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1 Introduction

The goal of this paper is to propose a large class of new correlation measures for multipartite

systems and their holographic duals, motivated by the recent work [1]. In most of the

current studies of quantum entanglement [2–11] we often divide the total system into two:

A and its complement Ac, and compute the entanglement entropy SA := −TrρA log ρA.

In the gauge/gravity correspondence [12], the Ryu-Takayanagi formula [9–11] allows us to

use a codimension-2 surface in AdS to compute the entanglement entropy in holographic

CFTs. This discovery starts a new era of studying relations between spacetime geometry

and quantum entanglement precisely [13–24].

It has been known that the entanglement entropy truly measures quantum entangle-

ment only for pure states |ψ〉AB. Therefore it is interesting to ask what is the analogy

of that and the Ryu-Takayanagi formula when ρAB is a mixed state. Recently there have

been several proposals [1, 25–29] and it turns out that the entanglement wedge cross section

wins most of the attentions in the dual gravity side. Another important question is how to

find multipartite correlation measures and their geometric dual. It is known that there are

much richer correlation structures in quantum systems consisting of three or more subsys-

tems (see e.g. [30]). However the holographic interpretation of multipartite correlations is

less known, though it is obviously crucial for the understanding of the emergence of bulk

geometry from many-body quantum entanglement on the boundary.

In [31], an analogy of bipartite entanglement wedge cross section for multiple subsys-

tems, ∆W has been proposed and it shares a lot of common features with the multipartite
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generalization of entanglement of purification ∆P . This motivates the authors in [31] to

propose the conjecture ∆P = ∆W . The difficulty to compute ∆P makes it a bit hard to

test ∆P = ∆W though this conjecture is the most natural generalization of the EP = EW
conjecture proposed in [32, 33]. See [34–57, 59] for recent progress.

In this paper, we introduce a new class of multipartite correlation measures in generic

quantum systems. They are defined by generalizing the reflected entropy method for mul-

tipartite systems. Among these new measures, there is a special one called multipartite

reflected entropy ∆R invariant under the permutations of subsystems.

We then show that the holographic duals of our new measures are different types of

minimal codimension-2 surfaces in the entanglement wedge [60–62], motivated by Ryu-

Takayanagi proposal for multi-boundaries. In particular the holographic dual of ∆R is

proportional to ∆W defined in [31]. We perform the large c computation of ∆R using

replica trick and twist operators and find evidence to support ∆R = 2∆W in AdS3/CFT2.

This tempts us to propose another candidate dual to multipartite entanglement wedge

cross section ∆R = 2∆W and also strongly supports our holographic conjectures for the

new class of generalized reflected entropies.

This paper is organized as follows: in section 2, we give the definition of a class of

generalized reflected entropies and focus on a special one ∆R invariant under permuta-

tions of subsystems. In section 3, we introduce a class of multipartite generalizations of

entanglement wedge cross-section in holography and find that there is a one to one corre-

spondence with the generalizations of reflected entropy. In section 4, we perform a large c

computation of ∆R in tripartite case and find evidence to agree with holographic compu-

tation. This agreement supports our holographic conjectures between generalized reflected

entropies and generalized entanglement wedge cross-sections. We discuss some information

theoretic properties of ∆R in section 5 and conclude in section 6.

Note added. After all the results in this paper were obtained, [57] appeared in which they

construct similar generalization of reflected entropy for ∆W , which is different from ours.

2 Generalized reflected entropy

Consider a quantum state on a circle, which is made up of six intervals: A,B,C, a, b and c,

shown in figure 1. For holographic CFTs, it is known that the holographic entanglement

entropy for ρABC is given by the Ryu-Takayanagi surface, the sum of 3 bulk geodesics

bounded by the ends of A,B,C, as shown in figure 1. Recently the triangle type of 3 other

geodesics, with 3 ends located on the bulk Ryu-Takayanagi surfaces, has been defined as

the multipartite entanglement wedge cross-sections, ∆W [31]. This has been understood as

a total correlation measure among subsystems A, B and C. In particular, the triangle sum

can not be decomposed as (sum of) bipartite entanglement wedge cross-sections. This sug-

gests that the measure ∆W is an intrinsic 3-body correlation measure. One obvious question

is how to understand the triangle from CFT point of view. This is one of our motivations.

In this section, we define a class of correlation measures for 1+1 dimensional quantum

field theory (QFT) state on a circle. The following definition was motivated by a holo-

graphic CFT state on a circle in AdS3/CFT2. But we stress that the definition itself is
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Figure 1. Tripartite entanglement wedge cross-sections ∆W of subsystems ABC in AdS3/CFT2.

Left : a pure state in 2d CFT on a circle made up of six intervals: A,B,C, a, b and c. The dotted

lines denote Ryu-Takayanagi surfaces of ABC. Right : entanglement wedge, the interior of the

Ryu-Takayanagi surfaces ∪ ABC, in which the closed curve denotes ∆W .

independent of holography. Recently an interesting measure called reflected entropy has

been proposed as a bipartite correlation measure for a mixed state ρAB [1]. The idea is to

introduce a canonical purification for subsystems A,B and then measure the entanglement

entropy. Without going into the detail definition of reflected entropy in information theory,

let us understand reflected entropy in the following intuitive way. Start from a pure state

ψABc ∈ HABc defined on a circle and the mixed state ρAB can be viewed as the reduced

density matrix by tracing out c. There is a simple and canonical purification for a given

ρAB by doubling the Hilbert space:

|√ρAB〉 = |
√

Trc|ψ〉〈ψ|〉 ∈ (HA ⊗H∗A)⊗ (HB ⊗H∗B) ≡ HAA∗BB∗ . (2.1)

This can be obtained by flipping Bras to Kets for basis of a given density matrix ρAB. It

can be shown that

ρAB = TrHA∗B∗ |
√
ρAB〉〈

√
ρAB| . (2.2)

The reflected entropy is defined as

SR(A : B) := S(AA∗)|√ρAB〉 . (2.3)

The reflected entropy turns out to be a good measure of correlations between A and B for

state ρAB [1]:

pure state : SR(A : B) = 2S(A) , (2.4)

factorized state : SR(A : B) = 0 , (2.5)

bounded from below : SR(A : B) ≥ I(A : B) , (2.6)

bounded from above : SR(A : B) ≤ 2min{S(A), S(B)} , (2.7)

for states saturating Araki-Lieb inequality : SR(A : B) = 2min{S(A), S(B)} . (2.8)

Let us give a graph description of the canonical purification procedure in figure 2.

Assign a circle for each Hilbert space. Start from the pure state ψABc and glue c from the

two circles and we obtain the purified state

|√ρAB〉 = |
√

Trc|ψ〉〈ψ|〉 . (2.9)
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B𝐴 𝐴* 𝐵*

c

c
Figure 2. Canonical purification of ρAB : |√ρAB〉 = |

√
Trc|ψ〉〈ψ|〉. Tracing out c corresponds to

gluing c from 2 circles and we view this process as a fundamental step to obtain a big pure state.

The red dashed line separates AA∗ from BB∗ and defines reflected entropy SR.

This should be viewed as a fundamental step to build up another canonical pure state start

from one pure state. We stress that the final canonical state is independent of c, because

for a given ρAB one can choose another c′ which does the same purification as c and the

final canonical state would not change. Therefore the reflected entropy is independent of c.

This is not surprising because SR is an intrinsic property of the mixed state ρAB. Later we

will see that c is helpful to understand the global structure when we have a big complicated

purified state. This is roughly because a nontrivial c in our setup indicates that the initial

state ρAB is a mixed state or in another word AB is entangled with others and we do not

know the full information of AB. Related to this, after gluing along c, one can schematically

view c representing some entanglement between AB and A∗B∗. Another convenient way to

understand figure 2 is to imagine that there are 2d spacetime surfaces bounded by circles.

The possible meaning of the radial direction is Euclidean time. Consider all the states

in the formalism of path integral. After gluing two spacetime patches along c we have

obtained a pure state associated to two boundaries AA∗ and BB∗. The red curve along

two spacetime patches readily separates two boundaries AA∗ and BB∗ and plays the role

of the entangling surface in spacetime. After all these constructions and interpretations we

can define a robust entanglement entropy associated to the red curve, the reflected entropy

SR(A : B) = S(AA∗ : BB∗)√ρAB
= Entanglement Entropy of Red Curve . (2.10)

Now we are ready to generalize our construction of canonical purification to multipar-

tite ρABC···. Consider a state on a circle made up of six intervals: A,B,C, a, b and c, shown

in figure 1. We can do different canonical purifications by gluing different regions a, b or c.

The easiest way is to pick up two circles and glue a, b, c once and we get a pure state
√
ρABC . Since the spacetime geometry after gluing is like a pair of pants, one can have 3

options to draw a red curve to separate 3 boundaries AA∗, BB∗ and CC∗ respectively from

other parts. These correspond to measure the reflected entropy for bipartitions (A : BC),
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(B : AC) and (C : AB)

SR(A : BC) = S(AA∗ : BB∗CC∗)√ρABC
, (2.11)

SR(B : AC) = S(BB∗ : AA∗CC∗)√ρABC
, (2.12)

SR(C : AB) = S(CC∗ : AA∗BB∗)√ρABC
. (2.13)

One can also perform 2 steps of canonical purification to create a pure state using 4

copies of HABC . For instance, we first perform the canonical purification by gluing c from

two copies HABCabc and HA′B′C′a′b′c′ and obtain

ψ1 = |
√

Trc|ψABCabc〉〈ψABCabc| 〉 . (2.14)

Then we pick up another copy of ψ1 and do canonical purification again by gluing b and b′

and obtain

ψ2 = |
√

Trbb′ |ψ1〉〈ψ1| 〉 . (2.15)

Now we are left with a, a′, a′′, a′′′ and we can pair them and glue. We can try to draw red

curves to bipartition the final pure state in the Hilbert space consisting of 4-copy of HABC .

Entanglement entropy of each curve will measure some correlations among ρABC . These

will include some biparitite reflected entropy detected in the 2-copy purification mentioned

before and also some other new measures.

In this work we are particularly interested in another purification involving 8 copies of

HABC for the reason we will see later. By adding one more step of canonical purification

to the 4-copies purification by doubling Hilbert space one can get

ψ3 = |
√

Traa′a′′a′′′ |ψ2〉〈ψ2| 〉 . (2.16)

In order to make it more transparent we draw our purification process in figure 3. We

switch our notations a little bit for labeling different copies. We stress that even though

a, b, c (and the copies of them) are involved in the purification process, the final big pure

state ψ3 does not depend on a, b, c and their copies because essentially all of them are traced

out. To understand this better, one can view a, b, c as a certain purification for ρABC in

the beginning and change them to another purification will not affect the final big state

constructed here. According to the notation in figure 3 the final state involves 8 copies of

A,B,C and it should be denoted specifically as

ψ3 = ψAA′A1A′1A′A
′
′A1′A

′
1′BB

′B′B′′B1B′1B1′B
′
1′CC′C1C1′C

′C′′C
′
1C
′
1′
. (2.17)

One can now try to draw curves to bipartition the final pure state ψ3. There are certain

curves running over all bridges among a, b, c. For instance, one such curve separates the big

pure state into two and the entanglement entropy associated with that curve is given by

∆R(A : B : C) ≡ S(AA′A1A
′
1B1B

′
1B1′B

′
1′CC′C1C1′ : A′A′′A1′A

′
1′BB

′B′B′′C ′C ′′C ′1C
′
1′)ψ3 .

(2.18)

We define such entanglement entropy as multipartite reflected entropy. We stress again that

for each curve doing the bipartition there is a well defined generalized reflected entropy.
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Figure 3. The procedure to construct the pure state with three similar steps. Step i: from the

original pure state ρ0 = |ψABCabc〉〈ψABCabc| to ψ1 = |
√

Trcρ0 〉. Step ii: from ρ1 = |ψ1〉〈ψ1| to

ψ2 = |
√

Trbb′ρ1 〉. Step iii: from ρ2 = |ψ2〉〈ψ2| to ψ3 = |
√

Traa′a′′a′′′ρ2 〉, whose density matrix is

ρ3 = |ψ3〉〈ψ3| and this is the boundary state in final 8-copy purification (also seen in figure 5).

Last but not least, for any given pure state constructed by the above procedure, one

can trace out some part of it and get a new mixed state. And one can do once more

canonical purification for this mixed density matrix and obtain another new pure state. It

is not hard to realize that by such kinds of constructions, we can build a pure state in any

even number copies of Hilbert spaces.

We can compute these entropies using replica trick. For instance, as the nnn → 1 limit

of Rényi entropy ∆R can be computed by

∆R(A : B : C) = lim
nnn→1

Snnn, Snnn =
1

1−nnn
ln TrR(TrLρ3)nnn (2.19)

where L denotes the left side of the bi-partition in (2.18), namely

L ≡ {AA′A1A
′
1, B1B

′
1B1′B

′
1′ , CC′C1C1′} . (2.20)

3 Holography of generalized reflected entropy

In the previous section, we construct many big pure states by performing canonical purifi-

cations for a quantum system on a circle and define different generalized reflected entropies

from them. Though some of the newly defined entropies are inspired from holography, all

the definitions by themselves are independent of holography. We study their holographic
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B𝐴 𝐴* 𝐵*
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Figure 4. Canonical purification of ρAB together with entanglement wedges: tracing out c corre-

sponds to gluing Ryu-Takayanagi surfaces (blue lines) for two copies of entanglement wedges and

the new bulk geometry describes two entangled boundary quantum systems AA∗ and BB∗. We

view this process as a fundamental step to obtain a bulk geometry describing a big pure state. The

orange line is the minimal surface in the bulk seperating AA∗ from BB∗.

duals in this section. Again we will first understand the bipartite case and the multipartite

generalization will be understood straightforwardly after that. The bipartite case has been

largely developed in [1]. We review the bipartite case for the purpose of generalizations.

Notice that previously we perform canonical purification by solely working with quantum

systems on a circle. Now for those quantum systems having bulk gravity dual, we have to

extend the previous gluing procedure together with the bulk. For simplicity we will focus

on static cases through this section.

Let us first recall the case of ρAB. Start from a global pure state ψABc having a classical

bulk solution as its gravity dual. Tracing out c corresponds to discard other bulk regions

and keep only the entanglement wedge for ρAB. For a fixed time slice, this was defined as

the region bounded by A∪B∪ΓAB where ΓAB is the Ryu-Takayanagi surfaces for ρAB. Now

doubling the Hilbert space for HAB means to pick up another copy of the entanglement

wedge. Doing the canonical purification for boundary ρAB would correspond to gluing the

bulk entanglement wedges along ΓAB since this is the most natural way to construct the

new bulk geometry to respect the purified boundary constructed in the previous section

without creating new boundaries. We draw the constructed bulk geometry in figure 4.

Now the question is which minimal surface is the geometrical dual of the reflected

entropy SR(A : B) constructed in the previous section, the entanglement entropy between

AA∗ and BB∗ for the constructed pure state. Intuitively this surface (line in the present

example) should count the entanglement flux between AA∗ and BB∗ and is naturally given

by the so called entanglement wedge cross section on each copy. Because of a Z2 symmetry

under exchanges of A and A∗, B and B∗, the geometry dual of SR(A : B), the closed

minimal curve Σmin is exactly twice of EW . This is one of the main results in [1], where a

number of evidences have been provided to support this duality.

Let us now do some comparison with figure 2 since they are closely related. In figure 2,

dashed black lines c do not correspond to real physical objects. They just indicate which

part we have traced out. And the dashed red curve there does not correspond to any

physical object either. They are used to bipartition the quantum system described by the

final pure state. Here things are rather different. Both the real blue lines and the orange

– 7 –
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lines have precise physical meanings. The former is the Ryu-Takayanagi surfaces for the

entanglement entropy of ρAB and the latter is the geometric dual of the reflected entropy.

Before we generalize the above geometric dual of reflected entropy to multi-partite cases,

let us give some general remarks. In previous section, we associated a general reflected

entropy to each curve separating the final pure state into two. For theories having classical

bulk duals, due to similar geometric structures there will be one to one correspondence

between the separating curve in the previous section and the minimal curve in this section.

Therefore we expect for any well constructed generalized reflected entropy there will be a

minimal surface dual to it. Let us stress that this argument will lead us to find duality

between a large class of generalized reflected entropies and new types of minimal surfaces

consist of entanglement wedge cross sections, beyond those known before [31–33].

Now we are ready to generalize the canonical purification procedure together with the

bulk to multipartite cases. Let us first discuss 3-body mixed state ρABC defined on a circle.

One can essentially repeat what we discussed in last section for 2-copy purification, 4-copy

purification, 8-copy purification by adding the bulk. Without further analysis, let us list

the dual reflected entropy for different types of minimal surfaces constructed in the bulk

below. We particularly draw the final big pure state in 8-copy canonical purification in

figure 5 where the orange line denotes a minimal curve which is the bulk geometric dual to

multipartite reflected entropy ∆R(A : B : C) constructed in previous section. It is easy to

see that this is twice of the multipartite entanglement wedge cross sections ∆W (A : B : C)

defined in [31].

Similarly, we draw a pure state in 2-copy canonical purification in figure 6 where the

left orange line denotes a minimal curve which is dual to reflected entropy SR(A : BC). It

can be seen that this is twice of bipartite cross-section EW (A : BC).

Then, we draw a pure state in 4-copy canonical purification in figure 7 where the left

orange line denotes a minimal curve which is dual to S(AA′A1A
′
1CC1)|√ρ1〉. It can be seen

that this is twice of Σmin
(1) (C : A : B) defined as the minimal curve with the shape shown in

right figure of figure 7.

We also draw a pure state in 8-copy canonical purification in figure 8 where the left

orange line denotes a minimal curve which is dual to S(BB′B′B′′C ′C ′′C ′1C
′
1′)ψ3 . It can be

seen that this is twice of Σmin
(2) (A : B : C) defined as the minimal curve with the shape

shown in right figure of figure 8.

It can be seen that there are some inequalities between cross sections mentioned above,

which are

EW (A : BC) + EW (B : CA) ≤ Σmin
(1) (C : A : B) , (3.1)

Σmin
(1) (A : B : C) + Σmin

(1) (B : C : A) + Σmin
(1) (C : A : B)

2
≤ ∆W (A : B : C) , (3.2)

EW (A : BC) + EW (B : CA) + EW (C : AB)

≤ min
{

Σmin
(2) (A : B : C),Σmin

(2) (B : C : A),Σmin
(2) (C : A : B)

}
≤ max

{
Σmin

(2) (A : B : C),Σmin
(2) (B : C : A),Σmin

(2) (C : A : B)
}

≤ ∆W (A : B : C) .

(3.3)
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Figure 5. A pure state constructed by 8 copies of the subsystem ABC together with dual

glued bulk. The entangling surface (denoted by the closed orange curve) is just twice of the

minimal cross sections in figure 1, which is also the holographic dual of entanglement entropy

S(AA′A1A
′
1B1B

′
1B1′B′1′CC′C1C1′ : A′A′′A1′A′1′BB′B′B′′C ′C ′′C ′1C

′
1′), defined to be multipartite

reflected entropy of subsystems ABC, namely ∆R(A : B : C). It can be seen that ∆R(A : B : C) =

2∆W (A : B : C) for holographic states.

Figure 6. Canonical purification of ρABC (left) with the minimal cross section denoted by the

orange line dual to SR(A : BC). This is twice of EW (A : BC) denoted by the orange line in the

entanglement wedge of ρABC (right).

Apart from 2n-copy purifications, any even-copy pure state can be constructed

(not unique). For example, we can construct 12-copy pure state by tracing out two

copies from the 8-copy pure state and then performing canonical purification, i.e.,

ψ4 = |
√

TrA1B1C1A′′B
′
′C
′
′
ρ3〉.

Regarding that there are many different purifications in this manner, and for each

purification there are many different bipartitions (and therefore different entanglement

entropies), we deduce that there exist a lot of dual pairs of generalized reflected entropy

and its holographic counterpart. We are not going to list all of them and consider them as

direct consequence of our discussion above.
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Figure 7. Canonical purification of ρ1 (left) with the minimal cross section denoted by the orange

line dual to S(AA′A1A
′
1CC1)|√ρ1〉. This is twice of Σmin

(1) (C : A : B) denoted by the orange line in

the entanglement wedge of ρABC (right).

Figure 8. Canonical purification of ρ2 (left) with the minimal cross section denoted by the orange

line dual to S(BB′B′B′′C ′C ′
′
C ′1C

′
1′)ψ3 . This is twice of Σmin

(2) (A : B : C) denoted by the orange

line in the entanglement wedge of ρABC (right). Notice that Σmin
(2) (A : B : C) is different from

∆W (A : B : C).
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Figure 9. Three subsystems A, B and C in CFT2 and tripartite entanglement wedge cross section

in AdS3.

4 Computation of ∆R in AdS3/CFT2

Now we consider ∆R for a simple example in AdS3/CFT2. We work in Poincaré patch,

and a static ground state of CFT2 on an infinite line is described by a bulk solution with

the metric

ds2 =
dx2 + dz2

z2
, x ∈ (−∞,+∞), z ∈ [0,+∞) . (4.1)

The three subsystems we choose are the intervals A = [−d2,−d1 − r], B = [d1 + r, d2],

C = [−d1 + r, d1 − r], where d2 > d1 > 0 and r is relatively small compared to both

d1 and d2. We require that the entanglement wedge of ABC is connected, as shown in

figure 9. Let us first consider the holographic computation. This involves the computation

of multipartite entanglement wedge cross section ∆W given in [31]. In this example we have

to find a triangle type configuration with the minimal length, where 3 ending points of the

geodesics are located on 3 Ryu-Takayanagi surfaces (semi-circles) separately, as shown in

figure 9. Because of the reflection symmetry x→ −x, the problem was further reduced to

find a special angle θ such that the length of 3 geodesics is minimal

∆W (A : B : C) = min
θ

[
L(θ)

4GN

]
. (4.2)

Then we compute ∆R(A :B :C) in CFT2 for the same setup in figure 9 with replica trick.

We first use replica trick to extend the purification ψ3 to ψ
(m)
3 following the method

in [1], where m is an even number. The three steps (2.14) (2.15) (2.16) will be generalized to

i : ψ
(m)
1 = |(Trcρ0)

m
2 〉 ,

ii : ψ
(m)
2 = |(Trbb′ρ

(m)
1 )

m
2 〉 ,

iii : ψ
(m)
3 = |(Traa′a′′a′′′ρ

(m)
2 )

m
2 〉 .

(4.3)

with
√
ρ changed to ρ

m
2 . These steps can be represented by path integral and replica trick.

For instance the first step is illustrated in figure 10.

– 11 –
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(a) (b)

Figure 10. Use replica trick to represent ψ
(m)
1 . (a): Trcρ0 and (b): ψ

(m=6)
1 .

Now we calculate nnn-th Rényi entropy

Snnn =
1

1−nnn
ln

TrR(TrLρ
(m)
3 )nnn

(Trρ
(m)
3 )nnn

. (4.4)

Compared with (2.19), in addition to ρ3 → ρ
(m)
3 , there is a normalized factor (Trρ

(m)
3 )nnn.

To compute Rényi entropy we have to replicate the previous replicas (ρ
(m)
3 corresponds

to single box in figure 11 with m3-replica) nnn times. So there are m3nnn replicas in total

(shown in figure 11), with which we can work out six twist operators σi(xi), located at

x1 = −d2, x2 = −d1 − r, x3 = −d1 + r, x4 = d1 − r, x5 = d1 + r, x6 = d2 respectively.

In the following we will employ the twist operator correlation function to evaluate the

path integral on the complicated glued spacetime with m3n replicas. It can be counted

from replicas that the conformal dimensions hi of operators σi(xi) are (see appendix A)

h1 = h6 =
c

24
(m3 −m)nnn , h2 = h3 =

c

12
(m2 − 1)nnn , h4 = h5 =

c

6

(
m− 1

m

)
nnn . (4.5)

Although these dimensions look different, they will all go to zero when m→ 1. Once twist

operators σi(xi) are specified, conformal dimensions hf of the leading operator σf in OPE

contractions σi(xi)σj(xj)→ σf (xf ) can also be directly counted. For example,

h16 = h23 = h45 =
c

6

(
nnn− 1

nnn

)
. (4.6)

It’s not surprising that they are equal because ABC are symmetric.

The trace of density matrix is related to 6-point correlation function of twist operators

TrR(TrLρ
(m)
3 )nnn = 〈σ1(x1)σ2(x2)σ3(x3)σ4(x4)σ5(x5)σ6(x6)〉

CFT⊗m3nnn . (4.7)

In the large c limit with hi
c and

hf
c fixed, this correlation function can be approximated by

a 6-point Virasoro block F . It should be emphasized that the approximation by Virasoro
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Figure 11. Replica trick representing TrR(TrLρ
(m)
3 )nnn to calculate nnn-th Renyi entropy. Here

m = 2,nnn = 3 with 24 replicas in total. There are nnn similar boxes, each representing the density

matrix ρ
(m)
3 = |ψ(m)

3 〉〈ψ(m)
3 |. The rule to glue edges of cut is as follows: in each box, bra and ket of

the same object are glued, e.g., the edge 〈A| and |A〉 are glued. And the ket of + object glues to

the bra of the − object in the next box, e.g., |B+〉 in the left box and 〈B − | in the middle box.

block may lose some information such as the angle of two geodesics within ∆W .1 Here we

only focus on the comparison of the entropy and the area of ∆W . The Virasoro block F

exponentiates [63]

F ≈ exp

[
− c

6
f

(
hf
c
,
hi
c
, xi

)]
(4.8)

where f is determined by the solution of a monodromy problem as follows. Consider the

differential equation

ψ′′(z) + T (z)ψ(z) = 0 (4.9)

where

T (z) =

6∑
i=1

(
6hi/c

(z − xi)2
− ci
z − xi

)
. (4.10)

1We thank the anonymous referee for pointing this out. A better approach could be studying the twist

operators inserted in the path integral of the state |√ρABC〉 and therefore the conformal block associated

to it. We leave the more refined computation to future work.
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Figure 12. The channel and contours chosen to determine the monodromies.

ci are called accessory parameters restricted by three equations which require T (z) to vanish

as z−4 at infinity, namely

6∑
i=1

ci = 0 ,

6∑
i=1

(
cixi −

6hi
c

)
= 0 ,

6∑
i=1

(
cix

2
i −

12hi
c
xi

)
= 0 . (4.11)

The differential equation (4.9) has two solutions, ψ1 and ψ2. As we take the solutions on

a closed contour around one or more singular points, they undergo some monodromy(
ψ1

ψ2

)
→M

(
ψ1

ψ2

)
. (4.12)

We choose contours around the singular points which correspond to the OPE contrac-

tions in the chosen channel as shown in figure 12. That is to say, for each contraction

Oi(xi)Oj(xj) → Of (xf ), we choose a contour γf enclosing xi and xj . The monodromies

on these cycles should satisfy the conditions

TrMf = −2 cos

(
π

√
1− 24

c
hf

)
. (4.13)

Plus three conditions (4.11), there are totally six equations of accessory parameters ci. So

we can solve ci which are the partial derivative of f with respect to xi

∂f

∂xi
= ci . (4.14)

There are two semiclassical blocks in ∆R(A : B : C), namely f(1
6(nnn − 1

nnn), hi, xi) and

f(0, hi, xi) which are the numerator and the denominator in (4.4) respectively. ‘0’ in the

later one f(0, hi, xi) means that differential equation (4.9) has trivial monodromy, i.e.,

TrMf = 2. When m → 1, f(0, 0, xi) becomes constant because it can be easily checked

that ci = 0 is a solution. Thus, the partial derivatives of ∆R(A : B : C) to xi are

∂∆R(A : B : C)

∂xi
= lim

m,nnn→1

1

1−nnn

[
− c

3

∂f
(

1
6(nnn− 1

nnn), hi, xi
)

∂xi

]
. (4.15)
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Note that only when r is sufficiently less than d1 and d1 is sufficiently less than d2 our

channel figure 12 is valid to give the result. Otherwise, ∆R will experience phase transitions,

as discussed in [55].

Then the derivative of ∆R with respect to y (y = d1, d2 or r) is

∂∆R(A : B : C)

∂y
= − c

3
lim

m,nnn→1

1

1−nnn

(
6∑
i=1

∂f

∂xi

∂xi
∂y

)

= − c
3

lim
m,nnn→1

1

1−nnn

(
6∑
i=1

ci
∂xi
∂y

) (4.16)

We numerically plot the partial derivative of (half of) ∆R with respect to r and d1 and

compare it with that of ∆W in figure 13. It can be seen that ∆R
2 fits well with ∆W .2

5 Some properties of ∆R

In this section we discuss some information theoretic properties of tripartite reflected en-

tropy ∆R. Notice that so far we do not have an intrinsic quantum information definition of

∆R purely from ρABC , which makes it difficult to derive information theoretic properties

of ∆R. However in some special cases, we can check their properties.

When ρABC = |ψABC〉〈ψABC | is pure, |ψ1〉 = |ψABC〉⊗|ψA′B′C′〉, and it can be checked

that

∆R(A : B : C) = EE(AC : B) + EE(A′ : B′C ′) + EE(A′1B
′
1 : C ′1)

+ EE(C′ : A′B′) + EE(B1′C1′ : A1′) + EE(B′1′ : A′1′C
′
1′)

= S(B) + S(A′) + S(C ′1) + S(C′) + S(A1′) + S(B′1′)

= 2(S(A) + S(B) + S(C)) .

(5.1)

For some special ρABC as shown in figure 14 where a, b→ 0, one can easily check some

properties of ∆R(A : B : C). The purification is

|ψ3〉= |ψ1〉ABCA′B′C′⊗|ψ1〉A1B1C1A′1B
′
1C
′
1
⊗|ψ1〉A′B′C′A′′B′′C′′⊗|ψ1〉A1′B1′C1′A

′
1′B
′
1′C
′
1′

(5.2)

where |ψ1〉 = |ρ
1
2
ABC〉. Then

∆R(A : B : C) ≡ EE(AA′A1A
′
1B1B

′
1B1′B

′
1′CC′C1C1′ : A′A′′A1′A

′
1′BB

′B′B′′C ′C ′′C ′1C
′
1′)

= EE(AA′C : BB′C ′) + EE(A1A
′
1B1B

′
1C1 : C ′1)

+ EE(C′ : A′A′′B′B′′C ′′ ) + EE(B1′B
′
1′C1′ : A1′A

′
1′C
′
1′)

= S(AA′C) + S(C ′1) + S(C′) + S(A1′A
′
1′C
′
1′)

= 2(S(AA′C) + S(C)) (5.3)

where S(X) means S(TrXρ1). From (5.3) we can see that ∆R(A : B : C) ≥ S(C) > 0,

which implies that ρABC in this case can’t be seperable.

2However, when r or a becomes larger, it can be seen from the numerical data that ∆R
2

differs gradually

from ∆W .
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(a)

(b)

Figure 13. Comparison between the derivative of ∆R

2 and ∆W (divided by c
6 = 1

4GN
) with respect

(a): to r, with d1 = 20, d2 = 100 and (b): to d1, with r = 0.5, d2 = 100.

– 16 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
1

Figure 14. A special case in which we study quantum information aspects of ∆R(A : B : C).

Now we check some properties of ∆R(A : B : C) in this case. Due to the positivity of

mutual information

I(AC : A′) = S(AC) + S(A′)− S(AA′C) ≥ 0 (5.4)

it can be derived that

∆R(A : B : C) = 2(S(AA′C) + S(C))

≤ 2(S(AC) + S(A′) + S(C))

= 2(S(AC) + S(A) + S(C)) .

(5.5)

Similarly

∆R(A : B : C) ≤ 2(S(BC) + S(B) + S(C)) . (5.6)

We could not show

∆R(A : B : C) ≤ 2(S(AB) + S(A) + S(B)) , (5.7)

but since the right side has much larger UV divergence in holography, this is expected to

be true.3

From strong sub-additivity

S(AA′C) + S(ABC) ≥ S(A′) + S(B) (5.8)

it can be derived that

∆R(A : B : C) = 2(S(AA′C) + S(C))

≥ 2(S(A) + S(B) + S(C)− S(ABC))

≡ 2I(A : B : C)

(5.9)

where I(A : B : C) is a generalization of mutual information.

3We thank Koji Umemoto for pointing this out.
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From strong sub-additivity

S(BB′C ′) + S(ABC) ≥ S(B′C ′) + S(AC) (5.10)

and Araki-Lieb inequality

S(AB)− S(C) ≤ S(ABC) , (5.11)

it can be derived that

∆R(A : B : C) = 2(S(BB′C ′) + S(C))

≥ 2(S(C) + S(B′C ′) + S(AC)− S(ABC))

≥ 2(S(AB) + S(BC) + S(AC)− 2S(ABC)) .

(5.12)

which is defined as D3(A : B : C)× 2 in [55].

We can also derive polygamy, namely for a pure state ρA1A2BC

∆R(A1A2 :B :C) = 2(S(A1A2)+S(B)+S(C))

= 2(S(BC)+S(B)+S(C))

≤ 2(S(B)+S(C)+S(B)+S(C))

= 2(S(B)+S(C)+S(B)+S(C)+S(A1)−S(A2BC)+S(A2)−S(A1BC))

= 2(S(B)+S(C)+S(A1)−S(A1BC)+S(B)+S(C)+S(A2)−S(A2BC))

≤∆R(A1 :B :C)+∆R(A2 :B :C) (5.13)

where in the third line we used the positivity of mutual information I(B : C) and in the

last line we used (5.12).

From strong sub-additivity and positivity of mutual information

S(AA′C) + S(BB′C) ≥ S(AA′) + S(BB′)

I(C : C ′) ≥ 0 ,
(5.14)

it can be derived that

∆R(A : B : C) = 2(S(AA′C) + S(C))

= S(AA′C) + S(BB′C ′) + 2S(C)

= S(AA′C) + S(BB′C) + S(C) + S(C ′)

≥ S(AA′) + S(BB′) + S(CC ′)

= SR(A : BC) + SR(B : CA) + SR(C : AB) .

(5.15)

6 Conclusion

In this paper, we defined a class of generalized reflected entropy for multipartite states.

We show that the generalizations of reflected entropy can be defined canonically. We

particularly show that the generalization of reflected entropy to multipartite case is not
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unique. After n steps of canonical purifications we have obtained a big pure state associated

to 2n copies of the original Hilbert space. Each bipartition of the large Hilbert space will

define a generalized reflected entropy. In this sense, the generalization depends on both

n and the bipartition. Based on this one can construct pure state in any even copies of

Hilbert spaces. We develop a general method using replica trick and twist operators in

CFTs to compute generalized reflected entropies.

Based on the holographic conjecture of reflected entropy [1], we defined a class of min-

imal surfaces Σmin as the holographic counterparts of the generalized reflected entropies,

and in particular we show that for holographic theories there is a one to one correspondence

between generalized reflected entropy and Σmin. It leads us to propose a new class of en-

tropies in CFT as dual of various combinations of cross-sections in the entanglement wedge

and therefore discovered a new class of quantities which can be used to test AdS/CFT.

In tripartite case we focus on a particular generalized reflected entropy ∆R(A : B : C)

and show that its holographic dual is twice of the multipartite entanglement wedge cross

sections ∆W . We performed a large c computation of ∆R and find evidence to support

∆R = 2∆W for a simple setup in AdS3/CFT2.

Several future questions are in order: first, generalize our holographic conjectures to

black hole backgrounds and time-dependent background geometry. Second, generalize our

new entropy measures systematically to n-partite case and to higher dimensions where

we expect that many new types of generalized reflected entropy will appear following our

construction. Third, looking for the dictionary between generalized reflected entropy and

minimal cross-sections in n-partite case. Understanding holographic n-partite states will

be quite useful to understand the emergence of bulk geometry from boundary CFT. We

shall report the progress in future publications.
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A Derivation of conformal weights

Let’s first derive the conformal dimensions in m = 2,nnn = 3 case as an appetizer. Replica

trick shown in figure 11 is determined by six twist operators σi(xi) which are made up of 5

nontrivial operators connecting respectively 5 intervals of replicas, namely ΣA, Σb, ΣC , Σa,

ΣB from left to right. We mark the 24 replicas by integers from 1 to 24. These operators

can be described by representation of cyclic groups. For example, (123) means that the

lower edge of cut in replica 1 is glued to the upper edge of cut in replica 2, the lower edge

of cut in replica 2 is glued to the upper edge of cut in replica 3, and the lower edge of cut

in replica 3 is glued to the upper edge of cut in replica 1. In this way, we can read from
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figure 11 that

ΣA = (1, 8)(2, 7)(3, 14)(4, 13)(9, 16)(10, 15)(11, 22)(12, 21)(17, 24)(18, 23)(19, 6)(20, 5)

Σb = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)

ΣC = (1, 16, 9, 24, 17, 8)(2, 7, 18, 23, 10, 15)(3, 14, 11, 22, 19, 6)(4, 5, 20, 21, 12, 13)

Σa = (1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13, 16)(14, 15)(17, 20)(18, 19)(21, 24)(22, 23)

ΣB = (1, 16)(2, 7)(3, 6)(4, 13)(9, 24)(10, 15)(11, 14)(12, 21)(17, 8)(18, 23)(19, 22)(20, 5) .

(A.1)

Then,

σ1 = ΣA = (1,8)(2,7)(3,14)(4,13)(9,16)(10,15)(11,22)(12,21)(17,24)(18,23)(19,6)(20,5)

σ2 = Σ−1
A Σb = (1,7)(2,8)(3,13)(4,14)(5,19)(6,20)(9,15)(10,16)(11,21)(12,22)(17,23)(18,24)

σ3 = Σ−1
b ΣC = (8,2)(1,15)(16,10)(9,23)(24,18)(17,7)(3,13)(14,12)(11,21)(19,5)(6,4)(22,20)

σ4 = Σ−1
C Σa = (1,13)(4,8)(2,6)(3,15)(5,17)(7,19)(9,21)(12,16)(10,14)(11,23)(20,24)(18,22)

σ5 = Σ−1
a ΣB = (2,6)(7,3)(1,13)(16,4)(10,14)(15,11)(9,21)(24,12)(18,22)(23,19)(17,5)(8,20)

σ6 = Σ−1
B = (1,16)(2,7)(3,6)(4,13)(9,24)(10,15)(11,14)(12,21)(17,8)(18,23)(19,22)(20,5)

(A.2)

so that conformal weights are hi = c
24(2 − 1

2)12, which can be checked by (4.5). And the

leading operators σf in OPE contractions σi(xi)σj(xj)→ σf (xf ) are

σ16 = σ1σ6 = ΣAΣ−1
B = (1, 9, 17)(3, 19, 11)(6, 14, 22)(8, 24, 16)

σ23 = σ2σ3 = Σ−1
A ΣC = (1, 9, 17)(4, 20, 12)(6, 14, 22)(7, 23, 15)

σ45 = σ4σ5 = Σ−1
C ΣB = (3, 19, 11)(4, 12, 20)(7, 15, 23)(8, 24, 16)

(A.3)

so that conformal weights are hf = c
24(3− 1

3)4, which can be checked by (4.6).

Now we are ready to generalize our derivation to m,nnn > 2 case. From above we can

see that twist operator σi contain m-cycles and σf contain nnn-cycles, i.e.,

hi ∝ m−
1

m

hf ∝ nnn−
1

nnn
.

(A.4)

When m,nnn→∞,

h1, h6 →
c

24
m3nnn

h2, h3 →
c

24
2m2nnn

h4, h5 →
c

24
4mnnn

hf →
c

24
4nnn

(A.5)
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Figure 15. Multipartite entanglement wedge cross-sections ∆W of subsystems made up of n

intervals: A1, A2, · · · , An, with the complement a12, a23, · · · , an1. The dotted black lines denote

Ryu-Takayanagi surfaces of the subsystems. The closed orange curve denotes ∆W .

because it can be checked that cyclic groups of twist operators σ1, σ2, σ3, σ4, σ5, σ6, σ16,

σ23, σ45 pass through m3nnn, 2m2nnn, 2m2nnn, 4mnnn, 4mnnn, m3nnn, 4nnn, 4nnn, 4nnn replicas respectively.

Therefore,

h1, h6 =
c

24

(
m− 1

m

)
m2nnn

h2, h3 =
c

24

(
m− 1

m

)
2mnnn

h4, h5 =
c

24

(
m− 1

m

)
4nnn

hf =
c

24

(
nnn− 1

nnn

)
4 .

(A.6)

B Multipartite reflected entropy for the n-partite case

In this appendix, we will give the definition of multipartite reflected entropy for general

n-partite case (shown in figure 15).

Firstly, we perform n steps of canonical purifications to create a pure state with 2n

copies of HA1A2···An as follows:

ψ1 = |
√

Tra0
12
ρ0〉 ,

ψ2 = |
√

Tra0
23a

1
23
ρ1〉 ,

...

ψn = |
√

Tr
a0
n1a

1
n1···a

2n−1−1
n1

ρn−1〉 .

(B.1)
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Here we denote copies in order starting from 0 which denotes the original one. For the final

pure state ψn we choose a proper bipartition curve R inspired from the holography shown

in figure 15 as we did for n = 3. Then the n-partite reflected entropy is the entanglement

entropy associated to R
∆R(A1 : · · · : An) = EER[ψn]. (B.2)

C ∆R for quantum states and holographic states

For a quantum state described by density matrix ρABC , our 8-copy definition of ∆R needs a

big pure state with at least 24 bits. And the associated Hilbert space is therefore 224, which

is very large. Therefore it is hard to accomplish with PC. We instead consider the simplified

definition of ∆R in special case (5.3) and compute that formula in some quantum states:

for example, for the W4 state |ψABCc〉 = 1
2(|0001〉+ |0010〉+ |0100〉+ |1000〉), ∆R(A : B :

C) = 3.25214. For the GHZ4 state |ψABCc〉 = 1√
2
(|0000〉+ |1111〉), ∆R(A : B : C) = 4 ln 2.

In particular we are interested in some holographic property of ∆R which may be

violated for generic quantum states. For instance, it has been shown that in holography [31]

∆R(A : B : C) ≥ 2I(A : B : C) + Ĩ3 (C.1)

where Ĩ3 is the tripartite information defined as [58]

Ĩ3 ≡ S(A) + S(B) + S(C)− S(AB)− S(BC)− S(AC) + S(ABC) . (C.2)

However this inequality is violated for GHZ4 state. This shows that the property may be

special for holographic states. Note that the violation of (C.1) comes from that Ĩ3 > 0. In

holography, however, the negativity of tripartite information Ĩ3 ≤ 0 makes (C.1) a looser

bound than (5.9).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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