
 

Generalized geometrical coupling for vector field localization on thick brane
in asymptotic anti–de Sitter spacetime

Tao-Tao Sui,1,† Wen-Di Guo,1,4,‡ Qun-Ying Xie,2,§ and Yu-Xiao Liu 1,3,*

1Institute of Theoretical Physics and Research Center of Gravitation,
Lanzhou University, Lanzhou 730000, China

2School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
3Key Laboratory for Magnetism and Magnetic of the Ministry of Education,

Lanzhou University, Lanzhou 730000, China
4Centro de Astrofísica e Gravitação—CENTRA, Departamento de Física, Instituto Superior Técnico—IST,
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It is known that a five-dimensional free vector field AM cannot be localized on Randall-Sundrum (RS)-
like thick branes—namely, the thick branes embedded in asymptotic anti–de Sitter spacetime. To localize a
vector field on the RS-like thick brane, an extra coupling term should be introduced. We generalize the
geometrical coupling mechanism by adding two mass terms (αRgMNAMAN þ βRMNAMAN) to the action.

We decompose the fundamental vector field AM into three parts: transverse vector part Âμ and scalar parts ϕ

and A5. Then we find that the transverse vector part Âμ decouples from the scalar parts. To eliminate the

tachyonic modes of Âμ, the two coupling parameters α and β should satisfy a relation. Combining the

restricted condition, we can get a combination parameter as γ ¼ 3
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

. Only if γ > 1=2 can

the zero mode of Âμ be localized on the RS-like thick brane. We also investigate the resonant character of

the vector part Âμ for a general RS-like thick brane with a warp factor AðzÞ ¼ − lnð1þ k2z2Þ=2 by
choosing the relative probability method. The results show that the massive resonant Kaluza-Klein modes
can exist only for γ > 3. The number of resonant Kaluza-Klein states increases with the combination
parameter γ, and the lifetime of the first resonant state can be as long as our Universe’s. This indicates
that the vector resonances might be considered one of the candidates of dark matter. Combining the
conditions of experimental observations, the constraint shows that the parameter k has a lower limit with
k ≳ 10−17 eV, the combination parameter γ should be greater than 57, and, accordingly, the mass of the first
resonant state should satisfy m1 ≳ 10−15 eV.
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I. INTRODUCTION

In recent decades, brane world theories have received a
lot of attention for success in solving the gauge hierarchy
and cosmological constant problems [1,2]. In the brane
world scenario, our Universe is a 3-brane embedded in a
higher-dimensional bulk. The well-known Randall-
Sundrum (RS) models [1] (including the RS-1 and RS-2

models) involve one extra dimension with a nontrivial warp
factor due to the underlying anti–de Sitter (AdS) geometry.
In the RS thin brane models and their generalizations, the

branes have no thickness, and there are no dynamical
mechanisms responsible for their formation. To investigate
the dynamical generation of branes and their internal
structure, domain wall (or thick brane) models were
presented; for more details on thick brane models, see
Refs. [3,4]. One of the features of a thick brane is that it is
usually generated by one or more background scalar fields
coupled with gravity.
In thick brane models, various fundamental matter fields

are living in the higher-dimensional bulk. Therefore, to
construct a more realistic brane world, on which the four-
dimensional gravity and matter fields in the standard model
should be localized, it is very necessary and significant to
provide an effective localization mechanism for the bulk
gravity and matter fields. The results of Refs. [5–11] show
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that four-dimensional gravity can be localized on the thick
branes generated by the background scalar field(s) in a five-
dimensional asymptotic AdS spacetime. As shown in
Refs. [12–17], a free massless scalar field can also be
localized on the thick branes. For a Dirac fermion field,
without introducing the scalar-fermion coupling (also
called the Yukawa coupling) [18–24] or fermion-gravity
coupling [25], it has no normalizable zero mode in five-
dimensional RS-like brane models. Unfortunately,
Ref. [26] gave the essence of the “no-go theorem” in the
thin brane limit (the RS-2 model with an infinite extra
dimension): that the localization for a vector field seems to
require a richer brane structure, for example, the de Sitter
brane [27–30], the brane world with a finite extra dimen-
sion [31], or a six-dimensional stringlike model [32].
A lot of works have been devoted to find a mechanism

for vector field localization, and the literature shows a wide
variety of ideas. Kehagias and Tamvakis proposed a dilaton
coupling between the vector field and the background
scalar field [33]. This mechanism has been widely applied
in different thick brane models [34–40]. Chumbes et al.
proposed a coupling function between the vector field and
the background scalar field [41]. Vaquera-Araujo and
Corradini introduced a Yukawa-like coupling—namely, a
Stueckelberg-like action—to realize the localization of the
vector field [42].
Recently, Zhao et al. [43] presented another localization

mechanism of the vector field AM; i.e., they introduced a
mass term αRgMNAMAN , with R and gMN being the five-
dimensional scalar curvature and metric, respectively. They
found that only for a special coupling parameter α ¼
−1=16 can the vector part Âμ be localized on the thick
brane, and there are no tachyonic modes. Then, Alencar
et al. introduced other forms of the mass term: βRMNAMAN
and βGMNAMAN with RMN and GMN the Ricci tensor and
Einstein tensor [44,45]. While in all these mechanisms, to
eliminate tachyonic vector modes, the massive parameter α
or β should be fixed since there are no more degrees of
freedom for the coupling parameter. As a result, the
effective potential of the vector Kaluza-Klein (KK) modes
is fixed and usually there are no resonant vector KK modes
quasilocalized on the brane.
Inspired by the above works, we generalize the mass

term to the following one,

−
1

2
ðαRgMNAMAN þ βRMNAMANÞ; ð1Þ

since both terms are possible couplings. Then we study the
localization and quasilocalization of the vector field on the
thick brane. Quasilocalized massive KK modes might be a
candidate for dark matter. Note that the consistency
conditions for this kind of localization mechanism were
just investigated in Ref. [46].
We decompose the vector field AM into three parts: the

transverse component Âμ (the transverse vector part), the
longitudinal component ∂μϕ (the scalar part), and the fifth
component A5 (the scalar part). Here the latin indices (M,

N ¼ 0, 1, 2, 3, 5) stand for the five-dimensional coordinate
indices, and the greek indices (μ, ν ¼ 0, 1, 2, 3) correspond
to the brane coordinate indices. We find that the transverse
vector part Âμ decouples with the scalar parts ϕ and A5.
Besides, to eliminate the tachyonic modes of Âμ, the two
parameters in the coupling term (1), α and β, should satisfy
the relation β ¼ −1 − 8α� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

. With this con-
straint, we can get a combination parameter γ ¼
3
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

, and the localized condition for the trans-
verse vector part Âμ is γ > 1=2. More importantly, we can
find the resonant states under this restrictive condition. We
investigate the resonant character of Âμ with the general
RS-like thick brane warp factor AðzÞ ¼ − lnð1þ k2z2Þ=2.
These resonant states can be considered for dark matter.
The remaining parts of the paper are organized as

follows. In Sec. II, we introduce the generalized model
of the vector field. Then we calculate the localization of the
transverse part of a five-dimensional vector on the thick
brane in Sec. III. After that, we study the resonant character
of the transverse vector part in Sec. IV. Finally, we conclude
with our results in Sec. V.

II. THE GENERALIZED GEOMETRICAL
COUPLING MECHANISM OF THE VECTOR

FIELD

The vector field can be localized on the thick brane by
considering the geometrical coupling term, e.g., the cou-
pling between the vector field and the Ricci scalar (or the
Ricci tensor). In this paper, we consider the generalized
geometrical coupling (1). Then the full five-dimensional
action for the vector field AM is given by

S ¼ −
1

4

Z
d5x

ffiffiffiffiffiffi
−g

p ðFMNFMN

þ 2ðαRgMN þ βRMNÞAMANÞ; ð2Þ
where FMN ¼ ∂MAN − ∂NAM is the field strength. Note
that the simplest mass term (M2gMNAMAN) is not consid-
ered here since we cannot make sure that the localization of
the vector zero mode and the exclusion of the tachyonic
vector modes for any RS-like brane. The form of the
geometrical coupling mechanism can be considered a
massive term of the vector field which is related to the
extra dimension. For such a massive vector, the U(1) gauge
symmetry is violated. If we want to recover the five-
dimensional gauge invariant, we should introduce a
scalar field using the Stueckelberg mechanism. The five-
dimensional gauge invariant massive vector field action can
be expressed as

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
FMNFMN

−
1

2
QMNðRÞðAM − ∂MBÞðAN − ∂NBÞ

�
; ð3Þ
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where B is a dynamical scalar field coming from the
Stueckelberg mechanism and QMN ¼ αgMNRþ βRMN .
With the gauge transformation AM → AM þ ∂Mξ,
B → B þ ξ, the action (3) remains gauge invariant. In this
paper, we consider the localization of the zero mode of the
four-dimensional component Aμ, whose effective action
will keep the gauge invariant in four-dimensional space-
time, which is consistent with the known four-dimensional
theory. If we want to keep the gauge invariant in five-
dimensional spacetime, we should add the Stueckelberg
field B, which introduces a new degree of freedom. By
choosing a gauge, the redundant degree of freedom will be
eliminated.
We decompose the vector AM in the following way:

AM ¼ ðÂμ þ ∂μϕ; A5Þ; ð4Þ

where Âμ is the transverse component with the transverse
condition ∂μÂ

μ ¼ 0 and ∂μϕ is the longitudinal component.
We adopt the following metric ansatz to describe the

five-dimensional spacetime:

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; ð5Þ

where the warp factor AðyÞ is a function of the extradimen-
sional coordinate y. So, the Ricci scalar and the non-
vanishing components of the Ricci tensor can be expressed
as

R ¼ −4ð5A02 þ 2A00Þ; ð6Þ

Rμν ¼ −ð4A02 þ A00Þgμν; ð7Þ

R55 ¼ −4ðA02 þ A00Þ; ð8Þ

where the prime denotes the derivative with respect to y.
The components of the mass terms in the action (3) can the
written as

αRgμν þ βRμν ¼ Wgμν; ð9Þ

αRg55 þ βR55 ¼ Gg55; ð10Þ

where

W ¼ −4ð5αþ βÞA02 − ð8αþ βÞA00; ð11Þ

G ¼ −4ð5αþ βÞA02 − 4ð2αþ βÞA00: ð12Þ

By substituting the decomposition (4) into the action (3),
we can split it into two parts,

S ¼ SVðÂμÞ þ SSðϕ; A5Þ; ð13Þ

where

SV ¼ −
1

4

Z
d5xðF̂λμF̂νρη

λνημρ þ 2∂5Âμ∂5Âνη
μνe2A

þ 2WÂμÂνη
μνe2AÞ; ð14Þ

SS ¼ −
1

2

Z
d5xe2Aðημνg55ð∂5∂μϕÞð∂5∂νϕÞ

þWημν∂μϕ∂νϕþ ημνg55∂μA5∂νA5

þ Ge2Ag55A5A5 − 2ημνg55∂μA5ð∂5∂νϕÞÞ; ð15Þ

where F̂μν ¼ ∂μÂν − ∂νÂμ. The above result shows that the
transverse vector part Âμ decouples from the scalar parts.
So, we consider separately only the localization condition
and resonant character of the transverse vector part Âμ.

III. LOCALIZATION OF THE TRANSVERSE
VECTOR PART OF THE VECTOR FIELD ON

THICK BRANE

In this section, we consider the localization of the vector
part Âμ independently. We make the following KK decom-
position:

Âμðx; yÞ ¼
X
n

aðnÞμ ðxνÞρ̃nðyÞ; ð16Þ

where aðnÞμ ðxνÞ is the four-dimensional vector KKmode and
ρ̃nðyÞ is the corresponding extradimensional profile (also
called the KK wave function in Ref. [47]), and the index n
represents the nth KK mode. By using the KK decom-
position (16) and the orthonormality condition

Z
∞

−∞
ρ̃nðyÞρ̃mðyÞ ¼ δmn; ð17Þ

we can get an effective action including the four-

dimensional massless vector field (the zero mode að0Þμ )

and a set of massive vector fields aðnÞμ with n > 0:

SV ¼ −
1

4

X
n

Z
d4xðfðnÞμλ f

μλ
ðnÞ þ 2m2

na
ðnÞ
μ aðnÞν ημνÞ; ð18Þ

where fðnÞμν ¼ ∂μa
ðnÞ
ν − ∂νa

ðnÞ
μ is the four-dimensional vec-

tor field strength tensor. In addition, the extradimensional
part ρ̃nðyÞ should satisfy the following equation:

−∂yðe2AðyÞ∂yρ̃nÞ þ ρ̃ne2AðyÞW ¼ m2
nρ̃n: ð19Þ

To solve Eq. (19), we make a coordinate transformation
dz ¼ e−AðyÞdy, for which the metric can be expressed as

ds2 ¼ e2AðzÞðημνdxμdxν þ dz2Þ; ð20Þ

and Eq. (19) is then rewritten as
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−∂zðeAðzÞ∂zρ̃nÞ þ ρ̃ne3AðzÞW ¼ eAðzÞm2
nρ̃n; ð21Þ

with W ¼ e−2Að−12α − 3βÞð∂zAÞ2 þ e−2Að−8α − βÞ∂2
zA.

After the field transformation ρ̃n ¼ e−
1
2
AðzÞρzðzÞ, Eq. (21)

can be rewritten as a Schrödinger-like equation,

ð−∂2
z þ VvðzÞÞρn ¼ m2

nρn; ð22Þ

where the explicit expression of the effective potential
VvðzÞ is

VvðzÞ ¼
�
1

4
− 12α − 3β

�
ð∂zAÞ2 þ

�
1

2
− 8α − β

�
∂2
zA:

ð23Þ

To exclude the tachyonic vector modes, the eigenvalues
of Schrödinger-like equation (22) should be non-negative,
i.e., m2

n ≥ 0. So, Eq. (22) should be written in the form of
QþQρn ¼ m2

nρn with Q ¼ −∂z þ γ∂zA. That is, the effec-
tive potential should be in the form

VvðzÞ ¼ γ2ð∂zAÞ2 þ γ∂2
zA: ð24Þ

To this end, the two parameters α and β should satisfy the
following relation,

β ¼ −1 − 8α� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

p
; ð25Þ

so parameter γ in Eq. (24) is given by

γ ¼ 3

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

: ð26Þ

With the relation (25) and the expression (26), the
Schrödinger-like equation (22) can be further rewritten as

ð−∂2
z þ γ2ð∂zAÞ2 þ γ∂2

zAÞρn ¼ m2
nρn: ð27Þ

Now, we investigate the localization of the zero mode of
Âμ, for which m0 ¼ 0 and the solution is given by

ρ0ðzÞ ¼ c0eγAðzÞ; ð28Þ

where c0 is the normalization constant. According to the
orthonormality condition (17), the integration of ρ20 should
be finite—namely,

Z þ∞

−∞
ρ20dz ¼ c20

Z þ∞

−∞
e2γAðzÞdz

¼ c20

Z þ∞

−∞
eð2γ−1ÞAðyÞdy ¼ 1: ð29Þ

For the RS-like braneworld scenarios, the warp factor has
the following asymptotic behavior:

AðyÞjy→�∞ → −kjyj; ð30Þ

where k is the scale parameter of the brane with mass
dimension. Plugging it into Eq. (29), we obtain that

eð2γ−1ÞAðyÞjy→�∞ → e−ð2γ−1Þkjyj: ð31Þ

To ensure that the integration (29) is convergent, the para-
meter should satisfy γ > 1=2, i.e., 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

> 0.
So, the range of the parameter α for different concrete
expressions of β is

α > −1=12; β ¼ −1 − 8α −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

p
; ð32Þ

0 > α > −1=12; β ¼ −1 − 8αþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α

p
: ð33Þ

IV. THE RESONANT CHARACTER OF Âμ

In this section, we would like to investigate the massive
KK states of the transverse vector part for the vector field.
We will mainly look for resonant KK states of the vector
field, which are quasilocalized on the brane but propagate
into extra dimensions eventually. The resonance spectrum
of these KK states is one of the typical characteristics of
RS-like brane world models. They can interact with four-
dimensional particles, which may lead to the nonconser-
vation of energy and momentum since the KK resonances
can escape out of the brane. So, it is possible to probe extra
dimensions by detecting resonant states [48]. Besides,
some physicists regard those massive KK particles as a
candidate for dark matter (see Refs. [49–51] for details).
The appearance of these resonances is related to the
structure of the brane. Thus, it is important and interesting
to study the resonant KK modes on the thick brane with
different structures. References [52–57] have considered
resonances of gravitons and fermions. Besides, Arakawa
et al. considered a massive vector field as a candidate for
dark matter to explain the strong CP problem [58]. So, we
will study the resonances of the five-dimensional vector
field.
To study the resonant states, Almeida et al. proposed the

large peaks of the wave function as the resonance method
for studying fermion resonances [52]. Then, Landim and
co-workers researched the resonant states with the transfer
matrix method [56,57]. Here we will choose the relative
probability method proposed by Liu et al. [54] to calculate
the resonant KK modes of the vector part Âμ since the
method is effective for both odd and even KK states. The
relative probability is defined as [54]

P ¼
R
zb
−zb jρnðzÞj2dzR
zmax
−zmax

jρnðzÞj2dz
; ð34Þ

where 2zb is approximately the width of the thick brane and
zmax ¼ 10zb. Since the potentials considered in this paper

SUI, GUO, XIE, and LIU PHYS. REV. D 101, 055031 (2020)

055031-4



are symmetric, the wave functions are either even or odd.
Hence, we can use the following boundary conditions to
solve the differential equation (27) numerically:

ρnð0Þ ¼ 0; ρ0nð0Þ ¼ 1 for odd KK modes;

ρnð0Þ ¼ 1; ρ0nð0Þ ¼ 0 for even KK modes: ð35Þ

We solve the Schrödinger-like equation (25) with the
general RS-like warp factor AðzÞ ¼ − lnð1þ k2z2Þ=2.
According to supersymmetric quantum mechanics, the
supersymmetric partner potentials will share the same
spectrum of massive excited states. So, we can judge
whether there are resonances by analyzing the shape of
the supersymmetric partner potential (we call it the dual
potential). In our case, the dual potential corresponding to

Eq. (24) is VðdualÞ
v ðzÞ ¼ γ2ð∂zAÞ2 − γ∂2

zA. If there is no well
or quasiwell in the dual potential, then there are no
resonances. Thus, only for γ > 3 might there exist reso-
nances. We solve the KK states numerically. The result
shows that the parameters k and γ both will affect the
properties of the resonant states.
Figure 1 shows the influence of the combination param-

eter γ on the effective potential VvðzÞ and the resonant KK
modes of the vector field Âμ. Figure 1(a) shows that the
height of the potential barrier increases with the combina-
tion parameter γ, which indicates that there are more
resonant KK modes for larger γ, and this can be confirmed
from Figs. 1(b)–1(d). Combining Figs. 1(b), 1(c), and 1(d),
we can see that the mass of the first resonant KKmodes, the
number of resonant states, and the mass gap of the resonant
KK modes increase with the parameter γ.

The effect of the scale parameter k is shown in Fig. 2.
From Fig. 2(a), we can see that the scale parameter k can
influence not only the width of the potential well but also its
height. With the increasing of the scale parameter k, the
potential well becomes narrower and higher. From
Figs. 2(b)–2(d), we can see that the mass of the first
resonant KK mode and the mass gap of the resonant KK
modes increase with the parameter k. However, the number
of resonances does not change with k for a fixed γ.
Tables I and II are the specific values of the massmn, the

relative probability P, the width Γ, and the lifetime τ for
different parameters. Here we define the width Γ ¼ Δmn at
half maximum of the peak and τ ¼ 1=Γ. Table I shows that
with the increasing of the parameter γ, the relative prob-
ability P of the corresponding nth resonant state becomes

10
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FIG. 1. The influence of the combination parameter γ on the
effective potential Vv and the probabilities P (as a function ofm2)
for the odd-parity (blue dashed lines) and even-parity (red lines)
massive KK modes. (a) The effective potential Vv. (b–d) The
probabilities P. The scale parameter is set at k ¼ 1.

40 40

7

k 0.2
k 2
k 5

3 2 1 1 2 3
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1
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1500 3000 4500
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FIG. 2. The influence of the scale parameter k on the effective
potential Vv and the probabilities P (as a function of m2) for both
the odd-parity (blue dashed lines) and even-parity (red lines)
massive KK modes. (a) The effective potential Vv. (b–d) The
probabilities P. The combination parameter is set at γ ¼ 25.

TABLE I. The influence of combination parameter γ on the
mass spectrummn, the relative probability P, the width of mass Γ,
and the lifetime τ of the KK resonances. The scale parameter k is
set at k ¼ 1.

γ n mn P Γ τ

10 1 4.0917 0.9474 1.0998 × 10−7 9.0924 × 106

2 5.1461 0.3027 2.911 × 10−2 34.3351
15 1 5.1822 0.9973 1.5778 × 10−8 8.6372 × 107

2 6.8525 0.9032 1.4593 × 10−6 6.8523 × 105

3 7.6902 0.2839 6.5012 × 10−3 1.5382 × 102

25 1 6.8457 0.9997 1.09557 × 10−9 9.1277 × 108

2 9.3884 0.9468 1.598 × 10−7 6.2589 × 106

3 10.9936 0.9189 9.0939 × 10−6 1.0996 × 105

4 12.1288 0.7774 8.2448 × 10−4 1.2129 × 103

5 12.7800 0.2456 1.9736 × 10−3 5.0668 × 102
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larger, and the lifetime of the resonant state becomes
longer. From Table II, we can see that when the parameter
γ is fixed, the mass mn, the width Γ, and the lifetime τ for
the corresponding nth resonant state are all influenced by
the parameter k. However, the values of mn=k are basically
the same for different values of k, and so are the relative
probability P, the relative width Γ=k, and the relative
lifetime τ � k. So, we can make a coordinate transformation
as z̄ ¼ kz to offset the effect of k. Combining these two
tables, we can see that the lifetime τ increases with γ, while
it decreases with k, which means that if the parameter γ is
large enough or the parameter k is small enough, the
lifetime of the resonant states can be as long as our
Universe’s. So, in this case, we can consider the resonant
states one of the candidates for dark matter.
Then we calculate the lifetime of the first resonant state

to check to see whether or not it can be a candidate for dark
matter. For convenience, we make a coordinate trans-
formation z̄ ¼ kz and define the scaled mass m̄1 ¼ m1=k
and the scaled lifetime τ̄ ¼ 1=Γ̄ for the first resonant state in
the Natural System of Units, where Γ̄ ¼ Δm̄1 is the half
maximum of the peak for the first resonant state. Note that
both m̄1 and τ̄ are dimensionless.
Figure 3 shows that both the scaled mass m̄1 and the

scaled lifetime logðτ̄Þ depend linearly on the parameter γ,
and the fit functions can be expressed as

m̄1 ¼ −3.2þ 2.0γ; ð36Þ

logðτ̄Þ ¼ 4.7þ 0.2γ: ð37Þ

It is known that the age of our Universe is of about
13.8 × 109 yr, i.e., 4.35 × 1017 s. So, if we consider the
first resonant state to be one of the candidates for dark

matter, its lifetime should be longer than the Universe’s,
i.e., τ ≳ 4.35 × 1017 s, or, in the Natural System of Units,

τ ¼ 1=ðkΓ̄Þ ¼ τ̄=k≳ 6.6 × 1032 eV−1: ð38Þ

Thus, the restriction of the scale parameter k can be
expressed as

k≲ 1.5 × 10−33τ̄ eV ≃ 7.5 × 10−29þ0.2γ eV: ð39Þ

In addition, in the brane world theory considered in this
paper, the relation between the four-dimensional effective
Planck scale MPl and the five-dimensional fundamental
scale M� is given by [11]

M2
Pl ¼ M3�

Z
∞

−∞
dze3AðzÞ ¼ 2M3�=k: ð40Þ

TABLE II. The influence of scale parameter k on the mass spectrummn, the relative valuemn=k, the relative probability P, the width of
mass Γ, the relative width as Γ=k, the lifetime τ, and the relative τ � k of the KK resonances. The combination parameter γ is set at
γ ¼ 25.

k n mn mn=k P Γ Γ=k τ τ � k
0.2 1 1.3681 6.8405 0.9999 2.1928 × 10−10 1.0964 × 10−9 4.5602 × 109 9.1204 × 108

2 1.8852 9.4262 0.9987 2.6522 × 10−8 1.3261 × 10−7 3.7704 × 107 7.5408 × 107

3 2.1962 10.9813 0.9872 1.8213 × 10−6 9.1065 × 10−6 5.4904 × 105 1.0981 × 105

4 2.4306 12.1529 0.8212 1.6546 × 10−4 8.2731 × 10−4 6.0767 × 103 1.2153 × 103

5 2.5470 12.7350 0.3192 3.5343 × 10−3 1.7672 × 10−3 2.8294 × 103 5.6588 × 102

1 13.6982 6.8493 0.9993 2.1902 × 10−9 1.0951 × 10−9 4.5657 × 108 9.1314 × 108

2 18.7361 9.3680 0.9923 2.6686 × 10−7 1.3343 × 10−7 3.7472 × 106 7.4944 × 106

3 22.0077 11.0039 0.9361 1.8175 × 10−5 9.0875 × 10−6 5.5021 × 104 1.1004 × 105

4 24.2305 12.1141 0.8164 1.6507 × 10−3 8.2535 × 10−4 6.0578 × 102 1.2116 × 103

5 25.6334 12.8167 0.3082 3.5109 × 10−3 1.7554 × 10−3 2.8482 × 102 5.6964 × 102

5 1 34.1950 6.8391 0.9991 5.4417 × 10−9 1.0883 × 10−9 1.8377 × 108 9.1883 × 108

2 47.2038 9.4404 0.9986 7.4164 × 10−7 1.4833 × 10−7 1.3484 × 106 6.7419 × 106

3 54.8917 10.9784 0.9822 4.3735 × 10−5 8.7471 × 10−6 2.8654 × 104 1.4327 × 105

4 60.8046 12.1611 0.8203 4.1115 × 10−3 8.2234 × 10−4 2.43 × 102 1.2166 × 103

5 63.6192 12.7238 0.3290 7.8591 × 10−3 1.5718 × 10−3 1.2724 × 102 6.3227 × 102
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FIG. 3. The influence of the combination parameter γ on the
scaled mass m̄1 and the scaled lifetime logðτ̄Þ of the first resonant
state. (a) The combination parameter γ. (b) The scaled lifetime
logðτ̄Þ. The black dots are numerical results, the red solid line is the
fit function for m̄1 with am ¼ −3.2 and bm ¼ 2.0, and the blue
solid line is the fit function for log(τ̄) with aτ̄ ¼ 4.7, bτ̄ ¼ 0.2.
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Theoretically, if the energy scale reaches the five-
dimensional fundamental scale M�, the quantum effect of
gravity cannot be ignored. Experimentally, in a recent
experiment of the LHC, the collision energy is 13 TeV,
and this result shows that the quantum effect of gravity can
be ignored, which means that the five-dimensional funda-
mental scale M� > 13 TeV. Thus, the constraint on the
parameter k is

k > 4.4 × 10−17 eV: ð41Þ

By combining the two conditions (39) and (41) and the
fit function (36), we can get the restricted expressions of the
mass of the first resonant state m1 with the combination
parameter γ as

m1 > ð8.8γ − 14.1Þ × 10−17 eV; ð42Þ

m1≲ð1.5γ − 2.4Þ × 10−28þ0.2γ eV: ð43Þ

The shadow regions of Fig. 4 show the available ranges of
the parameters k and m1, respectively. From Fig. 4(a), we
can see that the two restricted conditions (39) and (41) of k
can be satisfied only if γ > 57, which means that the
parameter γ has a lower limit. Correspondingly, Fig. 4(b)
shows that there is a lower limit for the first resonant state
mass m1, i.e., m1 ≳ 10−15 eV.

V. CONCLUSION

We generalized the geometrical coupling mechanism to
localize a five-dimensional vector field on RS-like thick
branes. The key feature of the mechanism was the

introduction of two mass terms of the vector field which
are proportional to the five-dimensional Ricci scalar and the
Ricci tensor, respectively. We decomposed the vector field
AM into three parts: the vector part Âμ and the scalar parts ϕ
and A5. With the transverse condition ∂μÂ

μ ¼ 0, we got a
decoupled action of Âμ. We found that when the two
parameters α and β in the action (3) satisfied the relation
β ¼ −1 − 8α� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

, the effective potential VvðzÞ of
the vector KK modes could be expressed as
VvðzÞ ¼ γ2ð∂zAÞ2 þ γ∂2

zA, with γ ¼ 3
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12α
p

and
where the tachyonic KK modes of Âμ could be excluded.
For γ > 1=2, the zero mode of Âμ could be localized on
the brane.
Then we investigated the resonances of the vector field

by using the relative probability method and considered the
possibility of these resonances being one of the candidates
for dark matter. We analyzed the influence of the param-
eters k and γ on the resonant behavior. We found that the
massive resonant KK modes could exist only for γ > 3.
Both of the two parameters affected the height of the
potential and hence the vector resonances. The number of
the resonant states increased only with the parameter γ. We
also considered the scaled lifetime τ̄ and the scaled mass m̄1

of the first resonant state. We found that both the scaled
mass m̄1 and the scaled lifetime logðτ̄Þ could be fitted by a
linear function of γ approximately. To view the first
resonant vector KK state as dark matter, its lifetime should
be as long as the Universe’s. This would introduce some
constraints on the parameters k and γ as well as the mass
of the first resonance, i.e., k≳ 10−17 eV, γ > 57, and
m1 ≳ 10−15 eV.
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Note added.—Recently, we found another work [46] that
also considered the same localization mechanism (3) for the
vector field.
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FIG. 4. The limit range of the scale parameter k and the mass of
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of the first resonant state m1. The blue lines are restrictions from
the five-dimensional fundamental scale M� should larger than 13
TeVand the black lines are restrictions from the lifetime of the first
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