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1 Introduction

Our main motivation is to provide a general method for constructing classical actions for

quantum field theories on supermanifolds using the powerful methods of supergeometry. As

is known for general relativity, using differential forms one constructs physical interesting

quantities (actions, observables, globally defined quantities). Here we would like to set up

an equivalent framework, but over a supermanifold. Namely we would like to formulate

quantum field theory models on supermanifolds as we use to do it in general relativity.

Given a supermanifold SM(n|m) with n bosonic dimensions and m fermionic dimen-

sions, we would like to construct an action of the form

S =

∫
SM(n|m)

L(n|m) , (1.1)

where L(n|m) is an integral form [1–5] with form degree n and picture number m. L(n|m)

is a form which can be integrated over the supermanifold, i.e. it is a top form and any

super-diffeomorphism leaves the action invariant.

One strategy to build an action L(n|m) is to start from a conventional superform L(n|0)

in terms of the classical fields and their differentials and then “complete” it to an integral

form as

L(n|m) = L(n|0) ∧ Y(0|m) , (1.2)

where Y(0|m) is a Picture Changing Operator (PCO) mapping the superform L(n|0) to an

integral form L(n|m). If L(n|0) is closed, one can change Y(0|m) by exact pieces without

changing the action S. The question is: can one always get a factorized form or are there

other possibilities? We certainly know that there are special supermanifolds which are

non-projected or non-split, for those the existence of a global PCO is not granted, and

therefore we are looking for a more general description. Namely, given the fields in a given

picture, is there a way to build an action consistently producing meaningful results?

For example, given a gauge field A(1|0) which is the usual connection 1-form at picture

equal to zero, can one use a picture one field as A(1|1) instead? Then, we would replace the

Lagrangian (1.2) as

L(n|0)(A(1|0)) ∧ Y(0|m) −→ L(n|m)(A(1|1)) , (1.3)

such that the equations of motion are still dynamical equations.

A similar issue appears in string theory [6] and string field theory [7], where the ghost

sector of RNS string theory model requires a choice of the vacuum due to the replicas of

the same Hilbert space at different pictures. As is well known, the quantization of the β−γ
ghost sector leads to a Fock space filtered according to the ghost number and with respect

to the picture number. This translates into the definition of the vertex operators represent-

ing the target space fields. Those vertex operators can be chosen in different pictures such

that the total sum of pictures of the vertex operators inserted into a correlation function

saturates the required picture charge (see also [8–10]) at given genus and number of punc-

tures. The result should be independent of the choice of the picture. In the case of string

field theory, the situation is slightly different. In order to write a string field theory action,
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one needs to take into account the saturation of the picture on a disk (tree level classical ac-

tion) and for that some alternatives were proposed (see [11] and [7]). However, despite some

interestring features for these models, they fail to give a complete interacting superstring

field theory action. Only recently, by the work of [12], a complete interacting superstring

field theory action has been proposed. The string fields are taken into a picture one Hilbert

space leading to a meaningful kinetic term. Nonetheless, the interactions are constructed

in terms of a non-associative product which multiplies two string fields without increasing

the picture and which is the first non-trivial element of an A∞ algebra. That algebra has

been built completely [12, 13]. As shown in [14, 15], for any supermanifold, in terms of the

PCO built in the complexes of forms, one can define a corresponding A∞-algebra [16–20]

on the geometrical data and therefore we expect that we can follow the same pattern.

In the same way, for the construction of quantum field theories on supermanifolds (we

recall that the picture in string theory is related to the superghosts zero modes which are in

relations with the supermoduli space of the underlying super-Riemann surface), one needs

to fix the total picture of the action, but that does not select a given picture for the fields

involved. This means that one can choose different set of fields, defined as forms in the full

complex, and construct the corresponding action (See [2, 3]).

To provide an illustration of this constructing procedure, we focus on a specific model,

namely super Chern-Simons theory on a (3|2) supermanifold. The classical action can be

written in terms of the (1|0) connection A(1|0). It is shown that by using the factorized

form L(3|0) ∧ Y(0|2) all superspace formulations can be obtained. The choice of the PCO

Y(0|2) ranging from the simplest example to more symmetric expressions (see [1]) leads to

different actions with manifest supersymmetry or in components.

In the present work, we consider an action for super Chern-Simons theory (henceforth

SCS) built in terms of the A(1|1) gauge fields, namely those at picture one. Their expansions

in term of component fields are infinite dimensional, then the kinetic term is obtained by

using repeated distributional properties and integrating over the supermanifold. The goal

is to verify that the kinetic term yields the correct equations of motion, namely Chern-

Simons flat connection and vanishing fermions. This is achieved by showing that, on-shell,

all unphysical components can be gauged away except the Chern-Simons connection and

its flatness condition. Here we consider those gauge transformations which are obtained by

derivatives along the fermionic directions. Since the fermionic fibers do not have any topol-

ogy, those gauge transformations can be reabsorbed (without any topological obstractions)

leaving only usual gauge transformations along bosonic coordinates.

Once we have verified that the free action leads to the correct equations of motion, we

consider the interaction terms. Thus, following the string field theory construction [12],

we define a 2-product which multiplies two (1|1) gauge fields and decreases the picture by

one [14]. This leads to the usual interaction term plus additional interactions due to the

infinite components of the picture one connections. The product used for the interaction

is non-associative, but its associator is cohomologically trivial and therefore can be com-

pensated by a 3-product. This leads to an A∞ algebra which consistently provides the

complete set of equations of motion. Together with the cyclicity of the inner product, we

finally derive the equations of motion from a consistent variational principle.

– 2 –



J
H
E
P
0
3
(
2
0
2
0
)
0
4
3

At the end, we discuss the supersymmetry in this framework. We found that even in

the picture one setting for the gauge fields, the rheonomic conditions do show the same

set of physical fields. In addition, since the construction is based on supermanifolds, the

super-diffeomorphisms are those transformations which preserve the entire structure.

The main motivation of this work relies on the search for a general formulation for

quantum field theories on supermanifold. The richness of the geometry of forms over

supermanifolds — involving differential, pseudo and integral forms at once — allows for

exploring the possibility of new theories in the present framework. For that, we abandon

the factorized form unlashing the full power of pseudoform geometry. However, this very

first example needs to be rather conservative, namely, we would like to verify whether our

mathematical tools are suitable to consider more general actions, but yet to be physically

sound. For that reason, we use super Chern-Simons theory: it is significantly easy to treat

as a topological model, sharing several analogies with string field theory and supersym-

metrizable in several ways. The non-factorized form of the action can be guessed from

string field theory and that provides a good guideline for our analysis. Still, the full com-

prehension of the factorized action (see [1]) gives us an important reference point to be

compared with. Nonetheless, our aim is to explore this new framework for new theories

which are not so simple, such as super-Yang-Mills and full-fledged supergravity.

We take our steps from the example of string field theory in the formulation given

in [12], but one might wonder whether the two construction share other common features.

In particular, as has been underlined in [12], the construction of the modified two product

(M2) is due to emerging divergences when two Picture Changing Operators collide (in

the OPE framework). Here, a similar phenomenon takes place. This is illustrated in

appendix C, with a simple four point function computation. Two types of divergences

arise due to the action of Heaviside theta function (appearing in the PCO) on picture zero

forms and on inverse forms. The complete analysis will be published elsewhere [21]. The

divergences are visible using the integral representation of distributional operators.

The paper is organized as follows: in section 2, we collect all mathematical tools

needed for the construction of the action and the derivation of the equations of motion.

In particular, we describe the action of various operators on the space of forms for the

supermanifold SM(3|2). In section 3, we recall the action for super Chern-Simons theory in

the factorized form. In section 4, we get to the main derivation of the equations of motion

in the non-factorized form, interaction terms, gauge invariance and supersymmetry. In

appendices, we collect some review material on A∞ algebras and their automorphisms and

some explicit computations omitted in main text.

2 Mathematical tools

2.1 Supermanifolds and superspaces

Let us briefly recall the most basic definitions in supergeometry. For a rigorous and thor-

ough mathematical treatment of the subject we suggest the reader to refer to [22–25]. The

most basic and most important example of superspace is given by R(p|q), that is the pair
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given by the manifold Rp and the sheaf C∞Rp
[
θ1, . . . , θq

]
R(p|q) =

(
Rp, C∞Rp

[
θ1, . . . , θq

])
. (2.1)

This means that the superspace is constructed over the usual space Rp and the functions

we consider are C∞ functions over the coordinates of the space Rp and they have poly-

nomial dependence on the Grassmann coordinates
{
θi
}q
i=1

. Since the θ coordinates are

anticommuting, this is equivalent to consider the exterior algebra generated by q variables

with value into C∞ functions:

C∞Rp
[
θ1, . . . , θq

] ∼= •∧
Rq ⊗ C∞Rp . (2.2)

This means that a general function can be expanded as

f(x, θ) = f0(x) + fi1(x)θi1 + . . .+ fq(x)θ1 . . . θq , (2.3)

where the Einstein’s summation convention is understood.

A (real) supermanifold SM of dimension dimSM=(p|q) is a superspace (|SM|,OSM)

where |SM| is a real manifold and OSM is a sheaf which is locally isomorphic to

C∞
[
θ1, . . . , θq

]
. In other words a real supermanifold of dimension (p|q) is a superspace

which is locally isomorphic to open subsets of R(p|q). In this paper we will only deal with

real supermanifolds: in particular this means that we will not be concerned by the subtleties

related to non-projected and non-split supermanifolds which arise only in the context of

complex supermanifolds [26–32].

We consider the case of a real supermanifold SM(3|2); in terms of the coordinates, we

define the following differential operators

∂a =
∂

∂xa
, Dα =

∂

∂θα
− (γaθ)α ∂a , Qα =

∂

∂θα
+ (γaθ)α ∂a , (2.4)

where the second and the third are known as superderivative and supersymmetry generator,

respectively. They satisfy the superalgebra relations

[∂a, ∂b] = 0 , {Dα, Dβ} = −2γaαβ∂a , {Qα, Qβ} = 2γaαβ∂a ,

{Dα, Qβ} = 0 , {∂a, Dα} = 0 = {∂a, Qα} . (2.5)

In 3d, for the local subspace we use the Lorentzian metric ηab = (−,+,+), and the real

and symmetric Dirac matrices γaαβ given by

γ0
αβ = (CΓ0) = −1 , γ1

αβ = (CΓ1) = σ3 ,

γ2
αβ = (CΓ2) = −σ1 , Cαβ = iσ2 = εαβ . (2.6)

Numerically, we have γ̂αβa = γaαβ and γ̂αβa = ηab(Cγ
bC)αβ = Cαγγa,γδC

δβ. The conjuga-

tion matrix is εαβ and a bi-spinor is decomposed as follows Rαβ = Rεαβ + Raγ
a
αβ where

R = −1
2ε
αβRαβ and Ra = Tr(γaR) are a scalar and a vector, respectively. In addition, it

is easy to show that γabαβ ≡
1
2 [γa, γb]αβ = εabcγcαβ .
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Given a form Φ, its differential is expanded on a basis of forms as follows

dΦ = dxa∂aΦ + dθα∂αΦ =

=
(
dxa + θγadθ

)
∂aΦ + dθαDαΦ ≡ V a∂aΦ + ψαDαΦ , (2.7)

where V a = dxa + θγadθ and ψα = dθα which satisfy the Maurer-Cartan equations

dV a = ψγaψ , dψα = 0 . (2.8)

We can compute the supersymmetry variation as a Lie derivative Lε with ε = εαQα +

εa∂a (εa are the infinitesimal parameters of the translations and εα are the supersymmetry

parameters) and by means of the Cartan formula we have

δεΦ = LεΦ = ιεdΦ + dιεΦ = ιε

(
dxa∂aΦ + dθα∂αΦ

)
+ dιεΦ =

= (εa + εγaθ)∂aΦ + εα∂αΦ + dιεΦ = εa∂aΦ + εαQαΦ + dιεΦ , (2.9)

where the term dιεΦ is simply a gauge transformation. It follows easily that δεV
a=δεψ

α=0

and δεdΦ = dδεΦ.

2.2 Superforms, integral forms and pseudoforms

As seen in [4, 5, 23, 33–37], the space of differential forms has to be extended in order to

define a meaningful integration theory. We define Ω(•|•) (SM) as the complete complex of

forms; they are graded w.r.t. two gradings as

Ω(•|•) = ⊕p,qΩ(p|q) , (2.10)

where q = 0, . . . ,m, p ≤ n if q = m, p ≥ 0 if q = 0 and p ∈ Z if q 6= 0,m. The usual wedge

product for form multiplication is defined as

∧ : Ω(p|r)(SM)× Ω(q|s)(SM) −→ Ω(p+q|r+s)(SM)(
ω(p|r), ω(q|s)

)
−→ ω(p|r) ∧ ω(q|s) , (2.11)

where 0 ≤ p, q ≤ n and 0 ≤ r, s ≤ m with (n|m) are the bosonic and fermonic dimensions

of the supermanifold SM.1 From this point on, we will omit the wedge product symbol to

avoid cumbersome expressions.

Locally, a (p|r)-form ω formally reads

ω =
∑
l,h,r

ω[a1...al](α1...αh)[β1...βr]dx
a1 . . . dxaldθα1 . . . dθαhδ

g(β1)
(dθβ1) . . . δ

g(βr)
(dθβr) (2.12)

where g(x) denotes the differentiation degree of the Dirac delta function corresponding to

the 1-form dθx. The three indices l, h and r satisfy the relation

l + h−
r∑

k=1

g(βk) = p , αl 6= {β1, . . . , βr} ∀l = 1, . . . , h , (2.13)

1Notice that the wedge product is defined to be graded commuting.
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0
d−→

Z↑
...

· · · Ω(−1|s) d−→
...

Z↑
· · · Ω(−1|m) d−→

Ω(0|0) d−→ · · · Ω(r|0) · · · d−→ Ω(n|0)

Z↑↓ Y Z↑↓ Y Z↑↓ Y
...

...
...

Ω(0|s) d−→ · · · Ω(r|s) · · · d−→ Ω(n|s)
...

...
...

Z↑↓ Y Z↑↓ Y Z↑↓ Y
Ω(0|m) d−→ · · · Ω(r|m) · · · d−→ Ω(n|m)

d−→ Ω(n+1|0) · · ·
↓ Y
...

d−→ Ω(n+1|s) · · ·
...

↓ Y
d−→ 0

Figure 1. Structure of the supercomplex of forms on a supermanifold of dimension (m|n) . The

form degree r increases going from left to right while the picture degree s increases going from up

to down. The rectangle contains the subset of the supercomplex where the various pictures are

isomorphic in the cohomology of the d differential.

where the last equation means that each αl in the above summation should be different

from any βk, otherwise the degree of the differentiation of the Dirac delta function can be

reduced and the corresponding 1-form dθαk is removed from the basis. The components

ω[i1...il](α1...αm)[β1...βr] of ω are superfields.

Due to the anticommuting properties of the δ forms, this product is by definition equal

to zero if the forms to be multiplied contain δ localized in the same variables dθ, since the

δ’s have to be considered as de Rham currents [32]. In figure 1, we display the complete

complex of forms. We refer to the first line as the complex of superforms, to the last line

as the complex of integral forms and to the middle lines as the complex of pseudoforms.

We notice that the first line and the last line are bounded from below and from above,

respectively. This is due to the fact that in the first line, being absent any delta functions,

the form number cannot be negative, and in the last line, having saturated the number

of delta functions we cannot admit any power of dθ (because of the distributional law

dθδ(dθ) = 0). In our case, we have n = 3 and m = 2, hence the complex has three lines.

The top form can be represented by the expression

ω(3|2) = ω(x, θ)εabcV
aV bV cεαβδ(ψ

α)δ(ψβ) , (2.14)

where ω(x, θ) is a superfield which has the properties

dω(3|2) = 0 , Lεω(3|2) = dΣ(2|2) . (2.15)

It is important to point out the transformation properties of ω(3|2) under a Lorentz

transformation of SO(2, 1). Considering V a, which transforms in the vector representa-

tion of SO(2, 1), the combination εabcV
aV bV c is clearly invariant. On the other hand,

dθα transform under the spinorial representation of SO(2, 1), say Λ β
α = (γab) β

α Λab with

Λab ∈ so(2, 1), and thus an expression like δ(dθα) is not covariant. Nonetheless, the com-

bination εαβδ(dθα)δ(dθβ) = 2δ(dθ1)δ(dθ2) is invariant using formal mathematical prop-

erties of distributions, for instance dθδ(dθ) = 0 and dθδ′(dθ) = −δ(dθ). We recall that

δ(ψα)δ(ψβ) = −δ(ψβ)δ(ψα). In addition, ω(3|2) has a bigger symmetry group: we can
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transform the variables (V α, ψα) under an element of the supergroup SL(3|2). The form

ω(3|2) is a representative of the Berezinian bundle, the equivalent for supermanifolds of the

canonical bundle on bosonic manifolds.

Let us consider the space Ω(1|1) in the middle complex, spanned (in the sense of formal

series) by the following psuedo-forms

Ω(1|1) = span
{

(dθα)n+1δ(n)(dθβ), dxa(dθα)nδ(n)(dθβ),

εabcdx
bdxc(dθα)nδ(n+1)(dθβ), εabcdx

adxbdxc(dθα)nδ(n+2)(dθβ)
}
n≥0

, (2.16)

where the number n is not fixed and it must be a non-negative integer. For example,

consider the pseudoform spanned by the second element in (2.16) with n = 1:

dxaA
(0)
aαβdθ

αδ′
(
dθβ
)

; (2.17)

we have the implicit summation for the indices α and β, thus (2.17) becomes

dxaA
(0)
aαβdθ

αδ′
(
dθβ
)

= dxa
[
A0
a11dθ

1δ′
(
dθ1
)
+A0

a12dθ
1δ′
(
dθ2
)
+A0

a21dθ
2δ′
(
dθ1
)
+A0

a22dθ
2δ′
(
dθ2
)]
.

(2.18)

We have to recall the distributional identity〈
xδ(p) (x) , φ

〉
= −p

〈
δ(p−1) (x) , φ

〉
, (2.19)

for any test function φ, which extends to the same rule for the 1-form dθ:

dθδ(p) (dθ) = −pδ(p−1) (dθ) . (2.20)

Hence we get

dxaA
(0)
aαβdθ

αδ′
(
dθβ
)

= dxa
[
−A0

a11δ
(
dθ1
)
+A0

a12dθ
1δ′
(
dθ2
)
+A0

a21dθ
2δ′
(
dθ1
)
−A0

a22δ
(
dθ2
)]
.

(2.21)

Notice that the first and the last terms are elements that can be spanned by

dxa(dθα)nδ(n)(dθβ) for n = 0; this means that by a redefinition of the fields A
(p)
aαβ we

can assume w.l.o.g. that α 6= β in the implicit sums. This reflects the property that

elements spanned by (dθα)n+1 δ(n)
(
dθβ
)

are exactly equal to 0 if α = β, ∀n ≥ 0.

Due to 1-forms dxa and due to the fact that we are free to set α 6= β, the number

of generators (monomial forms) at a given n is (8|8), but the total number of monomial

generators in Ω(1|1) is infinite.

2.3 Integration

Once the integral forms are defined, we have to clarify how the integration is performed.

For that we consider an integral form given by

ω(3|2) = ω(x, θ)εabcdx
adxbdxcεαβδ(dθα)δ(dθβ) , (2.22)

– 7 –
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where ω(x, θ) is a superfield section of the Berezinian bundle Ω(3|2)(SM). Then, the

integral on the supermanifold SM(3|2) is∫
SM(3|2)

ω(3|2) =

∫
ω(x, θ)[d3xd2θ] . (2.23)

We obtain the last integral, by performing the integration over dx’s, viewed as anticom-

muting variables. Consequently we use the Berezin integral, and the integration over dθ,

viewed as algebraic bosonic variables [2, 4, 36] and the distributional properties of δ(dθ).

The final expression contains a usual Riemann/Lebesgue integral on x’s and the Berezin

integral over θ’s. The symbol [d3xd2θ] is only a reminder on which variables the integral

has to be performed.

For example, in the case of SM(3|2) = R(3|2) we have∫
SM(3|2)

ω(3|2) =
1

2

∫
εαβDαDβω(x, θ)

∣∣∣
θ=0

[d3x] , (2.24)

where the Berezin integration has been performed and we are left with the Riemann/

Lebesgue integral.

We define a product (Serre’s duality) between Ω(p|q) and Ω(r|s) forms as〈
ω(p|r), ω(q|s)

〉
=

∫
SM(3|2)

ω(p|r)ω(q|s) , (2.25)

which is non-vanishing only if p+ q = 3 and r+ s = 2. Under these conditions, the spaces

Ω(p|r) and Ω(q|s) are isomorphic and therefore there is a (super)form in Ω(p|0) corresponding

to an integral form in Ω(3−p|2). By partially computing the form integral (leaving undone

only the Berezin integral over the coordinates θ and the Riemann/Lebesgue integral over

x), we have 〈
ω(p|0), ω(n−p|m)

〉
=

dim(Ω(p|0))∑
J=1

∫
ωJ ω̃

J (x, θ)[dxndmθ] , (2.26)

where ωJ (x, θ) are the coefficients (the index J stands for the collection of indices needed

to define the form) of the form ω(p|r), while ω̃J are the coefficients of the dual forms in

Ω(3−p|2). For the space R(3|2), if we consider for example the spaces Ω(1|0) and Ω(2|2) we have:

ω(1|0) = ωadx
a + ωαdθ

α , ωJ = {ωa, ωα} , (2.27)

and

ω̃(2|2) = ω̃aεabcdx
bdxcδ2(dθ) + ω̃αεabcdx

adxbdxcιαδ
2(dθ) , ω̃J = {ω̃a, ω̃ α} . (2.28)

Then, we can compute
〈
ω(1|0), ω̃(2|2)

〉
as

〈
ω(1|0), ω̃(2|2)

〉
=

∫
SM(3|2)

ω(1|0)ω(2|2) =

∫ (
ωaω̃

a − ωαω̃α
)

[dx3d2θ] . (2.29)

Notice that the product is a pairing and it does not need to be positive definite.
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If we use the same technique for Ω(1|1) and Ω(2|1), we have to recall that the dimension

of these spaces is infinite and therefore the sum over J must be substituted with formal

series. In the same way as described in the previous subsection, for a general supermanifold

SM(3|2) any form belonging to the middle complex Ω(p|1) is decomposed into an infinite

number of components as in (2.16).

If we use the following distributional relation

(dθ2)pδ(q)(dθ1)(dθ1)qδ(p)(dθ2) = (−1)p+qp!q! δ(dθ1)δ(dθ2) , (2.30)

where p, q ≥ 0, we can parametrise the space Ω(1|1) as

ω(1|1) =
∑
n

(
φ12
n (dθ1)n+1δ(n)(dθ2) + φ21

n (dθ2)n+1δ(n)(dθ1)+

+H12
a,ndx

a(dθ1)nδ(n)(dθ2) +H21
a,ndx

a(dθ2)nδ(n)(dθ1)+

+K12
[ab],ndx

adxb(dθ1)nδ(n+1)(dθ2) +K21
[ab],ndx

adxb(dθ2)nδ(n+1)(dθ1)

+ ψ12
n d

3x(dθ1)nδ(n+2)(dθ2) + ψ21
n d

3x(dθ2)nδ(n+2)(dθ1)
)
, (2.31)

where again the various components (φ12
n , φ

21
n , . . . , ψ

21
n ) are superfields. In the same way,

we can parametrise the space Ω(2|1) as

ω̃(2|1) =
∑
n

(
ρ12
n (dθ1)n+2δ(n)(dθ2) + ρ21

n (dθ2)n+2δ(n)(dθ1)+

+ L12
a,ndx

a(dθ1)n+1δ(n)(dθ2) + L21
a,ndx

a(dθ2)n+1δ(n)(dθ1)+

+M12
[ab],ndx

adxb(dθ1)nδ(n)(dθ2) +M21
[ab],ndx

adxb(dθ2)nδ(n)(dθ1)

+ τ12
n d

3x(dθ1)nδ(n+1)(dθ2) + τ21
n d

3x(dθ2)nδ(n+1)(dθ1)
)
, (2.32)

where the various components (ρ12
n , ρ

21
n , . . . , τ

21
n ) are superfields.

Now, we compute the product between two forms ω(1|1) and ω(2|1) as follows〈
ω(1|1), ω̃(2|1)

〉
=

∫
SM(3|2)

ω(1|1)ω̃(2|1)

=
∞∑
n=0

∫ (
(φ12
n τ

21
n − φ21

n τ
12
n ) + (ψ12

n ρ
21
n − ψ21

n ρ
12
n )+

+ (H12
a,nM

21
bc,n −H21

a,nM
12
bc,n)εabc + (K12

ab,nL
21
c,n −K21

ab,nL
12
c,n)εabc

)
[d3xd2θ] .

Apparently, the previous expression does not seem to be covariant under Lorentz

transformations. However, since the various superfields are independent, they can be re-

organized into covariant expressions of the form〈
ω(1|1), ω̃(2|1)

〉
=

∫
SM

ω(1|1)ω̃(2|1)

=

∞∑
n=0

∫ (
(Φαβ

n Ψγδ
n )εαγεβδ + (Rαβab,nS

γδ
c,n)εabcεαγεβδ

)
[d3xd2θ] ,

where we have collected the superfields φ12
n , . . . τ

21
n into the two superfields Φαβ

n ,Ψγδ
n ,

H12
a,n, . . . , L

21
a,n into Sγδc,n and M21

ab,n, . . . ,K
12
ab,n into Rαβab,n. The important issue of the Lorentz

covariance is discussed in the next subsection.
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2.4 Covariance on Ω(p|r)

In this subsection, we clarify how the Lorentz symmetry is implemented in the space of

pseudoforms. This is a crucial point in order to understand how the covariance is recovered

at any picture number.

We consider an infinitesimal Lorentz transformation δab +wab+O(w2) of SO(2, 1) (with

wab = −wba). It acts on coordinates xa, θα according to vector and spinor representations

δxa = wabx
b , δθα =

1

4
wab(γ

ab)αβθ
β . (2.33)

In the same way, the (1|0)-superforms (dxa, dθα) transform in the vector and spinor rep-

resentations, respectively. Thus, all forms belonging to the complex with zero picture,

namely Ω(p|0), transform under the tensorial representations of each single monomial. For

example, given ω[ab](α1...αn)dx
adxbdθα1 . . . dθαn , the components ω[ab](α1...αn)(x, θ) transform

under the anti-symmetrized product of the conjugated vector representation tensored with

n-symmetrized conjugated spinor representation.

If we consider the complex of integral forms Ω(p|2), and we perform an infinitesimal

Lorentz transformation. We have to use the distributional relation

δ(αdθ1 + βdθ2)δ(γdθ1 + δdθ2) =
1

det

(
α β

γ δ

)δ(dθ1)δ(dθ2) (2.34)

to check that the product of δ(dθ1)δ(dθ2) transforms as an inverse of a density (we avoid

the absolute value of the determinant since we are keeping track of the orientation of the

integration) and therefore, each monomial of the complex Ω(p|2) transforms according to a

tensorial representation and the inverse of the determinant of a Lorentz transformation in

the spinor representation (sections of the Berezinian bundle). This confirms the fact that

the top form d3xδ2(dθ) is indeed invariant under Lorentz transformations. In addition,

when the derivatives of the product δ(dθ1)δ(dθ2) are taken into account, for example as in

the Ω(−2|2) form

ω(−2|2) = ωαβιαιβδ(dθ
1)δ(dθ2) , (2.35)

the components ωαβ(x, θ) transform as in a linear tensor representation of the spinorial

representation. This means that the spinorial indices in (2.35) are covariantly contracted.

Therefore, for both the superforms Ω(p|0) and the integral forms Ω(p|2), the usual covariant

techniques can be used.

Let us now consider the infinite dimensional complex Ω(p|1). As seen above, it is un-

bounded from above and from below and each space Ω(p|1) is (double)-infinite dimensional.

Double means that we have two ways to construct a pseudo form, along δ(dθ1) and along

δ(dθ2). However, under any transformation which mixes θ1 with θ2 (for example Lorentz

transformations) the two directions indeed mix and the following situation arises.
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If we consider a single Dirac delta function δ(dθ1), we cannot use the distributional

identity (2.34), but we observe that, infinitesimally,

δ(dθ1)−→ δ

(
dθ1+

1

4
wab(γ

ab)1
βdθ

β

)
=

(
1− 1

4
(γab)1

1

)
δ(dθ1)+

1

4
wab(γ

ab)1
2dθ

2δ(1)(dθ1)+O(w2)

δ(dθ2)−→ δ

(
dθ2+

1

4
wab(γ

ab)2
βdθ

β

)
=

(
1− 1

4
(γab)2

2

)
δ(dθ2)+

1

4
wab(γ

ab)2
1dθ

1δ(1)(dθ2)+O(w2)

(2.36)

where δ(1)(dθα) is the first derivative of δ(dθα) and we have neglected higher order terms.

The first and the second terms come from the Taylor expansion of the Delta distribution,

with dθ1 and dθ2 respectively. This fact implies that in order to implement the Lorentz

symmetry in the space of pseudoforms Ω(p|1), one necessarily needs an infinite dimensional

space. Indeed, for a finite Lorentz transformation one needs all components in the n ex-

pansion of a generic pseudoform in Ω(p|1). For example, let us consider a (0|1)-pseudoform,

it can be written as

ω(0|1) = ω
(0|1)
0 + ω

(−1|1)
1 + ω

(−2|1)
2 + ω

(−3|1)
3 , (2.37)

where we collected the pieces with different powers of dx’s (we use a little abuse of notation

by omitting the dx′s and writing as superscripts only the fermionic form number and the

picture number). Since the first term ω
(0|1)
0 does not contains powers of dx, it can be

written as

ω
(0|1)
0 =

∞∑
n=0

(
ω

(n)
12 (x, θ)(dθ1)nδ(n)(dθ2) + ω

(n)
21 (x, θ)(dθ2)nδ(n)(dθ1)

)
, (2.38)

where the coefficients ω
(n)
12 (x, θ), ω

(n)
21 (x, θ) are superfields. Since we have distinguished the

terms with dθ1 and dθ2, the covariance of the expression is not manifest. Indeed, it might

be better to write (2.38) as

ω
(0|1)
0 =

∞∑
n=0

(
ω(n), β
α (x, θ)(dθα)nδ(n)(dθβ)

)
, (2.39)

where the indices α and β are summed, as conventionally. Notice that if α = β, we have

(dθα)n multiplying δ(n)(dθα) and, by using the distributional property (dθα)nδ(n)(dθα) =

(−1)nn!δ(dθα), the coefficient ω
(n), α
α (x, θ) is reabsorbed into a redefinition of ω(0)(x, θ)

which multiplies δ(dθα).

If we perform an infinitesimal Lorentz transformation wab, we have that

ω
(0|1)
0 →

∞∑
n=0

(
ω(n), β
α (x,θ)

(
dθα+

1

4
wab(γ

ab)αβdθ
β

)n
δ(n)

(
dθβ+

1

4
wab(γ

ab)βγdθ
γ

))

=

∞∑
n=0

ω(n), β
α (x,θ)

(
(dθα)n+

n

4
wab(γ

ab)αβ(dθα)n−1dθβ
)

×
(
δ(n)(dθβ)+

1

4
wab(γ

ab)βγdθ
γδ(n+1)(dθβ)

)
=

∞∑
n=0

(
ω̂(n), β
α (x,θ)(dθα)nδ(n)(dθβ)

)
, (2.40)
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where the coefficients ω̂
(n), β
α (x, θ) are suitably redefined using(

(dθα)n +
n

4
wab(γ

ab)αβ(dθα)n−1dθβ
)

=
(

1 +
n

4
wab(γ

ab)αα

)
(dθα)n +

n

4
wab

∑
β 6=α

(γab)αβ(dθα)n−1dθβ ,

(
δ(n)(dθβ) +

1

4
wab(γ

ab)βγdθ
γδ(n+1)(dθβ)

)
=

(
1− n+ 1

4
wab(γ

ab)ββ

)
δ(n)(dθβ) +

1

4
wab

∑
γ 6=β

(γab)βγdθ
γδ(n+1)(dθβ) . (2.41)

Then the coefficients ω
(n), β
α are shifted as

δω(n), β
α =

(
δβα +

n

4
wab(γ

ab)αα −
n+ 1

4
wab(γ

ab)ββ

)
ω(n), β
α

δω(n+1), β
α = −n+ 1

4
wab(γ

ab)βαω
(n), β
α

δω(n−1), β
α = −n

2

4
wab(γ

ab)αβω
(n), β
α . (2.42)

This holds at the infinitesimal level, but for a finite transformation all the coefficients

ω
(n), α
β are involved. Therefore, the covariance of the expressions is maintained only if

the complete series is taken into account. For other pieces ω
(−p|1)
p with p = 1, 2, 3, we

notice that the dependence upon dxa is polynomial and therefore they transform linearly

as always, but in addition there is a complete reshuffling of the coefficients of the series. In

the next sections we will adopt the notation of writing the Greek indices of the components

fields of forms both below.

2.5 Geometric picture changing operators: some explicit results

Having clarified the form complexes and having outlined how usual differential operators of

Cartan calculus (d, ιX ,LX) work on superspace, we point out that we can build a new set

of differential operators2 acting on general forms such as δ (ιv) ,Θ (ιv) , Zv,Yv, ηv [5, 14, 15].

These operators are used to change the picture number of a given form (and eventually its

form number as well) and are usually referred to as Picture Changing Operators (PCO’s).

The specific form of those operators is suggested by String Theory analogy [6, 8, 9] and

their geometric interpretation [34]. In the present section we provide some results that will

be used in the rest of the paper.

The first PCO we define is Y: given a (p|q)-form ω(p|q) ∈ Ω(p|q), we define the Picture

Raising Operator Y(0|s) as a multiplicative operator s.t.

Y(0|s) : Ω(p|q) −→ Ω(p|q+s)

ω(p|q) 7→ ω(p|q)Y(0|s) . (2.43)

2We use the words differential operator in order to indicate any generalised function of usual differential

operators.
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Since it is a multiplicative operator that raises the picture number by s, it follows that

locally

Y(0|s) ∝ δ (dθα1) · · · δ (dθαs) .

Again, given a (p|q)-form ω(p|q) ∈ Ω(p|q), we define the Picture Lowering Operator ZD
as

Zv : Ω(p|q) −→ Ω(p|q−1)

ω(p|q) 7→ Zv

(
ω(p|q)

)
= [d,−iΘ(ιD)]ω(p|q) , (2.44)

where [·, ·] denotes as usual a graded commutator and the action of the operator Θ(ιv) is

defined by the Fourier-like relation of the Heaviside step function

Θ(ιv)ω
(p|q)(dθα) =−i lim

ε→0

∫ ∞
−∞

dt

t+iε
eitιvω(p|q) (dθα) =−i lim

ε→0

∫ ∞
−∞

dt

t+iε
ω(p|q) (dθα+itvα) ,

(2.45)

where we have used the fact that eitιv is a translation operator. Hence the operator Θ(ιv)

is of the form

Θ(ιv) : Ωp|q → Ωp−1|q−1 ,

i.e. it lowers either the form degree or the picture degree. As we will see in the following

examples this operator does not give a pseudoform as a result, but rather an inverse

form, i.e. an expression containing negative powers of dθ. We remark, as was discussed

in [14], that the introduction of inverse form requires the definition of a new complex Ω
(•|•)
L

corresponding to the Large Hilbert Space (LHS) used in string theory. In the following,

we will denote simply by Ω(•|•) the space suitably enlarged. The relation between Large

Hilbert Space and Small Hilbert Space (SHS) was clarified in [14] in the case of a single

fermionic variable.

Here we list some examples, not only in order to explain how to manipulate the Θ(ιv)

operator, but also in order to prepare some results that will be used in the next sections. In

particular we have opted to highlight some of the following results to stress their particular

significance and because they will be directly employed.

Example 1. Let us consider the case where ω(p|q) = δ(dθα), we have

Θ(ιv)δ(dθ
α) = −i lim

ε→0

∫ ∞
−∞

dt

t+ iε
δ (dθα + itvα) =

−i
ivα

lim
ε→0

∫ ∞
−∞

dt

t+ iε
δ

(
t+

dθα

ivα

)
=

i

dθα
.

(2.46)

We can also obtain the previous result in a slightly different way:

Θ(ιv)δ(dθ
α) = −i lim

ε→0

∫ ∞
−∞

dt

t+ iε
δ (dθα + itvα) =

−i
ivα

∫
dy

y−dθα
ivα

δ (y) =
i

dθα
, (2.47)

where in the second passage we have performed the substitution y = dθα + ivαt.3

3Since we are working with pseudoforms, the rules of the δ distributions are to be considered formal

algebraic rules (for example, in the previous calculation − dθ
α

ivα
in not a c-number).
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Example 2. We have the following result:

Θ(ιv)δ
(p)(dθα) =

−i(−1)p+1p!

(dθβ)p+1
. (2.48)

The result already stated follows after a direct calculation:

Θ(ιv)δ
(p)(dθα) =−i lim

ε→0

∫ ∞
−∞

dt

t+iε

dp

d(dθα+ivαt)p
δ (dθα+ivαt) =

−i
ivα

∫
dy

y−dθα
ivα

dp

dyp
δ(y) =

=−i(−1)p
∫
dy

[
dp

dyp
(y−dθα)−1

]
δ(y) =−i(−1)p(−1)pp! (y−dθα)−p−1

∣∣∣
y=0

=
−i(−1)p+1p!

(dθα)p+1 .

In order to get more general formulas we consider other simple examples.

Example 3. Let us consider ω(p|q) = dθαδ(dθβ), we have

Θ(ιv)dθ
αδ(dθβ) = −i lim

ε→0

∫ ∞
−∞

dt

t+ iε
(dθα + ivαt) δ

(
dθβ + ivβt

)
=

=
i

vβdθβ

(
vβdθα − vαdθβ

)
=
−i

vβdθβ
v · dθεαβ , (2.49)

where we have defined −εαβv · dθ = vαdθβ − vβdθα. Observe that we expect to get 0 if

α = β, since dθαδ(dθα) = 0; if we put α = β in the result we exactly get 0.

Example 4. We have the following result:

Θ(ιv) (dθα)p δ(q)(dθβ) = i(−1)qq!
(dθα)p

(dθβ)q+1
, if q ≥ p . (2.50)

Again, the result follows from direct computation:

Θ(ιv) (dθα)p δ(q)(dθβ) = −i lim
ε→0

∫ ∞
−∞

dt

t+ iε
(dθα + ivαt)p

dq

d (dθβ + ivβt)
q δ
(
dθβ + ivβt

)
=

= −i(−1)q
dq

dyq

[
1

y − dθβ

(
dθα +

vα

vβ
(y − dθβ)

)p]
y=0

= −i(−1)q(dθα)p
dq

dyq

[(
y − dθβ

)−1
]
y=0

=

= i(−1)qq!
(dθα)p

(dθβ)q+1
, (2.51)

where we have made use of the assumption q ≥ p when expanding the binomial: the term

with highest power of y behaves like yp, but since it is multiplied by a y−1 term, we have a

global yp−1 which is annihilated by dq

dyq if q > p−1, i.e. q ≥ p. The same happens for all the

other terms of the expansion except for the (dθα)p term which is multiplied by
(
y − dθβ

)−1

and does not give a trivial result after derivation.

The following examples are studied because they are explicitly needed in the following

section.

– 14 –



J
H
E
P
0
3
(
2
0
2
0
)
0
4
3

Example 5. Let us consider ω(p|q) = (dθα)p+1 δ(p)(dθβ), we have

Θ(ιv) (dθα)p+1 δ(p)(dθβ) = −i(−1)pp!

[(
vα

vβ

)p+1

−
(
dθα

dθβ

)p+1
]
, (2.52)

where the result arises from a straightforward calculation.

Example 6. Let us consider ω(p|q) = (dθα)p+2 δ(p)(dθβ), we have

Θ(ιv) (dθα)p+2 δ(p)(dθβ)

= −i(−1)pp!

[
(p+ 2)dθα

(
vα

vβ

)p+1

− (p+ 1)dθβ
(
vα

vβ

)p+2

− dθα
(
dθα

dθβ

)p+1
]
, (2.53)

where again the result follows from direct calculation.

As a final example we evaluate the application of Θ to δ(dθα)δ(dθβ):

Example 7. Let us consider ω(p|q) = δ(dθα)δ(dθβ), we have

Θ(ιv)δ(dθ
α)δ(dθβ) = −i lim

ε→0

∫ ∞
−∞

dt

t+ iε
δ(dθα + ivαt)δ(dθβ + ivβt) =

=
−i
ivα

1

−dθα

ivα

δ

(
dθβ − ivβ dθ

α

ivα

)
=
ivα

dθα
δ
(
v · dθεαβ

)
. (2.54)

Observe that δ(v · dθ) allows us to rewrite the result in two other equivalent ways:

Θ(ιv)δ(dθ
α)δ(dθβ) =

ivβ

dθβ
δ
(
v · dθεαβ

)
, (2.55)

Θ(ιv)δ(dθ
α)δ(dθβ) =

1

2

(
ivα

dθα
δ
(
v · dθεαβ

)
+
ivβ

dθβ
δ
(
v · dθεαβ

))
. (2.56)

Starting from the operator Θ (ιv) we directly define the PCO δ (ιv) as the formal

derivative w.r.t. the argument of Θ:

δ (ιv) := Θ′ (ιv) , (2.57)

such that it acts on a general (p|q)-form by using the Fourier representation

δ (ιv)ω
(p|q)(dθα) =

∫ ∞
−∞

dteivιvω(p|q)(dθα) =

∫ ∞
−∞

dtω (dθα + itvα) . (2.58)

We define now the operator η as the geometric partner of η of String Theory [38] in

terms of its action on forms: given a (p|q)-form ω(p|q) ∈ Ω(p|q), we define the operator η as

η(ιv) :
(

Ω(p|q)
)
→Ω(p+1|q+1) ,

ω(p|q) 7→ ηvω
(p|q) =− 1

π
Π lim
ε→0

sin(ειv)ω
(p|q) =

i

2π
Π lim
ε→0

(
eiειv−e−iειv

)
ω(p|q). (2.59)
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where the action of eiειv is defined as a translation operator acting on generalised functions

of dθ and Π is the parity changing functor which allows us to convert bosonic/fermionic

quantities into fermionic/bosonic ones.4,5

Let us consider a few examples in order to understand better the action of this operator.

Example 8. Let us now consider the action of η on a generic fermionic p-form with picture

number 0:

ηdθp =
i

2π
Π lim
ε→0

(
eiειv − e−iειv

)
dθp =

i

2π
Π lim
ε→0

((dθ + ivε)p − (dθ − ivε)p) = 0 , (2.60)

thanks to the ε limit.

Example 9. Let us now consider the action of η on a Dirac delta form:

ηδ (dθ) =
i

2π
Π lim
ε→0

(
eiειv − e−iειv

)
δ (dθ) =

i

2π
Π lim
ε→0

(δ (dθ + iεv)− δ (dθ − iεv)) ; (2.61)

this result should be considered distributionally, i.e.

lim
ε→0
〈δ (x+ iεv)− δ (x− iεv) , f (x)〉 = lim

ε→0
(f (−iεv)− f (iεv)) = 0 , (2.62)

since being f a test function, it is certainly continuous in 0. This result is then extended

for x ≡ dθ.

Example 10. We have that the η operator acting on a general pseudoform with picture

number 1 gives 0:

η (dθα)p δ(q)
(
dθβ
)

= 0 . (2.63)

The result follows after a direct calculation in the distributional sense, i.e. where it is

involved the application to a generic C∞ test function.

Example 11. Let us now consider the action of η on a (−1|0)-inverse form:

η
1

dθ
=

i

2π
Π lim
ε→0

(
eiειv − e−iειv

) 1

dθ
=

=
i

2π
Π lim
ε→0

(
1

dθ + iεv
− 1

dθ − iεv

)
= δ(dθ) , (2.64)

where we have used the usual distributional formula

lim
ε→0

(
1

V + iε
− 1

V − iε

)
= 2πiδ (V ) . (2.65)

4Notice that in String Theory [38] there exists only one operator η associated to the zero-mode of the

ηz field emerging from bosonisation of β, γ system. In our case we define an ηv operator for each fermionic

direction.
5The limit in (2.59) has to be intended as a distributional limit.
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Example 12. Let us now consider the action of η on a general inverse form with picture

number 0:

η

(
1

dθ

)p
=

i

2π
Π lim
ε→0

(
eiειv−e−iειv

)( 1

dθ

)p
=

=
i

2π
Π lim
ε→0

((
1

dθ+iεv

)p
−
(

1

dθ−iεv

)p)
=

i

2π
Π lim
ε→0

(dθ−iεv)p−(dθ+iεv)p

(dθ2+ε2v2)p
=

=
(−1)p−1

(p−1)!
δ(p−1) (dθ) , (2.66)

where in the last passage we have left only the linear terms in εv since they are the only

ones contributing.

RMK 1. The operator η is, modulo the multiplicative constant i, the left inverse of the

operator Θ acting on pseudoforms, i.e.

η (ιv) Θ (ιv) = i . (2.67)

We can apply η to the definition of the operator Θ (ιv) (2.45) in order to find

η (ιv) Θ(ιv)ω
(p|q)(dθα)

=
1

2π
lim
ε,ε′→0

∫ ∞
−∞

dt

t+ iε

[
ω(p|q) (dθα + iε′vα + itvα

)
− ω(p|q) (dθα − iε′vα + itvα

)]
=

=
1

2π
lim
ε′→0

∫
dy

y − dθα − iε′vα
ω(p|q) (y)− lim

ε′→0

∫
dy

y − dθα + iε′vα
ω(p|q) (y) =

=
1

2π
lim
ε′→0

∫
2iε′vdy

(y − dθα)2 + ε′2v2
ω(p|q) (y) , (2.68)

and by passing the limit under the integral sign we get∫
dyiδ(y − dθα)Ω(p|q) (y) = iΩ(p|q) (dθα) , (2.69)

i.e.

η (ιv) Θ (ιv) = i . (2.70)

Example 13. We have the following results for general inverse forms of picture degree 0

and 1:

η
(dθα)p

(dθβ)
q =

(−1)q−1

(q − 1)!
(dθα)p δ(q−1)

(
dθβ
)
, (2.71)

η
1

(dθα)p
δ(q)

(
dθβ
)

=
(−1)p−1

(p− 1)!
δ(p−1) (dθα) δ(q)

(
dθβ
)
. (2.72)

The proof of (2.71) is a direct consequence of example 8, having used the result of

example 12, i.e. the operator η passes through the numerator without any contribution.

The proof of (2.72) is again a direct consequence of example 9, having used the result

of example 12.
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RMK 2. The operator Θ is, modulo the multiplicative constant i, the left inverse of the

operator η on inverse forms of picture degree 0 and negative form degree, i.e.

Θ (ιv) η (ιv) = i . (2.73)

The proof is a direct consequence of the previous example and of (2.50):

Θ (ιv) η (ιv)

(
(dθα)p

(dθβ)
q

)
= Θ (ιv)

(
(−1)q−1

(q − 1)!
(dθα)p δ(q−1)

(
dθβ
))

=

=
(−1)q−1

(q − 1)!
i(−1)q−1(q − 1)!

(dθα)p

(dθβ)q
= i

(
(dθα)p

(dθβ)
q

)
=⇒

=⇒ Θ (ιv) η (ιv) = i . (2.74)

By using the results from the previous propositions we want now to investigate the

commutation relation between the operator η and the operator Zv. Before doing this, let

us study the commutation relation between the operator η and the exterior derivative d:

RMK 3. The operator η and the operator d anticommute:

{η, d} = 0 . (2.75)

The proof follows after direct calculation on different types of inverse forms and pseudo-

forms.

RMK 4. The successive application of the operators η and Zv gives 0:

ηZv = Zvη = 0 . (2.76)

The proof is simply an application of the definition of ZD and of the results (2.67), (2.73)

and (2.75):

ηZv = η (dΘ(ιv) + Θ(ιv)d) = −dηΘ(ιv) + ηΘ(ιv)d = 0 ; (2.77)

Zvη = (dΘ(ιv) + Θ(ιv)d) η = dΘ(ιv)η + Θ(ιv)dη = id−Θ(ιv)ηd = 0 . (2.78)

3 Super Chern-Simons actions (SCS)

In the present section, we review some of the ingredients needed for the construction of

the main body of the paper. We first review D=3 N=1 super Chern-Simons theory in its

classical derivation [39]. We start from the superspace construction, but we provide also

the component action. Then, we reformulate the theory using the geometrical methods

discussed in the previous section and we give the rules for a Chern-Simons theory on any

supermanifold. We show that it leads to a very complicate non-factorized form, to be the

basis for a theory on any supermanifold.
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3.1 SCS in components and in superspace

We start from a (1|0)-superform A(1|0) = AaV
a + Aαψ

α, (where the superfields Aa(x, θ)

and Aα(x, θ) take values in the adjoint representation of the gauge group) and we define

the field strength

F (2|0) = dA(1|0) +A(1|0)A(1|0) = F[ab]V
aV b + FaαV

aψα + F(αβ)ψ
αψβ , (3.1)

where

F[ab] = ∂[aAb] + [Aa, Ab] ,

Faα = ∂aAα −DαAa + [Aα, Ab] ,

F(αβ) = D(αAβ) + γaαβAa + {Aα, Aβ} . (3.2)

In order to reduce the redundancy of degrees of freedom of Aa and Aα of the (1|0)-form

A(1|0), one imposes (by hand) the conventional constraint

ιαιβF
(2|0) = 0 ⇐⇒ F(αβ) = D(αAβ) + γaαβAa + {Aα, Aβ} = 0 , (3.3)

from which it follows that Faα = γa,αβW
β with Wα = ∇β∇αAβ and ∇αWα = 0. The

gaugino field strength Wα is gauge invariant under the non-abelian transformations δAα =

∇αΛ. These gauge transformations descend from the gauge transformations of A(1|0),

δA(1|0) = ∇Λ where Λ is a (0|0)-form.

The field strengths F[ab], Faα, F(αβ) satisfy the following Bianchi’s identities

∇[aFbc] = 0 , ∇αF[ab] + (γ[a∇b]W )α = 0 ,

F[ab] +
1

2
(γab)

α
β∇αW β = 0 , ∇αWα = 0 , (3.4)

and by expanding the superfields Aa, Aα and Wα in components we have

Aα = (γaθ)αaa + λα
θ2

2
, Aa = aa + λγaθ + . . . , Wα = λα + fαβθ

β + . . . , (3.5)

where aa(x) is the gauge field, λα(x) is the gaugino and f(αβ) = γabαβf[ab] is the gauge field

strength with f[ab] = ∂[aab]. (The Wess-Zumino gauge θαAα = 0 has been used.)

In terms of those fields, the super-Chern-Simons Lagrangian becomes

SSCS =

∫
TrAα

(
Wα − 1

6
[Aβ , F

(αβ)]

)
[d3xd2θ] , (3.6)

(we denote by [d2θ] the Berezin integral over the θ’s variables), which in component reads

SSCS =

∫
Tr

(
εabc

(
aa∂bac +

2

3
aaabac

)
+ λαε

αβλβ

)
[d3x] . (3.7)

That coincides with the bosonic Chern-Simons action with free non-propagating fermions.
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3.2 SCS on supermanifold

In order to obtain the same action by integration on supermanifolds we consider the rheo-

nomic action and the corresponding action principle [40–42]. It requires the choice of a

bosonic submanifold M(3) immersed into a supermanifold SM(3|2) and a (3|0)-form on it

Srheo[A,M(3)] =

∫
M(3)⊂SM(3|2)

L(3)(A, dA) . (3.8)

Here the choice of the (3|0)-form L(3) is a three-form Lagrangian constructed with the

superform A, and its derivatives dA, without using the Hodge dual operator (that is,

without any reference to a metric on the supermanifold SM(3|2)). The action Srheo[A,M(3)]

is a functional of the superfields and of the embedding of M(3) into SM(3|2). We can then

consider the classical equations of motion by minimizing the action both respect to the

variation of the fields and of the embedding. However, the variation of the immersion can

be compensated by diffeomorhisms on the fields if the action L(3) is a differential form.

This implies that the complete set of equations associated to action (3.8) are the usual

equations obtained by varying the fields on a fixed surface M(3) with the proviso that

these equations hold not only on M(3), but on the whole supermanifold SM(3|2).

The rules to build the action (3.8) are listed and discussed in [40–42] in detail. An

important ingredient is the fact that for the action to be supersymmetric invariant, the

Lagrangian must be invariant up to a d-exact term and, in addition, if the algebra of

supersymmetry closes off-shell (either because there is no need of auxiliary fields or because

it exists a formulation with auxiliary fields), the Lagrangian must be closed:

dL(3)(A) = 0 , (3.9)

upon using the rheonomic parametrization. This amounts to set Fαβ = 0, which is an

algebraic equation and it can be directly used in the action. One of the rules of the

geometrical construction for supersymmetric theories given in [40–42] is that by setting to

zero the coordinates θα and its differential ψα = dθα, the Lagrangian

L(3)(A, dA)
∣∣∣
θ=0,dθ=0

= Tr

(
εabc

(
aa∂bac +

2

3
aaabac

)
+ λαεαβλ

β

)
, (3.10)

reduces to the component Lagrangian invariant under supersymmetry (up to a total deriva-

tive). Furthermore, the equations of motion in the full-fledged superspace implies the

rheonomic constraints (which coincide with the conventional constraints of superspace

formalism).

In order to express the action (3.8) in a more geometrical way by including the de-

pendence upon the embedding into the integrand, we use the Poincaré dual form (already

named PCO) Y(0|2) dual to the immersion of M(3) into SM(3|2). The Poincaré dual form

Y(0|2) is closed, it is not exact and any of its variation is d-exact. The action can now be

written on the full supermanifold as

S[A] =

∫
SM(3|2)

L(3|0)(A, dA)Y(0|2) . (3.11)
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Therefore, by choosing the PCO Y(0|2) = θ2δ2(dθ), its factor θ2 projects the La-

grangian L(3|0)(A, dA) to L(3)(A, dA)θ=0 while the factor δ2(dθ) projects the latter to

L(3)(A, dA)θ=0,dθ=0 reducing L(3)(A, dA) to the component Lagrangian (3.7).

Any variation of the embedding yields δY(0|2) = dΛ(−1|2) and leaves the action invariant

if the Lagragian is closed. The rheonomic Lagrangian L(3|0)(A, dA) reads

L(3|0)(A, dA) = Tr

(
A(1|0)dA(1|0) +

2

3
A(1|0)A(1|0)A(1|0) +W (0|0)αεαβW

(0|0)βV 3

)
Y(0|2) ,

(3.12)

which is a (3|2) form, V 3 = 1
3!εabcV

aV bV c.6 Again, by choosing the PCO Y(0|2) = θ2δ2(dθ)

we get the component action (3.7) and the third term in the action is fundamental to get

the mass term for the non-dynamical fermions.

This is the most general action and the closure of L(3|0) implies that any gauge in-

variant and supersymmetric action can be built by choosing a PCO Y(0|2) inside the same

cohomology class. Therefore, starting from the rheonomic action, one can choose a dif-

ferent “gauge” — or better said a different immersion of the submanifold M(3) inside the

supermanifold SM(3|2) — leading to different forms of the action with the same physical

content. It should be stressed, however, that the choice of Y(0|2)
new (defined in the follow-

ing subsection), is a preferred “gauge” choice, which allows us to derive the conventional

constraint by varying the action without using the rheonomic parametrization.

3.3 SCS in superspace revised

The choice of the PCO could be done observing that there are representatives respecting

some isometries. For example the new operator

Y(0|2)
new = V aV b(γab)

αβιαιβδ
2(ψ) , (3.13)

is manifestly supersymmetric. Computing the expression in the integral (3.11), we see

that Y(0|2)
new picks up al least two powers of ψ’s and one power of V a and that forces us to

expand L(3|0) as 3-form selecting the monomial ψγaψV
a dual to Y(0|2)

new . That finally gives

the supersymmetric action described in (3.6).

The equations of motion derived from the new action are

Y(0|2)
new

(
dA(1|0) +A(1|0)A(1|0)

)
= 0 =⇒

V 3(γaι)αδ2(ψ)Faα + (V aV b)εabc(γ
c)αβF(αβ) = 0 . (3.14)

The equations of motion correctly imply F(αβ) = 0 (which is the conventional constraint)

and Wα = 0 which are the super-Chern-Simons equation of motions. The second condition

follows from Fαβ = 0 and by the Bianchi identities which implies that Faα = γaαβW
β .

Notice that this formulation allows us to get the conventional constraint as an equation

of motion. In particular we find that the equations of motion, together with the Bianchi

6This (3|0) Lagrangian in (3.12) already appeared in [43] by reducing their formula from N = 2 to

N = 1.
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identity, imply the vanishing of the full field-strength.
Y(0|2)

new F (2|0) = 0,

dF (2|0) + [A(1|0), F (2|0)] = 0,

=⇒ F (2|0) = 0 . (3.15)

3.4 SCS with semi-supersymmetric PCO

The choice of the PCO implies the form of the action and we present here another possi-

bility. We consider the following expression

Y(0|2)
half = V aθαεαβγ

βγ
a ιγδ

2(ψ) . (3.16)

It is closed because of δ2(ψ) and by using gamma matrices algebra. The presence of the

explicit θ implies that it is not manifestly supersymmetric, but its variation is d-exact

δεY
(0|2)
half = d

(
3

2
εαιαθ

2δ2(ψ)

)
= Lε

(
3

2
Y(0|2)

half

)
. (3.17)

It is easy to show that this PCO is also not exact.

Before computing the action, we discuss some other aspect of the geometry of the

PCO (3.17). Consider the expression

ω(3|0) = εabcV
aV bθγcψ , (3.18)

this expression is the Hodge dual to the PCO (3.16) since it satisfies

ω(3|0)Y(0|2)
half = θ2Vol(3|2) . (3.19)

Since the right hand side is closed (since it is a top integral form) and since Y(0|2)
half is also

closed, ω(3|0) has to be closed or its variation is the kernel of Y(0|2)
half . Let us verify the first

possibility. Computing the variation of ω(3|0), we have

dω(3|0) = 2V aψγaψψ · θ + V aV bεabcψγ
cψ , (3.20)

which does not vanish. Nevertheless, we can add two new terms and get

ω(3|0) =

(
εabcV

aV bθγcψ + V aψγaψθ
2 +

1

3
εabcV

aV bV c

)
. (3.21)

The additional terms are needed to make ω(3|0) closed, but it does not affect the rela-

tion (3.19) because of the powers of θ’s and the powers of V ’s.

3.5 SCS with pseudoforms

We consider now a new PCO. This is motivated by string theory, but we do not discuss

here its origin, since it can be also described in terms of the supermanifold structure. The

fermionic space spanned by the coordinates θα can be decomposed in terms of two commut-

ing spinors vα and wα with the property that vαεαβw
β ≡ det(v,w)≡ v ·w= 1 where (v,w)
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is the 2×2 matrix built with the spinors. Notice that any spinor θα can be decomposed on

that basis θα =−vα(w ·θ)+wα(v ·θ). Notice also that θαεαβθ
β = 2(v ·θ)(w ·θ).

Any PCO Y(0|2) can be decomposed into the product of two PCO’s Y(0|1) as follows

Y(0|2) = Y(0|1)
v Y(0|1)

w + dΩ . (3.22)

The piece Ω is a (−1|2) form which depends on v and w. The two PCO’s are equivalent

in the sense that they belong to the same cohomology class and they increase the picture by

one unity. One can check by direct inspection that the product of the two PCO’s inserted

in the action does not lead to the conventional constraint Fαβ = 0 and therefore the exact

term in (3.22) relating the two actions is important to get the full-fledged action principle.

Let us analyse the action with the new choice of PCO:

SSCS =

∫
SM(3|2)

(
AdA+

2

3
AAA+WαWαV

3

)
Y(0|1)
v Y(0|1)

w , (3.23)

where the Ω-term is dropped. Let us put aside the interaction term for the moment —

interaction terms will be discussed in the forthcoming sections — and let us distribute the

two Y’s on the two pieces of the action as follows

Squad
SCS =

∫
SM(3|2)

(
AdAY(0|1)

v Y(0|1)
w +WαWαY(0|1)

v Y(0|1)
w V 3

)
. (3.24)

Since the PCO’s are closed, we can also bring them after each connection term A(1|0) and

after the spinorial W (0|0) forms as

Squad
SCS =

∫
SM(3|2)

(
(AY(0|1)

v )d(AY(0|1)
w ) + (WαY(0|1)

v )(WαY(0|1)
w )V 3

)
, (3.25)

converting the gauge connection to a (1|1) form as

A(1|0) → A(1|1) ≡ A(1|0)Y(0|1)
v . (3.26)

In the same way, the (0|0)-form Wα is converted into a (0|1)-pseudoform. Notice that, if

we change the basis by linearly composing v and w, we can write the same formula, up

to an unessential overall factor. We can now forget that the connection pseudoform A(1|1)

was originated by the factorised form (3.26), and consider an action built starting from a

general (1|1)-pseudoform, the same applies for the pseudoform W (0|1). Finally and most

importantly, passing from A(1|0), which has a finite number of components, to A(1|1), which

has an infinite number of them, we have made an important assumption: we have moved

to an infinite dimensional space.

Therefore, we conclude that we have to take into account the generic action

SSCS =

∫
SM(3|2)

(
A(1|1)dA(1|1) +W (0|1),αεαβW

(0|1),βV 3
)
. (3.27)

The wedge product is taken in the space of pseudoforms, therefore we have used the con-

vention that two (0|1)-forms must be multiplied with the wedge product.

– 23 –



J
H
E
P
0
3
(
2
0
2
0
)
0
4
3

In this way, we have succeeded to find the natural geometrical formulation of super

Chern-Simons theory on a three-dimensional supermanifold. According to this observation,

we notice that we have only explored the case N = 1. This means two θ’s and therefore

two PCO’s for the factorization Y(0|2)
new = YvYw + dΩ. However, the same conclusion can be

achieved in any supermanifold with an even number of θ’s and, if the even dimension of

the fermionic sector is m = 2r, we have the action

SSCS =

∫
SM(3|2r)

(
A(1|r)dA(1|r) +W (0|r),αεαβW

(0|r),βV 3
)
, (3.28)

where A(1|r) is a (1|r)-pseudoform and W (0|r),α a (0|r)-pseudoform. One can wonder

whether the Lagrangian is closed. For that, we need the rheonomic conditions and the

observation that they are left unchanged by multiplying them by the factor Yw.

We remark that in two previous works of one of the author, see [44, 45], a non-factorized

form of the action has been used. That has led, in the first case to new results and in

the second case to a complete D=3 N=1 supergravity action in all possible superspace

representations.

4 General super Chern-Simons theory

The following section is the main core of the present work. We demonstrate that the

non-factorized action (3.27) yields the same non-interacting equations of motion of super-

Chern-Simons theory. We first write the explicit action by expanding the A(1|1) form

in components, and, by integrating according to the previous discussion on the various

variables, we arrive at the action principle from which we compute the equations of motion.

By an iterative procedure we verify that the physical content of these equations is exactly

the same as free Chern-Simons theory. Then we introduce the interactions. Because of

the picture number, the interaction term has to be introduced in a non-trivial way leading

to a non-associative product. This product will be the starting point of an A∞-algebra

generated by the gauge-invariance requirement. Finally we discuss the closure of the gauge

algebra and the supersymmetric properties of the obtained Lagrangian.

4.1 The Lagrangian

Let us start from the pseudoform A(1|1) = A0 +A1 +A2 +A3, where the subscript denotes

the number of dx’s in the expression. We then have the decomposition:

A0 =
∞∑
p=0

A
(p)
αβ(dθα)p+1δ(p)(dθβ) , (4.1)

A1 =
∞∑
p=0

dxmA
(p)
mαβ(dθα)pδ(p)(dθβ) , (4.2)

A2 =

∞∑
p=0

dxmdxnA
(p)
[mn]αβ(dθα)pδ(p+1)(dθβ) , (4.3)

A3 =

∞∑
p=0

dxmdxndxrA
(p)
[mnr]αβ(dθα)pδ(p+2)(dθβ) . (4.4)
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Let us clarify the notation: we have to fix a convention for the field A1|1, i.e. we want to

decide whether it is an even or odd field. However we are not free to choose a convention

for the following reason: the field A and the field dA have opposite parity, since the exterior

derivative d is an odd operator, i.e. they commute AdA = dAA. This implies that

d(AA) = dAA+AdA if A is even , d(AA) = dAA−AdA if A is odd.

In the even case we get that the Lagrangian AdA is trivial, since it is equal to 1
2d(AA), while

in the odd case we don’t get a trivial Lagrangian, as it happens in usual Chern-Simons

theory; therefore we must chose A(1|1) to be odd. This implies the following parities for

the fields appearing in Ai, i = 0, 1, 2, 3:

A
(p)
αβ , A

(p)
[mn]αβ are even fields and A

(p)
mαβ , A

(p)
[mnr]αβ are odd fields ∀p ∈ N. (4.5)

Having these parities fixed we can track the signs when moving a field across another one.

Now let us derive the expressions for dAi, i = 0, 1, 2, 3:

dA0 =

∞∑
p=0

[
dxm(∂mA

(p)
αβ)(dθα)p+1δ(p)(dθβ) + dθγ(∂γA

(p)
αβ)(dθα)p+1δ(p)(dθβ)

]
=

=
∞∑
p=0

[
dxm

(
∂mA

(p)
αβ

)
(dθα)p+1δ(p)(dθβ) +

(
∂αA

(p)
αβ

)
(dθα)p+2δ(p)(dθβ)+

− p
(
∂βA

(p)
αβ

)
(dθα)p+1δ(p−1)(dθβ)

]
= dA

(0)
0 + dA

(1)
0 . (4.6)

Notice that we have decomposed the sum in γ in a part with γ = α and in a part with

γ = β. Let us enumerate the other dAi’s:

dA1 = −
∞∑
p=0

[
dxmdxn

(
∂[nA

(p)
m]αβ

)
(dθα)pδ(p)(dθβ) + dxm

(
∂αA

(p)
mαβ

)
(dθα)p+1δ(p)(dθβ)+

− pdxm
(
∂βA

(p)
mαβ

)
(dθα)pδ(p−1)(dθβ)

]
= dA

(1)
1 + dA

(2)
1 ; (4.7)

dA2 =
∞∑
p=0

[
dxmdxndxr

(
∂[rA

(p)
mn]αβ

)
(dθα)pδ(p+1)(dθβ)+

+ dxmdxn
(
∂αA

(p)
[mn]αβ

)
(dθα)p+1δ(p+1)(dθβ)

− (p+ 1)dxmdxn
(
∂βA

(p)
[mn]αβ

)
(dθα)pδ(p)(dθβ)

]
= dA

(2)
2 + dA

(3)
2 ; (4.8)

dA3 = −
∞∑
p=0

[
dxmdxndxr

(
∂αA

(p)
[mnr]αβ

)
(dθα)p+1δ(p+2)(dθβ)+

− (p+ 2)dxmdxndxr
(
∂βA

(p)
[mnr]αβ

)
(dθα)pδ(p+1)(dθβ)

]
= dA

(3)
3 . (4.9)

In the final expression for the four terms we denote with a superscript the number of

dx’s appearing. In the Lagrangian AdA, not every combination of the factors in the

decompositions of A and dA is allowed, indeed we only need the terms where d3x appears,
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in order to obtain the correct top-form for the bosonic integration. Thus the allowed

combinations are

AdA = A0

(
dA

(3)
2 + dA

(3)
3

)
+A1

(
dA

(2)
1 + dA

(2)
2

)
+A2

(
dA

(1)
0 + dA

(1)
1

)
+A3dA

(0)
0 . (4.10)

We now want to evaluate the terms of (4.10) in order to obtain the explicit form of the

Lagrangian. Let us start from the last term, it has the form

A3dA
(0)
0 =

 ∞∑
p=0

dxmdxndxrA
(p)
[mnr]αβ(dθα)pδ(p+2)(dθβ)


 ∞∑
q=0

(
∂µA

(q)
µν

)
(dθµ)q+2δ(q)(dθν)− q

(
∂νA

(q)
µν

)
(dθµ)q+1δ(q−1)(dθν)

 . (4.11)

Recall that by definition we have δ(dθ1)δ(dθ1) = 0 = δ(dθ2)δ(dθ2), this implies that in the

previous product we have ν = α and µ = β. Moreover, in order to avoid vanishing terms,

we need the power of dθα in the first term to be smaller or equal to the derivation order of

δ(dθα) in the second term and the same holds true for dθβ and δ(dθβ) as well. This fixes

uniquely q in terms of p and therefore we have the reduction to a single sum as

A3dA
(0)
0 =

 ∞∑
p=0

dxmdxndxrA
(p)
[mnr]αβ

(
−p!(p+2)!∂βA

(p)
βα+p!(p+2)!(p+1)∂αA

(p+1)
βα

)δ(dθβ)δ(dθα) .

(4.12)

The factors in (4.12) are obtained by integrations by parts and by fixing q = q(p) as

discussed above.

In an analogous way we can calculate the other terms so that finally we get the La-

grangian:

L(3|2) = A(1|1)dA(1|1)

=
∞∑
p=0

[
−p!(p+ 1)!A

(p)
αβ

(
∂[rA

(p)
mn]βα − ∂βA

(p−1)
[mnr]βα + (p+ 2)∂αA

(p)
[mnr]βα

)
+

− p!p!A(p)
[mαβ

(
∂rA

(p)
n]βα − ∂βA

(p−1)
nr]βα + (p+ 1)∂αA

(p)
nr]βα

)
+

− p!(p+ 1)!A
(p)
[mnαβ

(
∂r]A

(p)
βα − ∂βA

(p)
r]βα + (p+ 1)∂αA

(p+1)
r]βα

)
+ (4.13)

− p!(p+ 2)!A
(p)
[mnr]αβ

(
−∂βA

(p)
βα + (p+ 1)∂αA

(p+1)
βα

) ]
dxmdxndxrδ(dθβ)δ(dθα) .

Notice that we have manifestly collected the dx’s and δ(dθ)’s to ease the computation of

the action integration on dx’s and dθ’s:

S =

∫
SM(3|2)

Tr
(
A(1|1)dA(1|1)

)
=

∫ [
d3xd2θ

]
TrL(0|0) . (4.14)
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4.2 Equations of motion from the action

We can now investigate the equations of motion by varying the action w.r.t. the various

fields; let us consider for example all the terms with A[mnr]αβ(p) in the Lagrangian (4.13):[
−p!(p+2)!A

(p)
mnrαβ∂βA

(p)
βα+p!(p+2)!(p+1)A

(p)
mnrαβ∂αA

(p+1)
βα

− (p+1)!(p+2)!A
(p+1)
αβ ∂βA

(p)
mnrβα+p!(p+1)!(p+2)A

(p)
αβ∂αA

(p)
mnrβα

]
εmnrεβα , (4.15)

where we have inserted the totally antisymmetric symbols ε as reminders for the symmetry

of bosonic and fermionic indices. We can recast the last two terms of the previous expression

as follows[
∂α

(
A

(p)
αβA

(p)
mnrβα

)]
εmnrεβα =

[
A

(p)
mnrαβ

(
∂βA

(p)
βα

)
+A

(p)
αβ

(
∂αA

(p)
mnrβα

)]
εmnrεβα =⇒

=⇒
[
A

(p)
αβ

(
∂αA

(p)
mnrβα

)]
εmnrεβα =

[
∂α

(
A

(p)
αβA

(p)
mnrβα

)
−A(p)

mnrαβ

(
∂βA

(p)
βα

)]
εmnrεβα ; (4.16)[

−A(p+1)
αβ

(
∂βA

(p)
mnrβα

)]
εmnrεβα =

[
−∂β

(
A

(p+1)
αβ A

(p)
mnrβα

)
+A

(p)
mnrαβ

(
∂αA

(p+1)
βα

)]
εmnrεβα .

(4.17)

where we have used the graded Leibniz’s rule according to the parity of the fields described

in (4.5). The total derivative terms may be neglected since it would lead to null terms after

the Berezin’s integration of the θ’s.

We can now insert (4.16) and (4.17) in (4.15) and we get[
2A

(p)
mnrαβ

(
−p!(p+ 2)!∂βA

(p)
βα + (p+ 1)!(p+ 2)!∂αA

(p+1)
βα

)]
εmnrεβα . (4.18)

The variation of the action w.r.t. the field A[mnr]αβ(p) leads to:

− ∂βA
(p)
βα + (p+ 1)∂αA

(p+1)
βα = 0 , ∀ p ∈ N . (4.19)

In an analogous way we can obtain the other equations of motion by varying the action

w.r.t. the fields A
(p)
αβ , A

(p)
mαβ and A

(p)
[mn]αβ ; the resulting equations are

∂rA
(p)
βα − ∂βA

(p)
rβα + (p+ 1)∂αA

(p+1)
rβα = 0 ∀ p ∈ N ; (4.20)

∂[rA
(p)
n]βα − ∂βA

(p−1)
[nr]βα + (p+ 1)∂αA

(p)
[nr]βα = 0 ∀ p ∈ N ; (4.21)

∂[rA
(p)
mn]βα − ∂βA

(p−1)
[mnr]βα + (p+ 2) ∂αA

(p)
[mnr]βα = 0 ∀ p ∈ N , (4.22)

where we stress that in (4.21) and in (4.22) if p = 0 the fields A
(−1)
[nr]βα and A

(−1)
[mnr]βα are

both defined to be zero.

4.3 Equations of motion from the curvature
(
F (2|1) = dA(1|1) = 0

)
In this subsection we briefly show that the equations of motion already derived from the

variational principle are the same that emerge by the usual flatness condition of (non-

interacting) Chern-Simons theory F = dA = 0 at picture 1. For the sake of clarity we

recall the strategy used to get the EoM. We gather the equations by the number of dx’s
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appearing, in other words we consider the various parts which are homogeneous in dx’s; the

four homogeneous parts are then formal series into the dθ’s, therefore by power counting

we can set each single term of the series equal to zero. This yields

dA
(0)
0 = 0 =⇒ ∂βA

(p)
βα − (p+ 1)∂αA

(p+1)
βα = 0 ; (4.23)

dA
(1)
0 + dA

(1)
1 = 0 =⇒ ∂rA

(p)
βα − ∂βA

(p)
rβα + (p+ 1)∂αA

(p+1)
rβα = 0 ; (4.24)

dA
(2)
1 + dA

(2)
2 = 0 =⇒ ∂[rA

(p)
n]βα − ∂βA

(p−1)
[nr]βα + (p+ 1)∂αA

(p)
[nr]βα = 0 ; (4.25)

dA
(3)
2 + dA

(3)
3 = 0 =⇒ ∂[rA

(p)
mn]βα − ∂βA

(p−1)
[mnr]βα + (p+ 2)∂αA

(p)
[mnr]βα = 0 . (4.26)

This makes clear that the EoM emerging from the variational principle are exactly the

same as those obtained by requiring the flatness of the connection A.

4.4 Reducing the equations of motion

In the previous subsections we have explicitly obtained the equations of motion for super

Chern-Simons theory with pseudoforms. Since the Lagrangian (4.13) we started with

contains an infinite number of fields, we therefore have an infinite number of EoM. We

now want to use these equations to determine which fields, when on shell, can be expressed

as d-exact terms, i.e. we want to find out explicitly the cohomology (w.r.t. those forms

which are related to the θ-dependent gauge parameters) representatives of the free theory

at picture number 1. In this subsection we omit the calculations and present only the

strategy to apply and its result. The interested reader is suggested to refer to appendix B

where the explicit calculations are presented.

We use the following strategy: first we expand the fields in powers of θ’s (recall that

the expansion is truncated to the term θ1θ2 since they are odd variables), then we insert

the expansions in the EoM (4.19) ÷ (4.22). We then use the resulting equations in order to

find algebraic relations between the fields of the expansion. The results are then inserted

back in (4.1) ÷ (4.4) and then we look for the terms that give rise to d-exact terms. We

find that a representative of the cohomology class is

A1|1 = dxmθβB̃
(0)
mαβ(x)δ(0)(dθβ) , (4.27)

and the relative equation of motion is

∂[nB̃
(0)
m]αβ(x) = 0 . (4.28)

Remarkably, notice that even if we started from a SCS Lagrangian with an infinite number

of fields, we have shown that there is only one physical field, indeed all the other fields are

d-exact θ-dependent terms.

Moreover we have shown that starting from the free SCS action with a general A1|1

pseudoform we obtain the factorisation

A1|1 = A1|0Y0|1 , s.t. Y0|1 = θβδ(dθβ) + dΩ−1|1 . (4.29)

Thus we have recovered a factorised form from a non-factorised Lagrangian.

– 28 –



J
H
E
P
0
3
(
2
0
2
0
)
0
4
3

4.5 Interactions and the m
(−1)
2 product

We now define an interaction term which can be integrated on a supermanifold. Apparently,

a problem arises. Indeed in order to define an interaction term, we need three gauge fields

A(1|1), but the wedge product of three fields vanishes by anticommutativity of three Dirac

delta functions in dθ1 or dθ2.7

Let us start from the action (3.22). If we factorise Y(0|2) =
∏2
α=1 v(α) · θδ(v(α) · dθ),

where we have chosen any two linear independent vectors v(α), such that v(1) · v(2) 6= 0,

then we can set Y(0|2)A(1|0)A(1|0) = (Y(0|1)
v(1) A

(1|0))(Y(0|1)
v(2) A

(1|0)). In other words we have

distributed the PCO Y(0|2) on the gauge fields A(1|0) which have now picture 1 each. In

order to have one more gauge field, one needs one more PCO. This can be done by inserting

the combination Zw(1)
Yw(1)

= 1, thus obtaining

Snew =

∫
SM

Tr
(

(Yv(1)A
(1|0))d(Yv(2)A

(1|0))

+
2

3
(Yv(1)A

(1|0))(Yv(2)A
(1|0))Zw(1)

(Yw(1)
A(1|0))

)
. (4.30)

The interaction term, rewritten in terms of pseudoforms, has the following structure

Sint =

∫
Tr
(
A(1|1)A(1|1)ZvA

(1|1)
)
. (4.31)

In (4.30) we have inserted the PCO Zv in a generic place in the interaction term.

However, a priori, we have to consider all the possible places where to put the PCO.

Therefore, following [12, 15], we are led to define the 2-product with picture degree -1 as

m
(−1)
2 : Ω(1|1) × Ω(1|1) → Ω(2|1)

(A,A) 7→ m
(−1)
2 (A,A) =

1

3
[Zv(AA) + Zv(A)A+AZv(A)] . (4.32)

This definition encodes the prescription of an “equally-weighted” application of the PCO

Zv, thus reflects the generality discussed above.8 Notice that, after introducing

m
(0)
2 : Ω(1|1) × Ω(1|1) → Ω(2|2)

(A,A) 7→ AA , (4.33)

we can recast the definition of m
(−1)
2 as

m
(−1)
2 =

1

3

[
Zvm

(0)
2 +m

(0)
2 (Zv(A)⊗ 1 + 1⊗ Zv)

]
. (4.34)

7Care must be used in defining the product of two pseudoforms since it might lead to divergencies in

the Feynman diagrams [21].
8In first quantised String Theory, the PCO is independent of worldsheet coordinates and therefore it can

be placed at any point into a correlation function. However, in order to formulate a String Field Theory

action, that arbitrariness can not be used since a given choice might break gauge invariance [46]. In [12] the

authors avoid this problem by suitably smearing the PCO on the disc on which the correlation functions

are computed. This democratic choice preserves gauge invariance an leads to the 2-product discussed in

the text.
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In (4.34) we have adopted the coproduct formulation [15]. Observe that this product has

form degree 0. In an analogous way, we can define a product with form degree −1 as

m̃
(−1)
2 : Ω(1|1)×Ω(1|1)→Ω(1|1)

(A,A) 7→ m̃
(−1)
2 (A,A) =

1

3

[
−iΘ(ιv)(AA)−iΘ(ιv)(A)A−(−1)|A|AiΘ(ιv)(A)

]
.

(4.35)

From the definition (4.32), it follows that

m
(−1)
2 = [d, m̃

(−1)
2 ] , (4.36)

where [·, ·] denotes as usual the graded commutator.

Starting from the definition (4.32), we now find an explicit expression for the interaction

term. Details can be found in appendix B. Let us start from the action term〈
A,m

(−1)
2 (A,A)

〉
=

∫
tr
(
Am

(−1)
2 (A,A)

)
, (4.37)

where the trace is to be taken with respect to the group indices. From (4.37), we can

extract the two following terms:

AZv(A)A+AAZv(A) . (4.38)

Due to the cyclicity properties of the trace with respect to the group indices and of the

wedge product with respect to the form indices we have

AZv(A)A = AAZv(A) , (4.39)

therefore we can recast the interaction term as〈
A,m

(−1)
2 (A,A)

〉
=

1

3
tr [AZv (AA) + 2AAZvA] . (4.40)

We first calculate the action of the operator Zv on the Ai’s, i = 0, 1, 2, 3 and on the product

AA:

iZvA0 =

∞∑
p=0

i(−1)p+1(p+1)!
1

(vβ)
2

(
vα

vβ

)p
εαβv ·dθ

(
vα∂αA

(p)
αβ+vβ∂βA

(p)
αβ

)
, (4.41)

iZvA1 =

∞∑
p=0

i(−1)p+1p!dxm
(
vα

vβ

)p 1

vβ

(
∂αA

(p)
mαβv

α+vβ∂βA
(p)
mαβ

)
, (4.42)

iZvA2 = 0 , (4.43)

iZvA3 = 0 , (4.44)

iZv (AA) =

∞∑
p=0

{
dxmdxnp!p!

[
(p+1)∂α

[
A

(p)
[mn]αβ ,A

(p)
βα

]
+∂α

(
A

(p)
[mαβA

(p)
n]βα

)]
ivαδ

(
εαβv ·dθ

)
+

+ dxmdxnp!p!
[
(p+1)∂β

[
A

(p)
[mn]αβ ,A

(p)
βα

]
+∂β

(
A

(p)
[mαβA

(p)
n]βα

)]
ivβδ

(
εαβv ·dθ

)}
.

(4.45)
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Notice that (4.43) and (4.44) are consequence of the general property

Zv

[
(dθα)p δ(q)

(
dθβ
)]

= 0 , ∀q ≥ p+ 1 . (4.46)

By using these results in (4.40) we get to the explicit interaction term:

AZv (AA) + 2AAZvA =

∞∑
p,q=0

(−1)pp!q!q!dxmdxndxrδ2 (dθ) ·

3
{

(q + 1)
[
A

(q)
mnαβ , A

(q)
βα

]
+A

(q)
mαβA

(q)
nβα

}
·{(

vα

vβ

)p(vα
vβ
∂α + ∂β

)
A

(p)
rαβ +

(
vβ

vα

)p(
vβ

vα
∂β + ∂α

)
A

(p)
rβα

}
.

(4.47)

Therefore the Lagrangian reads

L(0|0)
INT = 2tr


∞∑

p,q=0

(−1)pp!q!q!
{

(q + 1)
[
A

(q)
mnαβ , A

(q)
βα

]
+A

(q)
mαβA

(q)
nβα

}
·

{(
vα

vβ

)p(vα
vβ
∂α + ∂β

)
A

(p)
rαβ +

(
vβ

vα

)p(
vβ

vα
∂β + ∂α

)
A

(p)
rβα

} εmnrεαβ . (4.48)

Notice that the interaction term depends on the constant vector vα through v1

v2
, namely their

relative phase. That resembles the usual frame dependence of Superstring Field Theory

actions. That dependence is supposed to disappear whenever a calculation of a correlation

function is performed. In our case, this is a consequence of the fact that any variation of

the PCO Zv, by means a variation of its reference vector vα, is d-exact. Therefore, the

action might depend upon the reference vector v, but the correlation functions will turn

out to be independent of v.9

The meaning of this interaction term can be understood if we consider the result (4.27).

Indeed it is a straightforward calculation to verify that, if (4.27) holds, then the m
(−1)
2

product reduces to the usual wedge product, hence the interaction term is the usual Chern-

Simons one. Our result (4.48) is coherent with this observation as we can readily verify:

L(0|0)
INT = 2tr

{
θβB̃

(0)
mαβθ

αB̃
(0)
nβα

[(
vα

vβ
∂α + ∂β

)
θβB̃

(0)
rαβ +

(
vβ

vα
∂β + ∂α

)
θαB̃

(p)
rβα

]}
=

= 2tr
{
θβθαB̃

(0)
mαβB̃

(0)
nβα

[
B̃

(0)
rαβ + B̃

(p)
rβα

]}
. (4.49)

(4.49) shows that for the cohomology representative field the interaction term reduces to

the usual one. A few remarks are necessary: first, we see that the interaction term does

not depend on the vector vα, as expected; second, we see that we have two copies of the

interaction term corresponding to the two propagating fields obtained in (4.27), i.e. B̃mαβ
and B̃mβα.

9The same dependence appears also in the construction of EKS when they build the PCO by spreading

it on the disk.
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4.6 Cyclicity of 〈·, ·〉

In order to derive the equations of motion we need the interior product to be cyclic. For

the sake of completeness, let us verify it explicitly: let A,B,C be three (1|1)-pseudoforms,

we want to verify that∫
tr(Am

(−1)
2 (BC)) = (−1)|C|(|A|+|B|)

∫
tr(Cm

(−1)
2 (AB)) =

∫
tr(Cm

(−1)
2 (AB)) , (4.50)

since |A| = |B| = |C| = 1. In order to avoid a cumbersome notation, we omit the

integration and trace symbols; we have

Am
(−1)
2 (BC) = AZv (BC) + CAZv (B) +ABZv (C) , (4.51)

Cm
(−1)
2 (AB) = CZv (AB) +BCZv (A) + CAZv (B) . (4.52)

We observe that the second term of (4.51) and the third term of (4.52) are the same. We

now write the extended expressions for the other four terms:

AZv (BC) =

[
∞∑
p=0

dxmA
(p)
mαβ(dθα)pδ(p)(dθβ)

][
∞∑
q=0

[
dxndxrq!q!

[
(q+1)∂µ

(
B

(q)

[nr]µνC
(q)
νµ −B(q)

µν C
(q)

[nr]νµ

)
+

+∂µ
(
B

(q)

[nµνC
(q)

r]νµ

)]
vµδ(εµνv ·dθ)+dxndxrq!q!

[
(q+1)∂ν

(
B

(q)

[nr]µνC
(q)
νµ −B(q)

µν C
(q)

[nr]νµ

)
+

+∂ν
(
B

(q)

[nµνC
(q)

r]νµ

)]
vνδ(εµνv ·dθ)

]]
; (4.53)

ABZv(C) =−

[
∞∑
p=0

dxmdxnp!p!
[
(p+1)

(
A

(p)

[mn]αβB
(p)
βα−A

(p)
αβB

(p)

[mn]βα

)
+A

(p)

[mαβB
(p)

n]βα

]
δ(dθβ)δ(dθα)

]
[
∞∑
q=0

(−1)q+1q!dxr
(
vµ

vν

)q(
∂µC

(q)
rµν

vµ

vν
+∂νC

(q)
rµν

)]
; (4.54)

CZv (AB) =

[
∞∑
p=0

dxmC
(p)
mαβ(dθα)pδ(p)(dθβ)

][
∞∑
q=0

[
dxndxrq!q!

[
(q+1)∂µ

(
A

(q)

[nr]µνB
(q)
νµ −A(q)

µνB
(q)

[nr]νµ

)
+

+∂µ
(
A

(q)

[nµνB
(q)

r]νµ

)]
vµδ(εµνv ·dθ)+dxndxrq!q!

[
(q+1)∂ν

(
A

(q)

[nr]µνB
(q)
νµ −A(q)

µνB
(q)

[nr]νµ

)
+

+∂ν
(
A

(q)

[nµνB
(q)

r]νµ

)]
vνδ(εµνv ·dθ)

]]
; (4.55)

CAZv(B) =−

[
∞∑
p=0

dxmdxnp!p!
[
(p+1)

(
C

(p)

[mn]αβA
(p)
βα−C

(p)
αβA

(p)

[mn]βα

)
+C

(p)

[mαβA
(p)

n]βα

]
δ(dθβ)δ(dθα)

]
[
∞∑
q=0

(−1)q+1q!dxr
(
vµ

vν

)q(
∂µB

(q)
rµν

vµ

vν
+∂νB

(q)
rµν

)]
. (4.56)

It is now easy to observe that the terms from (4.53) and (4.54) arrange together with the

terms of (4.55) and (4.56) in order to for total derivative terms; for example if we subtract

from the first term of (4.54) the first from (4.55) we get an expression of the form

AB∂C − C∂(AB) = −∂(ABC) , (4.57)

where attention should be paid when considering the correct minus signs. The same thing

is easily verified for all the other terms as well.
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The cyclicity of the inner product is crucial in what concerns the variational principle

involved in order to derive the expected equations of motion; indeed, when varying the

interaction term with respect to the field A we get three contributions:

δ
〈
A,m

(−1)
2 (A,A)

〉
=
〈
δA,m

(−1)
2 (A,A)

〉
+
〈
A,m

(−1)
2 (δA,A)

〉
+
〈
A,m

(−1)
2 (A, δA)

〉
.

(4.58)

Thanks to the cyclicity of 〈·, ·〉, we have〈
A,m

(−1)
2 (δA,A)

〉
=
〈
δA,m

(−1)
2 (A,A)

〉
〈
A,m

(−1)
2 (A,δA)

〉
=
〈
δA,m

(−1)
2 (A,A)

〉
 =⇒ δ

〈
A,m

(−1)
2 (A,A)

〉
= 3
〈
δA,m

(−1)
2 (A,A)

〉
.

(4.59)

This implies that the variational principle give rise to the following equations of motion:

dA+m
(−1)
2 (A,A) = 0 . (4.60)

The gauge invariant EoM are consistent at the present level of m2 product. In the forth-

coming subsections we will show that as a consequence of non-associativity of the m2

product it is necessary to modify the Lagrangian (hence the EoM) and the definition of

gauge variation.

4.7 Gauge invariance and the emergence of the A∞ algebra

In this subsection we study the gauge invariance of the action. It is a well known result that

a section of the bundle of Lie algebra-valued 1-forms under the action of g transforms as

A → Ã = g−1Ag + g−1d (g) , (4.61)

which infinitesimally becomes

Ã = A− cA+Ac+ dc = A+ δcA , (4.62)

so that we have δcA = Ac − cA + dc. In our case, A ∈ Ω(1|1) and thus a few remarks are

mandatory: in order to have the right matching of form and picture degrees, we have that

the gauge parameter c is a (0|1)−pseudoform and the products Ac and cA must be con-

sidered as m
(−1)
2 products in order to respect the correct picture number; thus the gauge

transformation reads

δcA = m
(−1)
2 (A, c)−m(−1)

2 (c, A) + dc . (4.63)

Bosonic Chern-Simons theory is invariant (up to boundary terms) under infinitesimal

gauge transformations (4.62), indeed

δcLCS = d(cAA+ cdA) . (4.64)

In this setting, we have that the algebra of gauge transformations closes with respect to

the commutator [·, ·] operation, that is

[δc1 , δc2 ]A = δ[c1,c2]A . (4.65)

The closure of the algebra is a direct consequence of the Jacobi identity as it can be easily

verified.
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In our case, the non-associativity of the product m
(−1)
2 invalidate both the previous

results: the action is no longer gauge invariant and the algebra of gauge transformations

does not close any longer. Let us see these two facts explicitly:

1

2
δc

〈
A, dA+

2

3
m

(−1)
2 (A,A)

〉
=
〈
δcA, dA+m

(−1)
2 (A,A)

〉
, (4.66)

having used the cyclicity of the internal product; thus we have〈
δcA,dA+m

(−1)
2 (A,A)

〉
=
〈
m

(−1)
2 (A,c)−m(−1)

2 (c,A)+dc,dA+m
(−1)
2 (A,A)

〉
. (4.67)

By recalling that |A| = 1, |c| = 0 and equation (4.50) for the cyclicity, we have〈
m

(−1)
2 (A, c), dA

〉
= (−1)(|A|+1)(|A|+|c|)

〈
dA,m

(−1)
2 (A, c)

〉
=
〈
dA,m

(−1)
2 (A, c)

〉
=

=
〈
c,m

(−1)
2 (dA,A)

〉
; (4.68)

−
〈
m

(−1)
2 (c, A), dA

〉
= −(−1)(|A|+1)(|A|+|c|)

〈
dA,m

(−1)
2 (c, A)

〉
= −

〈
dA,m

(−1)
2 (A, c)

〉
=

= −
〈
c,m

(−1)
2 (A, dA)

〉
. (4.69)

These two terms, together with the term
〈
dc,m

(−1)
2 (A,A)

〉
can be arranged as∫

d tr
(
cm

(−1)
2 (A,A)

)
, (4.70)

i.e. a boundary term; another boundary term is

〈dc, dA〉 =

∫
d tr (cdA) , (4.71)

and these two terms together are exactly the analogous boundary term of (4.64). However,

we are left with the two terms〈
m

(−1)
2 (A, c),m

(−1)
2 (A,A)

〉
−
〈
m

(−1)
2 (c, A),m

(−1)
2 (A,A)

〉
=

=
〈
A,m

(−1)
2 (m

(−1)
2 (A, c), A)

〉
−
〈
A,m

(−1)
2 (A,m

(−1)
2 (c, A))

〉
. (4.72)

Since m
(−1)
2 is not associative, these two terms do not sum to zero and therefore the action

is no longer gauge invariant. This is the reason why a non-associative product leads to the

emergence a A∞-algebra structure: in order to have a gauge invariant theory, we need to

add a piece with a 3-product, then a piece with a 4-product and so on.

Before doing this, let us analyse the closure of the gauge algebra. Let us rewrite (4.63)

with the definition used in (A.10):

δcA = m
(−1)
2 (A, c)−m(−1)

2 (c, A) + dc = l
(−1)
2 (A, c) + dc . (4.73)

With this convention we have

[δc1 , δc2 ]A= δc1

(
l
(−1)
2 (A,c2)+dc2

)
−δc2

(
l
(−1)
2 (A,c1)+dc1

)
=

= l
(−1)
2

(
l
(−1)
2 (A,c1), c2

)
+l

(−1)
2 (dc1, c2)−l(−1)

2

(
l
(−1)
2 (A,c2), c1

)
−l(−1)

2 (dc2, c1) =

= l
(−1)
2

(
l
(−1)
2 (A,c1), c2

)
+l

(−1)
2

(
l
(−1)
2 (c2,A), c1

)
+dl

(−1)
2 (c1, c2) , (4.74)
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being c an even field. Since l
(−1)
2 does not satisfy the Jacobi identity, the algebra does not

close. Notice, once again, that Jacobi identity plays a crucial role for the algebra to close.

Indeed, if l2 were to satisfy Jacobi identity, we would have had

l−1
2

(
l−1
2 (A, c1), c2

)
+ l−1

2

(
l−1
2 (c2, A), c1

)
+ dl−1

2 (c1, c2)

= −l−1
2

(
l−1
2 (c1, c2), A

)
+ dl−1

2 (c1, c2) =

= l−1
2

(
A, l−1

2 (c1, c2)
)

+ dl−1
2 (c1, c2) =

= δ
l
(−1)
2 (c1,c2)

A , (4.75)

where in this case l
(−1)
2 (c1, c2) = [c1, c2].

The break down of gauge-invariance shown in (4.74) suggests that we should add to

the Lagrangian other terms in order to have the cancellation of the terms arising from the

gauge variation and, therefore, a gauge-invariant action. This translates mathematically

into the introduction of an A∞-algebra as mentioned previously and as we are about to

show explicitly.

We now proceed by constructing explicitly the first multiproduct of the A∞-algebra.

Let us consider the action discussed so far:

S =

〈
A,

1

2
dA+

1

3
m

(−1)
2 (A,A)

〉
. (4.76)

Another way to check the need to introduce other terms in the action is to study the

“Bianchi identities”, i.e. we have to check whether dF = l
(−1)
2 (F,A). This is equivalent to

verify the gauge invariance of the action, but this turns out to be useful for constructing

explicitly the higher products. From (4.76) the field strength reads

F = dA+m
(−1)
2 (A,A) . (4.77)

Upon applying the exterior derivative we get

dF = dm
(−1)
2 (A,A) = m

(−1)
2 (dA,A)−m(−1)

2 (A, dA) , (4.78)

having used the fact that d is a derivation with respect to m
(−1)
2 , which follows as a

consequence of [Zv, d] = 0. We now can use (4.77) in order to substitute in (4.78) the

expression for dA and we get

dF =m
(−1)
2 (F,A)−m(−1)

2 (A,F )+m
(−1)
2

(
A,m

(−1)
2 (A,A)

)
−m(−1)

2

(
m

(−1)
2 (A,A) ,A

)
, (4.79)

where, as expected, it appears the extra term given by the associator of m
(−1)
2 . In order

to get rid of this term, we introduce in the action an extra term, formally denoted by〈
A, 1

4m
(−2)
3 (A,A,A)

〉
, which we are about to construct. By requiring that

d
(
F +m

(−2)
3 (A,A,A

)
= m

(−1)
2 (F,A)−m(−1)

2 (A,F ) , (4.80)

we obtain the equation

dm
(−2)
3 (A,A,A) +m

(−2)
3 (dA,A,A)−m(−2)

3 (A, dA,A) +m
(−2)
3 (A,A, dA) +

−m(−1)
2

(
m

(−1)
2 (A,A) , A

)
+m

(−1)
2

(
A,m

(−1)
2 (A,A)

)
= 0 . (4.81)
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Notice that when applying the exterior derivative d to the term m
(−2)
3 , we have also the term

dm
(−2)
3 (A,A,A); this in not equal to m

(−2)
3 (dA,A,A)−m(−2)

3 (A, dA,A)+m
(−2)
3 (A,A, dA),

since a priori d is not a “derivation” with respect to m
(−2)
3 ; therefore, we must consider

the action of d either on the product or on each single term appearing as argument of the

product.

Also, as we have anticipated, (4.81) is the equation that relates the product m2 and

the product m3, once we have made the formal substitution d ≡ m1. In particular it gives

the non-associativity of m2 in terms of the higher product m3 and it is actually the first

defining relations of an A∞-algebra that makes non-associativity manifest.

We are now ready to give an explicit expression for m3. First of all some observations

are in order. When we have introduced the 3-product, we have used the notation m
(−2)
3

because this product has to subtract 2 from the picture number, in order to have the

correct picture number in the Lagrangian. Moreover, m3 must have form number −1 in

order to saturate the correct form number in the Lagrangian. These considerations lead

to an ansatz: m3 could be constructed as a combination of m2 and m̃2, since both have

picture number −1 and have form number 0 and −1 respectively. An equally-weighted

choice is

m
(−2)
3 (A,B,C) =

1

2

[
m

(−1)
2

(
m̃

(−1)
2 (A,B),C

)
−(−1)|A|m

(−1)
2

(
A,m̃

(−1)
2 (B,C)

)
+

+m̃
(−1)
2

(
m

(−1)
2 (A,B),C

)
−m̃(−1)

2

(
A,m

(−1)
2 (B,C)

)]
+dΛ(A,B,C) ,

(4.82)

where the signs have been chosen such that (4.81) is respected and the last term does not

appear in (4.81) since it is d-exact. Let us verify that (4.82) satisfies (4.81) on generic

(1|1)-forms A,B,C:

1

2

[
m

(−1)
2

(
dm̃2

(−1) (A,B) ,C
)
−m(−1)

2

(
m̃2

(−1) (A,B) ,dC
)

+m
(−1)
2

(
dA,m̃2

(−1) (B,C)
)

+

−m(−1)
2

(
A,dm̃2

(−1) (B,C)
)

+dm̃2
(−1)

(
m

(−1)
2 (A,B) ,C

)
−dm̃2

(−1)
(
A,m

(−1)
2 (B,C)

)
+

+m
(−1)
2

(
m̃2

(−1) (dA,B) ,C
)
−m(−1)

2

(
dA,m̃2

(−1) (B,C)
)

+m̃2
(−1)

(
m

(−1)
2 (dA,B) ,C

)
+

−m̃2
(−1)

(
dA,m

(−1)
2 (B,C)

)
−m(−1)

2

(
m̃2

(−1) (A,dB) ,C
)
−m(−1)

2

(
A,m̃2

(−1) (dB,C)
)

+

−m̃2
(−1)

(
m

(−1)
2 (A,dB) ,C

)
+m̃2

(−1)
(
A,m

(−1)
2 (dB,C)

)
+m

(−1)
2

(
m̃2

(−1) (A,B) ,dC
)

+

+m
(−1)
2

(
A,m̃2

(−1) (B,dC)
)

+m̃2
(−1)

(
m

(−1)
2 (A,B) ,dC

)
−m̃2

(−1)
(
A,m

(−1)
2 (B,dC)

)]
+

−m(−1)
2

(
m

(−1)
2 (A,B) ,C

)
+m

(−1)
2

(
A,m

(−1)
2 (B,C)

)
= 0 . (4.83)

Since we have added a new term in the Lagrangian, we have to define a new field

strength:

F ′ = dA+m
(−1)
2 (A,A) +m

(−2)
3 (A,A,A) = F +m

(−2)
3 (A,A,A) . (4.84)
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Clearly the Bianchi identity for F ′ does not hold, in particular from (4.80) we have

dF ′=m
(−1)
2 (F,A)−m(−1)

2 (A,F )

=m
(−1)
2

(
F ′−m(−2)

3 (A,A,A),A
)
−m(−1)

2

(
A,F ′−m(−2)

3 (A,A,A)
)

=

=m
(−1)
2 (F ′,A)−m(−1)

2 (A,F ′)−m(−1)
2

(
m

(−2)
3 (A,A,A),A

)
+m

(−1)
2

(
A,m

(−2)
3 (A,A,A)

)
.

(4.85)

Again, we have an extra term breaking the Bianchi identity. By following the pre-

scription described above, we add to the action an extra term, which we denote by〈
A, 1

5m
(−3)
4 (A,A,A,A)

〉
, in order to restore the identity. As we get so far, one can easily

infer the algorithm to be used in order to construct the whole A∞ Lagrangian. Before we

go on to the closure of the gauge transformations, another issue is to be addressed: is m3

in the Small Hilbert Space?

In order to answer this question, let us now look back at the definition of the 3-product

given into the equation (4.82). If we neglect the d-exact term dΛ we have that the product

m3 is defined by a certain combination of m2 and m̃2. Now, since the product m2 is defined

via the application of the operator Z, it maps pseudoforms into pseudoforms, as discussed

in sections 2 and 4. This means that m2 maps the SHS into itself. On the other hand,

m̃2 is defined via the operator Θ, that maps pseudoforms into inverse forms. Therefore,

by contrast, m̃2 maps the SHS into the LHS. This means, a priori, that m3 gives values

in the LHS. Here is where the d-exact term becomes relevant: it can be defined as a term

that annihilates the LHS part resulting from the m̃2 part of m3.

Superstring Theory suggests a simple way to establish whether an objects lies in the

SHS, this is based on the operator “η”, whose definition was given in subsection 2.5.

If we want m
(−2)
3 to have image in the SHS, we have to require that

η
[
m

(−2)
3 (A,B,C)

]
= 0 ; (4.86)

this equation translates to an equation for dΛ. Let us see the explicit expression of the

previous relation term by term:

η
[
m

(−1)
2

(
m̃2

(−1) (A,B) ,C
)]

=− i
9
η
[
Zv (Θ(AB)C)+Zv (ΘABC)+(−1)|A|Zv (AΘBC)+

+Zv (Θ(AB))C+Zv (Θ(AB))C+(−1)|A|Zv (AΘB)C+

+Θ(AB)ZvC+ΘABZvC+(−1)|A|AΘBZvC
]

=

=
1

3
ABZvC , (4.87)

having used extensively the properties of the operator η described in section 2. The second

term is

− (−1)|A|η
[
m

(−1)
2

(
A, m̃2

(−1) (B,C)
)]

= −(−1)|A|(−1)|A|(|B|+|C|−1η
[
m

(−1)
2

(
m̃2

(−1) (B,C) , A
)]

=

= −1

3
ZvABC , (4.88)
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having used (4.87). The third term is

η
[
m̃2

(−1)
(
m

(−1)
2 (A,B) , C

)]
= − i

9
η
[
Θ (Zv (AB)C) + Θ (ZvABC) + Θ (AZvBC) +

+Θ (Zv (AB))C + Θ (ZvAB)C + Θ (AZvB)C+

+(−1)|A|+|B|Zv (AB) ΘC + (−1)|A|+|B|ZvABΘC+

+(−1)|A|+|B|AZvBΘC
]

=

=
1

3
Zv (AB)C +

1

3
ZvABC +

1

3
AZvBC . (4.89)

Finally, the fourth term reads

η
[
−m̃2

(−1)
(
A,m

(−1)
2 (B,C)

)]
=
i

9
η
[
Θ(AZv (BC))+Θ(AZvBC)+Θ(ABZvC)+

+(ΘA)Zv (BC)+(ΘA)ZvBC+

+(ΘA)BZvC+(−1)|A|AΘ(Zv (BC))+(−1)|A|AΘ(ZvBC)+

+(−1)|A|AΘ(BZvC)
]

=

=−1

3
AZv (BC)− 1

3
AZvBC−

1

3
ABZvC . (4.90)

By putting the four terms together we get

η
[
m

(−2)
3 (A,B,C)

]
=

1

3
[Zv (AB)C −AZv (BC)] + ηdΛ (A,B,C) . (4.91)

We can now manipulate this expression in order to find an explicit formulation for the

multiproduct Λ, indeed we have:

Zv (AB)C−AZv (BC) = d [Θ(AB)C+AΘ(BC)]+Θ(dAB)C+

−Θ(AdB)C+Θ(AB)dC−dAΘ(BC)−AΘ(dBC)+AΘ(BdC) .

(4.92)

We can now define the formal expression

m̂3
(−1) (A,B,C) = Θ (AB)C − (−1)|A|AΘ (BC) , (4.93)

so that the terms in (4.91) become

dm̂3
(−1) (A,B,C)+m̂3

(−1) (dA,B,C)−m̂3
(−1) (A,dB,C)+m̂3

(−1) (A,B,dC) = d
[
m̂3

(−1) (A,B,C)
]
.

(4.94)

By inserting (4.94) in (4.91) we obtain

ηΛ(A,B,C) = −1

3
m̂3

(−1) (A,B,C) . (4.95)
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An immediate (and equally weighted) solution to this equation is suggested by the fact

that the operator η is the left-inverse of the operator Θ as seen in (2.67):

Λ(A,B,C) =− 1

12

[
Θ(ιv)m̂3

(−1) (A,B,C)−m̂3
(−1) (Θ(ιv)A,B,C)+

−(−1)|A|m̂3
(−1) (A,Θ(ιv)B,C)−(−1)|A|+|B|m̂3

(−1) (A,B,Θ(ιv)C)
]
. (4.96)

We have therefore that if the d-exact term appearing in (4.82) is set to be equal to (4.96),

the product m
(−1)
3 lives in the small Hilbert space.

Let us now study the problem of the closure of the gauge algebra. Previously we have

seen that, since the product m
(−1)
2 is not associative, the gauge algebra does not close. We

now show that, in order the algebra to close, we have to modify the gauge transformation

law (4.73) by introducing multiproducts induced by the A∞ algebra discussed so far. We

have already seen that the transformation law for the pseudoform A is given by

δcA = l
(−1)
2 (A, c) + dc , (4.97)

and that the commutator of two gauge transformations gives

[δc1 , δc2 ]A = l−1
2

(
l−1
2 (A, c1), c2

)
+ l−1

2

(
l−1
2 (c2, A), c1

)
+ dl−1

2 (c1, c2) . (4.98)

We can now proceed by using a method analogous to the one for the A∞-algebra, i.e.

we consider the gauge transformation of the field strength F ; as a starting point, let us

consider the case where the interaction term is given only by m
(−1)
2 :

δcF = δc

(
dA+m

(−1)
2 (A,A)

)
= l

(−1)
2

(
dA+m

(−1)
2 (A,A) , c

)
+m

(−1)
2

(
m

(−1)
2 (A, c) , A

)
+

−m(−1)
2

(
A,m

(−1)
2 (c, A)

)
+m

(−1)
2

(
A,m

(−1)
2 (A, c)

)
−m(−1)

2

(
m

(−1)
2 (A,A) , c

)
+

+m
(−1)
2

(
c,m

(−1)
2 (A,A)

)
−m(−1)

2

(
m

(−1)
2 (c, A) , A

)
, (4.99)

where, except for the first term, we have used the explicit definition of the antisymmetrised

product l
(−1)
2 in terms of the product m

(−1)
2 . The first term of (4.99) is exactly the gener-

alisation of the commutator of a usual gauge transformation δcF = [F, c]; the other terms

are arranged as three associators of the product m
(−1)
2 . In (4.81) we have already discussed

the relation between the associator of m
(−1)
2 and the product m

(−2)
3 , thus we can easily

infer how the gauge transformation law should be modified: let us define the modified

infinitesimal gauge transformation as

δcA =
1

2!
l
(−2)
3 (A,A, c) + l

(−1)
2 (A, c) + dc , (4.100)

where l
(−2)
3 is the antisymmetrisation of m

(−2)
3 as defined in appendix A, and the factor 1

2!

is necessary since in the definition of l
(−2)
3 we have a double counting when two fields are
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equal. With this definition we have that (4.99) becomes

δcF = l
(−1)
2

(
dA+m

(−1)
2 (A,A) , c

)
+m

(−1)
2

(
m

(−1)
2 (A, c) , A

)
−m(−1)

2

(
A,m

(−1)
2 (c, A)

)
+

+m
(−1)
2

(
A,m

(−1)
2 (A, c)

)
−m(−1)

2

(
m

(−1)
2 (A,A) , c

)
+m

(−1)
2

(
c,m

(−1)
2 (A,A)

)
+

−m(−1)
2

(
m

(−1)
2 (c, A) , A

)
+ d

[
l
(−2)
3 (A,A, c)

]
+m

(−1)
2

(
l
(−2)
3 (A,A, c) , A

)
+m

(−1)
2

(
A, l

(−2)
3 (A,A, c)

)
. (4.101)

The term d
[
l
(−2)
3 (A,A, c)

]
cancels out the three associators exactly, because of the third

A∞ relation (4.81) as expected. The other new terms are made of combinations of the 2-

product m
(−1)
2 and the 3-product m

(−2)
3 and give rise to the necessity of a new modification

of the gauge transformation law for the field A. The algorithm is now analogous to the

one used for the construction of multiproducts: first we have to update the definition

of the field strength F by adding the term m
(−2)
3 (A,A,A), then we have to apply the

gauge transformation (4.100). The superfluous terms will have to be reabsorbed, by means

of the A∞ relations, by the insertion of a term 1
3! l

(−3)
4 (A,A,A, c) which is given by the

antisymmetrisation of the product m
(−3)
4 that should have been constructed as described

in the previous subsections. We observe that the numerical factor 1
3! is a consequence of

the possible permutations of the three A fields as arguments. Then the process should be

iterated. This will lead to the final correct gauge transformation law given by

δcA =

∞∑
i=1

1

(i− 1)!
l
(−i+1)
i (A, . . . , A, c) , (4.102)

which, under the identification l
(0)
1 ≡ m(0)

1 ≡ d, is exactly the one described in [47].

4.8 Supersymmetry at picture 1

In sections 2 and 3 we have discussed the supersymmetric action of free SCS and the

rheonomic equations when working at picture 0. When working at picture 1, things work

differently, nonetheless yield the same results. The gauge field A(1|1) can be decomposed

in powers of V a exactly as we showed for the expansion in dxa. Hence the field strength

will be decomposed consequently as

F (2|1) = V aV bV cF
(−1|1)
[abc] + V aV bF

(0|1)
[ab] + V aF (1|1)

a + F
(2|1)
0 . (4.103)

In (4.103) we have a slight abuse of notation: in the superscripts (n|1), n is to be intended as

the fermionic form number, and the pseudoforms F
(n|1)
I do not have a further decomposition

in V ’s. We now apply the Bianchi identity (recall formulas in (2.8)):

dF = 0 =⇒ 3ψαγaαβψ
βV bV cF

(−1|1)
[abc] −V

aV bV cψαDαF
(−1|1)
[abc] +2ψαγaαβψ

βV bF
(0|1)
[ab] +

+V aV bV c∂[cF
(0|1)
ab] +V aV bψαDαF

(0|1)
[ab] +ψαγaαβψ

βF (1|1)
a +

−V aV b∂[bF
(1|1)
a] −V aψαDαF

(1|1)
a +V a∂aF

(2|1)
0 +ψαDαF

(2|1)
0 = 0 . (4.104)
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By looking at the homogeneous parts in V , we get the system
−DαF

(−1|1)
[abc] + ∂[cF

(0|1)
ab] = 0

3ψαγcαβψ
βF

(−1|1)
[cab] + ψαDαF

(0|1)
[ab] − ∂[bF

(1|1)
a] = 0

2ψαγaαβψ
βF

(0|1)
[ab] − ψ

αDαF
(1|1)
b + ∂bF

(2|1)
0 = 0

ψαγaαβψ
βF

(1|1)
a + ψαDαF

(2|1)
0 = 0

. (4.105)

Now we can apply the conventional constraint prescription: in (4.103) we put equal to 0

the term with no V , i.e. F0 = 0. By means of this prescription we can solve the previous

system as follows: the last equation becomes

ψαγaαβψ
βF (1|1)

a = 0 =⇒ F (1|1)
a = ψαγaαβW

β(0|1) , (4.106)

where W is any function, because of the Fierz identity. This result gives us the correct way

to identify the gaugino field strength W in terms of the gauge field A. We can substitute

this result in the third equation of (4.105) in order to get

2ψαγaαβψ
βF

(0|1)
[ab] − ψ

αψµγbµνDαW
ν(0|1) = 0 =⇒

=⇒ F
(0|1)
[ab] =

1

2
γαβ[a γb]βνDαW

ν(0|1) =
1

4
γα[ab]νDαW

ν(0|1) , (4.107)

where γ
[ab]
αβ was defined in section 2. Because of the trace properties of γ matrices in three

dimensions, it follows that DαW
α(0|1) = 0. Notice that, up to now, we have the same

results as in the picture 0 case. From the known results at picture 0, we can infer that in

the second equation of (4.105) we have

ψαDαF
(0|1)
[ab] − ∂[bF

(1|1)
a] = 0 , (4.108)

and then the equation becomes

ψαγcαβψ
βF

(−1|1)
[cab] = 0 . (4.109)

By contrast to what we obtained in (4.106), in this case we get exactly

F
(−1|1)
[cab] = 0 , (4.110)

and this is a consequence of the possibility of reordering the indices a, b, c. Consider indeed

F
(−1|1)
[cab] =

∞∑
p=0

F
(p)
[cab],12

(
ψ1
)p
δ(p+1)

(
ψ2
)
, (4.111)

having made, without loss of generality, a choice for the direction ψ2 of the δ term; we have

ψαγcαβψ
β =

(
(ψ1)2 + (ψ2)2, (ψ1)2 − (ψ2)2, 2ψ1ψ2

)
, (4.112)

and then, for p = 0 we have that (4.109) becomes

(ψ1)2F
(0)
1ab,12 + (ψ1)2F

(0)
2ab,12 + 2ψ1F

(0)
3ab,12 = 0 . (4.113)
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This implies F
(0)
3ab,12 = 0, and by reshuffling F

(0)
3ab,12 → F

(0)
2ab,12 and F

(0)
3ab,12 → F

(0)
1ab,12 we get

F
(0)
[cab],12 = 0. By iteration it follows that F

(p)
[cab],12 = 0 , ∀p ∈ N, hence F

(−1|1)
[cab] = 0.

Finally, the first equation of (4.105) is the usual Bianchi identity

∂[cF
(0|1)
ab] = 0 . (4.114)

We have therefore proved that the Bianchi identities at picture 1 are the same as the

Bianchi identities at picture 0. Moreover we have an explicit way to find the expression of

the gaugino field strength W at picture 1, i.e. (4.106).

4.9 Supersymmetry at picture 2

In this section we study the prescriptions that supersymmetry imposes at picture 2. Our

analysis is meant to be compared with its analogous at pictures 0 and 1, as to find analogies

and differences.

Let us start from the decomposition of the field strength:

F (2|2) = V aV bF
(0|2)
[ab] + V aV bV cF

(−1|2)
[abc] . (4.115)

Notice that the field strength components F
(0|2)
[ab] and F

(−1|2)
[abc] are the only possible because

of the presence of the two δ’s. In particular we have the decomposition:

F
(0|2)
[ab] = F[ab]δ

2 (dθ) , F
(−1|2)
[abc] = Fµ[abc]iµδ

2 (dθ) , (4.116)

where ιµ is the usual compact notation to indicate a fermionic derivation on (one of) the

two δ’s. We can now apply the Bianchi identity:

dF (2|2) = 0 =⇒ 2ψαγaαβψ
βV bF

(0|2)
[ab] + V aV bψαDαF

(0|2)
[ab] + V aV bV c∂[cF

(0|2)
ab] +

+ 3ψαγaαβψ
βV bV cF

(−1|2)
[abc] − V aV bV cψαDαF

(−1|2)
[abc] = 0 . (4.117)

It is immediate to see that many terms in the expression are trivially 0 because of the

explicit decomposition (4.116), and the Bianchi identity reduces to

∂[cF
(0|2)
ab] − ψ

αDαF
(−1|2)
[abc] = 0 . (4.118)

In particular we have

ψαDαF
(−1|2)
[abc] = ψαDαF

µ
[abc]iµδ

2 (dθ) = DαF
α
[abc]δ

2 (dθ) = εabcDαW
αδ2 (dθ) , (4.119)

where we have factorised the dependence on the bosonic indices with a totally antisym-

metric tensor by writing Fα[abc] = εabcW
α.

As can be directly seen, in the picture 2 case it is not necessary to invoke a conventional

constraint prescription in order to solve the abstract Bianchi identities, since there is not

a term with no V ’s from the beginning; however, by imposing this condition one recovers

the usual form of the theory, i.e.

DαW
α = 0 . (4.120)

Also, notice that under this constraint, we have the same field content of the previous two

cases, i.e. a field with two antisymmetric bosonic indices satisfying the standard Bianchi

identity and a field with a fermionic index satisfying the null superdivergence condition.
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4.10 Passing from a picture to another picture

In this section we want to discuss how the informations described above are recovered in

term of PCO’s. To this end, let us rewrite the field strength contents in a “diagrammatic”

fashion. With some abuse of notation, we omit the V ’s and indicate only the fermionic

form number and the picture number as to get:

p = 0 , F (2|0) = F
(2|0)
0 + F

(1|0)
1 + F

(0|0)
2 + 0 ,

p = 1 , F (2|1) = F
(2|1)
0 + F

(1|1)
1 + F

(0|1)
2 + F

(−1|1)
3 ,

p = 2 , F (2|2) = 0 + 0 + F
(0|2)
2 + F

(−1|2)
3 .

The PCO Zv described in the previous sections acts vertically, from the last line to the

first. A priori, one might expect that the first and the second 0’s of the last line get mapped

to 0’s in the first and second line, but there is a subtlety to be considered. Indeed, we can

modify the PCO Θ as follows

Θ (ιv)→ Θ (ιv) + iXδ (ιv) , (4.121)

where X is an even vector field. This modification allows to “move diagonally” in the

previous diagram when reducing the picture. In the following we will provide a justification

for this modification, showing that it corresponds to a sort of “gauge transformation” of Θ.

The operator Zv is said to be a Picture Lowering Operator because it is the left inverse

of the Picture Raising Operator Y = θαδ (dθα), which is a representative of the cohomology

as discussed in the previous sections:

Zv (θαδ (dθα)) = −idΘ (ιv) (θαδ (dθα)) = −id
(
θα

i

dθα

)
= 1 , (4.122)

having used the closure of Y. In sections 2 and 3 we have shown that we can define the

PCO Y modulo exact terms, i.e. we can consider any new PCO upon adding d-exact terms,

Ỹ = Y + dΛ . (4.123)

We now show that it is also possible to make an analogous choice for the operator Θ, and

in particular the transformation (4.121) is allowed. We begin with the general identity

(Zv + U) (Y + dΛ) = 1 =⇒ ZvdΛ + UY + UdΛ = 0 . (4.124)

A general form for Λ is given by

∞∑
p=0

θα (dθα)p (ιβ)p+1 δ
(
dθβ
)

=⇒ dΛ =

∞∑
p=0

(dθα)p+1 (ιβ)p+1 δ (dθα) . (4.125)

Clearly the application of the operator Zv reduces to

− idΘ (ιv) dΛ =

∞∑
p=0

−id
[
i(−1)pp!

(dθα)p

(dθβ)p+1

]
= 0 , (4.126)
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that is, ZvdΛ = 0. Therefore the consistency relation (4.124) reduces to

UY + UdΛ = 0 . (4.127)

This equation means that any modification Λ as in (4.123) that satisfies (4.127) amounts

to the same modification as adding a term U to the PCO Zv compatible with (4.123). It

is easy to see that, in particular, the additional piece described in (4.121) works:

U = dδ (ιv) ιE + δ (ιv) ιEd =⇒ UY = 0 , UdΛ = 0 , (4.128)

because neither Y nor dΛ contain dx pieces, thus the contraction ιE gives automatically

0. This shows that it is possible to add additional pieces in Θ that do not change the

equivalence class of the cohomology and in particular that δ (ιv) ιE does this.

This re-definition of the operator Θ really allows to move diagonally as follows:

p = 0 , F (2|0) = F
(2|0)
0 + F

(1|0)
1 + F

(0|0)
2 + 0

p = 1 , F (2|1) = F
(2|1)
0 +

OO

F
(1|1)
1 +

OOee

F
(0|1)
2 +

OOee

F
(−1|1)
3

OOdd

p = 2 , F (2|2) = 0 +

OO

0 +

OOee

F
(0|2)
2 +

OOee

F
(−1|2)
3

OOdd

Thanks to the diagonal arrows, this diagram is meant to show that the contributions at

lower picture may come from various terms. For example, we see that F
(1|0)
1 may receive

contributions either from F
(0|2)
2 or from F

(−1|2)
3 . This allows to better understand the nature

of the conventional constraint, which, for example, is already implemented at picture 2.

5 Conclusions and outlook

We have discussed in detail the construction of the super-Cherns-Simons theory using the

language of pseudoforms. We pointed out that the interaction term has to be built in

terms of a non-associative product leading to a tower of interactions organized into a A∞
algebra. Finally, the compatibility with supersymmetry is studied. This is the starting

point to several applications and follow-ups. Let us list some of them.

1. As we have learnt from string theory, the introduction of PCO is related RNS for-

malism [6], but also in pure spinor framework [48]. The present analysis is in part

directly related to pure spinor formalism as was addressed some time ago, by one of

the author and G. Policastro in [49], where it is shown how the two frameworks are

related. Since, at the moment, we have understood some of the aspects of classical

field theories on supermanifolds, it would be very interesting to explore again the

relation between PCO’s in string theory and in quantum field theory.

2. One of the main motivations to build the 2-product in string field theory was to avoid

the singularities emerging when two PCO’s collide at the same point creating a po-

tential divergence. We have seen from a preliminary work that the same phenomenon
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appears also in the present context. Although Feynman diagrams computations will

be presented somewhere else [21], we show in appendix C a simple case where the

collision of two PCO generates such divergences.

3. One of the famous work by Witten on the relation between topological strings and

Chern-Simons gauge theories [50] can be finally repeated in the context of superman-

ifolds. Until now, these aspects of string theory and topological strings on superman-

ifolds have never been explored and we hope that the present framework might be

suitable to address these problems.

4. One of the examples worked out in detail in [45] was the case of D = 3, N = 1

supergravity. It was shown that the non-factorized form of the action leads to the

component action matching the superspace constructions. Nonetheless, it has not

been explored the same situation for higher dimensional supergravity models. A cru-

cial aspect for supergravity models is the fact that PCO depends upon the dynamical

fields and therefore a deeper analysis must be carried out.

5. A long standing issue is the problem of auxiliary fields for higher dimensional and ex-

tended supersymmetry gauge theories and supergravity. We established a completely

new framework to recast and re-think to that old problem, which might also serve to

build off-shell supersymmetric models with extended supersymmetry.

6. Based on geometrical analysis ([30] and [46]), we know that there are interesting

supermanifolds which are not projected. For those manifolds, the factorized form

cannot be globally defined since the existence of PCO Y(0|m) is granted only locally.

The non-factorized form might be useful to consider both non-projected supermani-

folds and non-split ones.

What is rather striking is the comparison between the factorised form of the ac-

tion and the non-factorised form. Apparently, all the complications arise from the

infinite-dimensional nature of pseudoforms, therefore it is natural to wonder whether

a suitable field redefinition might immediately prove the equivalence of the two ac-

tions. Furthermore, we must investigate the theory at the quantum level where some

potential singularities and divergences might jeopardise the classical equivalence re-

lation. Nevertheless, we have shown that a very simple classical theory with some

basic assumptions on the worldvolume supermanifold leads to a consistent algebraic

structure of an A∞ Chern-Simons theory. That construction parallels the EKS con-

struction without referring to any string theory, conformal field theory, Riemann

surfaces or using other mathematical ingredients.
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A A∞ and L∞ algebras

Let us first recall the definitions of A∞ and L∞ algebras following [51] but by using a

modern language:

• an A∞-algebra, or a strongly homotopy associative structure on V , is a collection of

linear maps mi : V ⊗
n → V such that they satisfy∑

1≤p≤d
0≤q≤d−p

(−1)|a1|+...+|aq−q|md−p+1 (ad, . . . ,ap+q+1,mp (ap+q, . . . ,aq+1) ,aq, . . . ,a1) = 0 .

(A.1)

• An L∞-algebra, or a strongly homotopy Lie structure on V , is a collection of skew-

symmetric linear maps li : V ⊗
n → V such that they satisfy∑

j+k=i
0σ∈Sh(j;i)

χ(σ; a1, . . . , ai)(−1)klk+1

(
lj
(
aσ(1), . . . , aσ(j)

)
, aσ(j+1), . . . , aσ(i)

)
= 0 ,

(A.2)

where Sh(j; i) are the permutations σ of {1, . . . , i} such that σ(1) < . . . < σ(j) and

σ(j + 1) < . . . < σ(i) and χ(σ; a1, . . . , ai) is the graded Koszul sign defined by

a1 . . . ai = χ(σ; a1, . . . , ai)aσ(1) . . . aσ(i) . (A.3)

In [51] the author stated that it is possible to obtain a SHLS starting from a SHAS

by a “commutation operation”. This can be rephrased in a more modern language by

following [52] where it is proved the following proposition:

the functor

A∞alg→ L∞alg , (A.4)

consists in antisymmetrising the A∞ operations mn to get the L∞ operations lm.

This amounts to say that given an A∞ relation (A.1) and by antisymmetrising it, we

get the L∞ relation (A.2). Let us try to understand this result by considering the first

steps of the relations. First of all, we can observe that an hint to this result is given by the

fact that by antisymmetrising the associative property we get the Jacobi identity:

a(bc)− (ab)c = 0 =⇒ [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 , (A.5)

as an easy exercise can show. Now let us consider the A∞ relations; the first one reads

m1(m1(a)) = 0 , (A.6)

and simply turns into

l1(l1(a)) = 0 , (A.7)

i.e. l1 is a nilpotent operation. The second A∞ relation is

m2 (a2,m1(a1)) + (−1)|a1|+1m2 (m1(a2), a1) +m1 (m2(a2, a1)) = 0 , (A.8)
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and by antisymmetrising it we get

m2 (a2,m1(a1))−m2 (m1(a1),a2)+(−1)|a1|+1m2 (m1(a2),a1)−(−1)|a1|+1m2 (a1,m1(a2))+

+m1 (m2(a2,a1))−m1 (m2(a1,a2)) = 0 =⇒

=⇒ l2 (a2, l1(a1))+(−1)|a1|+1l2 (l1(a2),a1)+l1 (l2(a2,a1)) = 0 , (A.9)

having used the definition

l2(A,B) = m2(A,B)−m2(B,A) . (A.10)

Therefore eq. (A.9) shows that l1 is a differential with respect to the product l2. If we go

on with the A∞ products to the 3-product, we find the law of “failure of associativity”, i.e.

the associator a(bc) − (ab)c is no longer equal to 0. By antisymmetrising the relation we

find the law of “failure of Jacobi identity”, i.e. the Jacobiator [a, [b, c]] + [b, [c, a]] + [c, [a, b]]

is no longer 0. This may be guessed by looking at the easy relation shown in (A.5): as

well as the antisymmetrisation of the associative property gives the Jacobi identity, the

antisymmetrisation of the failure of associativity gives the failure of Jacobi identity. Let

us see this explicitly, where, for the sake of clarity, we fix |ai| = 0∀i ∈ N in order to recover

the expressions found in the previous sections. The third A∞ relation is

m3 (a3, a2,m1(a1))−m3 (a3,m1(a2), a1) +m3 (m1(a3), a2, a1) +m1 (m3 (a3, a2, a1)) +

+m2 (a3,m2 (a2, a1))−m2 (m2 (a3, a2) , a1) = 0 , (A.11)

and shows explicitly the non-vanishing of the associator (the second line). Let us define

the 3-product of the L∞-algebra by antisymmetrising the m
(−2)
3 product:

l
(−2)
3 (A,B,C) = m

(−2)
3 (A,B,C)−m(−2)

3 (A,C,B) +m
(−2)
3 (B,C,A) +

−m(−2)
3 (B,A,C) +m

(−2)
3 (C,A,B)−m(−2)

3 (C,B,A) . (A.12)

We can now antisymmetrise (A), and an easy calculation shows that we get

l3 (a3, a2, l1(a1)) +−l3 (a3, l1(a2), a1) + l3 (l1(a3), a2, a1) + l1 (l3 (a3, a2, a1)) +

+l2 (a3, l2 (a2, a1)) + l2 (a1, l2 (a3, a2)) + l2 (a2, l2 (a1, a3)) = 0 . (A.13)

(A) shows explicitly the non-vanishing of the Jacobiator (the second line) as a direct con-

sequence of the non-vanishing of the associator of the relative A∞ relation.

B Explicit calculations

In this appendix we present the explicit calculations relative to the reduction of the equa-

tions of motion and to the interaction term.
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B.1 Reducing the equations of motion

In this subsection we explain in deep details how to reduce the equations of motion n

order to determine the cohomology representative fields of the presudoform A(1|1). In

subsection 4.5 we have announced the strategy to be used and the result obtained, here we

show the useful passages. First of all let us consider the expansion in powers of θ of any field:

A(x, θ) = Ã(x) + θαB̃(x) + θβC̃(x) + θαθβD̃(x) . (B.1)

We start by applying this expansion to (4.19):

− C̃(p)
βα (x) + θαD̃

(p)
βα + (p+ 1)B̃

(p+1)
βα + (p+ 1)θβD̃

(p+1)
βα = 0 . (B.2)

We can separately equal to 0 the different coefficients of the monomials in θ, thus obtaining{
D̃

(p)
βα = 0

(p+ 1)B̃
(p+1)
βα = C̃

(p)
βα (x)

∀p ∈ N . (B.3)

By inserting this result back in (B.1) we get

A
(p)
βα(x, θ) = Ã

(p)
βα(x) + θαB̃

(p)
βα (x) + θβ(p+ 1)B̃

(p+1)
βα (x) . (B.4)

Now we insert (B.1) in (4.20):

∂rÃ
(p)
βα+θα∂rB̃

(p)
βα+θβ∂rC̃

(p)
βα +θαθβ∂rD̃

(p)
βα−C̃

(p)
rβα+θαD̃

(p)
rβα+(p+1)B̃

(p+1)
rβα +(p+1)θβD̃

(p+1)
rβα = 0 ,

(B.5)

and by substituting what we got in (B.3) we obtain

∂rÃ
(p)
βα+θα∂rB̃

(p)
βα+θβ(p+1)∂rB̃

(p+1)
βα −C̃(p)

rβα+θαD̃
(p)
rβα+(p+1)B̃

(p+1)
rβα +(p+1)θβD̃

(p+1)
rβα = 0 .

(B.6)

Again, we separate this equation in homogeneous polynomials in θ:
∂rÃ

(p)
βα − C̃

(p)
rβα + (p+ 1)B̃

(p+1)
rβα = 0

∂rB̃
(p)
βα + D̃

(p)
rβα = 0

(p+ 1)∂rB̃
(p+1)
βα + (p+ 1)D̃

(p+1)
rβα = 0

∀p ∈ N . (B.7)

Since these expressions are valid ∀p ∈ N, the second and the third equations are the same.

The second equation is used in order to find a formal expression of D̃
(p)
rβα in terms of B̃

(p)
rβα,

while the first gives us a formal recursive relation between C̃
(p)
rβα and ∂rÃ

(p)
βα+(p+1)B̃

(p+1)
rβα .

Therefore when inserting these results back in (B.1) we get

A
(p)
rβα(x, θ) = Ã

(p)
rβα(x) + θαB̃

(p)
rβα(x) + θβ

(
∂rÃ

(p)
βα(x) + (p+ 1)B̃

(p+1)
rβα (x)

)
− θαθβ∂rB̃(p)

βα (x) .

(B.8)

Now we substitute (B.1) in (4.21):

∂[rÃ
(p)
n]βα+θα∂[rB̃

(p)
n]βα+θβ∂[rC̃

(p)
n]βα+θαθβ∂[rD̃

(p)
n]βα−C̃

(p−1)
[nr]βα+θαD̃

(p−1)
[nr]βα+(p+1)B̃

(p)
[nr]βα+(p+1)θβD̃

(p)
[nr]βα = 0 ,

(B.9)
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and substituting C̃
(p)
nβα and D̃

(p)
nβα from (B.7) we get

∂[rÃ
(p)
n]βα+θα∂[rB̃

(p)
n]βα+θβ(p+1)∂[rB̃

(p+1)
n]βα −C̃

(p−1)
[nr]βα+θαD̃

(p−1)
[nr]βα+(p+1)B̃

(p)
[nr]βα+(p+1)θβD̃

(p)
[nr]βα = 0 ,

(B.10)

By separating the homogeneous terms in θ we get
∂[rÃ

(p)
n]βα − C̃

(p−1)
[nr]βα + (p+ 1)B̃

(p)
[nr]βα = 0

∂[rB̃
(p)
n]βα + D̃

(p−1)
[nr]βα = 0

(p+ 1)∂[rB̃
(p+1)
n]βα + (p+ 1)D̃

(p)
[nr]βα = 0

∀p ∈ N . (B.11)

As in (B.7), the second and the third equations are almost the same; however in (B.11)

there is a slight difference: the case p = 0 decouples from the other cases as∂[rÃ
(0)
n]βα + B̃

(0)
[nr]βα = 0

∂[rB̃
(0)
n]βα = 0

. (B.12)

This will prove of fundamental importance as we will see shortly. For p 6= 0 the second

and third equations in (B.11) are the same. We can insert these results back in (B.1) but

now we keep the p = 0 case separated:

A
(0)

[mn]βα(x, θ) = Ã
(0)

[mn]βα(x)− θα∂[nÃ(0)

m]βα(x) + θβ∂[nÃ
(1)

m]βα(x) + 2θβB̃
(1)

[mn]βα(x)− θαθβ∂[nB̃(1)

m]βα(x) ;

(B.13)

A
(p)

[mn]βα(x, θ) = Ã
(p)

[mn]βα(x) + θαB̃
(p)

[mn]βα(x) + θβ∂[nÃ
(p+1)

m]βα (x) + (p+ 2)θβB̃
(p+1)

[mn]βα(x)− θαθβ∂[nB̃(p+1)

m]βα (x) .

(B.14)

We are left with the substitution of (B.1) in (4.22):

∂[rÃ
(p)
mn]βα + θα∂[rB̃

(p)
mn]βα + θβ∂[rC̃

(p)
mn]βα + θαθβ∂[rD̃

(p)
mn]βα − C̃

(p−1)
[mnr]βα + θαD̃

(p−1)
[mnr]βα+

+(p+ 2)B̃
(p)
[mnr]βα + θβ(p+ 2)D̃

(p)
[mnr]βα = 0 . (B.15)

Instead the p = 0 case reads:

∂[rÃ
(0)
mn]βα + θβ2∂[rB̃

(1)
mn]βα + 2B̃

(0)
[mnr]βα + θβ2D̃

(0)
[mnr]βα = 0 . (B.16)

By separating the homogeneous terms in θ we get∂[rÃ
(0)
mn]βα + 2B̃

(0)
[mnr]βα = 0

2∂[rB̃
(1)
mn]βα + 2D̃

(0)
[mnr]βα = 0

. (B.17)

By substituting in (B.1) we get

A
(0)
[mnr]βα(x,θ) = Ã

(0)
[mnr]βα(x)−θα 1

2
∂[rÃ

(0)
mn]βα(x)+θβ∂[rÃ

(1)
mn]βα(x)+θβ3B̃

(1)
[mnr]βα(x)−θαθβ∂[rB̃

(1)
mn]βα(x) .

(B.18)

Finally let us consider the case p 6= 0, eq. (B.1) becomes

∂[rÃ
(p)
mn]βα+θα∂[rB̃

(p)
mn]βα+θβ(p+2)∂[rB̃

(p+1)
mn]βα−C̃

(p−1)
[mnr]βα+θαD̃

(p−1)
[mnr]βα+(p+2)B̃

(p)
[mnr]βα+θβ(p+2)D̃

(p)
[mnr]βα = 0 .

(B.19)
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As usual we separate the homogeneous terms in θ and get
∂[rÃ

(p)
mn]βα − C̃

(p−1)
[mnr]βα + (p+ 2)B̃

(p)
[mnr]βα = 0

∂[rB̃
(p)
mn]βα + D̃

(p−1)
[mnr]βα = 0

(p+ 2)∂[rB̃
(p+1)
mn]βα + (p+ 2)D̃

(p)
[mnr]βα = 0 .

(B.20)

Since we have p 6= 0, the second and third equations are exactly the same. By substituting

back in (B.1) we get

A
(p)
[mnr]βα(x,θ) = Ã

(p)
[mnr]βα(x)+θαB̃

(p)
[mnr]βα(x)+θβ∂[rÃ

(p+1)
mn]βα(x)+θβ(p+3)B̃

(p+1)
[mnr]βα(x)−θαθβ∂[rB̃

(p+1)
mn]βα(x) .

(B.21)

We now have to insert all the expressions found for the fields in (4.1) ÷ (4.4) in order to

see the combinations that are d-exact. Let us forget for a while the expressions for B̃
(0)
mnαβ

and B̃
(0)
mnrαβ that led to the separations of the expressions for A

(0)
mnαβ and A

(0)
mnrαβ and

insert (B.4), (B.8), (B.14) and (B.21) in (4.1) ÷ (4.4). We get:

A0 =

∞∑
p=0

(
Ã

(p)
αβ(x)+θβB̃

(p)
αβ (x)+θα(p+1)B̃

(p+1)
αβ (x)

)
(dθα)p+1δ(p)(dθβ) ; (B.22)

A1 =

∞∑
p=0

dxm
(
Ã

(p)
mαβ(x)+θβB̃

(p)
mαβ(x)+θα

(
∂mÃ

(p)
αβ(x)+(p+1)B̃

(p+1)
mαβ (x)

)
+

−θβθα∂mB̃(p)
αβ (x)

)
(dθα)pδ(p)(dθβ) ; (B.23)

A2 =

∞∑
p=0

dxmdxn
(
Ã

(p)
[mn]αβ(x)+θβB̃

(p)
[mn]αβ(x)+θα

(
∂[nÃ

(p+1)
m]αβ (x)+(p+2)B̃

(p+1)
[mn]αβ(x)

)
+

−θβθα∂[nB̃
(p+1)
m]αβ (x)

)
(dθα)pδ(p+1)(dθβ) ; (B.24)

A3 =
∞∑
p=0

dxmdxndxr
(
Ã

(p)
[mnr]αβ(x)+θβB̃

(p)
[mnr]αβ(x)+θα

(
∂[rÃ

(p+1)
mn]αβ(x)+(p+3)B̃

(p+1)
[mnr]αβ(x)

)
+

−θβθα∂[rB̃
(p+1)
mn]αβ(x)

)
(dθα)pδ(p+2)(dθβ) . (B.25)

It is now a matter of rearranging all the terms correctly; for example, consider an expression

like

d
(
Ã

(p)
αβθ

α(dθα)pδ(dθβ)(p)
)

= dxmθα∂mÃ
(p)
αβ(dθα)pδ(dθβ)(p) + Ã

(p)
αβ(dθα)p+1δ(dθβ)(p) ,

(B.26)

where we have used the fact that Ã
(p)
αβ is even. This means that the first term in (B.22) and

the third term in (B.23) arrange in a d-exact term. This means that we can omit them in

order to get the right cohomological field. Let us now consider an expression like

d
(
−θβθαB̃(p)

αβ (dθα)pδ(p)(dθβ)
)

= pθαB̃
(p)
αβ (dθα)pδ(p−1)(dθβ) + θβB̃

(p)
αβ (dθα)p+1δ(p)(dθβ)+

− dxmθβθα∂mB̃(p)
αβ (dθα)pδ(p)(dθβ) . (B.27)
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This means that we can arrange the second and third terms from (B.22) and the last term

from (B.23) in a d-exact term. Observe that in order to arrange the terms correctly, we

have to shift the first term in (B.27) p→ p+ 1 and the expression is valid for p = 0 as well.

Let us now consider an expression like

d
(
θαÃ

(p)
mαβ(dθα)p−1δ(p)(dθβ)

)
= Ã

(p)
mαβ(dθα)pδ(p)(dθβ) + dxnθα∂[nÃ

(p)
m]αβ(dθα)p−1δ(p)(dθβ) ;

(B.28)

this means that we can arrange the first term in (B.23) and the third term in (B.24) as

a d-exact term. Even in this case we have to make a shift on the second term of (B.28).

Moreover the previous statement is not valid for the p = 0 term; in that case we have to

consider an expression like

d
(
−θβÃ(0)

mαβδ
(1)(dθβ)

)
= −dθβÃ(0)

mαβδ
(1)(dθβ)− dxnθβ∂[nÃ

(0)
m]αβδ

(1)(dθβ) =

= Ã
(0)
mαβδ

(0)(dθβ)− dxnθβ∂[nÃ
(0)
m]αβδ

(1)(dθβ) , (B.29)

which is exactly the separated p = 0 term.

Let us now consider an expression like

d
(
−θβθαB̃(p)

mαβ(dθα)p−1δ(p)(dθβ)
)

= θαpB̃
(p)
mαβ(dθα)p−1δ(p−1)(dθβ)+θβB̃

(p)
mαβ(dθα)pδ(p)(dθβ)+

−dxnθβθα∂[nB̃
(p)
m]αβ(dθα)p−1δ(p)(dθβ) . (B.30)

This allows us to fix as a d-exact term the second and fourth terms from (B.23) together

with the last term from (B.24), but we have a fundamental observation to do: the previous

relation allows us to fix the described terms after a shift p→ p+ 1. Notice that the term

dxmθβB̃
(0)
mαβ(x)δ(0)(dθβ) remains free.

Let us now consider an expression like

d
(
Ã

(p)
[mn]αβθ

α(dθα)p−1δ(dθβ)(p+1)
)

= dxrθα∂[rÃ
(p)
mn]αβ(dθα)p−1δ(dθβ)(p+1)+Ã

(p)
[mn]αβ(dθα)pδ(dθβ)(p+1) ;

(B.31)

this means that we can arrange the first term in (B.24) and the third term in (B.25) as a

d-exact term. As we previously noticed, we have to make a shift on the first term of (B.31).

Moreover the previous statement is not valid for the p = 0 term; in that case we have to

consider an expression like

d

(
−1

2
θβÃ

(0)
[mn]αβδ

(2)(dθβ)

)
= Ã

(0)
[mn]αβδ

(1)(dθβ)− 1

2
dxrθβ∂[rÃ

(0)
mn]αβδ

(2)(dθβ) , (B.32)

which is exactly the separated p = 0 term.

Let us now consider an expression like

d
(
−θβθαB̃(p)

[mn]αβ(dθα)p−1δ(p+1)(dθβ)
)

= (p+ 1)θαB̃
(p)
[mn]αβ(dθα)p−1δ(p)(dθβ) + θβB̃

(p)
[mn]αβ(dθα)pδ(p+1)(dθβ)+

− dxrθβθα∂[rB̃
(p)
mn]αβ(dθα)p−1δ(p+1)(dθβ) . (B.33)
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This expression allows us to fix as d-exact the second and fourth terms from (B.24) together

with the last of (B.25). Let us now consider the expression

d

(
− 1

p+ 3
θβÃ

(p)
[mnr]αβ(dθα)pδ(p+3)(dθβ)

)
= Ã

(p)
[mnr]αβ(dθα)pδ(p+2)(dθβ) , (B.34)

i.e. the first term in (B.25) is trivially d-exact. Finally, let us consider the expression

d
(
−θβθαB̃(p)

[mnr]αβ(dθα)pδ(p+3)(dθβ)
)

= (p+ 3)θαB̃
(p)
[mnr]αβ(dθα)pδ(p+2)(dθβ) + θβB̃

(p)
[mnr]αβ(dθα)p+1δ(p+3)(dθβ) ; (B.35)

this allows as to arrange the second and third terms of (B.25) as d-exact. Even in this case

it is necessary to do a shift p→ p+ 1.

Thus we have found that, modulo d-exact terms, a pseudoform A1|1 of the Chern-

Simons Lagrangian which is a representative of the cohomology class is

A1|1 = dxmθβB̃
(0)
mαβ(x)δ(0)(dθβ) , (B.36)

and the relative equation of motion is

∂[nB̃
(0)
m]αβ(x) = 0 . (B.37)

Moreover we have obtained that the free Super Chern-Simons action with a general A1|1

pseudoform leads to

A1|1 = A1|0Y0|1 , s.t. Y0|1 = θβδ(dθβ) + dΩ−1|1 . (B.38)

B.2 The interaction term

In this subsection we determine the explicit expression for the interaction term announced

in subsection 4.8. In order to do so, we recall that a general (1|1)-pseudoform in SM(3|2)

is expanded as seen in (4.1) ÷ (4.4). Let us apply the operator Θ(ιv) to these expressions:

A0 : Θ(ιv)A0 =
∞∑
p=0

A
(p)
αβΘ(ιv)(dθ

α)p+1δ(p)(dθβ) , (B.39)

since the operator Θ(ιv) acts only on the dθδ parts; we can now use (2.52) in order to get

Θ(ιv)A0 = −
∞∑
p=0

A
(p)
αβ i(−1)pp!

[(
vα

vβ

)p+1

−
(
dθα

dθβ

)p+1
]
. (B.40)

For the action of Θ on A1, A2, A3 we can make use of (2.50):

A1 : Θ(ιv)A1 =

∞∑
p=0

dxmA
(p)
mαβi(−1)pp!

(dθα)p

(dθβ)p+1
; (B.41)

A2 : Θ(ιv)A2 =

∞∑
p=0

dxmdxnA
(p)
[mn]αβi(−1)p+1(p+ 1)!

(dθα)p

(dθβ)p+2
; (B.42)

A3 : Θ(ιv)A3 =
∞∑
p=0

dxmdxndxrA
(p)
[mnr]αβi(−1)p(p+ 2)!

(dθα)p

(dθβ)p+3
. (B.43)
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Now we want to find the expression for AA; due to the relation dθαδ(dθα) = 0 = dθβδ(dθβ),

we can expand AA explicitly as

AA = A0A2 +A1A1 +A2A0 . (B.44)

We can evaluate the terms of (B.44) by matching the power of dθ and the derivation order

of δ as usual:

A0A2 = −
∞∑
p=0

dxmdxnp!(p+ 1)!A
(p)
αβA

(p)
[mn]βαδ(dθ

β)δ(dθα) , (B.45)

A2A0 = −
∞∑
p=0

dxmdxnp!(p+ 1)!A
(p)
[mn]αβA

(p)
βαδ(dθ

β)δ(dθα) ; (B.46)

A1A1 = −
∞∑
p=0

dxmdxnp!p!A
(p)
[mαβA

(p)
n]βαδ(dθ

β)δ(dθα) . (B.47)

Therefore AA reads

AA = −
∞∑
p=0

dxmdxnp!p!
[
(p+ 1)

[
A

(p)
[mn]αβ , A

(p)
βα

]
+A

(p)
[mαβA

(p)
n]βα

]
δ(dθβ)δ(dθα) . (B.48)

In order to evaluate the action of the operator Θ on (B.48), we can use (2.54):

Θ(ιv)AA=

∞∑
p=0

dxmdxnp!p!
[
(p+1)

[
A

(p)
[mn]αβ ,A

(p)
βα

]
+A

(p)
[mαβA

(p)
n]βα

] ivα
dθα

δ
(
εαβv ·dθ

)
. (B.49)

Now that we have evaluated the action of Θ on all the pieces appearing in the prod-

uct m2, we have to apply the exterior derivative d to those expressions in order to ob-

tain a formula for the first part of the anticommutator defining the operator Zv. There-

fore, (B.40) ÷ (B.43) become

dΘ(ιv)A0 =−
∞∑
p=0

i(−1)pp!

[
dxm∂mA

(p)
αβ

[(
vα

vβ

)p+1

−
(
dθα

dθβ

)p+1
]

+

+∂αA
(p)
αβ

[
dθα

(
vα

vβ

)p+1

−dθα
(
dθα

dθβ

)p+1
]

+∂βA
(p)
αβ

[
dθβ

(
vα

vβ

)p+1

−dθβ
(
dθα

dθβ

)p+1
]]

;

(B.50)

dΘ(ιv)A1 =−
∞∑
p=0

i(−1)pp!

[
dxmdxn∂[nA

(p)

m]αβ

(dθα)p

(dθβ)p+1
+dxm∂αA

(p)
mαβ

(
dθα

dθβ

)p+1

+dxm∂βA
(p)
mαβ

(
dθα

dθβ

)p]
,

(B.51)

dΘ(ιv)A2 =

∞∑
p=0

i(−1)p+1(p+1)!

[
dxmdxndxr∂[rA

(p)

mn]αβ

(dθα)p

(dθβ)p+2
+

+dxmdxn∂αA
(p)

[mn]αβ

(dθα)p+1

(dθβ)p+2
+dxmdxn∂βA

(p)

[mn]αβ

(dθα)p

(dθβ)p+1

]
; (B.52)

dΘ(ιv)A3 =−
∞∑
p=0

dxmdxndxri(−1)p(p+2)!

[
∂αA

(p)

[mnr]αβ

(dθα)p+1

(dθβ)p+3
+∂βA

(p)

[mnr]αβ

(dθα)p

(dθβ)p+2

]
, (B.53)
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We have now to evaluate the action of Θ on dA as well; since the procedure is analogous

to the one already described (i.e. we have to make extensive use of (2.50), (2.52) and (2.53))

we give the results directly:

Θ(ιv)dA0 =−
∞∑
p=0

[
−dxm

(
∂mA

(p)
αβ

)
i(−1)pp!

[(
vα

vβ

)p+1

−
(
dθα

dθβ

)p+1
]

+ (B.54)

−
(
∂αA

(p)
αβ

)
i(−1)pp!

[
(p+2)dθα

(
vα

vβ

)p+1

−(p+1)dθβ
(
vα

vβ

)p+2

−dθα
(
dθα

dθβ

)p+1
]

+

+p
(
∂βA

(p)
αβ

)
i(−1)p−1(p−1)!

[
(p+1)dθα

(
vα

vβ

)p
−pdθβ

(
vα

vβ

)p+1

−dθα
(
dθα

dθβ

)p]]
.

Θ(ιv)dA1 =

∞∑
p=0

[
dxmdxn

(
∂[nA

(p)
m]αβ

)
i(−1)pp!

(dθα)p

(dθβ)p+1
+

−dxm
(
∂αA

(p)
mαβ

)
i(−1)pp!

[(
vα

vβ

)p+1

−
(
dθα

dθβ

)p+1
]

+

+pdxm
(
∂βA

(p)
mαβ

)
i(−1)p−1(p−1)!

[(
vα

vβ

)p
−
(
dθα

dθβ

)p]]
. (B.55)

Θ(ιv)dA2 =−
∞∑
p=0

[
dxmdxndxr

(
∂[rA

(p)
mn]αβ

)
i(−1)p+1(p+1)!

(dθα)p

(dθβ)p+2
+

+dxmdxn
(
∂αA

(p)
[mn]αβ

)
i(−1)p+1(p+1)!

(dθα)p+1

(dθβ)p+2
+

−(p+1)dxmdxn
(
∂βA

(p)
[mn]αβ

)
i(−1)pp!

(dθα)p

(dθβ)p+1

]
. (B.56)

Θ(ιv)dA3 =

∞∑
p=0

[
dxmdxndxr

(
∂αA

(p)
[mnr]αβ

)
i(−1)p+2(p+2)!

(dθα)p+1

(dθβ)p+3
+

−(p+2)dxmdxndxr
(
∂βA

(p)
[mnr]αβ

)
i(−1)p+1(p+1)!

(dθα)p

(dθβ)p+2

]
. (B.57)

The action of the operator Zv is now defined by iZv = {d,Θ(ιv)}, so we need to

sum (B.50) ÷ (B.53) with (B.54) ÷ (B.57). The results are

iZvA0 =

∞∑
p=0

i(−1)p+1(p+ 1)!
1

vβ

(
vα

vβ

)p
εαβv · dθ

(
vα

vβ
∂αA

(p)
αβ + ∂βA

(p)
αβ

)
; (B.58)

iZvA1 =

∞∑
p=0

i(−1)p+1p!dxm
(
vα

vβ

)p(
∂αA

(p)
mαβ

vα

vβ
+ ∂βA

(p)
mαβ

)
; (B.59)

iZvA2 = 0 ; (B.60)

iZvA3 = 0 . (B.61)

The action of Zv on AA is evaluated in the same way. Omitting the tedious algebraic

manipulations, the result is

iZv (AA) =

∞∑
p=0

[
dxmdxnp!p!

[
(p+1)∂α

[
A

(p)
[mn]αβ ,A

(p)
βα

]
+∂α

(
A

(p)
[mαβA

(p)
n]βα

)]
ivαδ

(
εαβv ·dθ

)
+

+dxmdxnp!p!
[
(p+1)∂β

[
A

(p)
[mn]αβ ,A

(p)
βα

]
+∂β

(
A

(p)
[mαβA

(p)
n]βα

)]
ivβδ

(
εαβv ·dθ

)]
.

(B.62)
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We can now apply these results to (4.40). Since the “” product is associative, it is

much more convenient to evaluate the second term as

(AA)ZDA ;

indeed, as we have seen in the previous calculations, the ZvA term is made only of two

parts, ZvA0 and ZDA1. Since the ZvA0 part is proportional to dθ and the AA term is

proportional to δ(dθβ)δ(dθα), it follows that their product is automatically annihilated.

Therefore it follows that the interaction term is constructed from the two terms:

(AA)Zv(A1) =−


∞∑
p=0

dxmdxnp!p!
[
(p+1)

[
A

(p)
[mn]αβ ,A

(p)
βα

]
+A

(p)
[mαβA

(p)
n]βα

]
δ(dθβ)δ(dθα)


∞∑
q=0

(−1)q+1q!dxr
(
vµ

vν

)q(
∂µA

(q)
rµν

vµ

vν
+∂νA

(q)
rµν

) ; (B.63)

A1Zv (AA) =


∞∑
p=0

dxmA(p)
mµν(dθµ)pδ(p)(dθν)



∞∑
q=0

[
dxndxrq!q!

[
(q+1)∂α

[
A

(q)
[nr]αβ ,A

(q)
βα

]
+

+∂α

(
A

(q)
[nαβA

(q)
r]βα

)]
vαδ(εαβv ·dθ)+dxndxrq!q!

[
(q+1)∂β

[
A

(q)
[nr]αβ ,A

(q)
βα

]
+

+∂β

(
A

(q)
[nαβA

(q)
r]βα

)]
vβδ(εαβv ·dθ)

] . (B.64)

The second term contains a delta that we can recast as

δ(εαβv · dθ) = − 1

vβ
δ

(
dθα − vα

vβ
dθβ
)

=
1

vα
δ

(
dθβ − vβ

vα
dθα
)

; (B.65)

this implies that we can use dθα = vα

vβ
dθβ and that δ(dθβ)δ

(
dθα − vα

vβ
dθβ
)

= δ(dθβ)δ(dθα),

since δ(dθβ) has “support only in dθβ = 0”. The same argument holds for α↔ β. By mak-

ing use of these manipulations and by neglecting the terms that arrange as total fermionic

derivative we get the final expression for the interaction term:

AZv (AA) + 2AAZvA =

∞∑
p,q=0

(−1)pp!q!q!dxmdxndxrδ2 (dθ) ·

3
{

(q + 1)
[
A

(q)
mnαβ , A

(q)
βα

]
+A

(q)
mαβA

(q)
nβα

}
·{(

vα

vβ

)p(vα
vβ
∂α + ∂β

)
A

(p)
rαβ +

(
vβ

vα

)p(
vβ

vα
∂β + ∂α

)
A

(p)
rβα

}
.

(B.66)

C A simple example of divergences

In this section we show a simple case where the collision of two PCO’s generates divergences

when evaluating amplitudes. Detailed computations will be presented in a future work [21].

Consider the propagator of SCS theory on SM(3|2) defined by

d∆(2|2) = δ3
(
x− x′

) (
θ − θ′

)2
d3xδ2

(
dθ − dθ′

)
= Vol(3|2) =⇒

∫
SM(3|2)

d∆(2|2) = 1 .

(C.1)
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We can therefore formally write

∆(2|2) =
d†

∆
Vol(3|2) , ∆ = d†d+ dd† , (C.2)

where ∆ is the Laplace operator. The correlator of the four point function is obtained by

considering four external legs, two vertices and an internal propagator. For the sake of

clarity, let us consider the gauge field to be in the factorised form A(1|1) = A(1|0)Y(0|1), so

that in particular we can use the property ZY = 1 in order to write the vertices as∫
SM(3|2)

Z(A)AA . (C.3)

In this case, the correlator has the formal expression given by〈
A1 (x1)A2 (x2)

∫
Z(A)AA

∫
Z(A)AAA3 (x3)A4 (x4)

〉
+ 2↔ 3 , (C.4)

where we have to do the contractions between the external fields A(1|1) and the field of the

two vertices in order to get the propagators. If we consider the truncated diagram, for each

external field we have to use an integration, an asymptotic field denoted by αi(xi) and the

operator dxi , therefore we get the amplitude

I (α1,α2,α3,α4)

=

∫
x

∫
y

∫
x1

α1dx1
d†x1
∆x1

Vol(x1−x)

∫
x2

α2dx2
d†x2
∆x2

Vol(x2−x)Z
d†

∆
Vol(x−y)Z∫

x3

α3dx3
d†x3
∆x3

Vol(x3−x)

∫
x4

α4dx4
d†x4
∆x4

Vol(x4−x)+2↔ 3 =

=

∫
SM(3|2)

[
α1 (x)α2 (x)Z

d†

∆
Zα3 (x)α4 (x)+α1 (x)α3 (x)Z

d†

∆
Zα2 (x)α4 (x)

]
. (C.5)

If we count the form number we have that each α term brings +1 and the operator d†

∆

brings -1, therefore we have a total form number of 3. If we count the picture number, we

have that each α term brings +1 and the two PCO’s Z bring -1, then the total picture

number is 2. Now it is easy to show where the divergences arise: consider for example the

two insertions of the PCO Z to act on the same field α3, we have

Z
d†

∆
Zα3 (x) = −iZ d

†

∆
(dΘ + Θd)α3 (x) = −i

[
ZΘα3 (x) + Z

d†

∆
Θdα3 (x)

]
. (C.6)

The first term, for example, leads to a divergence:

−iZΘ
(
α(1|0)Y(0|1)

)
=−Z

(
α(1|0) θ

α

dθα

)
= iΘ

[(
dα(1|0)

) θα

dθα

]
−iΘα(1|0)+idΘ

(
α(1|0) θ

α

dθα

)
=

=−i
(
dα(1|0)

)
θαΘ

1

dθα
−iΘα(1|0)+i

(
dα(1|0)

)
θαΘ

1

dθα
−iα(1|0)dθαΘ

1

dθα
=

=−iΘα(1|0)−iα(1|0)dθαΘ
1

dθα
. (C.7)
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Firstly, let us consider the second term, it gives rise to

− α(1|0)dθα lim
ε→0

∫ ∞
−∞

dt

t+ iε

1

dθα + itvα
. (C.8)

This integral requires a regularisation, which can be formally done through an analytic

continuation in the complex plane, even though some intricacies are involved (one has to

interpret dθ as a “real number”, which can be positive or negative). However, if we skip

such problems, we can assign to (C.8) a finite value.

Analogously, for the first term of (C.7) we have

− iΘα(1|0) = α(1|0) lim
ε→0

∫ ∞
−∞

dt

t+ iε
. (C.9)

Again, this object is not well defined unless some formal regularisation is taken into account.

Of course, these arguments should be taken as a hint towards a complete analysis.
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