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Abstract In this work, a spherically symmetric and static
relativistic anisotropic fluid sphere solution of the Einstein
field equations is provided. To build this particular model,
we have imposed metric potential e2λ(r) and an equation of
state. Specifically, the so-called modified generalized Chap-
lygin equation of state with ω = 1 and depending on two
parameters, namely, A and B. These ingredients close the
problem, at least mathematically. However, to check the fea-
sibility of the model, a complete physical analysis has been
performed. Thus, we analyze the obtained geometry and the
main physical observables, such as the density ρ, the radial
pr , and tangential pt pressures as well as the anisotropy fac-
tor �. Besides, the stability of the system has been checked
by means of the velocities of the pressure waves and the rel-
ativistic adiabatic index. It is found that the configuration is
stable in considering the adiabatic index criteria and is under
hydrostatic balance. Finally, to mimic a realistic compact
object, we have imposed the radius to be R = 9.5 [km]. With
this information and taking different values of the parame-
ter A the total mass of the object has been determined. The
resulting numerical values for the principal variables of the
model established that the structure could represent a quark
(strange) star mixed with dark energy.

1 Introduction

The highly non-linear nature of Einstein’s field equations
makes its solution a great challenge. One way to reduce such
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complexity in the context of stellar interiors, for example, is
to set the space-time metric to be static and spherically sym-
metric. The latter decode the problem of second-order partial
differential equations into ordinary second-order differential
equations. Although the equations remain strongly coupled,
the problem is greatly simplified. However, depending on
the global ingredients of which the matter distribution of the
fluid sphere is composed, that is, isotropic, anisotropic con-
tent with or without the inclusion of an electric charge (which
will make the situation more complicated) solve the resulting
equations is not simple. Among of all possibilities to solve
the equations in an analytically way, the simplest is to assume
that the material content is isotropic pr = pt (without the
inclusion of electric charge) [1]. Since in this case the prob-
lem contains only four variables to be determined, namely the
energy-density ρ, the isotropic pressure p, and both metric
potentials e2ν and e2λ. In this case, it is inevitable (although
partially) to assume the form of one of the metric potentials
(usually e2λ), from which, together with the isotropy condi-
tion, the remaining variables are determined by closing the
problem. On the other hand, the description of a more realis-
tic situation requires the inclusion of local anisotropy [2,3].
However, this means that the number of variables to be deter-
mined is five (in the case of anisotropic distributions with an
electric charge, the number rises to six), then it is necessary
to prescribe more information. In this sense, an interesting
prescription is the imposition of an equation of state (EoS). In
this regard, from a more phenomenological perspective, this
relationship that links the main thermodynamic functions of
the fluid ı.e, the energy-density and pressure (in the radial
and tangential directions), and that describes the microphys-
ical processes of the system, is estimated to be a linear rela-
tionship between those physical observables [4]. The usage
of EoS to recreate the behavior of the matter content inside

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7956-0&domain=pdf
mailto:francisco.tello@ua.cl
mailto:mmalaver@umc.edu.ve
mailto:angel.rincon@pucv.cl
mailto:ygomez@ucn.cl


  371 Page 2 of 13 Eur. Phys. J. C           (2020) 80:371 

the stellar interior has been used as a building block to obtain
admissible models that, in principle, could represent compact
structures such as neutron or quark stars. In this respect, some
works available in the literature have addressed the study of
compact structures within the framework of general relativ-
ity by using linear EoS [5–7], non-linear EoS such as Van der
Waal [8–11] or the color superconductivity EoS [12]. More-
over, the well known MIT EoS [13,14] which corresponds to
a special case of the color superconductivity EoS [15–17] has
been used in the context of f (R, T ) [18] to investigate the
possibilities of obtaining ultra-high dense compact objects
describing quark stars.

On the other hand, general relativity not only addresses
the study of stellar interiors. Another critical issue to study
within the scope of Einstein gravity theory is, for example,
the cosmological scenario. This vast area contemplates the
problem of the existence of dark components in the Universe
ı.e, dark matter, and dark energy. In this regard, the so-called
dark fluids [19], such as Phantom [20] and Quintessence [21]
fields, to name a few, were introduced to explain the accel-
erated expansion of the Universe. As an alternative to the
Phantom and Quintessence fields is the so-called Chaply-
gin gas [22,23]. The following EoS drives this peculiar and
intriguing fluid

p = − B

ρ
, (1)

where p is the pressure, ρ the energy-density and B a positive
constant with units of length−4 (using geometrized relativis-
tic units where 8πG = c = 1). To fit within the observational
data the above equation (1) was generalized [24] as follows

p = − B

ρω
, (2)

where the parameter ω is restricted to belong to (0, 1]. Of
course, the case ω = 1 leads to Eq. (1). This generalized
version of the Chaplygin EoS was studied under the pres-
ence of viscosity [25,26]. Besides, an extended version of
the generalized Chaplygin EoS was provided in [27]. Specif-
ically, this extension concerns in the sum of two parts: (i)
the generalized EoS plus (ii) a linear term in ρ. Explicitly it
reads

p = Aρ − B

ρω
, (3)

being A a positive parameter constrained to 0 < A < 1/3.
This extension can be re-extended to include barotropic fluid
EoS [28,29]. Chaplygin EoS has been extensively used in
different context. For example in the construction of charged
anisotropic fluid spheres [30], compact structures in the arena
of f (T ) gravity theory [31,32], wormhole geometries [33]
and 5-dimensional cosmology [34] to name a few. As can
be seen, Chaplygin gas and its extensions or generalizations

have proven to be versatile tools to face many open prob-
lems at the theoretical level. Following the same direction
the spirit of this article concerns in obtaining new analytical
relativistic anisotropic fluid spheres where the main thermo-
dynamic variables are linked via the EoS (3). Furthermore, to
close the problem we have imposed the e2λ(r) metric poten-
tial previously used in [35]. To produce a more realistic situ-
ation, we have imposed the radius of the compact object to be
R = 9.5 [km]. This value is within the range of the reported
observational data for some compact structures [36]. The
feasibility of our model is tested by means of the established
criteria and statements for anisotropic matter distributions in
the arena of general relativity [2,37–59]. The resulting model
can be compared with the abundant works available in the
literature and contrasted with astrophysical phenomenology
[60–76] (and references contained therein).

The article is organized as follows: In Sect. 2 the general
field equations for anisotropic matter distributions are pre-
sented. Section 3 presents the model, exhibiting the essen-
tial ingredients, such as the geometry and thermodynamic
description. In Sect. 4, a complete mathematical and physi-
cal analysis is performed, studying the most relevant aspect of
the solution. Section 5 talks about the Israel-Darmois junc-
tion mechanism with the vacuum space-time described by
the well known Schwarzschild solution. The matching condi-
tion procedure allows determining the full set of the constant
parameter that characterize the model as well as the total mass
contained by the fluid sphere. In Sect. 6 is realized the bal-
ance and stability analysis. To achieve it we have employed
the generalized or modified Tolman-Oppenheimer-Volkoff
equation and the relativistic adiabatic index and Abreu’s cri-
terion. Section 7 refers to the generating function of the
present model. Finally, Sect. 8 concludes the work.

Throughout the study we shall employ the mostly positive
signature {−,+,+,+} and units where 8πG = c = 1 then
κ ≡ 8πG/c4 = 1. Besides, to solve the mathematical part
of this article we have employed Maple 17 programming.

2 General field equations

To describe a spherically symmetric and static compact struc-
ture, one has the most general line element given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sen2θdφ2

)
(4)

in canonical coordinates {xα} = {x0, x1, x2, x3} = {t, r,
θ, φ}. The matter distribution of this stellar interior is char-
acterized by the following energy-momentum tensor

Tμν = diag (−ρ, pr , pt , pt ) . (5)

As can be seen, Eq. (5) represents an anisotropic fluid dis-
tribution ı.e, pr �= pt . Therefore the local anisotropies are
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measure by the anisotropy factor defined as � ≡ pt− pr . The
main physical variables that characterize this imperfect fluid
are the density ρ, the radial pressure pr and the tangential
pressure pt . The radial and tangential pressures are measured
relative to the comoving fluid 4-velocity uα = e−ν(r)δα

0. The
field equations describing the gravitational interaction are
given by Einstein field equations

Gμν ≡ Rμν − 1

2
Rgμν = κTμν. (6)

Next, putting together Eqs. (4), (5) and (6) one arrives at the
following set of equations

1

r2

[
r
(

1 − e−2λ
)]′ = ρ, (7)

− 1

r2

(
1 − e−2λ

)
+ 2ν′

r
e−2λ = pr , (8)

e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
= pt , (9)

where primes denote differentiation w.r.t. the radial coordi-
nate r . As it is well known, solve the system of Eqs. (7)–(9) is
not a simple task. Nevertheless, one can re-express the above
set of equations to minimize the mathematical complications
by introducing the so-called Durgapal-Bannerji transforma-
tion [77]

x = r2, Z(x) = e−2λ(r), D2y2(x) = e2ν(r), (10)

being D an arbitrary constant. Thus, the system (7)–(9)
becomes

1 − Z

x
− 2Ż = ρ, (11)

4Z
ẏ

y
+ Z − 1

x
= pr , (12)

4x Z
ÿ

y
+ (

4Z + 2x Ż
) ẏ

y
+ Ż = pt , (13)

where dots mean differentiation w.r.t. the x variable. With this
redefinition in hand, the mass contained within the sphere is
given by

m(x) = 1

4

∫ x

0

√
x̃ρ(x̃)dx̃ . (14)

In the search for analytical solutions of the Einstein field
equations, it is necessary to prescribe certain information.
Within the possibilities is to specify the complete geometry
that describes the stellar interior, that is, to impose the metric
potentials e2λ and e2ν or to impose one metric potential and
link the density ρ with the pressure (usually with the radial
pressure). On this occasion, we will specify the metric poten-
tial e2λ and impose an EoS, specifically Eq. (3) with ω = 1.
In general, one has

pr = pr (ρ). (15)

So, combining Eqs. (11), (12) and (15) one obtains [5,11]

y = dx− 1
4 Exp

[∫
1 + xpr (ρ)

4x Z
dx

]
. (16)

Then, the line element representing the stellar interior can be
written in general form as follow

ds2 = − d2r−1Exp

[∫ (
1 + xpr (ρ)

4x Z

)
dr

]
dt2 + Z−1dr2

+ r2
(
dθ2 + sen2θdφ2

)
.

(17)

Therefore, with this general description of the stellar interior
in hand, by fixing one metric potential and providing an EoS
(pr = pr (ρ)), the problem is closed from the mathematical
point of view.

3 The model: modified Chaplygin EoS

As stated in the previous Sect. 2, to close the problem at least
from the mathematical point of view, one needs to supple-
ment the problem with extra information. In this opportunity
following [35] we impose the following e2λ metric potential

e2λ(r) =
(

1 + Cr2

1 − Cr2

)n

, (18)

where n is a positive integer number andC a constant param-
eter with units of length−2. The choice (18) is well motivated
because is free from mathematical singularities at r = 0 (the
center of the object), specifically e2λ(r)|r=0 = 1. Moreover
as we will see (18) yields to a well behaved density function
ρ(r) and in consequence a well established mass function
m(r). So, re-written Eq. (18) in the language of Durgapal-
Bannerji transformation one obtains

Z(x) =
(

1 − Cx

1 + Cx

)n

. (19)

From now on, we shall assume throughout the work n = 1.
Next, inserting (19) into Eq. (11) one arrives to

ρ(x) = 2C (Cx + 3)

(1 + Cx)2 . (20)

Now from Eqs. (14) and (20) one gets the following mass
function

m(x) = Cx3/2

1 + Cx
. (21)

To complete the geometric and thermodynamic description
of the model we will use the generalized Chaplygin EoS
given by Eq. (3) along with ω = 1, that is

pr = Aρ − B

ρ
. (22)

123



  371 Page 4 of 13 Eur. Phys. J. C           (2020) 80:371 

So, putting together Eqs. (3), (16), (19) and (20) one obtains

y(x) =E (Cx + 3)
B

4C2 (Cx + 1)
A
2 (Cx − 1)

−A− 1
2 + B

4C2

× Exp

[
Bx (Cx + 2)

16C

]
.

(23)

Next, the expressions for the radial pr (x) and transverse
pt (x) pressures are given by

pr (x) = 1

2C (Cx + 3) (Cx + 1)2

[
− BC4x4 + 4AC4x2

− 4BC3x3 + 24AC3x − 6BC2x2

+ 36AC2 − 4BCx − B

]
,

(24)

and

pt (x) = −1

16C2 (Cx + 3)2 (Cx + 1)3

[
B2C7x8 + 9B2C6x7

+ 8ABC7x6 + 16BC7x6 + 33B2C5x6 + 56ABC6x5

+ 16A2C7x4 + 128BC6x5 + 57B2C4x5 + 128ABC5x4

+ 80A2C6x3 + 344BC5x4 + 64AC6x2 + 31B2C3x4

+ 64ABC4x3 + 32C6x3 + 48A2C5x2 + 384BC4x3

+ 352AC5x2 − 41B2C2x3 − 136ABC3x2 + 224C5x2

− 144A2C2x + 80BC3x2 + 384AC4x − 65B2Cx2

− 120ABC2x + 480C4x − 192BC2x − 288AC3

− 25B2x + 288C3 − 120BC

]
.

(25)

At this point the full geometric and thermodynamic descrip-
tion of the model is given by Eqs. (19), (20), (23), (24) and
(25). In the next section, we will provided a complete phys-
ical and mathematical analysis of the present model.

4 Geometric and thermodynamic analysis

At this level, we should notice that the transformation made
should be invested. The latter means that we now need to map
our solution from x to the original radial coordinate r . Just
after such point is when an appropriated physical and mathe-
matical analysis on the geometry can be achieved. Thus, the
the metric potentials describing the geometry of the stellar
interior are

e2λ(r) = 1 + Cr2

1 − Cr2 , (26)

e2ν(r) = F2
(
Cr2 + 3

) B
2C2

×
(
Cr2 + 1

)A (
Cr2 − 1

)−2A−1+ B
2C2

×Exp

[
Br2

(
Cr2 + 2

)

8C

]
, (27)

where F2 ≡ D2E2. As it is observed, the radial compo-
nent of the metric tensor (26) is completely regular for all r
belonging to [0, R] where R defines the size (the radius) of
the structure. Specifically, at r = 0, one has e2λ(r)|r=0 = 1.
Moreover, the metric potential (26) is an increasing func-
tion with increasing r at every point belonging to the inter-
val [0, R]. Regarding the temporal component of the metric
potential given by (27) to ensure a well behaved stellar inte-
rior without pathologies, we have restricted the exponent of
the term

(
Cr2 − 1

)
in (27) to

− 2A − 1 + B

2C2 = k, (28)

being k an integer number. In this concern, we have consid-
ered the simplest choice taken k = 0. The reasons for the
constraint (28) are clear. In fact, at r = 0 from Eq. (27) one
obtains

e2ν(r)|r=0 = F2 (3)
B

2C2 (−1)
−2A−1+ B

2C2 . (29)

So, if (28) is not a integer number, then we could get a com-
plex number at the center of the object. Therefore, in order
to avoid this problem it is necessary to impose (28). Besides,
this guarantees e2ν(r)|r=0 > 0 and

(
e2ν(r)

)′ |r=0 = 0. With
the previous assumption Eq. (27) becomes

e2ν(r) = F2
(
Cr2 + 3

) B
2C2

(
Cr2 + 1

)A

Exp

[
Br2

(
Cr2 + 2

)

8C

]
. (30)

Finally, the stellar interior geometry is represented by Eqs.
(26) and (30). The trend of both metric potentials is depicted
in Fig. 1. As it is observed, both are monotone increasing
functions from the center of the object r = 0 towards the
boundary r = R.

As the field equations dictate, the curvature encoded and
described by the geometry of the space-time is related to
the matter content. So, an appropriated geometry leads to
a well behaved thermodynamic variables driven the matter
field inside the compact structure. In this regard, the election
of (26) yields to a well defined and positive density

ρ(r) = 2C
(
Cr2 + 3

)
(
Cr2 + 1

)2 (31)

at every point within the compact object. The left panel of
Fig. 2 displays the behavior of the density throughout the
stellar interior. As can be seen, this primary quantity gets its
maximum value at the center of the object and its minimum
at the surface. What is more, as the mass increases, the object
becomes denser at the core (as shows the red curve). On the
other hand, the central density ρ(0) = ρc provides

ρc = 6C. (32)
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Fig. 1 Variation of metric potentials with the dimensionless radial
coordinate r/R with R = 9.5 [km] and for different values of the
parameters A, B, C and F mentioned in Table 1

Then, to assure a positive defined density everywhere, the
parameterC must be positive. This fact is confirmed by Table
1, where for different choices of the parameter A the constant
C is positive. Moreover, in Table 2 are depicted the central

ρc and surface ρs (ρs = ρ(R)) density values for all cases.
As can be seen, the central and surface density are above the
nuclear density saturation (2.8 × 1014 [g/cm3]) in the cases
A = 0.25 and A = 0.2. As the A parameter decreases in mag-
nitude both, the central and surface density decrease. More-
over, for the case A = 0.15, the surface density is below the
nuclear density saturation. Also, as mentioned before, both
the central and the surface density increase in magnitude as
the total mass increases. Regarding the pressure waves in the
main direction of the structure ı.e, the radial and transverse
ones, the middle middle panel of Fig. 2 exhibits the trend of
both quantities. As it is required pr and pt are decreasing
functions at all points inside the stellar interior. Furthermore,
the tangential pressure pt dominates the radial pressure pr
everywhere. The fact pt > pr implies that � ≡ pt − pr > 0.
The quantity � is the so-called anisotropy factor, it measures
the difference between the radial and tangential pressures
inside the stellar interior and realizes of local anisotropies
introduced by the imperfect matter fluid distribution under
consideration (5). The role played by � is very important in
studying compact structures within the arena of general rel-
ativity. The anisotropy factor � has a direct incidence in the

Fig. 2 Left Panel: The density ρ profile against the dimensionless
radial coordinate r/R. Middle Panel: The radial pr and tangential pt
pressures versus the dimensionless radial coordinate r/R. Right Panel:
The anisotropy factor � versus r/R. All these plots have been built by

using R = 9.5 [km] and different values of the parameters A, B, C and
F mentioned in Table 1. It should be noted that, as we are working in
relativistic geometrized units, the vertical axis has units of [km−2] for
all panels

Table 1 The numerical values
of constant parameters B, C and
F for a fixed radius
R = 9.5 [km] and for different
values of the parameter A

A(dimensionless) B × 10−5 [km−4] C × 10−3 [km−2] F (dimensionless)

0.25 5.932834033 4.447034230 0.2088237772

0.20 3.862315863 3.714025475 0.2572462264

0.15 1.985200479 2.763220306 0.3234834214

Table 2 The numerical values of some thermodynamic observables for a fixed radius R = 9.5 [km] and for different values of the parameter A

A(dimensionless) ρ(0) × 1015 [g/cm3] ρ(R) × 1014 [g/cm3] pr (0) × 1035 [dyne/cm2] 
 
crit

0.25 1.432513188 8.270618749 2.148769784 2.333333334 1.592456934

0.20 1.196390717 7.460806943 1.316029791 2.550505048 1.560467811

0.15 0.891099759 0.617637224 0.623076983 3.079365076 1.513926893
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production of more compact objects [50] and in the stability
and balance mechanism (as we will see later). Regarding the
latest, the presence of � may or may not be favorable for
the system. In this respect, a positive � implies the presence
of an additional force repulsive in nature into the configura-
tion. Otherwise, if � < 0, which means by definition that the
radial pressure dominates the tangential one, the new force is
attractive in nature. This fact is not favorable for the system
due to the object could, in principle, collapse onto a point
singularity. The trend of the anisotropy factor � is illustrated
in the right panel of Fig. 2. As was discussed � > 0 every-
where, reaching its maximum values at the surface of the star
while at the center is zero. Indeed, due to the spherical sym-
metry pr (0) = pt (0) then �(0) = 0. From the expressions
(24) and (25) at r = 0 one obtains

pr (0) = 36AC2 − B

6C
, (33)

and

pt (0) = 12AC2 − 12C2 + 5B

6C
. (34)

So, to ensure �(0) = 0 we equate Eqs. (33) and (34) arriving
to

− 2A − 1 + B

2C2 = 0. (35)

The expression (35) coincides with (28) when k = 0.
This confirms that the only possibility to get the condition
�(0) = 0 is taking k = 0. In Table 2 are placed the values
of the central pressure. As can be seen, the central pressure
decreases as the parameter A decreases in magnitude.

With the thermodynamic description in hand, one can infer
in broad strokes the behavior of the matter content in the
stellar interior. This is done by analyzing the conditions that
the energy-momentum tensor must meet [55]

ρ + pr + 2pt ≥ 0 and ρ − pr − 2pt ≥ 0. (36)

The inequalities given in (36) say that to have a well-defined
energy-momentum tensor describing the matter field, they
must be satisfied simultaneously. This fact entails that the
matter distribution inside the start corresponds to a stan-
dard matter content. The left panel in Fig. 3 shows that both
inequalities are satisfied at every point inside the star. The
solid curves correspond to the left inequality in (36), and
dashed lines represent the right inequality in (36). Moreover,
the behavior of the matter content also is subject to causal-
ity condition. This condition says that the sound speeds of
the pressure waves in the principal directions of the fluid
sphere do not exceed the speed of light (c = 1 in relativistic
geometrized units). The sound velocities in the radial and
transverse directions of the structure are defined as follows

v2
r (r) = dpr (r)

dρ(r)
and v2

t (r) = dpt (r)

dρ(r)
. (37)

So, to satisfy causality condition both expressions must be
restricted to: 0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤ 1. As the right panel

of Fig. 3 corroborates v2
r and v2

t are less than the speed of light
everywhere inside the structure. It is worth mentioning that
the velocities associated with fluid pressure waves are not
necessarily decreasing when there is anisotropy in the stellar
medium, in distinction with what happens with its isotropic
counterpart. An important fact to be noted here, is that as the
parameter A increases in magnitude, at some point within the
stellar interior (at r/R = 0.98 approximately) the transverse
sound speed v2

t overcomes the radial sound speed v2
r of the

pressure waves (see the red curves in the right panel of Fig.
3). This issue as we will see later has a direct incidence on
the stability of the structure.

5 Israel-Darmois junction conditions

In the study of stellar interiors, a crucial point is the junc-
tion condition process. The matching condition mechanism
allows determining the full set of constant parameters that
describe the model and the macro observables such as the
radius R and the total mass M of the fluid sphere. To carry
out this process, one employs the well known Israel-Darmois
junction conditions [78,79]. As we are dealing with an
uncharged and static configuration, the model is surrounded
by an empty space-time described by the Schwarzschild solu-
tion [80] given by

ds2 = −
(

1 − 2MSch

r

)
dt2 +

(
1 − 2MSch

r

)−1

dr2 + r2d�2, (38)

being MSch the Schwarzschild mass. So, at the boundary of
the object � ≡ r = R the Israel-Darmois matching con-
ditions dictate: (i) the inner M− and outer M+ manifolds
given by (26) and (30) and (38) respectively, induce on � an
intrinsic geometry represented by the metric tensor gμν . The
continuity of the metric tensor components across � consti-
tutes the first fundamental form and it means that [ds2]� = 0.
(ii) Also is induced byM− andM+ on � an extrinsic geom-
etry described by the extrinsic curvature tensor Ki j (where i
and j run over {x1, x2, x3} = {r, θ, φ}). The continuity of the
component r − r of the extrinsic curvature tensor across the
boundary of the object implies the second fundamental form
which reads pr (r)|� = 0, and the continuity of the θ −θ and
φ−φ components leads to determine the total mass inside the
sphere m(R) = M . At this stage, some comments are per-
tinent. First, to obtain the total mass contained by the fluid
sphere, there are at least three equivalent ways: (i) integrat-
ing the density ρ in the interval [0, R], (ii) by imposing the
continuity of the radial components of the metric tensor gμν

across � and (iii) from the continuity of the angular compo-
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Fig. 3 Left Panel: The energy-momentum tensor against the dimen-
sionless radial coordinate r/R. Solid lines correspond to ρ + pr + 2pt
and dashed lines to ρ− pr −2pt .Right Panel: The pressure waves veloc-
ities versus r/R. All these plots have been built by using R = 9.5 [km]

and different values of the parameters A, B,C and F mentioned in Table
1. It should be noted that, as we are working in relativistic geometrized
units, the vertical axis has units of [km−2] for the left panel, while for
the right one is dimensionless

nents of the extrinsic curvature tensor. Second, a vanishing
radial pressure at the surface of the configuration determines
the size of the object ı.e, its radius R, and also avoids an
indefinite expansion of the system confined the matter field
between r = 0 and r = R. So, explicitly the first fundamen-
tal form reads

1 − CR2

1 + CR2 = 1 − 2M

R
, (39)

leading to

M = CR3

1 + CR2 , (40)

and

F2
(
CR2 + 3

) B
2C2

(
CR2 + 1

)A
Exp

[
BR2

(
CR2 + 2

)

16C

]

= 1 − 2M

R
. (41)

In the previous expression, M corresponds to the total mass
contained by the sphere, which at � coincides with the
Schwarzschild mass MSch. On the other hand, the second
fundamental form entails

pr (R) = 0 ⇒ B = 4AC2
(
3 + CR2

)2

(
1 + CR2

)4 . (42)

The condition (35) and the expressions (40)-(42) are the nec-
essary conditions to determine all the parameters that char-
acterized the model, namely B, C , F and M along with the
imposition of the radius R and the parameter A constrained
to 0 < A < 1/3. All the numerical values obtained for the
present study are reported in Table 1 and the mass M in Table
3 for a fixed radius and different values of the constant A.

From Table 3 it is observed that the total mass M increases
with increasing A (and vice versa). Moreover, regarding the
central parameter exhibited in Table 2 and the mass in Table
3 we can conclude prematurely that the model represents a
quark star whose principal observable components such as
density and radial pressure describe a micro-physics domi-
nated by dark energy.

Nevertheless, to assure that the salient toy model could
represent a real compact structure, it is important to highlight
the role played by the arbitrary constant parameters that char-
acterize the solution, namely {A, B,C, F}. In this regard, the
most important parameters are {A, B,C}, this can be eluci-
dated from Eqs. (35), (40) and (42). The fact to restrict A
between 0 and 1/3 leads to the central density of the object
to an order of magnitude greater than the nuclear density sat-
uration, specifically 1015 [g/cm3] (or at least of the same
order 1014 [g/cm3]). Then, by combining Eqs. (35) and (42)
the parameters B and C can be determined after A and R are
fixed. The output assures a vanishing radial pressure at the
boundary �, this fact is relevant since if pr (R) �= 0 the object
will expand indefinitely. Moreover, once C is obtained, this
parameter fix the total mass M of the fluid sphere as can be
seen from Eq. (40). So, the reported values in Tables 2 and
3 are in complete agreement with previous results consider-
ing quark stars supported by realistic equations of state [81].
Finally, from Eq. (41) the parameter F is determined, en this
case F sets the value of the temporal metric potential at the
center of the compact configuration.
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Table 3 The mass and compactness factor for a fixed radius R =
9.5 [km] and for different values of the parameter A

A(dimensionless) M [km] M	 u ≡ M
R

0.25 2.720797812 1.846862484 0.28639976

0.20 2.384912024 1.618865072 0.25104337

0.15 1.896232379 1.287152036 0.19960341

6 Equilibrium and stability analysis

Given that the system is under the effects of the gravitational,
hydrostatic, and anisotropic forces, it is necessary to check
if the structure is in hydrostatic balance. To verify this, all
forces present in the configuration must meet

Fh + Fa + Fg = 0, (43)

where Fh , Fa and Fg stand for the hydrostatic, anisotropic
and gravitational forces, respectively. The explicit form of
these forces are

Fg = −dν

dr
(ρ + pr ) ,

Fa = 2

r
(pt − pr ) and

Fh = −dpr
dr

.

(44)

The Eq. (43) can be seen as a generalized Tolman-
Oppenheimer-Volkoff equation driven the hydrostatic bal-
ance of compact anisotropic fluid spheres. As was pointed
out earlier, a positive anisotropy factor � introduces a force
repulsive in nature. This repulsive force helps to counteract
the gravitational gradient produced by the gravitational force
Fg . The presence of this anisotropic force repulsive in nature
avoids the gravitational collapse of the structure onto a point
singularity. In Fig. 4 are depicted the balance of the system for
all cases. As it is appreciated in all cases, the system is in equi-
librium under the mentioned forces. However, it remains to
be determined whether the equilibrium to which the system is
subjected is stable or not. In this concern, talk about stability
is rather heuristic; one has an idea of how the system behaves
under the presence of local anisotropies, but in the realm, one
can not measure the stability of the system in a closed-form.
At the theoretical level, there are many ways to check the sta-
bility of the configuration under the presence of anisotropies
into the matter distribution. The most common are via the
relativistic adiabatic index 
 and by means of the sublim-
inal speed of the pressure waves [56]. In comparison with
the Newtonian scenario for an isotropic fluid distribution the
stability condition is 
 > 4/3 [38,46]. Nevertheless, in the
relativistic case with the inclusion of local anisotropies, the
requirements are completely different. So, in the anisotropic
relativistic case, the adiabatic index 
 should satisfy [47,48]


 >
4

3
+

[
1

3
κ

ρ0 pr0

|p′
r0|

r + 4

3

(pt0 − pr0)

|p′
r0|r

]

max

(45)

where ρ0, pr0 and pt0 are the initial density, radial and
tangential pressure when the fluid is in static equilibrium.
The terms inside the brackets in (45) represent the relativis-
tic corrections and the contributions coming from the local
anisotropies. However, as was pointed out by Chandrasekhar
[82,83] relativistic correction to the adiabatic index 
 could,
in principle, introduce some instabilities within the stellar
interior. To overcome this issue, recently, Moustakidis [84]
proposed a more strict condition on the adiabatic index 
. In
[84] was found a critical value for the adiabatic index 
crit.
To have a stable structure, this critical value depends on the
amplitude of the Lagrangian displacement from equilibrium
and the compactness factor u ≡ M/R. The amplitude of the
Lagrangian displacement is characterized by the parameter
ξ , so taking particular a form of this parameter the critical
relativistic adiabatic index is given by


crit = 4

3
+ 19

21
u, (46)

where the stability condition becomes 
 ≥ 
crit, where 
 is
computed from [44]


 = ρ + pr
pr

dpr
dρ

. (47)

From the left panel of Fig. 5 it is observed that the system
is stable from the relativistic adiabatic index point of view.
What is more in Table 2 are shown the numerical values for
the relativistic adiabatic index 
 and its critical values 
crit

at r = 0. As can be seen 
 > 
crit for all cases. Furthermore,
the system becomes more stable for increasing A, because of
its adiabatic index 
 increases at r = 0. We have also checked
the stability of the compact object by using the speed criteria.
Based on Herrera’s cracking concept [49] Abreu and his col-
laborators [56] determined a form to analyze the presence of
stable/unstable regions within the stellar interior when local
anisotropies are there. In short Abreu and coworkers mech-
anism is built on the subliminal speed of pressure waves as
follows

δ�

δρ
∼ δ (pt − pr )

δρ
∼ δpt

δρ
− δpr

δρ
∼ v2

t − v2
r . (48)

Next, from causality condition one has 0 ≤ v2
r ≤ 1 and

0 ≤ v2
t ≤ 1 which implies 0 ≤ |v2

t − v2
r | ≤ 1. Explicitly it

reads

− 1 ≤ v2
t − v2

r ≤ 1

=
{−1 ≤ v2

t − v2
r ≤ 0 Potentially stable

0 < v2
t − v2

r ≤ 1 Potentially unstable

}
.

(49)

Thus, the main idea behind Abreu’s criterion is that if the sub-
liminal tangential speed v2

t dominates the subliminal radial
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Fig. 4 Figures show forces (hydrostatic, Fh , anisotropic, Fa , and grav-
itational, Fg) for three different values of the mass M versus the nor-
malized radial coordinate r/R. Left Panel: Forces for M = 1.8468 M	
against r/R. Middle Panel: Forces for M = 1.6188 M	 against r/R.
Right Panel: Forces for M = 1.2871 M	 against r/R. All these plots

have been built by using R = 9.5 [km] and different values of the
parameters A, B, C and F mentioned in Table 1. It should be noted
that, as we are working in relativistic geometrized units, the vertical
axis has units of [km−3] for all panels

Fig. 5 Figures show the relativistic adiabatic index, 
, the difference
of square velocities, v2

t −v2
r , and the stability factor, |v2

t −v2
r |, for three

different values of the mass M versus the normalized radial coordinate
r/R. Left Panel: Relativistic adiabatic index against r/R. Middle Panel:
Difference of square velocities against r/R.Right Panel: Stability factor

against r/R. All these plots have been built by using R = 9.5 [km] and
different values of the parameters A, B, C and F mentioned in Table
1. It should be noted that, as we are working in relativistic geometrized
units, the vertical axis is dimensionless for all panels

speed v2
r ; then this could potentially result in cracking insta-

bilities. This can be easily verified by performing a graphical
analysis. From the middle and right panels of Fig. 5 it is clear
that the compact object is stable for the cases corresponding
to A = 0.15 and A = 0.2 (blue and green curves), but
contains unstable regions in the case A = 0.25 which cor-
responds to the highest mass value. These unstable regions
are shown in the middle panel, where the quantity v2

t − v2
r

changes in sign (red curve). The right panel also confirms
this in Fig. 3 where the tangential subliminal speed v2

t over-
comes the radial one v2

r approximately at r/R = 0.98. As
with the adiabatic index, the object exhibits greater stability
as the mass decreases. Regarding the stability factor |v2

t −v2
r |

at r/R = 0.98 the red curve change its direction. Again this
verifies the present of cracking within the stellar interior.
Despite all, one can conclude that the system is stable under
local anisotropies disturbs.

7 The generating function

It has been demonstrated that all the spherically symmetric
and static isotropic solutions of the Einstein’s field equa-
tions can be generated by choosing a single monotone func-
tion subject to the boundary conditions [85]. In more widely
context Herrera et. al [86] extended the previous work to
include a more realistic and complete component ı.e, local
anisotropies into the matter distribution. They concluded that
all the spherically symmetric static anisotropic solutions of
the Einstein’s field equations can be generated from two gen-
erating functions ζ(r) and �(r). The generator ζ(r) linked
with the metric potential eν and other with the negative of
pressure anisotropy �(r). These generators are defined via

e2ν(r) = Exp

[∫ (
2ζ(r) − 2

r

)
dr

]
(50)

�(r) = pr (r) − pt (r) = −�(r). (51)
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So, from (50) solving for the generator ζ(r) one gets

ζ(r) = ν′(r) + 1

r
, (52)

where by using (30) the generator ζ(r) becomes

ζ(r) = 1

r
+ r

4C
(
Cr2 + 1

) (
Cr2 + 3

)
[
BC3r6 + 5BC2r4

+ 4AC3r2 + 9BCr2 + 12AC2 + 5B

]
.

(53)

Now, from expressions (24) and (25) the anisotropy factor
�(r) associated with the model is given by

�(r) = −1

16C2
(
Cr2 + 1

)3 (
Cr2 + 3

)2

[
B2C7r16

+ 9B2C6r14 + 8ABC7r12 + 33B2C5r12

+ 56ABC6r10 + 16A2C7r8 + 64BC6r10

+ 32AC7r8 + 57B2C4r10 + 128ABC5r8

+ 80A2C6r6 + 144BC5r8 + 384AC6r6

31B2C3r8 + 64ABC4r6 + 32C6r6

+ 48A2C5r4 + 64BC4r6 + 1504AC5r4

− 41B2C2r6 − 136ABC3r4 + 224C5r4

− 144A2C2r2 − 200BC3r4 + 2112AC4r2

− 65B2Cr4 − 120ABC2r2 + 480C4r2

− 320BC2r2 + 576AC3 − 25B2r2

+ 288C3 − 144BC

]
.

(54)

So, the second generator �(r) is

�(r) = −�(r) = 1

16C2
(
Cr2 + 1

)3 (
Cr2 + 3

)2

[
B2C7r16

+ 9B2C6r14 + 8ABC7r12 + 33B2C5r12

+ 56ABC6r10 + 16A2C7r8 + 64BC6r10

+ 32AC7r8 + 57B2C4r10 + 128ABC5r8

+ 80A2C6r6 + 144BC5r8 + 384AC6r6

31B2C3r8 + 64ABC4r6 + 32C6r6

+ 48A2C5r4 + 64BC4r6 + 1504AC5r4

− 41B2C2r6 − 136ABC3r4 + 224C5r4

− 144A2C2r2 − 200BC3r4 + 2112AC4r2

− 65B2Cr4 − 120ABC2r2 + 480C4r2

− 320BC2r2 + 576AC3 − 25B2r2

+ 288C3 − 144BC

]
.

(55)

8 Concluding remarks

In this work, it has been reported a relativistic anisotropic
fluid sphere in the arena of general relativity. This solution of
the Einstein field equations is representing compact objects
such as quark stars admixed with dark energy. The inclusion
of dark energy was introduced via the so-called modified
generalized Chaplygin equation of state. To close the prob-
lem from the mathematical point of view, we have imposed
a suitable form of the metric potential e2λ(r) and the men-
tioned equation of state. Regarding the former, it has been
previously employed in [35]. The particularity of this choice
is that it is free from mathematical singularities and leads to
a well-defined density ρ(r) and mass function m(r). Regard-
ing the thermodynamic relation given by Eq. (22), this corre-
sponds to a non-linear link between the radial pressure pr (r)
and density ρ(r) by governing the micro-physics process of
the imperfect matter distribution in the stellar interior. This
constrains between the main physical variables of the sys-
tem depends on to parameters, namely, A and B, both are
strictly positive numbers, and A is restricted to belongs to
(0, 1

3 ). Moreover, to simplify the mathematical inconvenient,
we have employed as usual the Durgapal-Barneerji transfor-
mation [77]. The same procedure has been used earlier by
other authors [5,11].

Once the complete geometry (26) and (30) describing
the inner space-time is obtained we have computed the full
set of thermodynamic observables {ρ, pr , pt } given by Eqs.
(20), (24) and (25) respectively. After that, to close the prob-
lem, the matching condition mechanism via Israel-Darmois
junction conditions was employed to determine all the con-
stant parameters {B,C, F}, and the total mass M that char-
acterize the model. Due to we dealt with an uncharged
anisotropic matter distribution, the compact object is sur-
rounded by a vacuum space-time described by the well
known Schwarzschild solution. Besides, to mimic a realistic
collapsed structure [36], we have taken the radius of the con-
figuration to be 9.5 [km]. It is found that moving the constant
parameter A from 0.15 to 0.25 the total mass M increases
progressively from 1.2871M	 to 1.8468M	 (for more details
see Table 3). These values are in complete agreement with
those reported in [74]. Furthermore, as can be seen from Table
2, in all cases the central density ρ(0) overcome the nuclear
density saturation (ρ ∼ 2.4 × 1014 [g/cm3]). This in con-
junction with the high central pressure suggest that the core
of the compact star is formed by the so–called strange matter
ı.e, matter conformed by quarks up, down and strange. Then
this toy model could represents quark (strange) stars. What
is more the assumed radius and the obtained masses are to
close to the range hypothesized in previous works for strange
stars [87]. Commonly, it is assumed that quarks are made of
free fermions constrained within a bag with a vacuum pres-
sure that keeps the particles within this bag. This universal
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pressure is denoted by Bg and it is known as the bag constant.
The EoS driven this kind of matter is the well–known MIT
EoS expressed by [17]

p = 1

3

(
ρ − 4Bg

)
. (56)

The studies by Farhi and Jafee [89] and Alcock et al [88]
had shown that for a stable strange quark matter the value of
the bag constant should be Bg ∼ 55 − 75 MeV/ f m3. How-
ever, the datasets of CERN-SPS and RHIC22 [90] show that
a wide range of bag constant are permissible. In this regard
in [91] (and references contained therein) was shown that
in the framework of Einstein theory the usage of the MIT
EoS admits a wide range for the bag constant Bg obtaining
well behaved compact structures. From the phenomenolog-
ical point of view several authors have proposed that a real
EoS p = p(ρ) relating the main thermodynamic variables
of the fluid distribution inside the stellar interior should be
well approximated by a linear function of the energy density
ρ [92–94]. In this sense the MIT EoS presents such morphol-
ogy but it is restricted to describe cold and massless quark
matter only. So, a question arise: It is possible to obtain a
quark star model, starting from a completely general linear
EoS? in the affirmative case, are these objects stable? [95].
Despite we have used a highly non-linear EoS to link the
the radial pressure and density, the resulting numerical data
matches previous results in the same field. However, it must
be taken into account that the imposition of an EoS (regard-
less of the form it has) is limited by three restrictions [96]:
(i) laboratory measurements of nuclear properties and reac-
tions, (ii) theoretical ab-initio calculations, and (iii) obser-
vations in astronomy. As said before, we have imposed the
modified generalized Chaplygin equation, which is an alter-
native to explain the presence of the dark energy filling the
whole Universe [22,23]. So, regarding the previous com-
ments about the numerical data and this latest ingredient, we
can conclude that the solution reported in this work could rep-
resent quark stars admixed with dark energy. What is more,
massive quarks (strange quarks) inspires the dark matter pro-
duction from the Big Bang, representing the ground state of
baryonic matter [97–99]. So, the compact object constitutes a
completely dark structure composed by dark matter and dark
energy, where the interaction between dark energy and dark
matter problem related with the coincidence one, which is
based on the fact that the ratio between dark energy and dark
matter energy densities is nowadays of the order 73/23, while
at the Planck time this ratio was of the order 10−95, remains
open. Nevertheless, this problem can be faced on the back-
ground of isotropic homogeneous cosmological model by
assuming a flat space–time [100]. Then, if a compact config-
uration driven by dark components exits it could be possible
to tackle the mentioned problem from a different perspec-
tive to the cosmological one. In this regard, the existence of

dark stars has been supported by the study about accretion
of dark matter particles [101,102]. To back up the previous
discussion, we have checked the feasibility of our model by
performing an exhaustive physical and mathematical analy-
sis. This analysis concerns the basic and general requirements
that all solutions of the Einstein fields equations must meet
in order to be an admissible model. Those requirements are
[39,55]

1. The geometry describing the inner manifold should be
free from mathematical and physical singularities.

2. The main thermodynamic variables should be monotone
decreasing functions with increasing radius and strictly
positive functions everywhere inside the object.

3. The subliminal sound speed in the principal directions ı.e,
v2
r and v2

t of the pressure waves must the less or equal
than the speed of light to preserve causality condition.

4. The energy-momentum tensor representing the mater dis-
tribution should satisfy some constraints to have a well-
defined material content driven the stellar interior.

5. The compact structure must remain in equilibrium under
the presence of the hydrostatic Fh , gravitational Fg , and
anisotropic Fa forces.

6. The hydrostatic balance should be stable. To check the
stability of the configuration under radial perturbations
introduced by the anisotropies, one can use, for instance,
the relativistic adiabatic index or Abreu’s criterion.

The first two points have been extensively discussed before.
Moreover, they are supported by Figs. 1 and 2 where it is
clear that the metric potentials e2ν and e2λ are regular every-
where and ρ, pr and pt are positive defined at all point within
the star and monotone decreasing functions from the center
r = 0 towards the surface of the structure. Respect to the
remaining points Figs. 3, 4 and 5 corroborate that the energy-
momentum tensor representing the imperfect matter distri-
bution is strictly positive, the subliminal sound velocities of
the pressure waves in the along the main direction of the
fluid sphere respect causality condition and that the system
is under hydrostatic balance being it stable from the relativis-
tic adiabatic index and Abreu’s criterion point of view.

Nevertheless, in considering the latest analysis, as the
constant parameter A increases, the system presents unsta-
ble regions. This is because, at some point inside the star,
the transverse sound speed overcomes the radial one, which
means that the system is suffering cracking [49]. That is the
main reason why the maximum value considered for A is
0.25. Notwithstanding, the role played by the anisotropy is
fundamental in the balance and stability of the system. In the
present study, the system experiences a positive anisotropy
factor � introducing into the configuration a force repulsive
in nature that helps to counteract the gravitational gradient,
what is more with a positive anisotropy factor it is possi-
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ble to build more compact objects [50] than one is dealing
with isotropic fluids. In general terms, we can conclude that
the reported model could serve to represent realistic compact
objects in the arena of general relativity, which matter dis-
tribution is driven by an imperfect fluid. However, it should
be considered that the arbitrary parameters that character-
ize the model, namely {A, B,C, F} must be delimited, in
order to reproduce a numerical data that conforms to the ana-
lyzes reported by numerical simulations or phenomenologi-
cal studies. In this case, the analytical toy model represents a
very good approximation to describe structures as complex
as those mentioned above.
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