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ABSTRACT: In this paper we provide a universal description of the behavior of the ba-
sic operators of the Schwarzian theory in pure states. When the pure states are energy
eigenstates, expectation values of non-extensive operators are thermal. On the other hand,
in coherent pure states, these same operators can exhibit ergodic or non-ergodic behavior,
which is characterized by elliptic, parabolic or hyperbolic monodromy of an auxiliary equa-
tion; or equivalently, which coadjoint Virasoro orbit the state lies on. These results allow
us to establish an extended version of the eigenstate thermalization hypothesis (ETH) in
theories with a Schwarzian sector. We also elucidate the role of FZZT-type boundary con-
ditions in the Schwarzian theory, shedding light on the physics of microstates associated
with ZZ branes and FZZT branes in low dimensional holography.
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1 Introduction

The Schwarzian theory, namely the theory defined by the path integral

/@M(f)ecf{f(T),T}dT (1.1)

where { f; 7} is the Schwarzian derivative and Zu(f) is the appropriate measure on Diff(S1),
plays a key role in various different recent developments in low-dimensional holography. It
appears as the low-energy description [1] of the SYK model [2—4], as well as related tensor
models [5-7]. It can also be shown [8-11] to arise in two-dimensional gravity theories,
notably in the JT model [12, 13]. Furthermore it allows one to establish results on thermal
properties of eigenstates and more general pure states in 2D CFT [14-22]. In all these



situations the appearance of the Schwarzian is intimately related to conformal (Virasoro)
symmetry and its breaking [1, 3, 4, 8, 23]: an action of the type (1.1) arises as the universal
description of such effects in all instances mentioned.

In this paper we provide a universal description of the behavior of the basic opera-
tors of the Schwarzian theory in pure states. The philosophy behind our exploration of
such effects is encapsulated in the eigenstate thermalization hypothesis (ETH) [24, 25],
reviewed for example in [26], and applied to the context of CFT in [27, 28]. In order to
understand the thermalization of unitary closed quantum systems, this approach proposes
to study the properties of eigenstates or typical pure states of the associated Hamiltonian
and the degree to which operator expectation values in these states approximate those in
thermal ensembles. The particular relevance of this approach to quantum thermalization
in holography stems from the fact that the boundary dual of black hole formation and
evaporation is one of thermalization in a closed quantum system, as demonstrated in detail
for three-dimensional gravity in the series of papers [15, 17, 21].

Returning to the case at hand, namely theories of the type (1.1) we find that their basic
operators — the bilocals O(71,72) — can have ergodic and non-ergodic behavior, i.e. they
either approximate thermal ensembles well, or fail to thermalize, akin to the known behavior
across a chaotic-integrable transition. Which behavior ensues depends on the parameters
of the theory as well as the state, but is universally classified by elliptic, parabolic and
hyperbolic monodromy, (or equivalently, which coadjoint Virasoro orbit the state lies on).

This allows us to establish an extended version of the eigenstate thermalization hy-
pothesis (ETH) [16, 21] which includes the usual notion of ETH for simple operators, and
extends it to more complex operators, in particular including out-of-time-order correlation
functions (OTOCs).! Our argument proceeds along two closely related lines: firstly we
give semi-classical arguments directly in the Schwarzian theory, based on the relationship
between (1.4) and the coadjoint orbit theory [30, 31]. Secondly we use the relationship
between two-dimensional boundary Liouville theory and the Schwarzian theory to provide
eract results, whose semi-classical expansion coincides with the previous analysis. A cru-
cial novel ingredient in our story is the inclusion of effects of FZZT branes [32, 33] in the
Liouville description, which descend to certain coherent states in the Schwarzian, as we
shall explain. Effects of this type have recently been pointed out to arise in the study of the
late-time behavior of a certain matrix model designed as a topological completion of JT
gravity [34]. In this context FZZT type states are related to the late-time ramp behavior
seen, for example, in the spectral form factor [35-38]. As we show here, these same effects
are also seen to play an important role in understanding ETH in theories of the type (1.1).

This paper is structured as follows: the rest of this introduction consists of a summary
of the main results. Section 2 describes how to construct the Schwarzian path integral from
two-dimensional Liouville theory. This kind of construction has already been exploited
in [18, 39], but we extend it here to include more general boundary conditions that allow
us to deal with a general class of pure states. In section 3 we then analyze the semiclassical

'For an argument leading to a similar notion of extended ETH from the point of view of black-hole
interiors, see [29].
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Figure 1. We obtain results on Schwarzian correlation functions by taking an appropriate limit
of 2D Liouville theory with boundary conditions, or equivalently (as shown on the left) with the
corresponding boundary states (details in section 2.3). The full cylinder is obtained when we imple-
ment the ZZ boundary condition via a doubling trick, allowing us to extend the field periodically.
The resulting theory on the torus is then reduced to one dimension and gives rise to correlation
functions in the Schwarzian theory with respect to the pure-state density operator pgy = [¥)(¥]|.

limit of the correlation functions of interest and in particular provide a general proof that
the heavy pure states of interest scramble as efficiently as the thermal ensemble, a result
we refer to as extended ETH. Finally, section 4 makes full use of the construction of the
Schwarzian theory in terms of boundary Liouville CFT to write down exact quantum
expressions for the various pure-state expectation values considered in section 3. We also
demonstrate that the exact expressions agree with semiclassics when expanded in that limit.
We finally discuss our results and provide a perspective on open issues in the Conclusions
section.

1.1 Summary of results

One of the main goals of this work is to establish results for correlation functions in pure
states

Tr | pw Op (11, 71) <+ Op (Tns ) | pw = [E)(Y] (1.2)

where |W) is either an eigenstate of the Schwarzian theory

k’2
H|\E(k)) = —|E(k 1.
IB() = 5 B (), (13)
or a pure coherent state of the type
|By) ~ e'V|E) (1.4)

where |E) is any eigenstate of the theory, including the vacuum |0). The operator V starts
its life in two dimensions as a Liouville vertex operator ~ e¥ that upon descent to one di-
mension corresponds to a bilocal operator insertion in the Schwarzian theory. We establish
that for one and two-point functions of bilocal operators these correlation functions be-
come thermal in the semiclassical limit (C' — oo ) in the sense of eigenstate thermalization



and compute the associated ETH temperature Sy. By definition, this temperature is also
the temperature of a canonical ensemble with temperature chosen in order to reproduce
microcanonical averages at energy E. We have written the result (1.2) for the case of an
arbitrary number of bilocal insertions. Strictly speaking in this work we only establish the
result for up to two bilocals, but our methods can in principle be extended to the most
general case (1.2).

We will describe the precise construction in section 2, preferring to first summarize the
main results in as non-technical a manner as possible.

We prove that both classes of pure states |¥) under consideration behave thermally to
leading order in large C'. We show both using semiclassical quantization of the appropriate
coadjoint orbits of Virasoro as well as via semiclassical expansions of exact results in the
quantum theory that bilocal one and two-point functions with respect to the eigenstate
|E(k)) appear thermal at temperature 7T = /E/2, while the coherent states | E,.) behave

thermally at temperature
0 |FE
Ty = —1\/— 1.5
(4 T 9 ) ( )

for # € R, corresponding to the parameter range r < v/2 for the coherent state introduced
in (1.4) above.? These states behave non-ergodically for the parameter range r > /2,
which formally corresponds to setting 6 € iR in (1.5). In this regime there is no meaningful
effective temperature to be associated to the states, but the combination of parameters (1.5)
still remains important, appearing for example as an oscillation frequency of OTOCs. In
fact, one recovers the result for the eigenstates by setting § = 1, and we explain why in more
detail below. Physically, the system shows a phase transition between ergodic and non-
ergodic behavior at the critical value r = v/2, very similar to the phenomenon established
in [21] for holographic 2D CFT. The resulting phase diagram is shown in figure 2. Tt
is intriguing to see exactly the same mathematical structure at play here, namely the
transition between the elliptic and hyperbolic monodromy, or equivalently the co-adjoint
orbits of Virasoro. The role of the critical theory is played by the parabolic case and it
would be interesting to explore whether the theory of this orbit can serve as a universal
description of ergodic to non-ergodic transitions.

Note that we wrote the expectation value (1.2) with Euclidean time insertions, but
our results also extend to Lorentzian insertions, and in particular to out-of-time order type
correlation functions. In this case we are able to prove a conjecture made in [16], namely
that these pure states scramble with the maximally allowed Lyapunov exponent if one
were allowed to naively extend the eigenstate thermalization hypothesis to these types of
operators. In other words we find that

2n
(910, (1,0)00, (1, 0)[ W) oo ~ 1 — e Fe* (1.6)

up to the scrambling time.? This behavior was conjectured in [16] on the basis of numerical
evidence as well as in the works of [29, 40] with an eye on the necessary conditions for

29 and r both parametrize the states and are related to each other through (2.15).
3An analogous statement is true in 2D CFT assuming identity block domination [21]. On general
grounds, on the second sheet, one would expect contributions from other blocks to potentially spoil this
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Figure 2. Phase diagram of the chaotic properties of the Schwarzian theory. The theory behaves
thermally for the parameter range —v/2 < r < r, with r, = /2. The range r < 7. corresponds
to elliptic coherent state insertions, while the critical case r = r. can also be interpreted as the
parabolic orbit corresponding to the eigenstates |E(k)) of the theory. In the full range —v/2 <
r < r. we find that the model scrambles with the maximal Lyapunov exponent predicted by ETH
temperature, A = 2xTgry. In the hyperbolic range r > r. the Schwarzian theory behaves non-
ergodically, and in particular its OTOC is oscillatory. See also table 8 for more details.

reconstructing the holographic bulk geometry of pure states. This kind of behavior has
already been established analytically in 2D CFT assuming identity block domination in [21]
and furthermore shown to be play a crucial role in holographic bulk reconstruction [29, 40].

Extended eigenstate thermalization hypothesis. A physical way to summarize
these observations and analytical results, as well as previous evidence [16, 21] is the state-
ment that there exist theories satisfying an extended ETH. Let o/ denote the set of op-
erators which satisfy the ETH in its usual form [24, 25]. Then, by extended ETH, we
mean that operators in eigenstates such as (1.3) and, as a consequence in pure states such
as (1.4), approximate thermal ones in real time, up to exponentially small corrections in
entropy, at least until the scrambling time t;,. Moreover we include in the set &/ more
complex operators, such as the four-point OTO type correlations considered in this paper
as well as in [16, 21]. Furthermore, we suggest that certain theories saturate the bound [41]
when the OTOC is evaluated in eigenstates, as was first conjectured in [16], that is they
satisfy mazimal extended ETH. One interesting class of such theories we have in mind are
CFTs with a sparse spectrum and a large gap, Agap, to higher spins [42-45], in other
words theories admitting a semiclassical description in terms of Einstein gravity corrected
by higher derivative terms which are suppressed by powers of Ag,p,. It would clearly be
desirable to obtain a better understanding of how far one should be allowed to extend the
admissible class operators, o7, for example by adding successively higher OTOCs [46, 47].

For demonstrating ETH in any system it is crucial that the off-diagonal expectation
values of the operators under consideration, o/, are exponentially suppressed with respect
to the diagonal elements. Such off-diagonal terms were studied in [16, 48]. In our present
work we compute only the diagonal elements while the computation of off-diagonal terms
will require generalizing some of the techniques developed in this paper.

Comments on ZZ and FZZT branes. An interesting role in our story is played by
77 and FZZT branes in the Liouville picture and the corresponding boundary conditions

behavior, unless we make further assumptions about the kind of CFT we consider, such as sparse spectrum
and large gaps. In the Schwarzian theory the situation seems to be better as the identity block is all there is.



these imply for the Schwarzian path integral. A general lesson is that ZZ branes and
FZZT branes enter somewhat asymmetrically, in so far as in the Schwarzian picture the
77 branes give rise to integrals over the density of states, while FZZT branes allow us to
consider non-trivial coherent external states with respect to which we compute expectation
values. On the other hand, we can recover the ZZ boundary conditions characterized by
the continuous parameter r rather simply, by choosing the single value r = /2, so that
in practice all the associated pure states can be treated in a uniform fashion. As we shall
see this provides a useful perspective on all these branes and their thermal properties by
linking them to the different coadjoint orbits of Virasoro, again parametrized by r, with
the critical case r. = v/2 (see, e.g. figure 2).

Given that these branes and their associated states feature so prominently in the
understanding of thermalization in the Schwarzian theory (and by way of establishing this
result, also in 2D Liouville theory), a very interesting question would be that of the bulk
manifestation.? Since thermal ensembles in the boundary are a dual manifestation of bulk
black holes, we are thus asking about the relevance of (F)ZZ(T) branes to the general
structure of black-hole microstates.

In fact, in the context of the ‘old’ ¢ < 1 matrix model many results in this direction
are known [32, 33, 50, 51] and it would certainly be interesting to flesh out a similar story
in the present case. For recent work in this direction see [34].

2 Pure states in Liouville and the Schwarzian

In this section we describe in detail how to construct expectation values with respect to a
density operator py = |¥V)(¥| in the Schwarzian theory. On the way we also explain, in
our picture, how to obtain the thermal ensemble pg, more commonly encountered in the
study of the Schwarzian theory to date. We will adopt the perspective advocated in [39] in
order to do this, namely we will start with 2D Liouville theory with appropriate boundary
conditions and then descend to the Schwarzian by taking an appropriate limit.

2.1 Boundary Liouville theory and Schwarzian coherent states

In this section we collect a number of results, most of which are well known, both to
prepare the scene, as well as to establish our conventions for what is to come. We review
how to descend from Liouville theory in 2D to the Schwarzian path integral (1.1), as well
as the broad classification of classical solutions of Liouville according to their monodromy
properties. Let us start with the Hamiltonian path integral for boundary Liouville theory
on the interval I = [0, 8/2],

(o= [ Do (el s 2.1)

4The paper [49] discusses bulk manifestations of different Virasoro orbits, including elliptic, parabolic
and hyperbolic, in terms of defect geometries in JT gravity.



where ‘bc’ generically denotes ‘boundary conditions’ to be imposed on the fields at ¢ = 0
and 0 = (3/2.° We shall be interested both in so-called ZZ branes as well as FZZT branes,
which correspond to Dirichlet and Neumann conditions, respectively. The Hamiltonian
density is given as
2 2

H= 871'71[)2 <7; + % +e? — 29000) + Hboundary (22)
with Liouville central charge ¢ =1+ 6 (b + b*1)2. We added the boundary Hamiltonian
Hyoundary in order to implement the Dirichlet or Neumann conditions of interest and to
be specified shortly. We will ultimately be interested in the limit ¢ — oo, corresponding
to taking b — 0. The Schwarzian limit is essentially the classical limit of the 2D path
integral (2.1) by taking ¢ — oo while at the same time letting a — 0, such that - := C
remains finite, where a is the size of the Euclidean time coordinate in 2-dimensions. In
this limit, the path integral reduces to the zero-mode in time of the fields ¢(o,7) and
7(o,7), i.e. time-independent configurations and may be brought into the form (1.1). A
key difference to the treatment in [18, 39, 52| is that we are especially interested in FZZT
type boundary conditions, so we describe in some detail how these are implemented and
how they descend to the Schwarzian theory.

Let us thus return to our discussion of boundary Liouville theory. The boundary
conditions we would like to impose [32, 33, 53, 54] are most easily stated in terms of the
vertex operator

Ve(w, w) = ) (w=T+ioc, w=71-—1i0) (2.3)
We also define the exponentiated Liouville field
V(w,w) =e 2% (2.4)

for later convenience. The Schwarzian boundary states descend from considering the Liou-
ville theory between branes, so that o € I. In order to characterize the branes, we need to
specify Dirichlet or Neumann boundary conditions at both ends. The most general case of
interest in this work® will be a Dirichlet condition at o = 0, as well as a family of Neumann
boundary conditions at o = 5/2:

V(T,O’) =0, aaV(Ta U)

o=0

T
== 2.5
e (2.5)

where 7 is a parameter whose ranges we will specify later. In terms of the field ¢, the
Neumann boundary condition takes the form

=0 (2.6)

SWhile it might seem counter intuitive to call the spatial direction £, the periodicity in this direction
will eventually be related to Euclidean 1D time.

5In section 4 we will also give results for Neumann boundary conditions at both ends. We do not
currently understand the physical relevance of these states and leave further investigation for future work.



and is implemented by adding the boundary action

(2.7)

which, inside the path integral, has precisely the interpretation of creating the coherent
state (1.4). In preparation for our later analysis of the Schwarzian theory, it will in fact be
useful to review the construction of classical solutions of boundary Liouville theory with
the specified boundary conditions, and we closely follow the presentation in [54]. The setup
here is that of a conformal field theory with a boundary which was first studied in [55] and
subsequently in [32, 33, 53, 54, 56] for the Liouville field theory. First, let us perform a
conformal transformation that maps the strip, R x I, to upper half plane, H,”

z=eB" z= eBv (2.8)

We will see below that this map naturally helps us to define a theory at finite temperature
after the dimensional reduction (see the discussion following (2.22) below), although we will
often be interested in taking the zero-temperature limit and instead work with individual
pure states. Under such an exponential map, the boundaries o = 0, /2 are mapped to the
real line, Im(z) = 0. The stress tensor on the plane is,

o2V 1 _ 9V 1
T=2-4-— T==-+—. 2.
V * 4227 V * 472 (2:9)

Conservation of the stress tensor implies holomorphicity and the Neumann boundary con-
ditions naturally provide vanishing energy flux through the boundary, Im(z) = 0,

T(z) =T(z), when z =z (2.10)

For the case of Dirichlet boundary condition, this is imposed as an additional condition
which imposes the regularity of the stress tensor on the boundary.® The doubling trick on

the plane then lets one define the stress tensor on the lower half plane, T'(z*) = T'(2), [55],
thereby making the stress tensor periodic in the original o-coordinate,

T(o+8) =T(0).

Classical solutions of the Liouville equation in the Fuchsian form (2.9) are well studied and
are organized by the monodromy of the solutions around the unit circle in the complex

plane. To see this, we write the Liouville field as a linear combination of two functions
UT = (41, 1)2) in the form

V(z,2) =0(z)TAU(z), AeSL(2,R) (2.11)

"Recall that the Liouville field ¢(w) — ¢(2) —In |%—f }2 also transforms under conformal transformations.
8Non-vanishing energy flux for the Dirichlet problem would correspond to singularities on the boundary.
See [54] for more discussion. Moreover, this also facilitates the use of doubling trick.



where the functions v 2 are defined as the two linearly independent solutions of Hill’s
equation
' — Ty =0 (2.12)

with T the Liouville stress tensor introduced above. We then define the monodromy matrix
M, via
U(e?™2) = MU(z). (2.13)

One can show that M € SL(2,R), [57], and that it is in fact defined only up to con-
jugation M = S~!MS for S € SL(2,R), so that conformally inequivalent solutions are
labelled by conjugacy classes of SL(2,R), coinciding with the classification of coadjoint
orbits of Diff(S1) [54, 58]. The main tool to classify the different classes of solutions is the
monodromy matrix M, which must fall into one of three classes: hyperbolic, parabolic or
elliptic, characterized by the trace of the monodromy matrix M. We do this by writing

the Neumann boundary condition in terms of V (z, 2) as,

20V (2,2) — 20V (z, 2)
\/ﬁ z=2<0

With the aid of the Wronskian condition 1]1e — 1115 = 1, this implies that

=r/2. (2.14)

oM = T — cos(md) 7
NG

where the second equality introduces an alternative but standard parametrization of the

(2.15)

boundary parameter r. This equation will be our main tool to classify different types of
semiclassical solutions of the Schwarzian model. Following the analysis in [54], we have
three cases, namely

—V2<r<V2 feR elliptic
r=+v2 0=0,+1 parabolic
r> V2 0 € iR hyperbolic (2.16)

Using the map (2.8), one can write the classical solution for the Liouville theory found

in [54] in each of the equivalence classes in terms of a single holomorphic function, F'(z),
L [ F()F(Z)
23\ Fo)F(2)

-] e
where F(e*"z) = e F(z).

A further crucial element of the construction of classical solutions described above is

Viz,z) =

that the stress tensor of any solution of Hill’s equation for the theory on H falling into
these three classes can be brought to the constant form [54]

92

T =73 ith 7TH=_"—
9 w1 0 422 9

(2.18)



via a conformal transformation. This is the stress tensor on the plane. Alternatively, one
can compute the stress tensor on the strip, R x I, where it takes the form

92

T=Ty=——. (2.19)

4
We refer to Tp as the constant representative.” It is interesting to note that this equation
is very reminiscent of the trace of the monodromy matrix appearing in the computation
of conformal blocks of 2D CFT at large central charge [15, 59, 60]. The difference seems
to be in that while these references study the monodromy around operator insertions,
here we have appropriate boundary conditions along the entire real line in the complex z-
plane. However, following [32] one can understand these boundary conditions as insertion
of boundary operators and the monodromy under study in the present work is then the
monodromy around this boundary operator.

2.2 Descending to the Schwarzian

Inspired by the non-linear field transformation of Gervais-Neveu, [61, 62], we perform the
following field redefinition in the path integral, (2.1). The following derivation becomes
more transparent if we use Cartesian coordinates, S and T, parametrising the z-plane
instead of the polar coordinates, ¢ and 7. In terms of these Cartesian coordinates, the field
redefinitions we need take the form,

_885F<2, 2)83F’(z, 2)

e¥ = —
(F —F ) _ _ _ (2.20)

o 8§F _ agF B OsF  OgF | F+F OgF n osF

- OsF  9sF F F F—-F|| F F |-
Under this transformation,'” the bulk action becomes,
1 5 [1 _
S:m d°z §7T[F] (Sas—i-TaT)(p[F]—l—{F;S}-i—{F;S} (2‘21)
H

Using the doubling trick to identify z* = Zz, we write the action as an integral over the
entire complex plane,

1
= [&
4mb? z
C

Lr1F) (805 + Tor) ol F) + {F: 5}

SIF) ;

(2.22)

This path integral should be understood along with the insertion of the appropriate state
along the negative real axis, implemented by the boundary term (2.7). Some comments

9We have dropped the Casimir energy part that comes from the quantum corrections since it is not
important for identifying the orbits.

1011 these expressions F(z, Z), F(z, Z) are independent off-shell fields of both the holomorphic and the anti-
holomorphic coordinates. We have suppressed the functional dependence to avoid clutter. Also, dg := d—0
and Or := 0 + 0.

~10 -



are in order: firstly, recall that the F(z) function is related to the transformations of the
strip, I, by,
F(z)=es /@ (2.23)

on the 7 = 0 slice. The parameter 5 entering into this transformation is freely tunable and
corresponds to the physical (inverse) temperature of the Schwarzian theory in 1D. This
is the well known tan-transformation (SL(2,R) equivalent thereof) from the study of 1D
CFTs, [1, 63]. Recall, that the semiclassical limit (of the Liouville theory), b — 0, of the
path integral localizes on 7-independent configurations (radially independent configurations
in z-plane) and the first term (the 70;¢ term) in the above action drops out. This also
means that the S and o dependence of the functions become equivalent. In this classical
limit, around the generic saddle point, (2.17), one reproduces the Schwarzian action,

B/2
202
Sl = —C / do [{f<a>;o}+ 27;29 () (2.24)
—B/2
where
a
= (2.25)

is the overall coefficient in front of the Schwarzian action (1.1). Using the field redefini-

tions, (2.20), insertion of any vertex operator, e2l¢(2:2)  corresponds to an insertion of the
kind,
20
292 / 1(_
Oy(o, —0) = 87;2 i (9)f(=9) (2.26)
sin? (22 (f(0) - f(~0)))
in the classical limit. Similarly, the boundary term (2.7) can we written as,
0 f(3/2

V2862 sin (7 0)

where, we have used: f(8/2) — f(—8/2) = 3; and, f'(8/2) = f'(—B/2). From this point
of view of obtaining Schwarzian theory as a dimensional reduction of the 2-dimensional
Liouville theory, the Dirichlet boundary condition at ¢ = 0 corresponds to an insertion of
complete set of states in the Schwarzian theory.!! Finally, the generic 2-dimensional path
integral, (2.1), with operator insertions and Neumann boundary condition on one end and
Dirichlet boundary condition on the other after dimensional reduction becomes,

:/%f(~)exp 2[7;0740 iné{z / ( o)+ 27;02f (0)2>
by

(2.28)

Uprecisely because there is no insertion of any operator in the dimensionally reduced theory.

- 11 -



We can alternatively write the above integral in a more symmetric form:

<'>:/ % (Jeo M;CTG 2l i/;éf o / < 0}+27;292f()>

-B/2

(2.29)
The advantage of this symmetric representation is that we can interpret the operator
insertion as the one that creates the FZZT states described in (1.4) and the r.h.s. of the
figure 1.12 The Jacobian, Pf(w), due to the field redefinition from ¢, 7 — f is absorbed in
the function integral measure % as was shown in [64]. Here w is the Alekseev-Shatasvili
symplectic form given by, [30, 54, 56]

B/2 B/2 ) B/2 Mo\ NS
w=0Ty N /daf’(a)éf(a)—i—To /daéf’(a)/\df(a)+4 /dajw. (2.30)
—B/2 —B/2 —B/2

Note that while the Schwarzian action in (2.28) has an SL(2,R) symmetry, this is further
broken to U(1) due to the presence of the operator insertion at ¢ = (/2. Consequently
G = SL(2,R) or U(1) depending on which orbit we are integrating over. This also suggests
that this operator insertion in (2.28) due to the boundary condition at ¢ = (/2 can
alternatively be understood as integration over circle diffeomorphisms f with nontrivial
monodromy specified by r via the trace relation (2.15).

2.3 Boundary conditions as states of the theory

Up to this point we presented the ZZ and FZZT branes in terms of boundary conditions for
Liouville theory on an interval. In fact, for what is to come below, a more natural way to
think about them is in terms of (boundary) states. Within Liouville theory, transitioning
between boundary conditions and states is equivalent to transitioning between an open-
string and a closed-string perspective. Liouville theory is, in fact, one of the most well
understood examples of such an open/closed string duality, [33, 65]. We study the boundary
Liouville theory given by the path integral (2.1) at finite temperature, T = 1/a.!'® In
general, one can choose arbitrary conformal boundary conditions at the ends of the strip
i.e. in the open-string perspective. The case of Dirichlet boundary condition at both ends,
also known as (1, 1)-Zamolodchikov-Zamolodchikov (ZZ) branes was studied in the context
of the Schwarzian theory in [39, 52]. The generic partition function, Z, « [z%}, between
two different branes is given by, [33, 65],

H JaP ey (-P) e (@),

231
Z,7) for a generalized (m,n)-ZZ brane (2:31)

T (Y
where each o1 § or 5 { s € R for FZZT brane

12Tn this particular case, the eigenstate in (1.4) is the vacuum state.

13Note that this is the temperature of the 2D Liouville theory. Tt is not the same as 1/8 which will
emerge as the natural periodicity of the Euclidean time direction of the Schwarzian theory in the end (if
the latter is studied in a thermal ensemble).
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Figure 3. An open string Partition function with generic boundary conditions is the same as a
closed string amplitude between corresponding boundary states.

Here, the modular parameter is (ia/f3) since the size of our open string is 5/2 and ¢ =
exp [—277 X %] , § = exp {—277 X %} The particular case of our interest presently is the
case where s = s for a FZZT brane and s’ = (1,1) for a ‘basic’ ZZ brane. Finally, the
Virasoro character corresponding to a non-degenerate state labelled by P is,

p2

@=9C nig =™ [ -g"). (2.32)
(@)= os e =4 }:[1 q

While the states given by the wavefunctions Ws(P) can be written in terms of the Ishibashi
states, [66, 67],'4

(s] = /dP%(P)«Pr, (2.33)

(P| = (vp| <1 + é’lALPl +- ) . (2.34)

Here, |vp) is the state created by the vertex operator e(@+2iP)55 ynder the state operator
correspondence, with the conformal weight, Ap = %2 + P2. Thus the open string partition
function between two branes, written as the integral appearing in (2.31), can equivalently
be written as an amplitude between two such closed string states,

Zowla] = (s17"7%|s"). (2.35)
The states of importance in this work are,

7(b?) 1

-
82 > [(1—2iPb)T (1-2
I )T ) (2.36)

iP
RN CIC N S i
27TP< 502 D(1+2iP)T (1425

Wy7(P) == Wy 1)(P) = 23/*2inP <

\IIETS%ZT(P) =V (P) = p2imPs

4 Our Ishibashi states are normalized as, {P|q%°/?|P") = 6(P — P') xp(q).
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Here, for the sake of brevity we have used the standard definition y(z) = I'(z)/T'(1 — ).
This duality needs to be generalized for the case with operator insertions to be useful for
our computations. Unnormalized thermal correlation functions can likewise be computed
using the open/closed string identity:

L T T ™
Treg [V, (wn, @) - Vi(wy, @1)] = (8]G 2 s L0V, - Ve~ & o21Loy g~ T oilo|g)
(2.37)
where, we have used following definitions,
G = exp <—27TIBL0> = exp(—pH)
a

Lo — exp (—202 Lo | = ex (—aH)

q p 5lo p (2.38)
w; = T; + 105, w; = T; — 105

Uijzdi—o‘j

and V; are the vertex operators of the Liouville theory. We have also used 7, = 0 = w; =
—w;. This choice has been made with eventual dimensional reduction, a — 0, in mind.

Finally putting the results from both these perspective together, in the b — 0 limit,
we can equate (2.28) to (2.37),

/?( : ) exp (S[f] + SN) ~ <S|€_%Vn(0n, —op) -+ Va(og, —02)Vi (01, —01)|(1,1))
(2.39)
where, S[f], Sy are the actions introduced in (2.24) and (2.27); and, () corresponds to the
insertion of the bilocal operators given by (2.26), O;(0;, —0;), in the Schwarzian theory.
Also the parameter r on the Lh.s. is related to the parameter s of the FZZT state by,

2 : 2
9 ot oy o sin(7b?)
cosh?(mwbs) = 52 sin(mwb”) = cos*(m6) — (2.40)
For the case of the unperturbed (‘standard’) Schwarzian theory, we have,
7 _BLo
/Gf( Y exp (1) ~ (1, Dle™ 2 Valon, ~00) - Valoz, o) Vi (o1, ~o0)|(1,1))
(2.41)

The tilde in the equations above emphasizes the fact that on both sides of these equations
we are computing unnormalized correlation functions. Since we are interested in time-
dependent behavior of these correlation functions we will not be careful about the overall
time-independent normalizations. Note that in the large central charge limit, ¢ — oo =
b — 0, the Ishibashi states in (2.34), {(P| — (vp|, so that in our case they can always
be replaced simply with the primary states, which simplifies our task considerably. Also,
§ = +1 & 12 = 2 & s = +i corresponds to (1,1)-ZZ state. This is consistent with our
previous observation that § = £1 corresponds to the standard Schwarzian action in (2.22).
In all the subsequent sections, we work only with ZZ-branes of the type (1,1) and therefore
we refer to them as |ZZ) instead of |(1,1)). In our notations |FZZT) denotes a general
FZZT brane and the parameter s is suppressed.
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This concludes our introduction relating the 1-dimensional Schwarzian theory to
boundary Liouville theory in 2-dimensions. We also related the boundary states of the
Liouville theory with different states of the Schwarzian theory. We will now use this setup
to compute the correlation functions of the 1-dimensional theory with an aim to unravel
their thermal behaviour. Before we proceed to do the exact computations in section 4, we
derive some of these results using semiclassical analysis in section 3.

3 Semiclassical results

In this section we make use of the natural symplectic structure on the coadjoint orbits
of Virasoro to extract the scrambling exponent in pure states. The logic is as follows:
first we establish the effective temperature (the ‘ETH temperature’) we should assign to
our pure states, including the actual eigenstates of the Schwarzian model. This can be
done by studying the one-point functions of bilocal operators Oy. We then go on to the
corresponding two-point function of s and determine the Lyapunov exponent whenever
appropriate. In all cases where the one-point function is thermal we find the maximally
allowed Lyapunov exponent predicted by taking the ETH temperature seriously. On the
other hand, we also establish a phase transition between this ergodic behavior and a non-
ergodic phase in which the one-point functions are not periodic in Euclidean time and the
corresponding OTOC does not exhibit scrambling behavior. The resulting phase diagram
is summarized in figures 2.

3.1 One-point function and effective temperature

We start our exploration of the semi-classical correlators of the model (1.1) with the sim-
plest example, namely the one-point function of the bilocal operator

Oy(o1, 09) := e2¥lo102) (3.1)

where we have emphasized that the operators in the Schwarzian theory descend from the
zero-mode of the primary operator of weight ¢ in the Liouville picture. This will turn out
to be convenient for our next step, when we exploit this connection in order to construct
the saddle-point solutions of the Schwarzian path integral with ZZ and FZZT boundary
conditions. Later, in section 4, we will recover these expressions from a semi-classical
expansion of the exact answer for the correlation functions.

Z7Z branes: Dirichlet condition and energy eigenstates in the Schwarzian. Here
we are interested in the semi-classical answer for the correlation function

(E|O¢(01,02)|E) , (3.2)

where |F) is an eigenstate of energy F. Note that the energy can be defined as the
expectation value of the Schwarzian ‘operator’ in the energy eigenstate, [39, 52, 68, 69]:

E = (E|{F(0),0}|E),
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with the background temperature, 1/ = 0. Semiclassical limit of this equation corresponds
to,15
An’E

and, the saddle point solution is given by,

F(o) = tan <7r 25?0) (3.4)

Recall, in the zero temperature limit the parabolic orbit, Diff(S!)/SL(2, R), that is relevant
for this case is characterized by the following operator (see also (2.26)),

F'(01)F'(02) )”
(F(01) — F(02))?

Of(o1,02) = < (3.5)
The reason for the superscript ‘1’ in the above equations will become clear once we un-
derstand the analogous solutions corresponding to Neumann boundary conditions (FZZT

branes). The path integral expression that we are interested in involves an integration over

the F(o) modes,'©

I9F (91(01 02)eCfdo{F(a);a} (3 6)

SL(2,R) ‘" ' '
However, in the semiclassical limit it can be evaluated at the above saddle point solu-
tion, (3.4),
2
w2 1 2F
w7~ | -+ UBe=Te=\/—+ (3.7)
BE sin? AT
BE

(EIO} (01,0 E) =
This is the same as the thermal correlation function at an effective temperature, Tx. Later
in section 4 we obtain the same result using the exact methods described in the previous

section.

FZZT branes: Neumann condition and Schwarzian coherent states. We are now
interested in the semi-classical answer for the correlation function

(Er|O¢(01,02)|Er) (3.8)

where, |E,) corresponds to the local operator discussed in (1.4). This insertion restricts us
to the orbit Diff(S')/U(1), as was deduced in the previous section and corresponds to the
zero mode of a classical solution to Liouville theory with a Dirichlet boundary condition
at ¢ = 0 and a Neumann boundary condition at ¢ = (/2. In this case the classical
solution [54] can be written as

20
726> f'(01) f'(a2)
BJ%J sin? (gi; (f(Ul) - f<02)>>

15The appropriate scaling of the energy in this equation is to ensure that we are working with a high-

03(01,02) = (3.9)

energy state in the semiclassical limit.
%Tn the 8 — oo limit, the fields F(o) = f(o).
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The superscript 0 parametrizes the family of Neumann boundary conditions corresponding
to our coherent states. We note that setting § = 1 recovers the pure Dirichlet case,
explaining the choice of superscript above. Also note that the background temperature
for this orbit is taken to be the same as the effective temperature Ty = 1/8g induced by
external states |E).

In order to get the Schwarzian correlation function we still need to integrate over the
circle diffeomorphism f. We must thus evaluate the path integral

us f,(U ) .
/ U%i) 03(01,02)6_4 " iy C JAo (@)} (3.10)

where we have explicitly written the path integral in terms of the f fields as opposed to F'
fields. For C' > 1, this expression is again evaluated via saddle point resulting in the same
solution as above f(o) = o, and thus in the matrix element

20

(ol Oelors, 02) | Br) — (g@) 2<1> (3.11)
sin® ( 5012

[2F
Ty=1/By =10 o (3.12)

The reader will recall that solutions on this orbit are classified by their monodromy, whence

with effective temperature

0 € R corresponds to the elliptic class of solutions while 8 = ip € ‘R corresponds to the
hyperbolic class. The time parameter o appearing in the correlation function has the
interpretation of Euclidean time in the 1D theory, so that the result is thermal for § € R
and non-thermal for € iR. We note that this is in perfect agreement with the results of [22,
70] who consider the scrambling behavior of the 2D identity block and finds an effective
temperature analogous to (3.12) also in the elliptic case (i.e. for operators below the BTZ
threshold). It is interesting to note that [71], who study properties of de Sitter horizons, also
find the oscillatory to exponential cross-over of the OTOC, which they associate with the
different Virasoro coadjoint orbits. A soft-mode action of the Schwarzian type appears in
their work as the boundary action of AdSs, which has been glued to a dSs region in the IR.

We would now like to go on and calculate the semi-classical two-point function of
bilocals, which will allow us to extract the OTOC in the pure states |¥). We will arrive at
this result by using the symplectic structure of Alekseev and Shatashvili [30, 54], allowing us
to compute the semi-classical expectation value of commutators of the relevant operators.

3.2 Semiclassical OTOC and chaos conjecture

As discussed in [54, 56|, the standard symplectic form w = f dm A dp subject to the
boundary conditions considered in section 2.1 gives rise to the Poisson bracket

1 (sinh(2\/ﬁ/\(01,az)) >\(01702))

(3.13)

(o). fo2)}es = 470 b @) w

Ao, 02) = f(o1) — f(o2) — me(o1 — 02)
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between two Schwarzian soft modes. Here e(x) = 2n + 1, x € (27n,27(n + 1)) is the
stair step function, which will play no further role in our analysis, while T is the constant
representative defined in (2.19). For large separation o1 — o and evaluated on the saddle
point (3.4), this Poisson bracket takes the simple form

sinh <2\/Z’5,TT0(01 - (;2)>

4Ty sinh (2m/Tp)

{f(o1), f(o2)}pp ~ (3.14)
Using to the standard Dirac quantization prescription, this then allows us to compute the
semi-classical commutator

[f(o1), fo2)lsc. = —ih{f (o), f(2)}pp (3.15)

where we have of course h = 1/C by comparing to the action (1.1). We now explain how
this allows us to extract the quantum Lyapunov exponent with respect to our pure states
|¥). The quantum Lyapunov exponent is diagnosed from a correlation function with four
time insertions of the type

GO (t, 12, t3,t4) = (V| Oy, (tr,2) Oy, (t3,14)| V), (3.16)

where the Lorentzian times are ordered, such that ¢ < t3 < to < t4. This

can be obtained as an analytic continuation from the Euclidean correlation function
(U|O(01,02)0(03,04)|¥) by defining!”

o; =1t; + €, with €1 <ez3<€er<éey (3.17)

The resulting correlation function then depends on the precise analytical structure of the
correlator as a function of complex time insertions. The problem was solved in [39] for the
thermal OTO by appealing to the R-matrix of Ponsot and Teschner [72] together with a
plausible ansatz about its behavior in the semiclassical limit. In order to find the OTO
in eigenstates we take a different route, which also applies to the thermal case, where it
agrees with the answer found in [39]. It would be interesting to further understand how
these two methods are related.

Thanks to the semi-classical results we established above, in conjunction with the
symplectic form (3.14), we can sidestep this somewhat involved procedure. Before we
describe this argument let us introduce some notation. For the purposes of being explicit
about analytic continuation it is often useful to formally split up a bilocal operator as
O¢(01,02) ~ V(01)V(02), and thus denote the corresponding correlation function

(Op,(01,02)00,(03,04)) & (V(01)V(02)W (03)W (04)) - (3.18)
17Tn the thermal case one instead often displaces the Lorentzian times a quarter turn around the thermal
circle
0'1:7§+’L't1, 0'2:§+Z't1, 03:7§+it2, 0'4:§+’L't2.

One could consider a similar arrangement by inserting the ETH temperature associated with the pure
state, but the above arrangement appears more natural in our context.
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Figure 4. Illustration of our computation of the semiclassical OTO by saddle point. In order to
get the operator in OTO order as shown, we must twist two of the insertions around each other.
Quantum mechanically this corresponds to the ‘second-sheet’ analytic continuation from Euclidean
to Lorentzian times and is equivalent to the insertion of a commutator [f(o1), f(o2)] when writing
the operators in terms of integrals over the Goldstone mode f. This commutator can be computed
semiclassically using the AS symplectic form to generate the Poisson bracket {f(o1), f(o2)} living
on the appropriate Virasoro coadjoint orbit (Details in section 3.2).

This is simply a formal device that makes clear that we may consider any ordering of
(Lorentzian) time insertions on all legs, such as the time ordered arrangement t; < ty <
t3 < t4, or the out-of-time ordered one t; < t3 < to < t3. The order of arranging the ‘split’
bilocals simply expresses the corresponding time-order of the 2n times of a correlation
function of n bilocal operators.

With this formal device in place, the difference between a time-ordered and an out-of-
time-order correlation function is given by the insertion of a commutator

G190t s, ta, ta) — GP U2 (b, ta, b3, ta) = (W (1) [W(ts), V(t2)] V (ta)) (3.19)

This relation is elementary, but we can also understand it in terms of the analytic con-
tinuation from the Euclidean correlator. The difference between the continuation to a
time-ordered and an out-of-time order configuration of Lorentzian times is due to crossing
a branch cut in the complex o plane. The discontinuity across the cut is, once again,
given by the insertion of the commutator in the correlation function. We can view the
construction of the OTOC from a TOC as a braiding operation, as illustrated in figure 4.

In the case at hand, we can evaluate the commutator by using the Poisson
bracket (3.14) together with the various semiclassical saddle points relevant to our pure
states (3.4). We thus have

GTO _ OTO _ 1 00, 60,
0105 £ty C6f(ta) 6f(ts) f=f
—Jsaddle

1 . 2F
~a sinh (2710\/ Ct23> (3.20)

The tilde in this expression denotes a time-independent proportionality factor, which in-

{f(t2), f(t3)}pp

cludes the normalization of the symplectic form (3.14) 1/sin(76) in the denominator. This
factor diverges at the parabolic orbit § = 1. We implicitly regulate this UV divergence by
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introducing an e factor, which we view as analogous to the divergent prefactor in [73]. This
expression thus tells us that the OTO correlation function behaves maximally chaotically
at the appropriate eigenstate temperature

(0O, (t1,t2)Op, (t3, 1) ¥)oTO ~ 1 — %BM” , with A = 27/fBy (3.21)

where |¥) is either |E(k)) or one of the coherent states |E,) for » < 4/2. The former
corresponds to parabolic and the latter to elliptic monodromy of the associated Hill’s

equation. On the other hand, if we dial the parameter r characterizing the boundary state
through r. = v/2 we find the non-ergodic OTOC

. . [2F
(Er|Oy, (t1,t2)Oy, (ts, ta)|Er)oTo ~ 1 — %61)@3 , with A =27 ?p (3.22)

for 0 = ip € iR. We have thus uncovered a phase transition in the scrambling behavior
of the Schwarzian theory,'® whereby the model changes from maximally chaotic behavior
with exponentially growing OTOCs to a phase that does not scramble at all and the OTOC
behaves in an oscillatory fashion. As was remarked in an analogous two-dimensional CFT
context, this is an analytical example of a transition between an ergodic and a non-ergodic
phase and as such deserves further study.

3.3 An alternative derivation

For the expectation values with respect to the FZZT density operator p = |E,)(E,| we can
obtain the chaos exponent directly from a perturbative quantization of the action (2.28).
Since this discussion parallels that in [22, 70, 75], who computed the chaos exponent in
thermal states excited by a heavy operator, we will be brief. The idea is to expand the
action appearing in the exponent of (2.28) in fluctuations

™

/Beff

where Seg is the effective temperature defined in (1.5). We then compute the Euclidean

flo) = tan( (o —i—&?(a))) : (3.23)

correlation function of two bilocals (Oy, (61, 02)Oy, (03, 04)) using the propagator of the fluc-
tuation (¢(o)e(o’)) given, for example, in [1, 9]. The leading perturbative result, continued
into the chaos region reads

<O€1 (01,0.2)0[2 (03704» sin (ﬁ(al + 09— 03 — O‘4)> + ...

~ =2 (3.24)
(O, (01,02))(Op, (03,04)) sin (wﬂ) sin (wﬂ>
ﬁeff Beﬁ'
: 2
" it sinh (Tt>
weitken g # T\ (3.25)
03,4—Ee€3q C €12€34

In the above expressions the ellipsis denotes subleading corrections to exponential behaviour
and €19, €34 originate from the continuation procedure, as indicated. We are keeping them

'8 And thus also in the IR limit of the SYK model and related many-body systems [5-7, 74].
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Figure 5. The configuration of various insertions on the two-dimensional complex plane that
evaluates the bilocal two-point functions with ZZ and FZZT boundary conditions. Operators B
are those that impose the ZZ and FZZT boundary conditions on positive and negative real axis
respectively. While the tilde-operators are the mirror operators after the doubling trick.

in the final result to play the role of UV regulators [73]. In the second line we have added
the leading disconnected contribution which is always present. From this expression we
deduce, again, that \ = %;f, i.e. that the coherent states are maximally scrambling at the
effective temperature deduced from ETH. Of course we must ensure to be in the ergodic
region (r < /2) for this result to hold.

We now describe a computation that exploits the boundary-CFT perspective of [32, 33]
together with [21] to give yet another derivation of the result above.

As pointed out in [18], the dimensionless coupling of the Schwarzian theory is ~ C/j3,
and thus the large—C' limit is equivalent to a high-temperature limit at fixed C'. One may
then take the high-temperature limit directly in the Liouville theory before descending to
the Schwarzian [18]. We thus want to calculate the two-point function of the Liouville
vertex operator in the UHP with appropriate boundary conditions on the real axis. Recall
that the boundary states |E,) correspond to ZZ boundary conditions on the positive real
axis and FZZT boundary conditions on the negative real axis. This means that we are
really evaluating a six-point function on the plane in the geometry shown in figure 5.
There are boundary operators implementing the ZZ and FZZT boundary conditions at the
origin and at infinity, as well as the two physical operators in the UHP and their two mirror
operators in the LHP. We formally allow the mirror operators’ positions to be arbitrary, as
indicated in figure 5. In this way each pair of mirror operators descends to an operator of
the type Oy(01, 02) in the Schwarzian limit, notably admitting two arbitrary time insertions
(09 # —o1). It was shown in [21], under the assumption of identity dominance, that such
a six-point function reduces to an effectively thermal result for the four-point function
of the vertex operators alone. In the present context identity dominance is no longer an
assumption, as it follows from the OPE coefficients of boundary Liouville theory [32, 33].
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Hence we evaluate the correlation function by contracting each operator with its mirror
operator into the identity, using the boundary OPE derived in [32, 33] and like-wise contract
the boundary operators into the identity with the result

(O¢, (01,02)O¢, (03, 04))©
(O, (01,02))r (O, (03, 04))7

; 2m
Here the conformal block is evaluated on the thermal coordinate [21, 76] z; = e Per”* s0

= J(2)(1 — 2)*21 Fy [22 azil—z] . (3.26)

] sin(ﬁiam) sin(%crm) . .
that the cross ratio takes the form z = off <ff and J is the Jacobian for the
sin( 5 om) sin (711
coordinate transformation o; — z; [21] whose specific form plays no further role in this
analysis. Contracting each operator with its mirror operator means that z — 1. Under the

same analytic continuation as above we obtain

. 2
o1,2—itEe12 TTT€12€34 -2 g
1— 2 _ 5 e DBeff (327)
03,4—kesy off

Furthermore, in order to move from the Euclidean configuration of the o; to the Lorentzian
OTO configuration imposed by the ¢;, we moved the cross ratio around the branch point
at z = 1, so that now the block is evaluated on the second sheet [21, 73]. In the Schwarzian
limit, this gives again, to leading order

(O (01,02)00, (03, 00)”™® | #  2=¢ (3.28)
(Og, (01,02))r(Og,(03,04))r Cergeay ’

Thus once again we find the maximally chaotic behavior (3.21) of the OTOC in pure states.

As in (3.25) we should keep in mind that the exponential behavior is true so long as we
stay in the range 7 < v/2. For r > /2 the effective temperature becomes imaginary, and
the OTOC oscillates.

The recent papers [22, 70] consider a closely related!® computation in the context of
two-dimensional CFT: they insert two heavy operators at spatial infinity into an already
thermal system. The resulting configuration is then again approximately thermal, but
at the modified temperature S, depending on the heavy state insertions. The scram-
bling exponent found in [22, 70] takes on the value 27/f.g with respect to this effective
temperature, in accordance with the results we find for the Schwarzian theory.

4 Exact results

In this section we describe how to obtain the exact results for the Schwarzian correlation
functions we discussed above semi-classically. We will also show that these expression result
from a suitable semi-classical expansion of the full answers, giving a second independent
derivation of our results on eigenstates and the behavior of correlation functions therein.
Our main technical vehicle to obtain full exact expressions for correlation functions is the
descent construction described in section 2.1, in other words we will find the Schwarzian
answers as limits of those obtained in boundary Liouville theory using the identities (2.39)
and (2.41).

19Tn fact the effective-field-theory of the identity block [77, 78] employed in [22] makes the analogy even
closer, taking the form of a Schwarzian-like description for this object.
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4.1 Computations between ZZ branes

We now use the boundary state perspective to find the one and two-point functions of
bilocal operators in the presence of Dirichlet boundary conditions. This will allow us to
confirm our semiclassical expectations above, as well as to show the maximal eigenstate
chaos conjecture once more from a different perspective. One and two-point functions
with Dirichlet conditions have previously been computed by [18, 39]. We repeat these
calculations for two reasons: firstly to extend those results to include extended ETH as
well as the chaos exponent in eigenstates; and secondly, to express everything in our own
conventions?’ before moving on to the general case including FZZT states.

4.1.1 Bilocal one-point function (ZZ|V,(x, Z)|ZZ)

We are interested in evaluating a particular case of (2.41) with only one operator insertion.
Recall, the ZZ-wavefunction can be written as, (2.36),

iP
b

Uyz(P) := (ZZ|P) = 23/42; P( 7(b%) 1

8b? ) I'(1-2iPb)T (1—2£)" (4.1)

Putting together the ingredients we assembled in section 2.3, the expression for the expec-
tation value (ZZ|Vy(z, 2)|ZZ) reads in full detail

.P—R

() )"
93/2 2 /dPQ dR? ( 8b? )
I'(1+2ibP)T (1+2i2)T (1 - 2bR)T (1 - 2i%)

(VR Ve(z,2) [vp)

(4.2)
Let us now start simplifying this expression, starting with the matrix element of the vertex
operator between primary states,

(vr|Vy(z,Z) lvp) = <VR‘6_%(§_U)LOV367%JLO’Vp>
_rpp 5,
— ¢ a AR (Ap—AR) <VR’V5(O 0) |vp) (4.3)

I TLYNR
= e Ane o brotn) [ ] o) o) 2

where, w,w = 7+io are the coordinates on the open string; and, z,z = —iT+o = —tw, —iw
are the coordinates on the dual closed string. We have also used the fact that we are working
with a chiral-CFT with only the holomorphic sector. The projection of the wavefunctions
on the ¢-basis is given by [33],

) e
<VR‘ (P> =27 ( l%) K_Qi% <\/§b2> )

¥ (4.4)
<§0 ’VP> = 2M KQZ'B ( il ) .

T (—2@ ) V/2h2

20A caveat for the reader interested in reproducing the detailed calculations: our conventions are fully

>

aligned with [33], but differ in some places from the ones used in [18, 39].

~ 93 -



Thus the matrix element boils down to

(8b4)2z+iP;R

I(20+3i(P+R i ]
(vr| Vi(z, T) [vp) = (2¢+4(P E: ) a, tme(ap-an
vy

1
2 [ (~2i)T (2i0) (a0

(4.5)
In view of our descent to the 1D Schwarzian theory, we need to additionally make the
change of variables, P = bp, R = brt, since, from this point of view, we are interested in
the b — 0 limit. Recall that the operator insertions in Liouville theory corresponding to

the bilocal operator insertions in the 1D theory are of the form,

20

Vy(x,z) = 2 under 1D reduction (JW,(_(T)) (4.6)
7 \If(o) = f(=0o)
For the most part we are interested in operators satisfying ¢ ~ (O(1), in which case the
conformal dimension of the 2D vertex operator is Ay = 2b¢ (QQ — 2b¢). Since we want the
boundary states to be of similar energies as the insertions themselves, Ap ~ Ay = P ~
:l:% T 2b0.2" Up to the constant shift, %, which will not matter, we get P ~ O(b). Now
we reinsert the expression for the matrix element into the full expectation value (4.2). In
anticipation of the b — 0 limit to come, we already restrict the Ishibashi states to their
leading term (the primary state) and write

_ 287 [ Q7 4 2.2 ”
(ZZ|V o, 2)|22) = 2"/26% (86%) /dp%zt? sinh(27p)sinh(27t)e (4 i t)ei”“( )

T(20+i(p+r)) (b2 (b)) P
I'(4¢) T (142ib2p) T (1—2ib%r) [

We can now straightforwardly take the limit b — 0 of the above expression, giving the final
result for the expectation value in the form,

o I'(2¢0£4(p £
/dp2dt2 2m(pe) o= 5gt o & (P °) ( EF(Z(EP) t))
(4.7)

In writing (4.7) we have made use of the p — —p and v — —t symmetries of the integrand to

(ZZ|V y(x, 7)|2Z) = 2263 (86%)* e

convert the hyperbolic sine contributions into exponentials. Also, C' = a/4wb? was defined
in previously in (2.25). The expression (4.7) is our final result for the ezact one-point
function.

The zero (1-dimensional) temperature limit of the answer is given by taking § — oc.
In this limit, the t integral condenses to t = 0. Consequently,

> T2 (20 +i(p))

ran WS

(ZZIV (2, 2)|ZZ) gy 00 = (O0(20,0)) gs00 ~ /1;9 2™ o &P

which matches the answer earlier derived in [18, 39, 68, 69].

ZIMore accurately, we want to insert a complete set of states for the 1-dimensional theory, which is
equivalent to insertion of ZZ branes with energies scaled as described here. On the other hand, as we will
see in the next section, the insertion of FZZT states is equivalent to choosing a ‘heavy’ state.
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One can instead compute the correlation functions in the eigenstates, |E(l)) := |[) of
the Schwarzian theory by first projecting out from the superposition of |t) states any state
with energy less than [2/2C. This is achieved by cutting off the t integral as follows,

o T 2 2 _2m(p+r) _ B2 g(t2_p2> F(Zf:l:’b(p:l:t))
([1O¢(20,0)[1) g—00 Bh—{go dp / de“ e e"2C" eC Nen)

Je|>]1 (4.9)

o[ 2 27rp—2(p2—[2) F(2£:|:’L(p:|: [))
[sinh(27() /dp es™TC T10)

One can think of this cut-off prescription as follows: an ensemble of states,
p=e TN gooo |Biow)(Biowl (4.10)
ow ow

where | Eloy) is the lowest energy state that appears in the wavefunction |¥). By introducing
the cut-off we work with a wavefunction whose lowest energy state is the one corresponding
to Elow = E(I) = 2/(2C). Taking 8 — oo with the original ZZ wavefunction gives us
the vacuum expectation value, (4.8), because the lowest energy state in ZZ-wavefunction

corresponds to [ = 0.

Semiclassical limit. Next, let us evaluate the integral appearing in (4.7) in the C' ~
a/b> — oo limit using the saddle point analysis. We start by performing the following
change of variables, p+t = “b—é\/[ and p —tv = w. To evaluate this integral, one may integrate
w exactly, noting that is precisely a Mellin-Barnes type integral, [79] and then solve the

remaining M integral via saddle point. Keeping only the leading terms as C' — oo we find

2a
Finally, the semiclassical limit of the correlation function becomes
, 4
23/2) 2 20 1 2052 1
22|V (z,7)|2Z) ~ = (86)7 = (2me” B — . 4.12
@zt olez) ~ Z 3 Y g (2 ) o (57 (4.12)

To analyze the operator expectation value in the high energy eigenstates, let us con-
sider (4.9) with [ ~ O(C). In this case, consider p = [+ m,

2[+m))T (20+im)
'(4¢)

(110¢(20,0)|1) 00 ~ [sinh(27I) /dm (I4m)e2r(tHm) =& (2im+m?) [ (20+4(
I~C

olm F 2 :I:
~ Psinh(2ml) (20 /dmm (r€<4e>m)

1 1 40
~N| - — 4.13
<22'sin(20“[a)> ( )

The effective temperature due to the heavy state is given by, Teg = [/C = /2E(l)/C. This
is consistent with the answer that we obtained in (3.7).
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4.1.2 Two-point function of light operators (ZZ|Vy,(x2, Z2)Vy, (1, T1)|ZZ)

We have now shown that the insertion of ZZ branes in the 2D picture allows us to study
Schwarzian expectation values either at finite temperature, or using the projection trick,
with respect to the eigenstates of the theory. We now move on to higher-point correlators
of operators of weight O(1) and the interesting physics associated to them. To this end,
we study the time ordered correlation function, (ZZ|Vy,(z2,Z2)Vy, (x1,%1)|Z2Z). Because
of the dimensional reduction combined with the doubling trick described in section 2.3,
from the 1-dimensional point of view we get a configuration of bilocal operator insertion
with —7m < —09 < —01 < 0 < 01 < 09 < 7. In the Liouville theory the expression of this
correlation function is,

9 JP=R
(rpry ()"
I'(1+2ibP)T (1+2i)
(VR| Vi, (22, 22)Vy, (21, T1) |vp)
I'(1-2ibR)T (1 —2i%)

(ZZ|V y, (20, 22)Vy, (21, 21)|ZZ) = 2%/2 7r2/dP2 dR? (4.14)

which, in 1-dimension, reduces to,

['(20o +i(v+£0)) I'(2¢61 £i(0 £ p))
I'(445) ['(447)

N/dp2 de?dd? sinh (270) sinh (27p) sinh (27¢)

1
X exp | —ox (Be? + 202(0% — ©%) + 201 (p* — 7)) (4.15)

The Lyapunov exponent for the Schwarzian theory in the thermal ensemble has already
been computed from the OTO two-point function of bilocals in [18, 39] using the ZZ-brane
perspective. Here our main interest is in using the projection trick of section 4.1.1 to
instead compute the Lyapunov exponent with respect to the eigenstate density operator
|E)(E)|, which is the main object of interest in this paper. Applying the projection trick
discussed previously to (4.15) results in the expression,

T(26+i(x£0)) T (20, £i(d£p))

~ lim dp2d02/ dv? sinh (270) sinh (27p) sinh (27rt)

00 2 T'(403) T(40;)
X exp [—210 (Br* +202(0% —v*) + 207 (p* —02))]
~Isinh (271) /dp2d02 sinh (270) sinh (27p) - (%;té(;)i“)) a (%}Tﬁsi"))
X exp [—210 (202 (0% — 1) 4207 (p* —02))] (4.16)

In order to make contact with our semi-classical results on chaos in eigenstate 3.2 we also
need an expression for the OTO version of the above. This can be formally achieved by
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insertion the R-matrix of [72], analogous to the thermal case worked out in [39],

(ZZ|Vy,(x2,T2)Vy, (21, 71)|2Z) 0TOC =

= /fpdtdpsdpt C(—1,202,p5)C(—ps, 201,p) Y77(br) V77 (—bp)

205 20 201 205, L1 205 20, . L2
XRPsPt |:l‘ pl}fpt |:t1p 7x2:|~7:ps |:t pl,a (4.17)

where C(y1,y2,ys3) is the DOZZ three-point function, [80, 81]. After reduction to 1-
dimension we obtain a final answer,

(O, (03,04)Op, (01, 02))
(O, (03,04))(Op, (01,02))

~ /ddetzdpgdpf sinh(27p) sinh(27v) sinh(27p,) sinh(27p;)

1
X Ry p, [?b gh] exp |:_2C (132(5 —ou) — p?O'?,l — t20'32 — pz041) (4.18)
o \/F(2€1 +i(p£p))T (200 £i(v £ p))0(201 £ (v £ ps))T(202 £ i(p £ ps))
['(461)T(445)

In the above and subsequent equations, we have generalized the placement of the operators
to arbitrary points o;, with the ordering, —3/2 < 01 < 09 < 03 < 04 < 3. The R-matrix,
Ry p, [g@ %el} is related to the 6-j symbols of SL(2,R). Its expression is rather daunting
and we refer the reader to appendix B of [39].

However, we can bypass this procedure by appealing to our results in section 3.3 and
express the OTO correlation function in terms of the identity Virasoro block

(O, (91,02)00,(03,04)) .
(O, (01,02)){Ogy (03, 00)) 7 77

where y = 1 — z, as defined in (3.26) and (3.27) above. Note that we had to pass to the
semiclassical limit C' — oo in order to establish this result. We see, once more, that the

Ay, A
d [AZ Az;y} s (4'19)

large-C' expansion of the full result (4.17) agrees with our direct semiclassical evaluation,
confirming that the eigenstates of the Schwarzian are maximally scrambling with Lyapunov
exponent 27/ fef.

4.1.3 Heavy-light two-point function (ZZ|V,u (1, Z1)V,(x2, T2)|ZZ)

We next want to study the effect of inserting heavy operators on the (effective) temperature
as perceived by light operators. We evaluate the 4-point function, (4.15), with a heavy
operator, V,, = Vyu with ¢ ~ C and a light operator V,, = V,. with ¢X ~ 1, in the
classical limit to study ETH. Since the dimensionless parameter in our problem is C/f,
the classical zero temperature limit can be taken in two ways: C/8 — oo with f fixed,
followed by S — oo; or, by taking C, 8 — oo simultaneously such that € = C'/j is finite
followed by € — oo. We find that the thermal behaviour of this 4-point function depends
on the order of limits.
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C/B — oo with (3 fixed, followed by 3 — oo. In this limit, we perform a change of
variables t2 = 92 4+ m. Consequently, the p,d integrals are performed using saddle point
analysis while the m integral is done using the Mellin-Barnes technique discussed above.

T (207 £i(p £2))
(40

~ /dp2 d0® ™" sinh (27p) sinh (279)

> 40t
sin (% (B — 202))] (4.20)

The saddle point equations, in the variables p and 0, of the above integral are,

< exp [_210 (8 + 201 (52 02))] ‘

4wl
402 — 4w? + 02,

~ 4‘3650
tan (w(ﬁ - :'3)) T 4w —4@? 1 2

tan(zw) = — assuming 402 — 4w + 02, £0 (4.21a)

assuming 4w —4@* + 02, 40, (4.21b)

For simplicity, here we have scaled the variables as follows,

I I
_20’ w_207 sc — C’

While these equations are transcendental and thus not exactly solvable, we can find the

w x=207. (4.22)

solutions for w, @ is special limits. Note that the solutions of these variables depend on the
separation of the heavy insertions, . We take x = /2. At this value of z, both equations

are equivalent to

I} dw
t —w|=——. 4.23
an<2w = (4.23)
For very large values of /., the solutions of this equation are given by,
T 167mn
wp =2n— —¢,, where, ¢, =——"—-—+-, NEZ,
! g " B(Blsc +8)

1 Wn, 2nTVl,.
>Tgg=—=—=—""-—"+-. 4.24
of Beft m lse + 8T ( )
Here, ' = 1/p is the background temperature that we began with; Tog = 1/8eg is the
effective temperature perceived by the light operator in the presence of the heavy insertions,
46"
<05H OgL OgL O£H> T

(Opr Oprr) h Beg sin (267%2)

(4.25)

The £, — 0 limit leaves only n = 1 as a physical solution; for all other solutions, £5. — 0
limit leaves an unphysical ‘residual’ temperature. An observant reader may point out
that for low enough values of ¢, Tog < T', but that is outside the validity of the above
approximation. Moreover, the asymptotic temperature at large ¢, provides an upper-
bound on the effective temperature. This is simply because we do not expect an operator
with smaller /. to create a thermal state at a higher temperature than an operator with
higher £;.. The more general solution for the effective temperature needs to be computed
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Figure 6. Plots for increasing values of /;. demonstrate that the solution for w,& for a given x
increases with increasing ¢,.. In the above plot, C' = 567.605, 8 = 27. The solution for x = § is
w = 7/f for all values of ¢s.. While the solution for z = 0 is @ = 7/ for all values of ..

numerically, and can be inferred from figure 6. Note that the effective temperature due to
the presence of the heavy operators is always greater than the background temperature,
T = 1/ that we start with. However, the effective temperature uniformly approaches
zero as the background temperature T — 0. This is similar to the result for the FZZT
brane that we obtained in section 3 in that the effective temperature is proportional to the
background temperature.

¢ = C/p is finite followed by € — oo. Correlation functions in this other limit
were studied in [18] and we include their result for completeness of presentation. In their
analysis they found that the four point function (two point function of the bilinears) does
not show ETH, as the correlation function actually becomes periodic in real time. Written
in Euclidean time, they find [18]

200
<O£H OeL OgL OZH> T 27

~ s Beff = 5 -
<OZH OZH> B sinh (%) Cse

(4.26)

Drawing analogy with AdS3/CFTy correspondence, this correlation function behaves like
a correlation function computed in thermal AdSs. It would be interesting to obtain an
analogous bulk interpretation for the case of AdSs.

4.2 Computations between ZZ and FZZT branes

We now use the relationship between 2D Liouville theory and the Schwarzian in the presence
of FZZT branes. This allows us to write down the full Schwarzian correlation functions in
the presence of coherent states of the type (1.4). As we shall see, their leading semiclassical
limits will once more confirm our previous results obtained by other means.
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4.2.1 Bilocal one-point function (FZZT|V,(x,Z)|ZZ)

In this section we compute the special case of (2.39) with a single operator insertion using
the FZZT-wavefunction given by (2.36),

i <7(bz)>i5 T (1+2iPh)T (1 + 22’5)

o' (P) = (FZZT|P) = ¢*Ps 55 | w2

(4.27)
Recall, the variable s is related to the parameter r that labels the FZZT branes by equa-
tion (2.40). We are now ready to put together all the ingredients to compute the expectation
value of a bilocal operator with respect to the FZZT boundary state. We start by writing
down the full expression for (Vy(z,z)), := (FZZT|V,(x, )|Z2Z), which takes the form
V(b2>)inR U (14+2ibR)T (1+2i %)
8b2 b

I'(1+2ibP)T (1+2i%)

{vr|Vi(z, ) |vp)

(4.28)
This expression differs from the pure ZZ one only in the measure factor where, roughly

<V€(x,fﬁ>>7«——23/4/deR262m'Rs(

speaking, a ZZ brane corresponds to an insertion of sinh(27p), while an FZZT brane
corresponds to an insertion of cos(27p). Once again, using (4.5), and performing the same
kind of manipulations as for the pure ZZ case above, we can write,

(Vo(z,2))p = ——— (8b ) —e 4

23/4 o0 b xsQ? 20 +i(p£r))
T'(40) '
(4.29)

Above, we have introduced a rescaled § = s b parameter for the FZZT brane. This scales the

T

energy of the FZZT brane in an appropriate fashion from the 1D perspective. This can be
easily seen by recalling that s is related to the parameter r in the boundary term, (2.7) by,

2

cosh?(mbs) = 2;)2 sin(mb?)
lb =0 (4.30)
20252 2
1+ > = 5

In the b — 0 limit, r.h.s. of the above equation is an O(1) parameter, therefore s ~ %
which justifies our redefinition, s = §/b.
Evaluating (4.29) using the saddle point integration method described above we get,

4¢
1

(FZZT|\Vy(x,2)|22) ~ | ——F——
2sinh (%’%a)

(4.31)

Since o is indeed Euclidean time in the Schwarzian theory, this result is thermal for the
orbit when § € iR and non-thermal if § € R. In the former case it is thermal at the effective
temperature feg = /5. A similar result in 2D CFT was recently found in [22, 70].
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We would also like to compute exact correlation function akin to eq. (3.11) above using
these methods from 2D Liouville theory. However, the asymmetry of the configuration
does not render it immediately amenable to employing the doubling trick and requires
the development of the Feynman rules®? in the one-dimensional theory in the presence of
insertion of the FZZT operators discussed in section 2.2. We will investigate these questions

in our future work.

4.2.2 Bilocal two-point function (FZZT|Vy,(x2, Z2)Ve, (21, Z1)|ZZ)
Like in the previous case, we next compute the 2-point correlation function of the bilocal
operators. From the perspective of 2-dimensional Liouville theory it is given by,

P—R

P, i
(FZZT|Vy, (x9, T2)Vy, (21, 51)|22Z) = —23/4 /dP dREe%”RS (mpy (b))

T +2bR)T (1+2i%)
I'(1+42ibP)T (1 +2i%)

(VR| Vi, (w2, 22) Ve, (x1, 1) [vp) . (4.32)

and in 1-dimension, this expression reduces to,

[ (202 £i(v+0)) I (208 +i(0 +p))
I'(402) INCYA)

~ /dtdp2 dd? ¥ sinh (27p) sinh (270)

X exp [—210 (B + 202 (0% — v2) + 201 (p* — 02))] : (4.33)

Moreover, we can also compute the out-of-time-ordered correlation functions using the
R-matrices. The exact expression for such an OTOC is given by,

(O, (03,04)Op, (01, 02)
(O¢,(03,04))(O, (01,02

;> ~ /dp2dtdp§dpf sinh(27p) cos(27t$) sinh(27p) sinh(27p;)

X Ry, p, [362 3‘51} exp [_216’ (P*(B — 041) — pioss — t2o30 — p§041)} (4.34)
» VI (20 £i(p £ py))T (205 £ (v + p,))T(201 £ i(c £ ps))T(202 £ i(p £ ps))
['(461)T(442)

Once again, we bypass the exact computation of this integral and resort to the analysis of
section 3.2 to argue that the Lyapunov exponent in this scenario will be given by A = 27/ Beg

where Beg = (/8.
4.3 Computations between two FZZT branes

Before moving on to the discussions section, for completeness we would like to gather exact
results for correlation functions in the presence of FZZT branes at both ends, proceeding

along similar lines as above.

4.3.1 (FZZT|Vy(x,)|FZZT)

This correlation function corresponds to one with two insertions of FZZT operators as
shown in figure 7. Using the FZZT wavefunctions in (2.36), we can write this one-point

22Quch Feynman rules are derived for the pure ZZ-ZZ case in [39].

~ 31—



|FZZT)(FZZT)| |FZZT)(FZZT)|

—a

Figure 7. The configuration of the insertions in the case of two FZZT operators.

function of the bilocal operator as follows,

.p—

_ 1 1 oisn s M\

FZZT FZZT) = — [dPdR ——¢*™i(sR=s'P) (110 ) 4.

(FZZTY,(a,2)|F22T) = o5 [aPdR e L2 (4.35)
. R . P _

X [F (1+2ibR)T (1 + 21b> I'l1—2P)T <1 - 2zb>] (vr|Vy(z,2) lvp) .

Once again, using (4.5), we can write,

_ 1 pn2e 1 _28mQ? . "
(FZZT\Vg(x,m)|FZZT>:2—b(8b) —e o 1 [dpde cos(2mr) cos(2m'p)
T

Lee=ip+y)

— L2 2 (2p?)
T(a0) e 20" eC . (4.36)

Above, we have introduced rescaled §, 3’ = sb, s’ b parameters for both the FZZT branes.
Lastly, the saddle point evaluation of (4.36) in the C' — oo limit gives,

40
1

2sinh (27T§ + %r (8 —5—1) O')

(FZZT|V(x, %)|[FZZT) ~ (4.37)

5 Discussion

We have undertaken a detailed study of the behavior of pure states of the Schwarzian
theory as defined by the path integral (1.1). A table showing the different classes of states
considered and their thermal properties is given in figure 8. Let us briefly review what
has been established. From a many-body perspective this paper should be understood
in conjunction with the numerical results of [16] and the analytical results of [48] to give
a complete picture of the thermal properties of pure states of the SYK model. These
studies taken together explicitly demonstrate the applicability of ETH both for the tower
of massive states by studying the asymptotics of OPE coefficients in [48], as well as for
the Schwarzian sector in the present work, by employing a combination of methods, all
of which are ultimately linked to the Virasoro symmetry which shows up via the orbits
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state 2D picture class ETH A
|E(k)) 77 parabolic v | 2rTern
|E,-) FZ7ZT elliptic v | 2nTgrw
|E+) FZZT hyperbolic X € iR
O, 10) 77 parabolic —

Figure 8. Panoramic summary of the pure states studied in this paper and their thermal properties.
We see that in all cases where the system behaves thermally it satisfies maximal extended ETH (we
did not compute the Lyapunov exponent in the last line of this table). The states |E,+) denote the
coherent FZZT states for r 2 V2. The grey tick mark indicates that the states in question show
only a weak form of ETH.

of Diff(S!). This is yet another demonstration of the usefulness of the SYK and SYK-
like models as controllable theoretical laboratories of strongly coupled quantum chaotic
systems. At the same time, these models serve as simple examples of holographic duality
and the applicability of ETH has important implications for the physics of the dual black
holes, as discussed in section 1.1.

It is natural to ask whether a more detailed investigation could unearth a story similar
to the case of large—c 2D CFT, where sub-leading corrections necessitate a more refined
analysis of thermalization to the generalized Gibbs ensemble of KAV charges (see, for
example [82-87]). To this end, we note that we have the exact results of many relevant
quantities at our disposal (see section 4), so one could in principle undertake a systematic
expansion in large—C' to address this question. A second important angle is the maximal
extended ETH conjecture made in [16] and in this paper: the IR limit of the SYK model
as well as other similar many-body theories (such as the melonic tensor models) scramble
with the maximally allowed exponent 27 /S.g predicted from the ETH as applied to simple
operators. It would be interesting to further explore whether there are universal critical
phenomena associated to the ergodic / non-ergodic transition established here, and linked
to the critical parabolic orbit of Virasoro. A possible connection between ETH and the
Lyapunov behavior was first suggested in [16] and later formalized in [88], who point out the
general structure of non-Gaussianities this implies for the statistics of off-diagonal matrix
elements in the energy basis. It would be of interest to compute these non-Gaussianities
explicitly in the present model, but for this we would need to extend our results to off-
diagonal matrix elements.

Such an expansion of the exact results would naturally be of interest also in discussion
of how the correlation function deviates from semi-classical bulk EFT expectations, as
discussed in various recent analyses, such as for example [15, 35, 89, 90].

It is interesting to note that an ergodic to non-ergodic phase transition was also found
in [91, 92] within pure states of the SYK model. However, the connection with the pure
states of the above paper is presently not clear and begs a more detailed analysis.
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An interesting aspect with potentially important ramifications for holography is the
close connection between ETH and approximate quantum error correction pointed out
in [93]. Combining their results with what has been established in this work, implies as a
corollary that heavy eigenstates of SYK-like models (more precisely their IR Schwarzian
limit) form an approximate quantum error correcting code (AQECC). It would be very in-
teresting to investigate what more can be said about the properties of the AQECC hosted by
the eigenstates of SYK-like models in the light of the OTOC version of ETH we found. Re-
cent investigations linking ETH to AQECC in chaotic theories, including holographic ones,
have appeared in [94], while [95] link complexity of time evolution to ETH-type behavior.

An alternative approach to relate spectral statistics and Lyapunov behavior is devel-
oped in [96-98] who introduce new measures of quantum chaos defined in terms of the
random nature of matrices of correlation functions of all the operators in a system. Given
the exact results developed in this work, it would be interesting to attempt compute these
measures in the Schwarzian theory.

We would like to end by reiterating an important remark about our results demonstrat-
ing ETH. For a complete proof of eigenstate thermalization in a system it is indispensable
to demonstrate the exponential suppression of the off-diagonal matrix elements with re-
spect to the diagonal terms. This was addressed numerically in [16], as well as analytically
in the conformal limit in [48]. Our present work focused on the study of the diagonal terms
only, so it will be important to generalize our techniques to allow the determination of the
behavior of the off-diagonal terms.
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