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We construct charged soliton solutions around spherical charged black holes with no angular momentum
in asymptotically flat spacetime. These solutions are non-linear generalizations of charged scalar clouds,
dubbed Q-clouds, and they do not contradict the non-existence theorem for free (linear) scalar clouds
around charged black holes. These solutions are the first examples of O(3) solutions for Q-clouds around
a non-extremal and non-rotating BH in the Abelian gauge theory. We show that a solution exists with

an infinitely short cloud in the limit of extremal black holes. We discuss the evolution of Q-cloud in
a system with fixed total charge and describe how the existence of Q-clouds is related to the weak-
gravity conjecture. The reason that the no-hair theorem by Mayo and Bekenstein cannot be applied to
the massive scalar field is also discussed.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

The strong gravitational effects of black holes (BHs) allow us
to study the connections between theories of gravitation and
quantum-field theory. One of the most important implications of
the conjunction of quantum field theory and BHs is Hawking radi-
ation [1], which is emitted because of the creation of particle pairs
near the surface of BHs. Several conjectures have been proposed
through the analysis of BHs [2-5], and these serve as guides to-
ward important insights into fundamental theories of physics. In
particular, the weak-gravity conjecture [6] addresses the inconsis-
tency of theory with BH remnants [2,7-9] and the non-existence
of global symmetries in string theory [10]. The latter fact is con-
sistent with the no-hair theorem, which states that a BH can be
described with only a finite number of parameters, like its mass,
angular momentum, and gauge charge.

In relation to quantum field theory, the possibility of the ex-
istence of scalar cloud around a BH is an interesting avenue for
research. As scalar fields can construct solitonic objects through
self-interactions or gravitational interactions, BHs may have an ex-
tended scalar cloud outside their event horizons. Much effort has
been devoted to finding such a stable solution around a BH, and
there exist many solutions around rotating BHs [11-17]. This is
because the angular momentum prevents the field from being ab-
sorbed into the BH. One may expect that a Coulomb repulsion can
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play the same role for a charged BH. However, free-field theories
include a non-existence theorem for scalar clouds around a non-
rotating charged BH [18-21] (see also Refs. [12,16,22,23]). This can
be understood by noting that both gravitational and electric po-
tentials behave as ~ 1/r (at least at a large distance from a BH)
while the effective potential due to the angular momentum be-
haves as ~ 1/r?. We cannot make a local minimum by using the
former two potentials while we can make the one by adding the
latter potential.

In this paper, we demonstrate the first examples of O(3) solu-
tions for Q-clouds around a non-extremal and non-rotating BH in
the Abelian gauge theory with a complex scalar field, which are
realized by introducing the self-interaction of the scalar field.! We
consider a charged BH and introduce an attractive self-interaction
in the charged scalar field. The attractive self-interaction of the
scalar field allows the flat spacetime to form a localized conden-
sate, known as Q-ball [36-38]. This solution may hold even in the
presence of a BH at the center of the Q-ball, which state is dubbed
a Q-cloud around a BH. The Q-cloud may be unstable in this case
as the BH absorbs the scalar field at its horizon. However, the
gauge interaction prevents the charged scalar field from being ab-
sorbed into the charged BH if the Q-cloud and the BH have charges
of the same sign. We find that a stable solution can be constructed
when these effects are in balance. We also discuss the evolution of

1 Yang-Mills hair around a charged BH was studied in Refs. [24-29], Proca clouds
were studied in Ref. [30], and scalar hair around an extremal charged BH was stud-
ied in Refs. [31,32]. For Q-clouds around a Kerr (rotating) BH, see Refs. [33-35].
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the Q-cloud and show that an initially near-extremal BH evolves
into a non-extremal BH with Q-cloud. The existence of such Q-
cloud is supported by the weak-gravity conjecture.

2. Charged BH and O(3) Q-cloud

We consider a Reissner-Nordstrém BH, which is a non-rotating
charged BH. It is described by the following metric:

A r?
ds?® = —r—zdt2 + Xdr2 +12d6? +r? sin® 6dg?. (1)

We use the Planck unit G = c=h =1 throughout this paper. We
define

A =r*—2Mpur + Q2. (2)

where Mgy and Qgy are the mass and charge of the BH, respec-
tively. The horizons become the zeroes of A, which are given as

r:tEMBH:tw/MéH_ Q}%H (3)

The charge of the BH induces an electrostatic potential outside the
horizon.

We introduce a complex scalar field ® that has charge g under
the same Abelian gauge symmetry:

L= (V* +igAMD* (V) —iqA)® — V (D), (4)

where V# denotes the covariant derivative for Reissner-Nordstrom
metric, Ay, is U(1) gauge field, and V (®) is a potential of the scalar
field specified later. This scalar field induces an electrostatic poten-
tial Ap in the outer region. We denote the energy and number of
the scalar field as E4 and Ny, respectively, where

2
Ny = —2/d3xrzlm [®* (30 — iqA0)®]. (5)

The electric charge of the scalar field is given by Qg = qNy. After
adopting the following ansatz,

1 )
D) = —=g(ne ', (6)
V2
which is motivated by the Q-ball solution in the flat spacetime, we

obtain the following equations for ¢ and the zeroth component of
gauge field Ag:

d d

Al (A—¢> +rig2p — APV () =0, ™)
dr dr
d dg ré

2d (248 7 5 2

' dr (r dr) Aq §¢° =0, (8)

where we define g = wy +qAp. The boundary conditions are given
by
&
P'(ry) =V'(p(ry) ,
r —7r—
g(00) = wy. (10)

¢(00) =0, 9)

gry) =0,

In this letter, we consider the case in which Ey <« Mpy and
Qy < Qpy so that we can treat the metric and the U(1) gauge
field as the background. Then, the gauge-field background is given
by Ao = —Qpu/r and the equations of motion reduce to Eq. (7)
with g = wg —qQpH/T.

We are only interested in stationary solutions, so wg must be
equal to

w = 1981 (11)
I+

Otherwise, the above equation asymptotically approaches
d?¢

2
E—}-(w(i,—a)c) ¢ ~0, (12)

near the horizon, with dr,/dr =r?/A, which gives an incoming
or outgoing (i.e., not stationary) wave solution, ¢ () ~ e~ {(@»=@c)r+
along with the factor e~®#!_ The stationary condition, Wy = W, 1S
known to be at the threshold for superradiance [13,39].

For Q-balls in flat spacetime, the phase velocity w, is equal to
dEy/dNg and can be identified as the chemical potential of the Q-
ball [40]. Therefore if wy is smaller than the mass of ® in vacuum,
the energetically favored behavior is for a particle to be localized to
form a Q-ball. In the presence of a BH at the center of a Q-cloud, a
U(1) gauge interaction and a charged BH are needed to construct a
stationary solution. The U(1) gauge interaction prevents the scalar
field from being absorbed into the BH if the BH and Q-cloud have
charges of the same sign. This behavior can also be understood
from Eq. (11): w, vanishes if the BH has no charge and cannot be
equal to wy.

3. Examples of Q-cloud

We shall next discuss the properties of Q-cloud, specifying the
scalar potential. We consider the case in which V (|®]) is given by
a polynomial potential:

V() = u?|®> — A|D* + A|D[5. (13)

We assume A > A2/4u? so that & =0 is a true vacuum.

Let us begin to consider the limiting case in which the gauge
charge is vanishingly small and the Q-ball radius is considerably
larger than the BH radius. The gravitational effect of the BH (i.e.,
the change of the metric in the presence of BH) is negligible
though the regularity condition Eq. (11) on the phase velocity must
be satisfied, no matter how large the Q-ball radius is. In this case,
we can construct Q-balls just as we do in flat spacetime with a
condition of wy = wc. In the thin-wall limit of the Q-ball [36], the
phase velocity wg and the Q-ball radius Rq (i.e., the radius of the
thin wall) are given by

22 3A 1/3
wp~p,/1———. Ro= 3AQs ) (14)
4Ap 4T qrwg

The amplitude of the scalar field at the center of the Q-ball is de-
termined by minimizing V (¢)/¢* and is almost independent of
Qg in the thin-wall limit [41]. For a smaller and thicker Q-ball,
wgy is larger than this value but is smaller than p. So there ex-

ists a Q-ball solution only when u,/1— # < wy < w. In the

presence of a BH, wy must be equal to w; so that no energy
flows at the BH surface. Thus, there exists a Q-cloud solution when

w1 — 43—22 < we < (. In other words, we can always construct

an 0(3) Q-cloud around a charged BH if there exists a large Q-ball
solution in flat spacetime and if this solution satisfies wy = w.

When the Q-cloud size, Rq, is comparable to the BH size, ry,
the effect of the Reissner-Nordstrom metric is important and the
equation (7) can only be solved numerically. The shooting method
can be used for this solution. The field value at the surface of
the BH, ¢g, is chosen in such a way that ¢(r) approaches 0 for
the range r — oo. The unknown parameters we should specify are
Mgy, Qpy, U4, q, and parameters that govern the self-interaction.
Here we note that equation Eq. (7) does not change with the fol-
lowing rescaling:
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Fig. 1. Examples of Q-ball solutions ¢ for near-extremal BHs. We take puMpy = 2,
q/i=0.8, Qpy = (1 — €)Mpy with € =1072,1073,1074, 107> from right to left.

Mgy — cMpy, Qpu—> cQpu, T —cr,

¢—9¢/c (15)

We use invariant combinations under this rescaling, such as
Qpu/Mpy, 1/Mpy, w/u, q/1, and ¢/u, to show the numerical
results. Note that Ey and Qg4 can always be made much smaller
than Mgy and Qpy, respectively, by choosing a small value of ¢
in the rescaling. Therefore, there always exists a parameter space
in which back-reactions of the Q-ball to the metric and gauge po-
tential are negligible. We can also rescale ¢ so that A =1 without
losing generality. We take A = A2/3u? as an example, which is
chosen as the largest value under the condition that the potential
has a local minimum only at the origin. We numerically determine
the size of the Q-ball by identifying the radius at which 90% of
the Q-ball charge is enclosed. We adopt this definition for numer-
ical calculations since it can be used for general numerical profile,
while it roughly coincides with Eq. (14) for thin-wall profile.

From our numerical simulations, we find that Q-balls can only

exist when u./1— 43; =u/2 Swp S for My < O1),
which is consistent with the above discussion about large Q-
clouds. Note that wy = wc = qQpu/r+ should hold for stability
against the superradiance and q/u and Qpy/Mpy, which uniquely
determine @, can be chosen to give ws in the above range.
We also find that wy must be very close or equal to unity for
Mpupu 2 O(1) and that no Q-cloud solution exists for Mpyu > 1.
For example, there is an upper bound by wy = 1, at which
Mpyu >~ 8.0,8.7,12 for the cases of Qpy/Mpy = 0.1,0.5,0.9, re-
spectively. Note that g/u at this upper bound is determined by
wc=wp =1.

The possibility of the existence of Q-cloud around extremal BHs
is an interesting question [31,32]. However, the boundary condi-
tions at the surface of an extremal BH do not uniquely determine
a Q-cloud solution because the equation (7) is regular at r =14
only if ¢(ry) = ¢'(ry) = 0. Instead, we consider near-extremal BHs
with Qpy = (1 — €)Mpy for small values of €. Fig. 1 shows Q-cloud
profiles for the cases € = 1072,1073,10%,10~°, where we take
q/m = 0.8 and uMpy = 2. We can see that the width of the Q-
cloud, defined by Rq —ry, becomes small at the extremal limit of
the BH. Fig. 2 plots the Q-cloud width as a function of € for the
cases of g/ = 0.8 and uMpy = 0.5, 1, 2. The width of the Q-cloud
for the case of uMpy =2 can be arbitrarily short in the extremal
limit of BH. However, we note that this is not a generic feature for
a relatively large uMpy. We find that the results are qualitatively
different for the case of g/ =1 [42].

The behavior of the width in the extremal limit of BH can be
roughly understood by the following heuristic argument. Let us fo-
cus on the regime of /e € (r—ry)/r1 =x <« 1 and € < 1 so that
we can approximate as A ~ r_{x2 and r ~r,. Then the equation of
motion is given by

wp = wy/C, WU— um/c, q—q/c,

= Mpy =1
puMpa
= 10
=
< 10
|
<
& 1072
q=0.8u
107°

10-% 10-7 107 10=® 10=* 10~3 1072

€

Fig. 2. Q-ball width as a function of €. We take g/ = 0.8 and uMpy = 0.5 (red
curve), 1 (green curve), 2 (blue curve).
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Fig. 3. w;-Q relation for a fixed Qot = Q4 + QpH (= Mpy), where i = ¢ (blue solid
curve) and c (red dashed curve). We set A/u=A=1, g/ =1.2 as an example.
When q > u, which is suggested by the weak-gravity conjecture, the two lines @,
and wy intersect with each other. To plot wg, we use the polynomial potential with
cubic and quadratic terms in flat spacetime as an example [45]. This curve asymp-
totically approaches the value calculated by the thin-wall approximation, wgpip, for
Qd’ — 00.

2 2 2 y7/

2 200 gt iV, (16)
9x2  x ox x2 x2

This equation respects the conformal symmetry under the approx-
imation, namely it is invariant with respect to the rescaling of x.
Therefore the typical size of the solution is not determined by this
equation itself but is determined by the full equation beyond the
“ultraviolet” or “infrared” cutoffs of this equation. These cutoffs are
given by O(e!/?) and O(1) because of the approximation we used
to derive the equation. Thus we expect that the width of the Q-
cloud is proportional to either €1/ or €° for a small €, depending
on the parameters. This is consistent with the results of our nu-
merical calculation shown in Fig. 2.

In Appendix A, we consider the case in which the potential is
given by a logarithmic function, motivated by the flat directions in
gauge-mediated supersymmetric models [38,43]. In this case, the
Q-ball solution in flat spacetime is not a thin-wall type and scal-
ing behaviors of parameters are different from the ones discussed
above [44]. In particular, we find that a Q-cloud with an arbitrarily
short thickness can be realized by taking a large value of wy (or
W)

4. Evolution of Q-cloud

Finally, we consider the evolution of a system with a fixed
total charge Qot = Q¢ + Qpu. In the limit Rq > ry, we can ap-
proximate the Q-cloud solution from the solution in flat space-
time. Fig. 3 shows a schematic of two curves: wy = wy(Qg) and
we = wc(Qpy) with fixed Qi (= Mpy). If the blue solid curve
(wy(Qg) and the red dashed curve (w:(Qgn)) intersect, there ex-
ists a stationary solution of a BH with Q-cloud. Note that stable
or stationary Q-cloud do not exist by a continuous deformation
from a BH without Q-cloud, so that in principle we cannot calcu-
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late wy for an arbitral value of Q4. However, when Rq > Rgy and
Q4 < QpH, the Q-cloud can be approximated by a Q-ball in flat
spacetime and we can plot the curve wy = wy(Qg). This approx-
imation is not justified for Qg ~ Qgu, which is indicated by the
blue dotted curve in the figure.

Note that under the superradiance condition, i.e. wy < wc, the
energy and charge of the BH will be extracted by the Q-cloud.
This can also be understood by the fact that w. =qQ /r+ is equal
to the electric potential energy of particle with unit charge q
that comes from r = oo to the surface of the BH (r =ry) [46]
and hence we can identify dEpy/dQpH = wc/q. Since dEy/dQgy =
(1/q)dE4 /ANy = wg /q, it is energetically favored for a charged par-
ticle to be extracted from the BH by the Q-cloud when wy < wc. As
the Q-cloud extracts the charge of the BH, w. (o Qpy) decreases.
On the other hand, if wy > w, the charge of the Q-cloud is ab-
sorbed into the BH and w, increases. In both cases, wy changes
only slightly, so the system will eventually reach the stationary so-
lution of Q-cloud with wg = wc. This behavior demonstrates the
stability of the Q-cloud if wy = w.. We also note that w is al-
ways larger than wy for Q4 being smaller than the critical point
of w; = wy for the case shown in Fig. 3. This means that the
Q-cloud is stable against even a large deformation. In particular,
the Q-cloud with a BH inside is energetically favored compared
to a BH that has consumed the entire Q-cloud (i.e., Qtt = Qgu).
This ensures a stability of Q-cloud against quantum tunneling to
a BH without Q-cloud. In Ref. [47], it is numerically demonstrated
in a relativistic simulation that the same system but without the
non-linear interaction reaches a stable hairy BH that exists at the
threshold of the superradiant instability, if one sets a mirror (box)
outside the horizon. In our case, the non-linear self-interaction
plays a similar role of the mirror because both prevents the scalar
field from escaping. In this sense their results support our argu-
ment on the stability of the solutions we obtained.

Next, we discuss the relation of this work to the weak-gravity
conjecture. The conjecture states that there must exist a charged
particle with mass @ and charge q that satisfies ¢ > @ in any gauge
theories with gravity [6]. This must hold when the low-energy ef-
fective field theory comes from a consistent theory of quantum
gravity, like string theory, since otherwise there does not exist a
UV theory that contains quantum gravity. Note that w. is maximal
and is equal to g for an extremal BH (i.e., for Qgy = Mpy). These
facts imply that there must exist a particle that experiences super-
radiance around an extremal BH. Now consider a scalar field with
self-interactions that allow it to form a Q-ball. This field would
resemble the diagram in Fig. 3. Then the weak gravity conjec-
ture implies that w¢ (=q) > wy (=~ ) for Qy =0 and Qpy = Mgy
while We (: 0) < W¢ (7é 0) for Q¢ = Qtot (: MBH) and Qgy = 0.
This statement means that the curves of w. and ws must intersect
if we take Qo = Mpy. The existence of Q-cloud is thus supported
by the weak-gravity conjecture if the scalar potential admits the
formation of a Q-ball in flat spacetime.

5. Discussion

We have shown that a Q-cloud solution exists that is narrower
than the BH as the BH approaches the extremal limit. One may
think that this is a counter example to the no short-hair theo-
rem proven in Refs. [48,49]. However, as noted in those papers,
the charged BH does not satisfy one of the necessary condition of
the theorem and the theorem is not applicable to our case. One
may also think that our result is inconsistent with the conclusion
of Ref. [50], where they discuss that the RN BH cannot have a
scalar hair even in the presence of a gauge field. In Appendix B,
we argue that their argument cannot be applied if the scalar field
as a nonzero mass term. We also note that a counterexample has
been found in Refs. [51,52], which implies that a Q-cloud solution,

which is a bound state of complex scalar field around a charged
BH, is still allowed. In those papers they used a specific linear po-
tential, which is singular at the origin, while we use a regular and
more general potential to show the existence of the Q-cloud solu-
tions.

Although charged BHs are unlikely to develop during the real-
istic evolution of cosmological history, the observational possibility
of Q-cloud is still interesting to investigate. The recent observation
of a BH shadow by the Event Horizon Telescope has introduced
such a possibility [53]. The gravitational lensing of light may be
affected by scalar cloud around a BH, and this effect could be ob-
served by the Event Horizon Telescope [54,55]. If the scalar cloud
has a certain type of photon coupling, we may observe photons
that are produced from the accretion disc and are then polarized
in interactions with the scalar cloud [56]. Although these works
consider a Kerr BH, Q-cloud around a charged BH is also worth
investigating.

Finally, we note that near-extremal Reissner-Nordstrom BHs are
well-studied in the context of string theory, as such an object
can be described with a D-brane in certain spacetime dimen-
sions [57,58]. This kind of BH can be also studied using the anti-de
Sitter/conformal field theory (AdS/CFT) correspondence, since the
geometry around the near-extremal BH reduces to the AdS;xS?
geometry (see, e.g., Refs. [59-61]). The properties of Q-cloud will
also be interesting to explore using these approaches, and we leave
this investigation for future work.
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Appendix A. Case for a logarithmic potential

In this Appendix, we consider the case in which the potential
is given by a logarithmic function to study the thick-wall type so-
lution. The potential is given by

V(<I>):p,4ln<1 +|q>|2/;ﬁ). (17)

This is motivated by the flat directions in gauge-mediated super-
symmetric models [38, 43], where we rescale ® to absorb a super-
symmetric breaking scale without losing generality. The potential
is almost flat for |®| > u.

In the limit of a large size of Q-cloud and small g, we can ne-
glect the effects of both gravity and gauge potential and quote the
results of Q-ball in the flat spacetime. In this case, V (¢)/¢? is min-
imized at an infinite value of ¢, which means that the solution is
not a thin-wall type [44]:

_ T
w¢:«/§nQ¢1/4M:\/§nM2/¢o, Rg ~ —, (18)

where ¢g (o Q;M) is the field value at the center of the Q-ball and
we neglect logarithmic corrections for the sake of simplicity. These
scaling behavior are in contrast to the case of thin-wall type Q-ball
like Eq. (14). In addition, wy can be made arbitrary small by taking
a large value of Q4. We can then construct a stationary solution of
the Q-cloud for an arbitrary small @, by matching wy = w.. Note
that the Q-ball radius is determined by wg, which is the typical
mass scale of the potential at ¢ = ¢o.

When Rq ~r4 and QpH < MgH, @y (= wc) remains as a pa-
rameter that determines the overall behavior of the solution to
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Fig. 4. Q-ball width as a function of Mgy for the logarithmic potential. We take

Qpy =0.1Mpy and q = 0.1 (red curve), u (green curve), 10 (blue curve). We
take q = 1/Mpy for the dashed line.
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Fig. 5. Q-ball width as a function of € for the logarithmic potential. We take q/u =
0.8 and Mgy = 0.1 (red curve), 1 (green curve), 10 (blue curve). Two solutions of
the Q-cloud exist for the case ;tMpy =10 and 107> < e <4 x 1072,

equation (7). Thus, we expect that the Q-cloud width, Rq —ry,
is on the order of 1/wy. Fig. 4 shows how the Q-ball width de-
pends on Mpyu for the cases with Qpy = 0.1Mpy and q/u =
0.1,1,10 (solid lines) and q = 1/Mpy (dashed line). We find that
(Rq —r4) ~m/wy even for R —ry K1y and that there exists a
Q-ball solution for an arbitrarily large Mpyu. Hence, we can con-
struct a Q-cloud with an arbitrarily short thickness by taking a
large value of wy (or w). This finding contrasts with the case of
the polynomial potential, in which the Q-cloud cannot be much
thinner than a non-extremal BH because of the upper bound on
Mgy L.

Fig. 5 plots the width of the Q-cloud as a function of € to show
the Q-cloud behavior at the near-extremal limit. As in the case of
the polynomial potential, the width can be arbitrarily short for a
near-extremal BH in the limit of € — 0 for the cases of uMpy =1
and 10. These results are consistent with our heuristic argument
around Eq. (16) because the width is proportional to either €!/2
or €% for a small €. We also find that two solutions of the Q-
cloud exist for the case of ;Mpy = 10 in the range of 107> <€ <
4 x 1072, We confirm that the solution on the upper branch has a
smaller charge Q4 compared to the one on the lower branch with
the same €. This implies that the solution on the upper branch has
a smaller wy, hence a smaller energy, compared to the solution on
the lower branch with the same Q. Therefore the solution on the
upper branch is energetically more favored.

Appendix B. Consistency with no-hair theorem

In this Appendix, we discuss that the no-hair theorem of Mayo
and Bekenstein [50] cannot be applied to the case in which the
complex scalar field has a non-zero mass and hence it does not
contradict with the solutions we have found. The logic of the theo-
rem that forbids the existence of the scalar-hair is as follows. From

the equation of motion of the scalar field ¢ at r — oo without a
scalar mass term, one obtains an asymptotic solution as

~ Yaxoli/atoor?
¢ rexp|:1 g(oco)?r|. (19)

If g(oc0) # 0, this leads to a divergent total charge since the
charge density falls off too slowly at infinity. This therefore implies
g(00) = 0. Then, since g(r) is monotonic, which can be proved
from the equation of motion, g(r) must be non-zero at the horizon.
This then requires ¢ to be zero at the horizon, since otherwise the
term ~ (r*/A)?g%¢ in the equation of motion for ¢ will diverge.
Finally, the authors show that the solution with ¢ (r;) =0 must
be trivial (i.e.,, ¢(r) = 0 everywhere) since otherwise the energy-
momentum tensor is infinite.

The crucial point of the above argument is that the authors im-
plicitly omitted the mass term for ¢ at infinity. If the mass term is
taken into account, the asymptotic solution becomes

1
¢~ —exp [—, Jmg — g(00)? r} , (20)

where mé (= V”(¢)) is the squared mass. This leads to a fi-
nite total charge even for nonzero g(oo) since the solution falls
off exponentially. Then, the requirement g(oco) = 0, and hence
g(ry) # 0 is relaxed and the solution with g(oco) #0, g(r+) =0
is allowed. Finally this allows ¢ with ¢(r1) # 0 because g(r+) =0
safely makes (r2/A)%g2¢ finite, provided that g vanishes as fast as
~ (r—r4). We therefore conclude that a scalar-hair with ¢ (r;) #0
and g(r4) =0 is allowed if the scalar has a non-zero mass term.
We note that our numerical solutions actually satisfy the latter
boundary conditions.
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