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We present new results on up to sixth-order cumulants of net baryon-number fluctuations at small values
of the baryon chemical potential, μB, obtained in lattice QCD calculations with physical values of light and
strange quark masses. Representing the Taylor expansions of higher-order cumulants in terms of the ratio of
the two lowest-order cumulants, MB=σ2B ¼ χB1 ðT; μBÞ=χB2 ðT; μBÞ, allows for a parameter-free comparison
with data on net proton-number cumulants obtained by the STAR Collaboration in the Beam Energy Scan
at RHIC. We show that recent high-statistics data on skewness and kurtosis ratios of net proton-number
distributions, obtained at a beam energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV, agree well with lattice QCD results on
cumulants of net baryon-number fluctuations close to the pseudocritical temperature, TpcðμBÞ, for the
chiral transition in QCD. We also present first results from a next-to-leading-order expansion of fifth- and
sixth-order cumulants on the line of the pseudocritical temperatures.

DOI: 10.1103/PhysRevD.101.074502

I. INTRODUCTION

The phase diagram of strong-interaction matter at non-
zero temperature and nonzero baryon-number density
is being explored intensively through numerical calcula-
tions performed in the framework of lattice-regularized
quantum chromodynamics (QCD) [1], as well as through
ultrarelativistic heavy-ion collisions with varying beam
energies [2]. At vanishing and small values of the chemical
potentials for conserved charges [baryon number (μB),
electric charge (μQ), strangeness (μS)] it is well established
that the transition from the low-temperature hadronic
region to the quark-gluon plasma at high temperature is
a smooth transition [3] characterized by a pseudocritical

temperature, TpcðμBÞ [4–7]. At larger values of the baryon
chemical potential it, however, is generally expected that a
first-order phase transition line exists, which ends in a
second-order critical point [8,9]. This elusive critical
point is searched for in the Beam Energy Scan (BES)
performed at the Relativistic Heavy Ion collider (RHIC) at
Brookhaven National Laboratory [10]. However, its exist-
ence as a fundamental property of the theory of strong
interactions (QCD) still awaits confirmation.
The pseudocritical line, TpcðμBÞ, which distinguishes the

low- and high-temperature regimes of strong-interaction
matter as described by QCD, has been determined quite
accurately in lattice QCD calculations for baryon chemical
potentials up to about twice the pseudocritical temperature,
μB ≲ 2Tpcð0Þ ≃ 300 MeV [4–7]. In our recent analysis we
found [7]

TpcðμBÞ ¼ T0
pc

�
1 − κB2

�
μB
T

�
2

þOðμ4BÞ
�
; ð1Þ
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with T0
pc ¼ ð156.5� 1.5Þ MeV and κB2 ¼ 0.012ð4Þ with a

Oðμ4BÞ correction that vanishes within errors. At μB ¼ 0 the
pseudocritical temperature turns out to be in good agree-
ment with the freeze-out temperature determined by the
ALICE Collaboration at the LHC [11] and the pseudoc-
ritical line, TpcðμBÞ, is also consistent with freeze-out
temperatures determined by the STAR Collaboration dur-
ing the first BES at RHIC (BES-I) [12], albeit these
temperatures have larger statistical errors.
The experimental determination of the freeze-out para-

meter is based on a measurement of particle yields, i.e., first
moments of particle distributions, which in turn are closely
related to first-order cumulants of net charge fluctuations.
The proximity of freeze-out temperatures and the pseu-
docritical temperature determined in QCD suggests that
the higher-order moments of net charge fluctuations also
reflect properties of a thermal medium close to the
pseudocritical line. This, however, is not at all well
established and many caveats have been discussed sug-
gesting that the relation of higher-order cumulants, mea-
sured experimentally, to cumulants of conserved charge
fluctuations, calculated in equilibrium QCD thermodynam-
ics, is not at all straightforward [10,13].
Higher-order cumulants of net conserved charge fluctu-

ations are obtained as derivatives of the logarithm of the
QCD partition functions with respect to the chemical
potentials of conserved charges, μ⃗ ¼ ðμB; μQ; μSÞ,

χXn ðT; μ⃗Þ ¼
1

VT3

∂n lnZðT; μ⃗Þ
∂μ̂nX ; X ¼ B;Q; S; ð2Þ

with μ̂≡ μ=T. These higher-order derivatives become
increasingly sensitive to long-range correlations and large
fluctuations in the vicinity of a critical point. At least from
the theoretical point of view higher-order cumulants thus
are ideally suited to search for a possible critical point in the
QCD phase diagram [14–16]. The BES at RHIC aims at
finding evidence for such a critical point through the
analysis of e.g., higher-order cumulants of net proton-
number fluctuations which are considered to be good
proxies for cumulants of net baryon-number fluctuations.
Results, obtained with BES-I at RHIC, indicate that
qualitative changes in the behavior of net proton-number
fluctuations occur at beam energies

ffiffiffiffiffiffiffiffi
sNN

p ∼ 20 GeV
[17,18]. This may hint at the existence of a critical point
for large values of the baryon chemical potential.
While the finding of nonmonotonic behavior of higher-

order cumulants of net proton-number fluctuations generated
well-justified excitement [17,18], we still need to establish
that this behavior is caused by thermal fluctuations in the
vicinity of a critical point and that these higher-order
cumulants indeed probe thermal conditions at the time of
freeze-out.Aspointedout inRef. [19] at least for small values
of the baryon chemical potential the first four cumulants of
net baryon-number fluctuations, i.e.,mean [MB ≡ χB1 ðT; μ⃗Þ],

variance [σ2B ¼ χB2 ðT; μ⃗Þ], skewness [SB ¼ χB3 ðT; μ⃗Þ=
χB2 ðT; μ⃗Þ3=2] and kurtosis [κB ¼ χB4 ðT; μ⃗Þ=χB2 ðT; μ⃗Þ2] are
predicted inQCDequilibrium thermodynamics to be related.
For μS ¼ μQ ¼ 0 one finds

κBσ
2
B < SBσ3B=MB;

⇔
χB4 ðT; μ⃗Þ
χB2 ðT; μ⃗Þ

<
χB3 ðT; μ⃗Þ
χB1 ðT; μ⃗Þ

: ð3Þ

This relation, which is only slightly violated in strangeness
neutral systems, has been established in lattice QCD calcu-
lations usingnext-to-leading-order (NLO)Taylor expansions
of the first four cumulants of net baryon-number fluctuations
[19]. The data on cumulants of net-proton number fluctua-
tions, obtained by STAR during BES-I [18] at beam energiesffiffiffiffiffiffiffiffi
sNN

p ≥ 19.6 GeV are, on average, consistent with this
finding [19]. However, statistical errors are large and, for
instance, data obtained at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 GeV violate the
above relation. Results at several other beam energies are
inconclusive due to the large statistical errors on the fourth-
order cumulant ratio κBσ

2
B. To this extent recent high-

statistics data obtained by the STAR Collaboration atffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV [20] are encouraging. As will be dis-
cussed in Sec. IV, these data fulfill the above inequality and
the difference of the cumulant ratios given in Eq. (3) agrees
with lattice QCD results even on a quantitative level.
We will present here new results on the density depend-

ence of up to sixth-order cumulants of net baryon-number
fluctuations. We calculate Taylor series at nonzero values of
the baryon-number, electric-charge and strangeness chemi-
cal potentials that involve up to eighth-order cumulants. We
perform these expansions for the case of strangeness
neutral systems, nS ¼ 0, with a ratio of electric charge
to baryon number, nQ=nB ¼ 0.4, that is representative of
the conditions met in heavy-ion collisions. This allows to
construct Taylor expansions for nth-order cumulants,1

χBn ðT; μBÞ, up to Oðμ8−nB Þ.
For the case of the skewness and kurtosis ratios,

SBσ3B=MB and κBσ
2
B, respectively, we thus can extend

earlier NLO calculations and perform next-to-next-to-
leading-order (NNLO) expansions that allow to better control
truncation effects in the Taylor series.We also present, for the
first time, results from NLO calculations for the hyper-
skewness and hyper-kurtosis (fifth- and sixth-order cumu-
lants) ratios χB5 ðT;μBÞ=χB1 ðT;μBÞ and χB6 ðT; μBÞ=χB2 ðT; μBÞ.
We show that these ratios are expected to be negative atffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV, in contrast to the preliminary findings
for sixth-order cumulants of net proton-number fluctuations
reported by the STAR Collaboration [20].

1Rather than specifying in the argument of χBn all three
chemical potentials, μ⃗, we give in the strangeness neutral case
only the baryon chemical potential.
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This paper is organized as follows. In the next section we
briefly present our calculational setup, the new statistics
collected on lattices of size 323 × 8 and 483 × 12 and the
general fitting ansatz used for fits at fixed values of Nτ ¼ 8
and 12, joint fits of these data as well as continuum limit
estimates. In Sec. III we present results for Taylor expan-
sions of cumulants of net baryon-number fluctuations that
use up to eighth-order cumulants. We compare these results
with experimental data for cumulants of net proton-number
fluctuations in Sec. IV. Section V contains our conclusions.
Explicit expressions for the first four Taylor expansion
coefficients of net baryon-number cumulants are given in
the Appendix.

II. CALCULATIONAL SETUP

Up to fourth-order cumulants of net baryon-number
fluctuations have been calculated previously [19,21,22]
in a next-to-leading-order Taylor expansion. In particular,
we performed calculations [19] with the highly improved
staggered quark [23] discretization scheme for (2þ 1)-
flavor QCD with a physical strange quark mass and two
degenerate, physical light quark masses. Here we extend
these calculations by increasing the number of gauge field
configurations generated on lattices of size 323 × 8 and
483 × 12 by a factor of 3–5 in the transition region and at
least a factor of 2 at other values of the temperature. This
allows us to calculate up to eighth-order cumulants of net
baryon-number, net strangeness and net electric-charge
fluctuations, including also their correlations, at vanishing
values of the chemical potentials. These cumulants provide
expansion coefficients in Taylor series for net baryon-
number cumulants χBn ðT; μ⃗Þ. We calculate NLO expansions
for fifth- and sixth-order cumulants and obtain NNLO
results for third- and fourth-order cumulants. In the case of
first- and second-order cumulants, i.e., the mean and
variance of net baryon-number distributions, we even
obtain next-to-NNLO (NNNLO) results. The set of gauge
field ensembles, which has been used in this analysis, and
the number of gauge field configurations per ensemble on
lattices with temporal extent Nτ ¼ 8 and 12 are summa-
rized in Table I.
Results for up to eighth-order diagonal net baryon-

number susceptibilities, χBn ≡ χBn ðT; 0Þ, are given in
Fig. 1. For the quadratic fluctuations, χB2 , we also show
results for lattices with temporal extentNτ ¼ 6, which were
already used in Ref. [7]. For the eighth-order cumulant, χB8 ,
we only show our results for Nτ ¼ 8 as statistical errors on
the Nτ ¼ 12 data are still too large. The bands shown in
these figures give a continuum extrapolation for χB2 ðTÞ
using data from calculations for three different lattice
spacings (aT ¼ 1=Nτ) and a continuum estimate for
χB4 ðTÞ based on Nτ ¼ 8 and 12 data sets. For χB6 ðTÞ and
χB8 ðTÞ we only show spline interpolations of the data
obtained on the 323 × 8 lattices. Results for these

cumulants, obtained from calculations within a noninter-
acting hadron resonance gas (HRG) model that use
resonances from the Particle Data Tables [25] (PDG-
HRG) as well as additional resonances calculated within
the quark model [26,27] (QM-HRG) are given by lines. The
latter list contains additional resonances not (yet) observed
experimentally.
We determine the expansion coefficients, χ̃B;kn ðTÞ, for

Taylor series of nth-order cumulants,

χBn ðT; μBÞ ¼
Xkmax

k¼0

χ̃B;kn ðTÞμ̂kB; ð4Þ

for the case of vanishing net strangeness density,
nS ¼ 0, and an electric-charge to baryon-number ratio,
nQ=nB ¼ 0.4. Explicit expressions for the NLO expansion
coefficients of up to sixth-order net baryon-number cumu-
lants are given in Ref. [19]. The explicit form of the higher-
order expansion coefficients are given in the Appendix.
Using the Taylor series for nth-order cumulants, Eq. (4),

we construct cumulant ratios with polynomials of order
½kmax; lmax�,

RB
nm ¼ χBn ðT; μBÞ

χBmðT; μBÞ
¼

Pkmax
k¼1 χ̃

B;k
n ðTÞμ̂kBPlmax

l¼1 χ̃
B;l
m ðTÞμ̂lB

: ð5Þ

In order to control systematic effects arising from the
truncation of the Taylor series expansion for the cumulant
ratios RB

nm, we calculate these ratios using different orders
of the Taylor expansion for the cumulants appearing in the
numerator and denominator of these ratios. We analyzed
the polynomial ratios for different ½kmax; lmax� as well as
Taylor expansions of the ratios themselves. We find that the

TABLE I. Number of gauge field configurations on lattices of
size 323 × 8 and 483 × 12 used in the analysis of up to eighth-
order Taylor expansion coefficients. The values of the gauge
coupling as well as the strange and light quark mass parameter at
these temperature values are taken from Ref. [24], where details
on the statistics available on the 243 × 6 lattices were also given.
All configurations are separated by 10 time units in rational
hybrid Monte Carlo simulations [24].

Nτ ¼ 8 Nτ ¼ 12

T [MeV] No. of conf. T [MeV] No. of conf.

134.64 1 275 380 134.94 256 392
140.45 1 598 555 140.44 368 491
144.95 1 559 003 144.97 344 010
151.00 1 286 603 151.10 308 680
156.78 1 602 684 157.13 299 029
162.25 1 437 436 161.94 214 671
165.98 1 186 523 165.91 156 111
171.02 373 644 170.77 144 633
175.64 294 311 175.77 131 248
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former are more stable at large μB=T. In the following we
will use the ratios of polynomials with ½kmax; lmax� corre-
sponding to identical orders (LO, NLO, NNLO, NNNLO)
of expansions in the cumulants appearing in the numerator
and denominator, respectively.

We fit cumulant ratios using a rational polynomial
ansatz,

fðT; μ̂BÞ ¼
Pnmax

n¼0 anðμ̂BÞT̄n
Pmmax

m¼0 bmðμ̂BÞT̄m ; with T̄ ¼ T
T0

; ð6Þ

where T0 is some arbitrary scale. When using this rational
polynomial ansatz for fits at nonzero μB we allow for a
quadratic μB dependence of all expansion coefficients,
anðμ̂BÞ ¼ an;0 þ an;2μ̂2B and similarly for bnðμ̂BÞ. When
performing joint fits of data on lattices with different sizes
and lattice spacings, a, we allow for Oða2Þ cutoff correc-
tions that are parametrized in terms of the temporal lattice
extent Nτ ¼ 1=aT, e.g.,

fðT; μ̂BÞ ¼ hðT; μ̂BÞ þ
1

N2
τ
gðT; μ̂BÞ; ð7Þ

with gðT; μ̂BÞ and hðT; μ̂BÞ being rational polynomials of
the type given in Eq. (6).

III. CUMULANTS OF NET
BARYON-NUMBER FLUCTUATIONS

A. Mean and variance of net
baryon-number fluctuations

We have calculated the ratio of the mean, MB ¼
χB1 ðT; μBÞ, and variance, σ2B ¼ χB2 ðT; μBÞ, of net baryon-
number fluctuations,

RB
12ðT; μBÞ≡MB

σ2B
¼ χB1 ðT; μBÞ

χB2 ðT; μBÞ
; ð8Þ

for systems with vanishing net strangeness, nS ¼ 0, and a
net electric-charge to net baryon-number density nQ=nB ¼
0.4 on lattices with temporal extent Nτ ¼ 8 and 12. Using
up to eighth-order Taylor expansion coefficients, we can
construct Taylor series up to order Oðμ̂7BÞ and Oðμ̂6BÞ for
χB1 ðT; μBÞ and χB2 ðT; μBÞ, respectively. Truncating these
series at kmax and lmax ¼ kmax − 1, respectively, we con-
struct the ½kmax; lmax� polynomial ratios which provide
leading-order ([1, 0]), next-to-leading-order ([3, 2]) etc.,
approximations for the ratio of the mean and variance of the
distribution for net baryon-number fluctuations, RB

12≡
MB=σ2B. Results for different ½kmax; lmax� are shown in
Fig. 2. The figure shows results obtained on lattices with
temporal extent Nτ ¼ 8 and 12 at a temperature2 T ≃
157 MeV which is close to the pseudocritical temperature
at μB ¼ 0.
We find that cutoff effects are negligible for μB=T ≤ 1

and remain comparable to the statistical errors for the
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FIG. 1. Cumulants of net baryon-number fluctuations from
second to eighth order (top to bottom) evaluated at μB ¼ 0 on lat-
tices of size N3

σ × Nτ with Nσ ¼ 4Nτ. For further details see text.

2As is evident from Table I the temperatures differ slightly
for the two lattice sizes: T ¼ 156.76 MeV for Nτ ¼ 8 and
T ¼ 157.13 MeV for Nτ ¼ 12, respectively.
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Nτ ¼ 12 data at least up to μB=T ≃ 1.2. This holds true in
the entire temperature range T ∈ ½135 MeV∶175 MeV�
analyzed by us. Differences in RB

12 constructed from
NNLO and NNNLO Taylor series of the cumulants are
about 2% for μB=T ¼ 1.
As the temperature dependence of RB

12 is weak in the
temperature range considered by us and also deviations of
the μB dependence from the leading order, linear behavior
are moderate we find that using [2, 3] rational polynomials
in both terms of the fit ansatz given in Eq. (7) are sufficient
for obtaining good fits to the data. We performed fits
separately for the NNLO and NNNLO data sets at fixed
values of T and μB=T ≤ 1.2. The resulting continuum
estimates for RB

12, evaluated for several values of the
temperature in the vicinity of the pseudocritical temper-
ature, Tpcð0Þ, are shown in Fig. 3. We note that the
variation with temperature is small. As will be discussed
in Sec. IV the results obtained for RB

12 at μB ≲ 125 MeV are
in good agreement with HRG model calculations. For
larger values of μB we find, however, RB;QCD

12 > RB;HRG
12 ,

which reflects the large deviations of higher-order cumu-
lants, evaluated in QCD at μB ¼ 0, from the corresponding
HRG values.

B. Skewness and kurtosis of net
baryon-number fluctuations

While the low-order cumulants MB ¼ χB1 ðT; μBÞ, σ2B ¼
χB2 ðT; μBÞ and their ratio are in good agreement with HRG
model calculations that use noninteracting, point-like
hadrons at and below Tpc (see also discussion in Sec. IV),
this clearly is not the case for higher-order cumulants. This is
apparent in calculations of the skewness and kurtosis ratios,

RB
31ðT; μBÞ ¼

SBσ3B
MB

¼ χB3 ðT; μBÞ
χB1 ðT; μBÞ

; ð9Þ

RB
42ðT; μBÞ ¼ κBσ

2
B ¼ χB4 ðT; μBÞ

χB2 ðT; μBÞ
; ð10Þ

which both are unity in noninteracting HRG model calcu-
lations, but are known to be significantly smaller in lattice
QCDcalculations already in thevicinity of the pseudocritical
temperature, Tpcð0Þ, at vanishing values of the baryon
chemical potential. Moreover, in contrast to the cumulant
ratio RB

12, the ratios RB
31 and RB

42 show a much stronger
temperature dependence and a milder dependence on μB. It
thus has been suggested that the ratio RB

12 is well suited to
determine the baryon chemical potential from experimental
data, while the ratios RB

31 and RB
42 constrain the temper-

ature [21,28].
Using our results for up to eighth-order cumulants of

conserved charge fluctuations and correlations, we can
construct NNLO expansions for the third- and fourth-order
cumulants χB3 ðT; μBÞ and χB4 ðT; μBÞ, where again the
electric-charge and strangeness chemical potentials have
been fixed by demanding nS ¼ 0 and nQ=nB ¼ 0.4. With
this we determine up to NNLO results for the skewness and
kurtosis cumulant ratios RB

31 and RB
42.

We again first use our high-statistics data obtained on the
Nτ ¼ 8 lattices to analyze the effect of truncations of the
Taylor expansions at finite orders of μB. We used the fit
ansatz given in Eq. (6) and performed fits to LO, NLO and
NNLO results for the ratios RB

31 and RB
42 in the temperature

range ½135 MeV∶175 MeV� and for baryon chemical
potentials μB ≤ 160 MeV. Results from these fits are
shown in Fig. 4 for four values of the temperature in the
vicinity of the pseudocritical temperature Tpcð0Þ. The two
central T values, T ¼ 155 and 158 MeV, correspond to the
lower and upper end of the error band for the pseudocritical
temperature at μB ¼ 0. The lowest temperature, T ¼
152 MeV reflects the lowest T value reached on the
pseudocritical line TpcðμBÞ at μB=T ¼ 1. For clarity we
show in Fig. 4 the LO results, which are μB independent,
only for the lowest temperature. Of course, at all temper-
ature values the LO results coincide with the values of RB

31

and RB
42 at μB ¼ 0. We also note that in the range of

chemical potentials, 0 ≤ μB=T ≤ 1, the pseudocritical tem-
perature only varies slightly. The data shown in Fig. 4 thus

FIG. 2. Expansion of RB
12 ≡MB=σ2B at a fixed temperature

close to the pseudocritical line TpcðμBÞ versus the baryon
chemical potential. Shown are results from up to NNNLO
expansions on lattices of size 323 × 8 and 483 × 12.

FIG. 3. Continuum estimate for RB
12 based on NNNLO ex-

pansion results obtained on lattices of size 323 × 8 and 483 × 12.
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cover the entire parameter range of relevance for the
calculation of these cumulant ratios on the pseudocritical
line for μB=T ≲ 1.
In Ref. [19] we showed that the skewness and kurtosis

ratios RB
31 and RB

42 are almost identical at leading order,
Oðμ0BÞ. The NLO correction to the kurtosis ratio RB

42,
however, is about a factor of 3 larger than that for the
skewness ratio RB

31. Figure 4 suggests that these relations
are still well respected by the NNLO results. The slope of
RB
42ðT; μBÞ as a function of μ̂B at fixed T is significantly

larger than that of RB
31ðT; μBÞ and, in fact, it is still

consistent with being about a factor of 3 larger. This is
shown in Fig. 5 where we compare the μB-dependent parts
of RB

31 and RB
42=3. Also shown in this figure are the second

derivatives of RB
31ðT; μBÞ and RB

42ðT; μBÞ=3 with respect
to μB=T.
Compared to the lower-order ratio RB

12 higher-order
corrections in the Taylor expansion of RB

31 are significantly
larger. In the temperature range shown in Fig. 4 corrections
to the NLO results, arising from the NNLO, Oðμ5BÞ,
corrections in the Taylor expansions of the cumulants
χB3 ðT; μBÞ, are about 5% at μB=T ¼ 0.8 and rise to about
10% at μB=T ¼ 1. Consequently truncation effects in RB

42

are about a factor of 3 larger.

In Fig. 6 we show results for the skewness and kurtosis
ratios RB

31ðT; μBÞ and RB
42ðT; μBÞ obtained at μB ¼ 0 on

lattices with temporal extent Nτ ¼ 8 and 12. Obviously
results for Nτ ¼ 12 are systematically below those for
Nτ ¼ 8. This is in accordance with the observed shift of the
pseudocritical temperatures [7] to smaller values with
increasing Nτ or, equivalently, decreasing lattice spacing
at fixed temperature aT ¼ 1=Nτ. When performing joint
fits to the Nτ ¼ 8 and 12 data, using the ansatz given in

FIG. 4. The cumulant ratios RB
31ðT; μBÞ≡ SBσ3B=MB (top) and

RB
42ðT; μBÞ≡ κBσ

2
B (bottom) versus μB=T for four different

values of the temperature calculated from LO, NLO and NNLO
Taylor expansions of the cumulants χBn ðT; μBÞ on lattices with
temporal extent Nτ ¼ 8.

FIG. 5. The μB-dependent correction to RB
31 compared to one

third of the correction for RB
42. The inset shows a comparison of

the second derivatives of RB
31 and RB

42=3 with respect to μB=T.

FIG. 6. Continuum estimates for the skewness ratio, RB
31 ≡

SBσ3B=MB (top), and kurtosis ratio RB
42 ≡ κBσ

2
B (bottom) at μB ¼

0 based on results obtained on lattices of size 323 × 8 and
483 × 12, respectively. The inset in the bottom figure shows the
difference RB

42 − RB
31 at μB ¼ 0 as function of T.
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Eq. (7), we find that within our current statistical errors on
the Nτ ¼ 12 data we cannot resolve any T or μB=T
dependence of cutoff effects. It thus suffices to use a
constant ansatz for the cutoff corrections, i.e., we use
gðT; μBÞ ¼ a0;0 and a [3, 4] rational polynomial for the
continuum limit result fðT; μBÞ. A joint fit to the Nτ ¼ 8

and 12 data yields a0;0 ¼ 3.2ð1.5Þ for RB
31ðT; μBÞ and

a0;0 ¼ 3.2ð3.0Þ for RB
42ðT; μBÞ. The resulting continuum

limit estimates at μB ¼ 0 are also shown in Fig. 6.
The inset in Fig. 6 (bottom) shows the continuum

estimate for the difference RB
42 − RB

31 at μB ¼ 0 as a
function of T. At temperatures below T ≃ 150 MeV this
difference is consistent with being zero. In the crossover
region, Tpcð0Þ ¼ 156.5ð1.5Þ MeV we find that the differ-
ence is slightly positive, RB

42ðTpcÞ − RB
31ðTpcÞ ¼ 0.008ð3Þ.

Continuum estimates for RB
31ðT; μBÞ and RB

42ðT; μBÞ at
two values of the temperature, corresponding to the current
error band for the pseudocritical temperature at μB ¼ 0 are
shown in Fig. 7.

C. Hyper-skewness and hyper-kurtosis
of net baryon-number fluctuations

The fifth- and sixth-order cumulants are related to the
corresponding fifth- and sixth-order standardized moments,
i.e., the hyper-skewness, SH, and hyper-kurtosis, κH. We
consider here the cumulant ratios for fifth- and sixth-order
cumulants of net baryon-number fluctuations,

RB
51ðT; μBÞ≡ SHB σ

5
B

MB
¼ χB5 ðT; μBÞ

χB1 ðT; μBÞ
;

RB
62ðT; μBÞ≡ κHBσ

4
B ¼ χB6 ðT; μBÞ

χB2 ðT; μBÞ
: ð11Þ

Unlike the ratios for skewness and kurtosis cumulants,
the corresponding ratios involving fifth- and sixth-order
cumulants are negative already at μB ¼ 0 in a broad
temperature interval in the vicinity of Tpcð0Þ and become
smaller with increasing μB. This reflects the properties of
the sixth- and eighth-order cumulants shown in Fig. 1.
The μB dependence of the cumulant ratios RB

51 and RB
62

follows a pattern similar to that of the skewness and kurtosis
ratios. In particular, at LO both ratios are almost identical
and the NLO correction to RB

62 is about a factor of 3 larger
than that for RB

51. Like in the case of the corresponding
relations for the skewness and kurtosis ratios these relations
simply result from the structure of Taylor expansions for odd
and even cumulants [19]. The relations are exact for
expansions at vanishing μQ and μS and apparently they
are not much altered in the strangeness neutral case nS ¼ 0
with nQ=nB ¼ 0.4. A fit to the Nτ ¼ 8 lattice QCD results
for the difference RB

62 − RB
51 at μB ¼ 0 yields 0.029(9).

While statistical errors are strongly correlated between
the fifth- and sixth-order cumulants they are large for each
of these cumulants individually. For this reason we only
present results for these cumulants obtained on lattices with
temporal extent Nτ ¼ 8 and evaluate the NLO corrections
only for μB=T ≤ 0.8. NLO results for RB

51ðT; μBÞ and
RB
62ðT; μBÞ are shown in Fig. 8.
Obviously NLO corrections for these ratios are negative

and substantially larger than those in the skewness and
kurtosis ratios. In the vicinity of the pseudocritical temper-
ature the difference between LO and NLO results at
μB=T ¼ 0.8 is about an order of magnitude larger in
RB
51ðT; μBÞ than in RB

31ðT; μBÞ. This is also the case when
comparing RB

62ðT; μBÞ with RB
42ðT; μBÞ.

The magnitude and sign of the NLO corrections to fifth-
and sixth-order cumulants in relation to corresponding
results for the third- and fourth-order cumulants is evident
from the structure of the corresponding Taylor expansion
coefficients. It is easy to see this in Taylor expansions
performed at μQ ¼ μS ¼ 0. In this case one has, for
instance,

χB4 ðT; μBÞ ¼ χB4 þ χB6
2

�
μB
T

�
2

þ χB8
24

�
μB
T

�
4

þ � � � ; ð12Þ

χB6 ðT; μBÞ ¼ χB6 þ χB8
2

�
μB
T

�
2

þ � � � ð13Þ

As can be deduced from Fig. 1, despite the large errors on
current results for χB8 , the cumulants χB6 and χB8 are both
negative in the vicinity of the pseudocritical temperature;
however the absolute value of the eighth-order cumulant is

FIG. 7. Continuum estimates for the skewness (top) and
kurtosis (bottom) ratios obtained from joint fits to data obtained
on lattices with temporal extent Nτ ¼ 8 and 12.
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about an order of magnitude larger. This results in the much
larger NLO correction to the expansion of χB6 ðT; μBÞ.
Although the expansions of all cumulants χBn ðT; μBÞ will
have the same radius of convergence it is apparent that
expansions for higher-order cumulants will converge
more slowly. Higher-order corrections to χB5 ðT; μBÞ and
χB6 ðT; μBÞ will thus be needed to arrive at firm conclusions
on the behavior of these cumulants close to μB=T ≃ 1. For
μB=T ≃ 0.3; however, the NLO correction is about an order
of magnitude smaller and thus of similar magnitude as the
NNLO correction to χB3 ðT; μBÞ and χB4 ðT; μBÞ at μB=T ≃ 1.
For small values of the baryon chemical potential and

μS ¼ μQ ¼ 0 we thus may extend the result on the ordering
of cumulant ratios stated in Eq. (3) and also include results
for the fifth- and sixth-order cumulant ratios,

χB6 ðT; μ⃗Þ
χB2 ðT; μ⃗Þ

<
χB5 ðT; μ⃗Þ
χB1 ðT; μ⃗Þ

<
χB4 ðT; μ⃗Þ
χB2 ðT; μ⃗Þ

<
χB3 ðT; μ⃗Þ
χB1 ðT; μ⃗Þ

: ð14Þ

IV. BARYON-NUMBER FLUCTUATIONS ON THE
PSEUDOCRITICAL LINE AND THE CUMULANTS
OF NET PROTON-NUMBER FLUCTUATIONS

In this section we compare results on higher-order
cumulants of net proton-number fluctuations, obtained by
theSTARCollaboration duringBES-I at RHIC [18,20],with
our results for cumulants of net baryon-number fluctuations

calculated inQCDon the pseudocritical line given in Eq. (1).
The pseudocritical line shows only a rather weak depend-
ence on μB. TheOðμ4BÞ correction to TpcðμBÞ is found to be
zero within errors [19]. For μB ≤ Tpcð0Þ it changes from
T ¼ 156.5ð1.5Þ to 154.5(2.0) MeV. This range of temper-
atures is well covered by the results for cumulant ratios as a
function of μB evaluated at fixed values of the temperature
that have been shown in the previous section.
In Fig. 9 we show results for RB

12ðTpcðμBÞ; μBÞ on the
pseudocritical line and compare with results obtained from
noninteracting HRG model calculations that utilize hadron
resonance gas spectra as listed in the Particle Data
Tables [25] as well as spectra calculated in quark models
[26,27]. As can be seen in Fig. 9HRGmodel calculations for
RB
12 agree well with QCD results obtained on the pseudoc-

ritical line up to about μB=T ≃ 0.8 or μB ≃ 125 MeV. This
suggests that the use of low-order HRG cumulants, in
particular the mean of hadron distributions (hadron yields)
that are used experimentally to determine freeze-out param-
eters, may be appropriate at small values of the baryon
chemical potential or small net baryon-number densities.
The HRG model estimates of freeze-out parameters
[12] suggest that the range of baryon chemical potentials
μB=T ≲ 1 corresponds to thermal conditions at freeze-out
generated in heavy-ion experiments at beam energiesffiffiffiffiffiffiffiffi
sNN

p ≳ 27 GeV. Figure 9 suggests that below this value
of

ffiffiffiffiffiffiffiffi
sNN

p
HRG model determinations of baryon chemical

potentials differ from QCD determinations by more than
10%. It thus may be useful to eliminate μB in favor of a
directly accessible physical observable, e.g., RB

12.
At least for μB ≲ 200 MeV truncation errors in the Taylor

expansion of the first two cumulants, the mean and variance,
as well as lattice discretization errors are small. The con-
tinuum limit extrapolation for RB

12ðTpcðμBÞ; μBÞ, shown in
Fig. 9 thus does not suffer from truncation errors in the Taylor

FIG. 8. The cumulant ratios RB
51ðT; μBÞ and RB

62ðT; μBÞ versus
μB=T from LO and NLO Taylor expansions of the cumulants
calculated on lattices with temporal extent Nτ ¼ 8.

FIG. 9. The cumulant ratio RB
12ðT; μBÞ evaluated on the

pseudocritical line TpcðμBÞ for the case nS ¼ 0 and nQ=nB ¼
0.4. Also shown is the corresponding result obtained in HRG
model calculations. In the latter case the width of the line reflects
differences resulting from using particle spectra for a noninter-
acting HRG listed in the Particle Data Tables as well as resulting
within quark model calculations.
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series at least up to μB=T ¼ 1.2. It is a monotonically rising
function3 of μB. This allows to replace the chemical potential
in an analysis of higher-order cumulant ratios in favor ofRB

12.
Wehave done so for the comparison of higher-order cumulant
ratios calculated in latticeQCDon the pseudocritical linewith
experimental data on cumulants of net proton-number fluc-
tuations. In Fig. 10we show the skewness and kurtosis ratios,
RB
31 and RB

42, on the pseudocritical line as a function of RB
12,

which also has been evaluated on the pseudocritical line.
Similar results for the hyper-skewness and hyper-kurtosis
ratios are shown in Fig. 11.
In Fig. 10 we show lattice QCD results up to RB

12 ¼ 0.75,
which corresponds to μB ¼ TpcðμBÞ ≃ 154.5 MeV. The
width of the bands shown in the figure reflect the error
on TpcðμBÞ as given in Eq. (1) as well as the error on the
NNLO and continuum limit estimates for RB

31 and R
B
42. Note

that the upper ends of these error bands correspond to the
lower temperature, i.e., T ¼ 155 MeV at μB ¼ 0 and
T ≃ 152.5 MeV at μB=T ¼ 1.
Also shown in this figure are results for the skewness and

kurtosis ratios of net proton-number fluctuations obtained
by the STAR Collaboration [18,20]. These ratios are plotted
versus the measured ratio of the mean and variance of net
proton-number fluctuations, which is taken as a proxy for
the net baryon-number cumulant ratio4 RB

12.

As the experimentally determined skewness ratio of net
proton-number fluctuations has a rather weak dependence
on RP

12 and also the QCD result for RB
31 has a weak

dependence on RB
12, it obviously is not of much importance

for the comparison of data and lattice QCD calculations
whether RP

12 equals RB
12 or only is a proxy within say

10–20%. More relevant is the question to what extent the
magnitude of RP

31 is a good approximation5 for RB
31. A direct

comparison between RP
31 and RB

31, as shown in Fig. 10,
suggests that freeze-out happens in the vicinity of but below
the pseudocritical temperature. In fact, as can be seen in
Figs. 4 and 7, the ratios RB

31 and RB
42 are decreasing

functions of the temperature. Experimental data for RP
31

lying above the theoretical band for RB
31, evaluated on the

pseudocritical line, thus suggest that freeze-out happens at
a lower temperature.
Although errors on experimental results for the kurtosis

ratio RP
42 are large, they are thermodynamically consistent

with the data on the skewness ratio as pointed out already in
our earlier analysis [19]. This gets further support through
recent high-statistics6 data obtained by the STAR
Collaboration at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV [20]. These data are
shown in Fig. 10 at RP

12 ¼ 0.4672ð2Þ. For this value of the
beam energy the kurtosis ratio RP

42 is found to be smaller

FIG. 10. The cumulant ratios (bands) RB
31ðT; μBÞ≡ SBσ3B=MB

and RB
42ðT; μBÞ≡ κBσ

2
B versus RB

12ðT; μBÞ≡MB=σ2B on the
pseudocritical line calculated from NNLO Taylor series. Data
are results on cumulant ratios of net proton-number fluctuations
obtained by the STAR Collaboration [18]. Also shown are
preliminary results obtained at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV [20]. Dashed
lines show joint fits to the data as described in the text.

FIG. 11. The cumulant ratios RB
51ðT; μBÞ and RB

62ðT; μBÞ versus
RB
12ðT; μBÞ evaluated on the pseudocritical line. Data are pre-

liminary results for the cumulant ratio RP
62 of net proton-number

fluctuations obtained by the STAR Collaboration at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200

and 54.4 GeV for the 0–40% centrality class [20].

3Note that this will no longer be the case when one comes
close to a critical point, where χB2 is expected to diverge
and RB

12ðTpcðμBÞ; μBÞ thus would approach zero.
4In a noninteracting HRG with vanishing strangeness and

electric-charge chemical potential the ratios of the mean and
variance of net proton-number fluctuations and net baryon-
number fluctuations are identical. In the case of a strangeness
neutral (nS ¼ 0 with nQ=nB ¼ 0.4), noninteracting HRG, how-
ever, the latter is about 10% smaller.

5Many caveats for a direct comparison between net baryon-
number fluctuations calculated in equilibrium thermodynamics
and net proton-number fluctuations measured in heavy-ion
collisions have been discussed in the literature [10,13]. The
lattice QCD results shown in Fig. 10 thus may be considered only
as a starting point for a more refined analysis of the experimental
data that may take into account effects arising from experimental
acceptance cuts, the small size of the hot and dense medium,
nonequilibrium effects etc.

6The statistics at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV is a factor of 3.4 larger
than at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and a factor of 17–30 larger than for
the other

ffiffiffiffiffiffiffiffi
sNN

p
data sets shown in Fig. 10.
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than RP
31. The magnitude of this difference, RP

42 − RP
31 ¼

−0.12ð5Þ, is in good agreement with the corresponding
lattice QCD result on the pseudocritical line. For the range
RB
12 ¼ 0.45ð5Þ, which corresponds to μB ¼ 80–100 MeV,

or μB=T ¼ 0.57ð7Þ, we find from a fit to the difference ofRB
42

and RB
31, RB

42 − RB
31 ¼ −0.08ð3Þ. At these values of the

baryon chemical potential (or for RB
12 ≃ 0.5) the NNLO

results for the skewness and kurtosis ratios, presented in the
previous section, seem to suffer little from truncation effects
in the Taylor expansions.
Also shown in Fig. 10 with dashed lines is a joint fit to

the experimental data on RP
31 and RP

42 [18] for
ffiffiffiffiffiffiffiffi
sNN

p ≥
19.6 GeV using a quadratic ansatz, already used in
Ref. [19],

RP
31 ¼ S0 þ S2ðRP

12Þ2;
RP
42 ¼ K0 þ K2ðRP

12Þ2; ð15Þ

withK0 ≡ S0. Including the new data at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV
yields a fit, consistent with Ref. [19], but further constrains
the parameters. One finds S0 ≡ K0 ¼ 0.761ð20Þ, S2 ¼
−0.077ð70Þ, and K2 ¼ −0.54ð22Þ. From the continuum
estimates of RB

31 and RB
42 at μB ¼ 0 shown in Fig. 6 one

finds that the value of S0 corresponds to a freeze-out
temperature of 153.5(2.0) MeV. This temperature range is
consistent with an earlier determination of the freeze-out
temperature that was based on a comparison of the mean-to-
variance ratio of net electric-charge and net proton-number
ratios obtained by the STAR and PHENIX collaborations
[29,30] with corresponding lattice QCD calculations for net
electric-charge and net baryon-number cumulant ratios [31].
We also note that the ratio of the curvature ofRB

42 andR
B
31 on

the pseudocritical (freeze-out) line tends to be larger than 3,
which also has been noted in our previous analysis of the
skewness and kurtosis ratios [19].
While the experimental data on the skewness and kurtosis

cumulant ratios of net proton-number fluctuations, obtained
at

ffiffiffiffiffiffiffiffi
sNN

p ≥ 27 GeV, are consistent with results on net
baryon-number cumulants calculated within equilibrium
QCD thermodynamics, this is not the case for the prelimi-
nary data on sixth-order cumulants presented by the STAR
Collaboration [20]. The still preliminary data at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 and 54.4GeV, taken from the 0–40%centrality class, are
shown in Fig. 11 together with the NLO lattice QCD
calculations. At both values of

ffiffiffiffiffiffiffiffi
sNN

p
deviations from the

NLO lattice QCD results are large and of similar magnitude.
While it is conceivable that the NLO results at RB

12 ≃ 0.5 (or
μB=T ≃ 0.6) will receive sizable corrections atNNLO, this is
not the case at RB

12 ≃ 0.15 (or μB=T ≃ 0.3). It thus seems
impossible to describe both data points within QCD equi-
librium thermodynamics. We also note that a large positive
χB10 is needed, for such a contribution to render the hyper-
kurtosis ratio positive at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV.

As pointed out in the previous section the NLO correc-
tions for the hyper-skewness ratio RB

51 are a factor of 3
smaller than those for the hyper-kurtosis ratio RB

62.
Truncation errors for the former series are thus expected
to be less severe. Furthermore, this ratio will also be easier
to determine experimentally with smaller statistical errors.
It thus would be an important check on the thermodynamic
consistency of higher-order cumulants to compare exper-
imental data on RP

51 at
ffiffiffiffiffiffiffiffi
sNN

p ≥ 54.4 GeV with the NLO
lattice QCD calculations presented here.

V. SUMMARY AND CONCLUSIONS

We have presented new results on the μB dependence of
up to sixth-order cumulants using our latest results on up to
eighth-order cumulants calculated at vanishing chemical
potentials. Using simulation results obtained on lattices of
size 323 × 8 and 483 × 12 we further presented continuum
limit estimates for up to fourth-order cumulant ratios. For
this analysis we used results from NNLO expansions of
cumulants in the baryon chemical potential for strangeness
neutral systems, nS ¼ 0 at an electric-charge to baryon-
number ratio nQ=nB ¼ 0.4. Systematic effects arising from
the truncation of Taylor series for the skewness and kurtosis
ratios were shown to be small for μB=T ≤ 1, i.e., for the
range of chemical potentials that can be probed in heavy-ion
collisions in a range of beam energies

ffiffiffiffiffiffiffiffi
sNN

p ≥ 27 GeV. A
comparison of the results on ratios of up to fourth-order
cumulants of net baryon-number fluctuations calculated in
equilibrium QCD thermodynamics with corresponding
cumulants of net proton-number fluctuations yields quite
good agreement. This suggests that the latter are consistent
with reflecting the imprint of thermodynamical fluctuations
at a temperature close to but below the pseudocritical
temperatures TpcðμBÞ. The particularly good agreement
between lattice QCD calculations and the high-statistics
experimental data for up to fourth-order cumulants atffiffiffiffiffiffiffiffi
sNN

p ≥ 54.4 GeV suggests that this conclusion could be
further strengthened, if data with similarly high statistics
also becomes available at other beam energies in the
range

ffiffiffiffiffiffiffiffi
sNN

p ≥ 27 GeV.
We also presented first results from a NLO calculation of

fifth- and sixth-order cumulants and showed that the hyper-
skewness and hyper-kurtosis ratios RB

51 and RB
62 are

negative at low values of μB=T and temperatures in the
vicinity of TpcðμBÞ. This is at odds with preliminary data
obtained by the STAR Collaboration at

ffiffiffiffiffiffiffiffi
sNN

p ≥ 54.4 GeV
for the sixth-order cumulant ratio, RP

62, of net proton-
number fluctuations, which was found to be positive and
close to unity. However, on the one hand corrections to the
LO result for these cumulants, calculated in lattice QCD,
are large already at μB ≃ 0.5. This makes a calculation of
NNLO corrections for these cumulants desirable. On the
other hand, the experimental determination of sixth-order
cumulant ratios is known to require high statistics and
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current experimental data may be statistics limited. We
pointed out that a measurement of ratios of fifth- and first-
order cumulants would be very helpful as this ratio can be
better controlled experimentally and suffers less from
truncation effects in NLO lattice QCD calculations.
All data from our calculations, presented in the figures of

this paper, can be found at https://pub.uni-bielefeld.de/
record/2941824 [32].
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APPENDIX: TAYLOR EXPANSION
COEFFICIENTS OF NET BARYON-NUMBER

CUMULANTS

We give here explicit expressions for the first four
expansion coefficients in the Taylor series for net
baryon-number cumulants in strangeness neutral systems
(nS ¼ 0) with a fixed ratio of electric-charge to baryon-
number densities (nQ=nB ¼ 0.4) as defined in Eq. (4).
These constraints determine the strangeness and electric-
charge chemical potentials (μS, μQ) in terms of the baryon
chemical potential μB [24],

μ̂QðT; μBÞ ¼ q1ðTÞμ̂B þ q3ðTÞμ̂3B þ q5ðTÞμ̂5B þ…;

μ̂SðT; μBÞ ¼ s1ðTÞμ̂B þ s3ðTÞμ̂3B þ s5ðTÞμ̂5B þ… ðA1Þ

Explicit expressions for the expansion coefficients qi and si
up to i ¼ 5 were given in Appendix B of Ref. [24]. Results
for i ¼ 7 can easily be generated following the procedure
outlined in that Appendix.
The expansion coefficients of the cumulant series

χBn ðT; μBÞ defined in Eq. (4) are given in terms of the
expansion coefficients of the pressure series,

P
T4

¼
X

i;j;k

1

i!j!k!
χBQS
ijk μ̂iBμ̂

j
Qμ̂

k
S: ðA2Þ

For n even, one obtains for the expansion coefficients χ̃B;kn ,
appearing in Eq. (4)

χ̃B;0n ¼ χBQS
n00 ;

χ̃B;2n ¼ ðχBQS
nþ2;00 þ s21 χ

BQS
n02 þ q21 χ

BQS
n20 þ 2s1 χ

BQS
nþ1;01 þ 2q1 χ

BQS
nþ1;10 þ 2q1s1 χ

BQS
n11 Þ=2;

χ̃B;4n ¼ ð24s1s3 χBQS
n02 þ s41 χ

BQS
n04 þ 24q3s1 χ

BQS
n11 þ 24q1s3 χ

BQS
n11 þ 4q1s31 χ

BQS
n13 þ 24q1q3 χ

BQS
n20 þ 6q21s

2
1 χ

BQS
n22 þ 4q31s1 χ

BQS
n31

þ q41 χ
BQS
n40 þ 24s3 χ

BQS
nþ1;01 þ 4s31 χ

BQS
nþ1;03 þ 24q3 χ

BQS
nþ1;10 þ 12q1s21 χ

BQS
nþ1;12 þ 12q21s1 χ

BQS
nþ1;21 þ 4q31 χ

BQS
nþ1;30

þ 6s21 χ
BQS
nþ2;02 þ 12q1s1 χ

BQS
nþ2;11 þ 6q21 χ

BQS
nþ2;20 þ 4s1 χ

BQS
nþ3;01 þ 4q1 χ

BQS
nþ3;10 þ χBQS

nþ4;00Þ=24;
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χ̃B;6n ¼ ð360s23 χBQS
n02 þ 720s1s5 χ

BQS
n02 þ 120s31s3 χ

BQS
n04 þ s61 χ

BQS
n06 þ 720q5s1 χ

BQS
n11 þ 720q3s3 χ

BQS
n11 þ 720q1s5 χ

BQS
n11

þ 120q3s31 χ
BQS
n13 þ 360q1s21s3 χ

BQS
n13 þ 6q1s51 χ

BQS
n15 þ 360q23 χ

BQS
n20 þ 720q1q5 χ

BQS
n20 þ 360q1q3s21 χ

BQS
n22

þ 360q21s1s3 χ
BQS
n22 þ 15q21s

4
1 χ

BQS
n24 þ 360q21q3s1 χ

BQS
n31 þ 120q31s3 χ

BQS
n31 þ 20q31s

3
1 χ

BQS
n33 þ 120q31q3 χ

BQS
n40

þ 15q41s
2
1 χ

BQS
n42 þ 6q51s1 χ

BQS
n51 þ q61 χ

BQS
n60 þ 720s5 χ

BQS
nþ1;01 þ 360s21s3 χ

BQS
nþ1;03 þ 6s51 χ

BQS
nþ1;05 þ 720q5 χ

BQS
nþ1;10

þ 360q3s21 χ
BQS
nþ1;12 þ 720q1s1s3 χ

BQS
nþ1;12 þ 30q1s41 χ

BQS
nþ1;14 þ 720q1q3s1 χ

BQS
nþ1;21 þ 360q21s3 χ

BQS
nþ1;21

þ 60q21s
3
1 χ

BQS
nþ1;23 þ 360q21q3 χ

BQS
nþ1;30 þ 60q31s

2
1 χ

BQS
nþ1;32 þ 30q41s1 χ

BQS
nþ1;41 þ 6q51 χ

BQS
nþ1;50 þ 360s1s3 χ

BQS
nþ2;02

þ 15s41 χ
BQS
nþ2;04 þ 360q3s1 χ

BQS
nþ2;11 þ 360q1s3 χ

BQS
nþ2;11 þ 60q1s31 χ

BQS
nþ2;13 þ 360q1q3 χ

BQS
nþ2;20 þ 90q21s

2
1 χ

BQS
nþ2;22

þ 60q31s1 χ
BQS
nþ2;31 þ 15q41 χ

BQS
nþ2;40 þ 120s3 χ

BQS
nþ3;01 þ 20s31 χ

BQS
nþ3;03 þ 120q3 χ

BQS
nþ3;10 þ 60q1s21 χ

BQS
nþ3;12

þ 60q21s1 χ
BQS
nþ3;21 þ 20q31 χ

BQS
nþ3;30 þ 15s21 χ

BQS
nþ4;02 þ 30q1s1 χ

BQS
nþ4;11 þ 15q21 χ

BQS
nþ4;20

þ 6s1 χ
BQS
nþ5;01 þ 6q1 χ

BQS
nþ5;10 þ χBQS

nþ6;00Þ=720:

For the expansion coefficients of cumulants χBn ðT; μBÞ, with n odd, one obtains

χ̃B;1n ¼ s1 χ
BQS
n01 þ q1 χ

BQS
n10 þ χBQS

nþ1;00;

χ̃B;3n ¼ ð6s3 χBQS
n01 þ s31 χ

BQS
n03 þ 6q3 χ

BQS
n10 þ 3q1s21 χ

BQS
n12 þ 3q21s1 χ

BQS
n21 þ q31 χ

BQS
n30

þ 3s21 χ
BQS
nþ1;02 þ 6q1s1 χ

BQS
nþ1;11 þ 3q21 χ

BQS
nþ1;20 þ 3s1 χ

BQS
nþ2;01 þ 3q1 χ

BQS
nþ2;10 þ χBQS

nþ3;00Þ=6;
χ̃B;5n ¼ ð120s5 χBQS

n01 þ 60s21s3 χ
BQS
n03 þ s51 χ

BQS
n05 þ 120q5 χ

BQS
n10 þ 60q3s21 χ

BQS
n12 þ 120q1s1s3 χ

BQS
n12 þ 5q1s41 χ

BQS
n14

þ 120q1q3s1 χ
BQS
n21 þ 60q21s3 χ

BQS
n21 þ 10q21s

3
1 χ

BQS
n23 þ 60q21q3 χ

BQS
n30 þ 10q31s

2
1 χ

BQS
n32 þ 5q41s1 χ

BQS
n41 þ q51 χ

BQS
n50

þ 120s1s3 χ
BQS
nþ1;02 þ 5s41 χ

BQS
nþ1;04 þ 120q3s1 χ

BQS
nþ1;11 þ 120q1s3 χ

BQS
nþ1;11 þ 20q1s31 χ

BQS
nþ1;13 þ 120q1q3 χ

BQS
nþ1;20

þ 30q21s
2
1 χ

BQS
nþ1;22 þ 20q31s1 χ

BQS
nþ1;31 þ 5q41 χ

BQS
nþ1;40 þ 60s3 χ

BQS
nþ2;01 þ 10s31 χ

BQS
nþ2;03 þ 60q3 χ

BQS
nþ2;10 þ 30q1s21 χ

BQS
nþ2;12

þ 30q21s1 χ
BQS
nþ2;21 þ 10q31 χ

BQS
nþ2;30 þ 10s21 χ

BQS
nþ3;02 þ 20q1s1 χ

BQS
nþ3;11 þ 10q21 χ

BQS
nþ3;20

þ 5s1 χ
BQS
nþ4;01 þ 5q1 χ

BQS
nþ4;10 þ χBQS

nþ5;00Þ=120;

χ̃B;7n ¼ ð5040s7 χBQS
n01 þ 2520s1s23 χ

BQS
n03 þ 2520s21s5 χ

BQS
n03 þ 210s41s3 χ

BQS
n05 þ s71 χ

BQS
n07 þ 5040q7 χ

BQS
n10 þ 2520q5s21 χ

BQS
n12

þ 5040q3s1s3 χ
BQS
n12 þ 2520q1s23 χ

BQS
n12 þ 5040q1s1s5 χ

BQS
n12 þ 210q3s41 χ

BQS
n14 þ 840q1s31s3 χ

BQS
n14 þ 7q1s61 χ

BQS
n16

þ 2520q23s1 χ
BQS
n21 þ 5040q1q5s1 χ

BQS
n21 þ 5040q1q3s3 χ

BQS
n21 þ 2520q21s5 χ

BQS
n21 þ 840q1q3s31 χ

BQS
n23 þ 1260q21s

2
1s3 χ

BQS
n23

þ 21q21s
5
1 χ

BQS
n25 þ 2520q1q23 χ

BQS
n30 þ 2520q21q5 χ

BQS
n30 þ 1260q21q3s

2
1 χ

BQS
n32 þ 840q31s1s3 χ

BQS
n32 þ 35q31s

4
1 χ

BQS
n34

þ 840q31q3s1 χ
BQS
n41 þ 210q41s3 χ

BQS
n41 þ 35q41s

3
1 χ

BQS
n43 þ 210q41q3 χ

BQS
n50 þ 21q51s

2
1 χ

BQS
n52 þ 7q61s1 χ

BQS
n61 þ q71 χ

BQS
n70

þ 2520s23 χ
BQS
nþ1;02 þ 5040s1s5 χ

BQS
nþ1;02 þ 840s31s3 χ

BQS
nþ1;04 þ 7s61 χ

BQS
nþ1;06 þ 5040q5s1 χ

BQS
nþ1;11 þ 5040q3s3 χ

BQS
nþ1;11

þ 5040q1s5 χ
BQS
nþ1;11 þ 840q3s31 χ

BQS
nþ1;13 þ 2520q1s21s3 χ

BQS
nþ1;13 þ 42q1s51 χ

BQS
nþ1;15 þ 2520q23 χ

BQS
nþ1;20 þ 5040q1q5 χ

BQS
nþ1;20

þ 2520q1q3s21 χ
BQS
nþ1;22 þ 2520q21s1s3 χ

BQS
nþ1;22 þ 105q21s

4
1 χ

BQS
nþ1;24 þ 2520q21q3s1 χ

BQS
nþ1;31 þ 840q31s3 χ

BQS
nþ1;31

þ 140q31s
3
1 χ

BQS
nþ1;33 þ 840q31q3 χ

BQS
nþ1;40 þ 105q41s

2
1 χ

BQS
nþ1;42 þ 42q51s1 χ

BQS
nþ1;51 þ 7q61 χ

BQS
nþ1;60 þ 2520s5 χ

BQS
nþ2;01

þ 1260s21s3 χ
BQS
nþ2;03 þ 21s51 χ

BQS
nþ2;05 þ 2520q5 χ

BQS
nþ2;10 þ 1260q3s21 χ

BQS
nþ2;12 þ 2520q1s1s3 χ

BQS
nþ2;12 þ 105q1s41 χ

BQS
nþ2;14

þ 2520q1q3s1 χ
BQS
nþ2;21 þ 1260q21s3 χ

BQS
nþ2;21 þ 210q21s

3
1 χ

BQS
nþ2;23 þ 1260q21q3 χ

BQS
nþ2;30 þ 210q31s

2
1 χ

BQS
nþ2;32 þ 105q41s1 χ

BQS
nþ2;41
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þ 21q51 χ
BQS
nþ2;50 þ 840s1s3 χ

BQS
nþ3;02 þ 35s41 χ

BQS
nþ3;04 þ 840q3s1 χ

BQS
nþ3;11 þ 840q1s3 χ

BQS
nþ3;11 þ 140q1s31 χ

BQS
nþ3;13

þ 840q1q3 χ
BQS
nþ3;20 þ 210q21s

2
1 χ

BQS
nþ3;22 þ 140q31s1 χ

BQS
nþ3;31 þ 35q41 χ

BQS
nþ3;40 þ 210s3 χ

BQS
nþ4;01 þ 35s31 χ

BQS
nþ4;03

þ 210q3 χ
BQS
nþ4;10 þ 105q1s21 χ

BQS
nþ4;12 þ 105q21s1 χ

BQS
nþ4;21 þ 35q31 χ

BQS
nþ4;30 þ 21s21 χ

BQS
nþ5;02 þ 42q1s1 χ

BQS
nþ5;11

þ 21q21 χ
BQS
nþ5;20 þ 7s1 χ

BQS
nþ6;01 þ 7q1 χ

BQS
nþ6;10 þ χBQS

nþ7;00Þ=5040:
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