivated by the Q-ball solution in the flat spacetime, we 
obtain the following equations for φ and the zeroth component of 
gauge field A0:

�
d

dr

(
�

dφ

dr

)
+ r4 g2φ − �r2 V ′(φ) = 0, (7)

r2 d

dr

(
r2 dg

dr

)
− r6

�
q2 gφ2 = 0, (8)

where we define g ≡ ωφ +q A0. The boundary conditions are given 
by

φ′(r+) = V ′(φ(r+))
r2+

r+ − r−
, φ(∞) = 0, (9)

g(r+) = 0, g(∞) = ωφ. (10)

In this letter, we consider the case in which Eφ 	 MBH and 
Q φ 	 Q BH so that we can treat the metric and the U(1) gauge 
field as the background. Then, the gauge-field background is given 
by A0 = −Q BH/r and the equations of motion reduce to Eq. (7)
with g = ωφ − qQ BH/r.

We are only interested in stationary solutions, so ωφ must be 
equal to
ωc ≡ qQ BH

r+
. (11)

Otherwise, the above equation asymptotically approaches

d2φ

dr2∗
+ (

ωφ − ωc
)2

φ ∼ 0, (12)

near the horizon, with dr∗/dr ≡ r2/�, which gives an incoming 
or outgoing (i.e., not stationary) wave solution, φ(r) ∼ e−i(ωφ−ωc)r∗ , 
along with the factor e−iωφ t . The stationary condition, ωφ = ωc , is 
known to be at the threshold for superradiance [13,39].

For Q-balls in flat spacetime, the phase velocity ωφ is equal to 
dEφ/dNφ and can be identified as the chemical potential of the Q-
ball [40]. Therefore if ωφ is smaller than the mass of � in vacuum, 
the energetically favored behavior is for a particle to be localized to 
form a Q-ball. In the presence of a BH at the center of a Q-cloud, a 
U(1) gauge interaction and a charged BH are needed to construct a 
stationary solution. The U(1) gauge interaction prevents the scalar 
field from being absorbed into the BH if the BH and Q-cloud have 
charges of the same sign. This behavior can also be understood 
from Eq. (11): ωc vanishes if the BH has no charge and cannot be 
equal to ωφ .

3. Examples of Q-cloud

We shall next discuss the properties of Q-cloud, specifying the 
scalar potential. We consider the case in which V (|�|) is given by 
a polynomial potential:

V (�) = μ2|�|2 − λ|�|4 + A|�|6. (13)

We assume A > λ2/4μ2 so that � = 0 is a true vacuum.
Let us begin to consider the limiting case in which the gauge 

charge is vanishingly small and the Q-ball radius is considerably 
larger than the BH radius. The gravitational effect of the BH (i.e., 
the change of the metric in the presence of BH) is negligible 
though the regularity condition Eq. (11) on the phase velocity must 
be satisfied, no matter how large the Q-ball radius is. In this case, 
we can construct Q-balls just as we do in flat spacetime with a 
condition of ωφ = ωc . In the thin-wall limit of the Q-ball [36], the 
phase velocity ωφ and the Q-ball radius R Q (i.e., the radius of the 
thin wall) are given by

ωφ 
 μ

√
1 − λ2

4Aμ2
, R Q 


(
3A Q φ

4πqλωφ

)1/3

. (14)

The amplitude of the scalar field at the center of the Q-ball is de-
termined by minimizing V (φ)/φ2 and is almost independent of 
Q φ in the thin-wall limit [41]. For a smaller and thicker Q-ball, 
ωφ is larger than this value but is smaller than μ. So there ex-

ists a Q-ball solution only when μ
√

1 − λ2

4Aμ2 < ωφ < μ. In the 
presence of a BH, ωφ must be equal to ωc so that no energy 
flows at the BH surface. Thus, there exists a Q-cloud solution when 
μ

√
1 − λ2

4Aμ2 < ωc < μ. In other words, we can always construct 
an O(3) Q-cloud around a charged BH if there exists a large Q-ball 
solution in flat spacetime and if this solution satisfies ωφ = ωc .

When the Q-cloud size, R Q , is comparable to the BH size, r+ , 
the effect of the Reissner-Nordström metric is important and the 
equation (7) can only be solved numerically. The shooting method 
can be used for this solution. The field value at the surface of 
the BH, φ0, is chosen in such a way that φ(r) approaches 0 for 
the range r → ∞. The unknown parameters we should specify are 
MBH, Q BH, μ, q, and parameters that govern the self-interaction. 
Here we note that equation Eq. (7) does not change with the fol-
lowing rescaling:
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Fig. 1. Examples of Q-ball solutions φ for near-extremal BHs. We take μMBH = 2, 
q/μ = 0.8, Q BH = (1 − ε)MBH with ε = 10−2, 10−3, 10−4, 10−5 from right to left.

MBH → cMBH, Q BH → c Q BH, r → cr,

ωφ → ωφ/c, μ → μ/c, q → q/c, φ → φ/c. (15)

We use invariant combinations under this rescaling, such as 
Q BH/MBH, r/MBH, ω/μ, q/μ, and φ/μ, to show the numerical 
results. Note that Eφ and Q φ can always be made much smaller 
than MBH and Q BH, respectively, by choosing a small value of c
in the rescaling. Therefore, there always exists a parameter space 
in which back-reactions of the Q-ball to the metric and gauge po-
tential are negligible. We can also rescale φ so that λ = 1 without 
losing generality. We take A = λ2/3μ2 as an example, which is 
chosen as the largest value under the condition that the potential 
has a local minimum only at the origin. We numerically determine 
the size of the Q-ball by identifying the radius at which 90% of 
the Q-ball charge is enclosed. We adopt this definition for numer-
ical calculations since it can be used for general numerical profile, 
while it roughly coincides with Eq. (14) for thin-wall profile.

From our numerical simulations, we find that Q-balls can only 
exist when μ

√
1 − λ2

4Aμ2 = μ/2 � ωφ � μ for MBHμ � O(1), 
which is consistent with the above discussion about large Q-
clouds. Note that ωφ = ωc = qQ BH/r+ should hold for stability 
against the superradiance and q/μ and Q BH/MBH, which uniquely 
determine ωc , can be chosen to give ωφ in the above range. 
We also find that ωφ must be very close or equal to unity for 
MBHμ � O(1) and that no Q-cloud solution exists for MBHμ � 1. 
For example, there is an upper bound by ωφ = 1, at which 
MBHμ 
 8.0, 8.7, 12 for the cases of Q BH/MBH = 0.1, 0.5, 0.9, re-
spectively. Note that q/μ at this upper bound is determined by 
ωc = ωφ = 1.

The possibility of the existence of Q-cloud around extremal BHs 
is an interesting question [31,32]. However, the boundary condi-
tions at the surface of an extremal BH do not uniquely determine 
a Q-cloud solution because the equation (7) is regular at r = r+
only if φ(r+) = φ′(r+) = 0. Instead, we consider near-extremal BHs 
with Q BH = (1 − ε)MBH for small values of ε . Fig. 1 shows Q-cloud 
profiles for the cases ε = 10−2, 10−3, 10−4, 10−5, where we take 
q/μ = 0.8 and μMBH = 2. We can see that the width of the Q-
cloud, defined by R Q − r+ , becomes small at the extremal limit of 
the BH. Fig. 2 plots the Q-cloud width as a function of ε for the 
cases of q/μ = 0.8 and μMBH = 0.5, 1, 2. The width of the Q-cloud 
for the case of μMBH = 2 can be arbitrarily short in the extremal 
limit of BH. However, we note that this is not a generic feature for 
a relatively large μMBH. We find that the results are qualitatively 
different for the case of q/μ = 1 [42].

The behavior of the width in the extremal limit of BH can be 
roughly understood by the following heuristic argument. Let us fo-
cus on the regime of 

√
ε 	 (r − r+)/r+ ≡ x 	 1 and ε 	 1 so that 

we can approximate as � 
 r2+x2 and r 
 r+ . Then the equation of 
motion is given by
Fig. 2. Q-ball width as a function of ε . We take q/μ = 0.8 and μMBH = 0.5 (red 
curve), 1 (green curve), 2 (blue curve).

Fig. 3. ωi -Q φ relation for a fixed Q tot = Q φ + Q BH (= MBH), where i = φ (blue solid 
curve) and c (red dashed curve). We set A/μ = λ = 1, q/μ = 1.2 as an example. 
When q > μ, which is suggested by the weak-gravity conjecture, the two lines ωc

and ωφ intersect with each other. To plot ωφ , we use the polynomial potential with 
cubic and quadratic terms in flat spacetime as an example [45]. This curve asymp-
totically approaches the value calculated by the thin-wall approximation, ωthin, for 
Q φ → ∞.

∂2φ

∂x2
+ 2

x

∂φ

∂x
+ r2+q2

x2
φ − r2+V ′

x2
= 0. (16)

This equation respects the conformal symmetry under the approx-
imation, namely it is invariant with respect to the rescaling of x. 
Therefore the typical size of the solution is not determined by this 
equation itself but is determined by the full equation beyond the 
“ultraviolet” or “infrared” cutoffs of this equation. These cutoffs are 
given by O(ε1/2) and O(1) because of the approximation we used 
to derive the equation. Thus we expect that the width of the Q-
cloud is proportional to either ε1/2 or ε0 for a small ε , depending 
on the parameters. This is consistent with the results of our nu-
merical calculation shown in Fig. 2.

In Appendix A, we consider the case in which the potential is 
given by a logarithmic function, motivated by the flat directions in 
gauge-mediated supersymmetric models [38,43]. In this case, the 
Q-ball solution in flat spacetime is not a thin-wall type and scal-
ing behaviors of parameters are different from the ones discussed 
above [44]. In particular, we find that a Q-cloud with an arbitrarily 
short thickness can be realized by taking a large value of ωφ (or 
μ).

4. Evolution of Q-cloud

Finally, we consider the evolution of a system with a fixed 
total charge Q tot = Q φ + Q BH. In the limit R Q � r+ , we can ap-
proximate the Q-cloud solution from the solution in flat space-
time. Fig. 3 shows a schematic of two curves: ωφ = ωφ(Q φ) and 
ωc = ωc(Q BH) with fixed Q tot (= MBH). If the blue solid curve 
(ωφ(Q φ) and the red dashed curve (ωc(Q BH)) intersect, there ex-
ists a stationary solution of a BH with Q-cloud. Note that stable 
or stationary Q-cloud do not exist by a continuous deformation 
from a BH without Q-cloud, so that in principle we cannot calcu-
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late ωφ for an arbitral value of Q φ . However, when R Q � RBH and 
Q φ 	 Q BH, the Q-cloud can be approximated by a Q-ball in flat 
spacetime and we can plot the curve ωφ = ωφ(Q φ). This approx-
imation is not justified for Q φ ∼ Q BH, which is indicated by the 
blue dotted curve in the figure.

Note that under the superradiance condition, i.e. ωφ < ωc , the 
energy and charge of the BH will be extracted by the Q-cloud. 
This can also be understood by the fact that ωc ≡ qQ /r+ is equal 
to the electric potential energy of particle with unit charge q
that comes from r = ∞ to the surface of the BH (r = r+) [46]
and hence we can identify dEBH/dQ BH = ωc/q. Since dEφ/dQ φ =
(1/q)dEφ/dNφ = ωφ/q, it is energetically favored for a charged par-
ticle to be extracted from the BH by the Q-cloud when ωφ < ωc . As 
the Q-cloud extracts the charge of the BH, ωc (∝ Q BH) decreases. 
On the other hand, if ωφ > ωc , the charge of the Q-cloud is ab-
sorbed into the BH and ωc increases. In both cases, ωφ changes 
only slightly, so the system will eventually reach the stationary so-
lution of Q-cloud with ωφ = ωc . This behavior demonstrates the 
stability of the Q-cloud if ωφ = ωc . We also note that ωc is al-
ways larger than ωφ for Q φ being smaller than the critical point 
of ωc = ωφ for the case shown in Fig. 3. This means that the 
Q-cloud is stable against even a large deformation. In particular, 
the Q-cloud with a BH inside is energetically favored compared 
to a BH that has consumed the entire Q-cloud (i.e., Q tot = Q BH). 
This ensures a stability of Q-cloud against quantum tunneling to 
a BH without Q-cloud. In Ref. [47], it is numerically demonstrated 
in a relativistic simulation that the same system but without the 
non-linear interaction reaches a stable hairy BH that exists at the 
threshold of the superradiant instability, if one sets a mirror (box) 
outside the horizon. In our case, the non-linear self-interaction 
plays a similar role of the mirror because both prevents the scalar 
field from escaping. In this sense their results support our argu-
ment on the stability of the solutions we obtained.

Next, we discuss the relation of this work to the weak-gravity 
conjecture. The conjecture states that there must exist a charged 
particle with mass μ and charge q that satisfies q > μ in any gauge 
theories with gravity [6]. This must hold when the low-energy ef-
fective field theory comes from a consistent theory of quantum 
gravity, like string theory, since otherwise there does not exist a 
UV theory that contains quantum gravity. Note that ωc is maximal 
and is equal to q for an extremal BH (i.e., for Q BH = MBH). These 
facts imply that there must exist a particle that experiences super-
radiance around an extremal BH. Now consider a scalar field with 
self-interactions that allow it to form a Q-ball. This field would 
resemble the diagram in Fig. 3. Then the weak gravity conjec-
ture implies that ωc (= q) > ωφ (
 μ) for Q φ = 0 and Q BH = MBH
while ωc (= 0) < ωφ (�= 0) for Q φ = Q tot (= MBH) and Q BH = 0. 
This statement means that the curves of ωc and ωφ must intersect 
if we take Q tot = MBH. The existence of Q-cloud is thus supported 
by the weak-gravity conjecture if the scalar potential admits the 
formation of a Q-ball in flat spacetime.

5. Discussion

We have shown that a Q-cloud solution exists that is narrower 
than the BH as the BH approaches the extremal limit. One may 
think that this is a counter example to the no short-hair theo-
rem proven in Refs. [48,49]. However, as noted in those papers, 
the charged BH does not satisfy one of the necessary condition of 
the theorem and the theorem is not applicable to our case. One 
may also think that our result is inconsistent with the conclusion 
of Ref. [50], where they discuss that the RN BH cannot have a 
scalar hair even in the presence of a gauge field. In Appendix B, 
we argue that their argument cannot be applied if the scalar field 
as a nonzero mass term. We also note that a counterexample has 
been found in Refs. [51,52], which implies that a Q-cloud solution, 
which is a bound state of complex scalar field around a charged 
BH, is still allowed. In those papers they used a specific linear po-
tential, which is singular at the origin, while we use a regular and 
more general potential to show the existence of the Q-cloud solu-
tions.

Although charged BHs are unlikely to develop during the real-
istic evolution of cosmological history, the observational possibility 
of Q-cloud is still interesting to investigate. The recent observation 
of a BH shadow by the Event Horizon Telescope has introduced 
such a possibility [53]. The gravitational lensing of light may be 
affected by scalar cloud around a BH, and this effect could be ob-
served by the Event Horizon Telescope [54,55]. If the scalar cloud 
has a certain type of photon coupling, we may observe photons 
that are produced from the accretion disc and are then polarized 
in interactions with the scalar cloud [56]. Although these works 
consider a Kerr BH, Q-cloud around a charged BH is also worth 
investigating.

Finally, we note that near-extremal Reissner-Nordström BHs are 
well-studied in the context of string theory, as such an object 
can be described with a D-brane in certain spacetime dimen-
sions [57,58]. This kind of BH can be also studied using the anti-de 
Sitter/conformal field theory (AdS/CFT) correspondence, since the 
geometry around the near-extremal BH reduces to the AdS2×S2

geometry (see, e.g., Refs. [59–61]). The properties of Q-cloud will 
also be interesting to explore using these approaches, and we leave 
this investigation for future work.
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Appendix A. Case for a logarithmic potential

In this Appendix, we consider the case in which the potential 
is given by a logarithmic function to study the thick-wall type so-
lution. The potential is given by

V (�) = μ4 ln
(

1 + |�|2/μ2
)

. (17)

This is motivated by the flat directions in gauge-mediated super-
symmetric models [38, 43], where we rescale � to absorb a super-
symmetric breaking scale without losing generality. The potential 
is almost flat for |�| � μ.

In the limit of a large size of Q-cloud and small q, we can ne-
glect the effects of both gravity and gauge potential and quote the 
results of Q-ball in the flat spacetime. In this case, V (φ)/φ2 is min-
imized at an infinite value of φ, which means that the solution is 
not a thin-wall type [44]:

ωφ 
 √
2π Q −1/4

φ μ 
 √
2πμ2/φ0, R Q 
 π

ωφ

, (18)

where φ0 (∝ Q 1/4
φ ) is the field value at the center of the Q-ball and 

we neglect logarithmic corrections for the sake of simplicity. These 
scaling behavior are in contrast to the case of thin-wall type Q-ball 
like Eq. (14). In addition, ωφ can be made arbitrary small by taking 
a large value of Q φ . We can then construct a stationary solution of 
the Q-cloud for an arbitrary small ωc by matching ωφ = ωc . Note 
that the Q-ball radius is determined by ωφ , which is the typical 
mass scale of the potential at φ = φ0.

When R Q ∼ r+ and Q BH 	 MBH, ωφ (= ωc) remains as a pa-
rameter that determines the overall behavior of the solution to 
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Fig. 4. Q-ball width as a function of MBHμ for the logarithmic potential. We take 
Q BH = 0.1MBH and q = 0.1μ (red curve), μ (green curve), 10μ (blue curve). We 
take q = 1/MBH for the dashed line.

Fig. 5. Q-ball width as a function of ε for the logarithmic potential. We take q/μ =
0.8 and μMBH = 0.1 (red curve), 1 (green curve), 10 (blue curve). Two solutions of 
the Q-cloud exist for the case μMBH = 10 and 10−5 � ε � 4 × 10−2.

equation (7). Thus, we expect that the Q-cloud width, R Q − r+ , 
is on the order of 1/ωφ . Fig. 4 shows how the Q-ball width de-
pends on MBHμ for the cases with Q BH = 0.1MBH and q/μ =
0.1, 1, 10 (solid lines) and q = 1/MBH (dashed line). We find that 
(R Q − r+) ∼ π/ωφ even for R Q − r+ 	 r+ and that there exists a 
Q-ball solution for an arbitrarily large MBHμ. Hence, we can con-
struct a Q-cloud with an arbitrarily short thickness by taking a 
large value of ωφ (or μ). This finding contrasts with the case of 
the polynomial potential, in which the Q-cloud cannot be much 
thinner than a non-extremal BH because of the upper bound on 
MBHμ.

Fig. 5 plots the width of the Q-cloud as a function of ε to show 
the Q-cloud behavior at the near-extremal limit. As in the case of 
the polynomial potential, the width can be arbitrarily short for a 
near-extremal BH in the limit of ε → 0 for the cases of μMBH = 1
and 10. These results are consistent with our heuristic argument 
around Eq. (16) because the width is proportional to either ε1/2

or ε0 for a small ε . We also find that two solutions of the Q-
cloud exist for the case of μMBH = 10 in the range of 10−5 � ε �
4 × 10−2. We confirm that the solution on the upper branch has a 
smaller charge Q φ compared to the one on the lower branch with 
the same ε . This implies that the solution on the upper branch has 
a smaller ωφ , hence a smaller energy, compared to the solution on 
the lower branch with the same Q φ . Therefore the solution on the 
upper branch is energetically more favored.

Appendix B. Consistency with no-hair theorem

In this Appendix, we discuss that the no-hair theorem of Mayo 
and Bekenstein [50] cannot be applied to the case in which the 
complex scalar field has a non-zero mass and hence it does not 
contradict with the solutions we have found. The logic of the theo-
rem that forbids the existence of the scalar-hair is as follows. From 
the equation of motion of the scalar field φ at r → ∞ without a 
scalar mass term, one obtains an asymptotic solution as

φ ∼ 1

r
exp

[
i
√

g(∞)2 r

]
. (19)

If g(∞) �= 0, this leads to a divergent total charge since the 
charge density falls off too slowly at infinity. This therefore implies 
g(∞) = 0. Then, since g(r) is monotonic, which can be proved 
from the equation of motion, g(r) must be non-zero at the horizon. 
This then requires φ to be zero at the horizon, since otherwise the 
term ∼ (r2/�)2 g2φ in the equation of motion for φ will diverge. 
Finally, the authors show that the solution with φ(r+) = 0 must 
be trivial (i.e., φ(r) = 0 everywhere) since otherwise the energy-
momentum tensor is infinite.

The crucial point of the above argument is that the authors im-
plicitly omitted the mass term for φ at infinity. If the mass term is 
taken into account, the asymptotic solution becomes

φ ∼ 1

r
exp

[
−

√
m2

φ − g(∞)2 r

]
, (20)

where m2
φ (= V ′′(φ)) is the squared mass. This leads to a fi-

nite total charge even for nonzero g(∞) since the solution falls 
off exponentially. Then, the requirement g(∞) = 0, and hence 
g(r+) �= 0 is relaxed and the solution with g(∞) �= 0, g(r+) = 0
is allowed. Finally this allows φ with φ(r+) �= 0 because g(r+) = 0
safely makes (r2/�)2 g2φ finite, provided that g vanishes as fast as 
∼ (r −r+). We therefore conclude that a scalar-hair with φ(r+) �= 0
and g(r+) = 0 is allowed if the scalar has a non-zero mass term. 
We note that our numerical solutions actually satisfy the latter 
boundary conditions.

References

[1] S.W. Hawking, Nature 248 (1974) 30, https://doi .org /10 .1038 /248030a0.
[2] G. ’t Hooft, Conf. Proc. C 930308 (1993) 284, arXiv:gr-qc /9310026.
[3] L. Susskind, J. Math. Phys. 36 (1995) 6377, https://doi .org /10 .1063 /1.531249, 

arXiv:hep -th /9409089.
[4] R. Bousso, J. High Energy Phys. 9907 (1999) 004, https://doi .org /10 .1088 /1126 -

6708 /1999 /07 /004, arXiv:hep -th /9905177.
[5] S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96 (2006) 181602, https://doi .org /10 .1103 /

PhysRevLett .96 .181602, arXiv:hep -th /0603001.
[6] N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, J. High Energy Phys. 0706 (2007) 

060, https://doi .org /10 .1088 /1126 -6708 /2007 /06 /060, arXiv:hep -th /0601001.
[7] S.B. Giddings, Phys. Rev. D 46 (1992) 1347, https://doi .org /10 .1103 /PhysRevD .

46 .1347, arXiv:hep -th /9203059.
[8] L. Susskind, arXiv:hep -th /9501106.
[9] R. Bousso, Rev. Mod. Phys. 74 (2002) 825, https://doi .org /10 .1103 /RevModPhys .

74 .825, arXiv:hep -th /0203101.
[10] T. Banks, N. Seiberg, Phys. Rev. D 83 (2011) 084019, https://doi .org /10 .1103 /

PhysRevD .83 .084019, arXiv:1011.5120 [hep -th].
[11] S. Hod, Phys. Rev. D 86 (2012) 104026, https://doi .org /10 .1103 /PhysRevD .86 .

104026, Erratum: Phys. Rev. D 86 (2012) 129902, https://doi .org /10 .1103 /
PhysRevD .86 .129902, arXiv:1211.3202 [gr-qc].

[12] S. Hod, Phys. Lett. B 708 (2012) 320, https://doi .org /10 .1016 /j .physletb .2012 .01.
054, arXiv:1205 .1872 [gr-qc].

[13] C.A.R. Herdeiro, E. Radu, Phys. Rev. Lett. 112 (2014) 221101, https://doi .org /10 .
1103 /PhysRevLett .112 .221101, arXiv:1403 .2757 [gr-qc].

[14] S. Hod, Phys. Rev. D 90 (2) (2014) 024051, https://doi .org /10 .1103 /PhysRevD .90 .
024051, arXiv:1406 .1179 [gr-qc].

[15] C.L. Benone, L.C.B. Crispino, C. Herdeiro, E. Radu, Phys. Rev. D 90 (10) (2014) 
104024, https://doi .org /10 .1103 /PhysRevD .90 .104024, arXiv:1409 .1593 [gr-qc].

[16] Y. Huang, D.J. Liu, Phys. Rev. D 94 (6) (2016) 064030, https://doi .org /10 .1103 /
PhysRevD .94 .064030, arXiv:1606 .08913 [gr-qc].

[17] Y. Huang, D.J. Liu, X.H. Zhai, X.Z. Li, Class. Quantum Gravity 34 (15) (2017) 
155002, https://doi .org /10 .1088 /1361 -6382 /aa7964, arXiv:1706 .04441 [gr-qc].

[18] H. Furuhashi, Y. Nambu, Prog. Theor. Phys. 112 (2004) 983, https://doi .org /10 .
1143 /PTP.112 .983, arXiv:gr-qc /0402037.

[19] S. Hod, Phys. Lett. B 713 (2012) 505, https://doi .org /10 .1016 /j .physletb .2012 .06 .
043, arXiv:1304 .6474 [gr-qc].

[20] S. Hod, Phys. Lett. B 718 (2013) 1489, https://doi .org /10 .1016 /j .physletb .2012 .
12 .013.

https://doi.org/10.1038/248030a0
http://refhub.elsevier.com/S0370-2693(20)30128-3/bib7721567F9019763A2F016901267887F7s1
https://doi.org/10.1063/1.531249
https://doi.org/10.1088/1126-6708/1999/07/004
https://doi.org/10.1088/1126-6708/1999/07/004
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1103/PhysRevD.46.1347
https://doi.org/10.1103/PhysRevD.46.1347
http://refhub.elsevier.com/S0370-2693(20)30128-3/bib6BE37447F0BEF6D62787A5B3027D1FA6s1
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.86.104026
https://doi.org/10.1103/PhysRevD.86.104026
https://doi.org/10.1103/PhysRevD.86.129902
https://doi.org/10.1103/PhysRevD.86.129902
https://doi.org/10.1016/j.physletb.2012.01.054
https://doi.org/10.1016/j.physletb.2012.01.054
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevD.90.024051
https://doi.org/10.1103/PhysRevD.90.024051
https://doi.org/10.1103/PhysRevD.90.104024
https://doi.org/10.1103/PhysRevD.94.064030
https://doi.org/10.1103/PhysRevD.94.064030
https://doi.org/10.1088/1361-6382/aa7964
https://doi.org/10.1143/PTP.112.983
https://doi.org/10.1143/PTP.112.983
https://doi.org/10.1016/j.physletb.2012.06.043
https://doi.org/10.1016/j.physletb.2012.06.043
https://doi.org/10.1016/j.physletb.2012.12.013
https://doi.org/10.1016/j.physletb.2012.12.013


6 J.-P. Hong et al. / Physics Letters B 803 (2020) 135324
[21] S. Hod, Phys. Rev. D 91 (4) (2015) 044047, https://doi .org /10 .1103 /PhysRevD .91.
044047, arXiv:1504 .00009 [gr-qc].

[22] S. Hod, Class. Quantum Gravity 32 (13) (2015) 134002, https://doi .org /10 .1088 /
0264 -9381 /32 /13 /134002, arXiv:1607.00003 [gr-qc].

[23] S. Hod, Phys. Lett. B 758 (2016) 181, https://doi .org /10 .1016 /j .physletb .2016 .05 .
012, arXiv:1606 .02306 [gr-qc].

[24] R. Bartnik, J. Mckinnon, Phys. Rev. Lett. 61 (1988) 141, https://doi .org /10 .1103 /
PhysRevLett .61.141.

[25] M.S. Volkov, D.V. Galtsov, JETP Lett. 50 (1989) 346, Pisma Zh. Eksp. Teor. Fiz. 
50 (1989) 312.

[26] H.P. Kuenzle, A.K.M. Masood-ul-Alam, J. Math. Phys. 31 (1990) 928, https://
doi .org /10 .1063 /1.528773.

[27] P. Bizon, Phys. Rev. Lett. 64 (1990) 2844, https://doi .org /10 .1103 /PhysRevLett .
64 .2844.

[28] C. Herdeiro, V. Paturyan, E. Radu, D.H. Tchrakian, Phys. Lett. B 772 (2017) 63, 
https://doi .org /10 .1016 /j .physletb .2017.06 .041, arXiv:1705 .07979 [gr-qc].

[29] T. Maki, K. Shiraishi, S. Hirenzaki, Phys. Rev. Res. Int. 3 (3) (2013) 228–235, 
arXiv:1906 .09364 [gr-qc].

[30] M.O.P. Sampaio, C. Herdeiro, M. Wang, Phys. Rev. D 90 (6) (2014) 064004, 
https://doi .org /10 .1103 /PhysRevD .90 .064004, arXiv:1406 .3536 [gr-qc].

[31] K. Murata, H.S. Reall, N. Tanahashi, Class. Quantum Gravity 30 (2013) 235007, 
https://doi .org /10 .1088 /0264 -9381 /30 /23 /235007, arXiv:1307.6800 [gr-qc].

[32] Y. Angelopoulos, S. Aretakis, D. Gajic, Phys. Rev. Lett. 121 (13) (2018) 131102, 
https://doi .org /10 .1103 /PhysRevLett .121.131102, arXiv:1809 .10037 [gr-qc].

[33] C. Herdeiro, E. Radu, H. Runarsson, Phys. Lett. B 739 (2014) 302, https://doi .
org /10 .1016 /j .physletb .2014 .11.005, arXiv:1409 .2877 [gr-qc].

[34] C.A.R. Herdeiro, E. Radu, H. Runarsson, Phys. Rev. D 92 (8) (2015) 084059, 
https://doi .org /10 .1103 /PhysRevD .92 .084059, arXiv:1509 .02923 [gr-qc].

[35] C. Herdeiro, J. Kunz, E. Radu, B. Subagyo, Phys. Lett. B 779 (2018) 151, https://
doi .org /10 .1016 /j .physletb .2018 .01.083, arXiv:1712 .04286 [gr-qc].

[36] S.R. Coleman, Nucl. Phys. B 262 (1985) 263, https://doi .org /10 .1016 /0550 -
3213(85 )90286 -X, Erratum: Nucl. Phys. B 269 (1986) 744, https://doi .org /10 .
1016 /0550 -3213(86 )90520 -1.

[37] K.M. Lee, J.A. Stein-Schabes, R. Watkins, L.M. Widrow, Phys. Rev. D 39 (1989) 
1665, https://doi .org /10 .1103 /PhysRevD .39 .1665.

[38] A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 418 (1998) 46, https://doi .org /10 .
1016 /S0370 -2693(97 )01375 -0, arXiv:hep -ph /9709492.

[39] J.D. Bekenstein, Phys. Rev. D 7 (1973) 949, https://doi .org /10 .1103 /PhysRevD .7.
949.

[40] I.E. Gulamov, E.Y. Nugaev, M.N. Smolyakov, Phys. Rev. D 89 (8) (2014) 085006, 
https://doi .org /10 .1103 /PhysRevD .89 .085006, arXiv:1311.0325 [hep -th].

[41] A. Kusenko, Phys. Lett. B 404 (1997) 285, https://doi .org /10 .1016 /S0370 -
2693(97 )00582 -0, arXiv:hep -th /9704073.

[42] J.P. Hong, M. Suzuki, M. Yamada, in preparation.
[43] A. de Gouvea, T. Moroi, H. Murayama, Phys. Rev. D 56 (1997) 1281, https://

doi .org /10 .1103 /PhysRevD .56 .1281, arXiv:hep -ph /9701244.
[44] G.R. Dvali, A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 417 (1998) 99, https://

doi .org /10 .1016 /S0370 -2693(97 )01378 -6, arXiv:hep -ph /9707423.
[45] A. Kusenko, Phys. Lett. B 405 (1997) 108, https://doi .org /10 .1016 /S0370 -

2693(97 )00584 -4, arXiv:hep -ph /9704273.
[46] D. Christodoulou, R. Ruffini, Phys. Rev. D 4 (1971) 3552, https://doi .org /10 .1103 /

PhysRevD .4 .3552.
[47] N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font, C. Herdeiro, Phys. Rev. 

Lett. 116 (14) (2016) 141101, https://doi .org /10 .1103 /PhysRevLett .116 .141101, 
arXiv:1512 .05358 [gr-qc].

[48] D. Nunez, H. Quevedo, D. Sudarsky, Phys. Rev. Lett. 76 (1996) 571, https://doi .
org /10 .1103 /PhysRevLett .76 .571, arXiv:gr-qc /9601020.

[49] S. Hod, Phys. Rev. D 84 (2011) 124030, https://doi .org /10 .1103 /PhysRevD .84 .
124030, arXiv:1112 .3286 [gr-qc].

[50] A.E. Mayo, J.D. Bekenstein, Phys. Rev. D 54 (1996) 5059, https://doi .org /10 .1103 /
PhysRevD .54 .5059, arXiv:gr-qc /9602057.

[51] B. Kleihaus, J. Kunz, C. Lammerzahl, M. List, Phys. Lett. B 675 (2009) 102, 
https://doi .org /10 .1016 /j .physletb .2009 .03 .066, arXiv:0902 .4799 [gr-qc].

[52] B. Kleihaus, J. Kunz, C. Lammerzahl, M. List, Phys. Rev. D 82 (2010) 104050, 
https://doi .org /10 .1103 /PhysRevD .82 .104050, arXiv:1007.1630 [gr-qc].

[53] K. Akiyama, et al., Event Horizon Telescope Collaboration, Astrophys. J. 875 (1) 
(2019) L5, https://doi .org /10 .3847 /2041 -8213 /ab0f43, arXiv:1906 .11242 [astro -
ph .GA].

[54] H. Falcke, F. Melia, E. Agol, Astrophys. J. 528 (2000) L13, https://doi .org /10 .
1086 /312423, arXiv:astro -ph /9912263.

[55] P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Phys. Rev. Lett. 115 (21) 
(2015) 211102, https://doi .org /10 .1103 /PhysRevLett .115 .211102, arXiv:1509 .
00021 [gr-qc].

[56] Y. Chen, J. Shu, X. Xue, Q. Yuan, Y. Zhao, arXiv:1905 .02213 [hep -ph].
[57] A. Strominger, C. Vafa, Phys. Lett. B 379 (1996) 99, https://doi .org /10 .1016 /

0370 -2693(96 )00345 -0, arXiv:hep -th /9601029.
[58] C.G. Callan, J.M. Maldacena, Nucl. Phys. B 472 (1996) 591, https://doi .org /10 .

1016 /0550 -3213(96 )00225 -8, arXiv:hep -th /9602043.
[59] J. Navarro-Salas, P. Navarro, Nucl. Phys. B 579 (2000) 250, https://doi .org /10 .

1016 /S0550 -3213(00 )00165 -6, arXiv:hep -th /9910076.
[60] M. Guica, T. Hartman, W. Song, A. Strominger, Phys. Rev. D 80 (2009) 124008, 

https://doi .org /10 .1103 /PhysRevD .80 .124008, arXiv:0809 .4266 [hep -th].
[61] T. Hartman, K. Murata, T. Nishioka, A. Strominger, J. High Energy Phys. 0904 

(2009) 019, https://doi .org /10 .1088 /1126 -6708 /2009 /04 /019, arXiv:0811.4393
[hep -th].

https://doi.org/10.1103/PhysRevD.91.044047
https://doi.org/10.1103/PhysRevD.91.044047
https://doi.org/10.1088/0264-9381/32/13/134002
https://doi.org/10.1088/0264-9381/32/13/134002
https://doi.org/10.1016/j.physletb.2016.05.012
https://doi.org/10.1016/j.physletb.2016.05.012
https://doi.org/10.1103/PhysRevLett.61.141
https://doi.org/10.1103/PhysRevLett.61.141
http://refhub.elsevier.com/S0370-2693(20)30128-3/bibAEC2394B78406F6CC713986E3F0109E2s1
http://refhub.elsevier.com/S0370-2693(20)30128-3/bibAEC2394B78406F6CC713986E3F0109E2s1
https://doi.org/10.1063/1.528773
https://doi.org/10.1063/1.528773
https://doi.org/10.1103/PhysRevLett.64.2844
https://doi.org/10.1103/PhysRevLett.64.2844
https://doi.org/10.1016/j.physletb.2017.06.041
http://refhub.elsevier.com/S0370-2693(20)30128-3/bibA2820B372AFD51AB8940894AAE55800Bs1
http://refhub.elsevier.com/S0370-2693(20)30128-3/bibA2820B372AFD51AB8940894AAE55800Bs1
https://doi.org/10.1103/PhysRevD.90.064004
https://doi.org/10.1088/0264-9381/30/23/235007
https://doi.org/10.1103/PhysRevLett.121.131102
https://doi.org/10.1016/j.physletb.2014.11.005
https://doi.org/10.1016/j.physletb.2014.11.005
https://doi.org/10.1103/PhysRevD.92.084059
https://doi.org/10.1016/j.physletb.2018.01.083
https://doi.org/10.1016/j.physletb.2018.01.083
https://doi.org/10.1016/0550-3213(85)90286-X
https://doi.org/10.1016/0550-3213(85)90286-X
https://doi.org/10.1016/0550-3213(86)90520-1
https://doi.org/10.1016/0550-3213(86)90520-1
https://doi.org/10.1103/PhysRevD.39.1665
https://doi.org/10.1016/S0370-2693(97)01375-0
https://doi.org/10.1016/S0370-2693(97)01375-0
https://doi.org/10.1103/PhysRevD.7.949
https://doi.org/10.1103/PhysRevD.7.949
https://doi.org/10.1103/PhysRevD.89.085006
https://doi.org/10.1016/S0370-2693(97)00582-0
https://doi.org/10.1016/S0370-2693(97)00582-0
https://doi.org/10.1103/PhysRevD.56.1281
https://doi.org/10.1103/PhysRevD.56.1281
https://doi.org/10.1016/S0370-2693(97)01378-6
https://doi.org/10.1016/S0370-2693(97)01378-6
https://doi.org/10.1016/S0370-2693(97)00584-4
https://doi.org/10.1016/S0370-2693(97)00584-4
https://doi.org/10.1103/PhysRevD.4.3552
https://doi.org/10.1103/PhysRevD.4.3552
https://doi.org/10.1103/PhysRevLett.116.141101
https://doi.org/10.1103/PhysRevLett.76.571
https://doi.org/10.1103/PhysRevLett.76.571
https://doi.org/10.1103/PhysRevD.84.124030
https://doi.org/10.1103/PhysRevD.84.124030
https://doi.org/10.1103/PhysRevD.54.5059
https://doi.org/10.1103/PhysRevD.54.5059
https://doi.org/10.1016/j.physletb.2009.03.066
https://doi.org/10.1103/PhysRevD.82.104050
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.1086/312423
https://doi.org/10.1086/312423
https://doi.org/10.1103/PhysRevLett.115.211102
http://refhub.elsevier.com/S0370-2693(20)30128-3/bibE86B2C637A0C3F220CF290497B65546Ds1
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0550-3213(96)00225-8
https://doi.org/10.1016/0550-3213(96)00225-8
https://doi.org/10.1016/S0550-3213(00)00165-6
https://doi.org/10.1016/S0550-3213(00)00165-6
https://doi.org/10.1103/PhysRevD.80.124008
https://doi.org/10.1088/1126-6708/2009/04/019

	Charged black holes in non-linear Q-clouds with O(3) symmetry
	1 Introduction
	2 Charged BH and O(3) Q-cloud
	3 Examples of Q-cloud
	4 Evolution of Q-cloud
	5 Discussion
	Acknowledgement
	Appendix A Case for a logarithmic potential
	Appendix B Consistency with no-hair theorem
	References


