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Following a series of similar calculations in simpler nonconformal holographic setups, we determine the
quasinormal mode spectrum for an operator dual to a gauge-invariant scalar field within the improved
holographic QCD framework. At temperatures somewhat above the critical temperature of the deconfine-
ment transition, we find a small number of clearly separated modes followed by a branch-cut-like structure
parallel to the real axis, the presence of which is linked to the form of the IHQCD potential employed. The
temperature dependence of the lowest nonzero mode is furthermore used to study the thermalization time of
the corresponding correlator, which is found to be of the order of the inverse critical temperature near the
phase transition and decrease slightly faster than 1=T at higher temperatures.
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I. INTRODUCTION

The quantitative description of equilibration dynamics in
gauge theories is a notoriously complicated problem, the
study of which is motivated by the desire to understand the
time evolution of systems such as ultrarelativistic heavy ion
collisions or the expanding early Universe [1]. In the former
context, where the dynamics is governed by the strong
nuclear force, it becomes essential to describe thermal-
ization away from the tractable weak coupling regime [2].
For this reason, the gauge/gravity duality has become a
standard tool in the field [3], and a considerable amount of
work has indeed been devoted to studying equilibration in
strongly coupled N ¼ 4 super Yang-Mills (SYM) theory
by mapping the process to the gravitational dynamics of
black hole (BH) formation in AdS spacetime [4]. Important
milestones in this line of research include e.g., the suc-
cessful description of shock wave collisions, the observa-
tion of a rapid onset of hydrodynamic behavior, and the
subsequent understanding that this does not require a full
thermalization or even isotropization of the system (see
e.g., [5–8] and references therein).
While a considerable amount of physical insight has

been gained from studies of the SYM theory in its infinitely
strongly coupled regime, it is clear that the application of

the results to real QCD requires an understanding of the
quantitative effects of conformal invariance breaking as
well as the finiteness of the gauge coupling [9–11]. These
issues have indeed been studied in many different contexts,
in some cases involving even shock wave collisions
[12–14], but often by restricting to the study of the
quasinormal mode (QNM) spectra of BH solutions in
different spacetimes [15–17]. This is understandable, since
the QNM spectrum is a key quantity determining a holo-
graphic system’s equilibration from small perturbations, as
it is dual to the pole locations of the corresponding retarded
Green’s function on the field theory side. In fact, as argued
in [18], the thermalization time of a Wightman function in
the field theory dual of a five-dimensional system under-
going gravitational collapse should be inversely propor-
tional to the imaginary part of the lowest QNM determined
for the same correlator in thermal equilibrium.
In the paper at hand, we continue work towards under-

standing equilibration in a QCD-like plasma, but staying on
the level of QNMs. In particular, we study the retarded
Green’s function of an operator dual to a gauge-invariant
scalar field in improved holographic QCD (IHQCD)—a
five-dimensional bottom-up model constructed to mimic
large-Nc nonsupersymmetric Yang-Mills (YM) theory
[19–25]. This work can be considered a direct continuation
of similar studies of QNMs in related but often simplified
nonconformal models [26–29] (see also [30–35]), differing
from them through the use of the more realistic IHQCD
potential introduced in [25]. Utilizing the fact that the
logarithmic running of the QCD gauge coupling is built
into IHQCD, we are able to study the QNM spectrum—and
thus the thermalization timescale—away from the infinitely
strongly coupled regime. As discussed in detail below, our
results point towards the emergence of a branch-cut-like
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structure on the complex frequency plane in the limits of
increased temperature and QNMmode number, which both
probe the more weakly coupled UV limit of the theory.
Our paper is organized as follows. In Sec. II, we briefly

review the model we work in as well as our strategy for
determining its bulk thermodynamic properties as well as
QNM spectra. The results of this investigation are then
presented in Sec. III, while Sec. IV is devoted to a detailed
discussion of our findings. Some computational details
useful in the determination of the QNM spectra are finally
relegated to the Appendix.

II. HOLOGRAPHIC MODEL

In this section, we discuss first the construction and
basic properties of the holographic model we work with,
IHQCD, and after this present some details concerning the
determination of different thermodynamic quantities as
well as QNM spectra within this framework.

A. Basic equations

Improved holographic QCD is defined by the five-
dimensional gravity action

S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
ð∂μϕÞ2 þ VðϕÞ

�
; ð1Þ

together with the metric ansatz ds2 ¼ bðzÞ2ð−fðzÞdt2 þ
dx2 þ fðzÞ−1dz2Þ [19,20], where z is a radial coordinate
chosen in such a way that the UV boundary resides at
z ¼ 0. Here, the scalar field ϕðzÞ and the functions bðzÞ and
fðzÞ are in turn determined from Einstein equations, which
in this case take the forms

6
_b2

b2
þ 3

b̈
b
þ 3

_b _f
bf

¼ b2

f
VðϕÞ; ð2Þ

6
_b2

b2
− 3

b̈
b
¼ 4

3
_ϕ2; ð3Þ

f̈
_f
þ 3

_b
b
¼ 0; ð4Þ

with the dot denoting a derivative with respect to z. The
scalar field equation derived from Eqs. (2)–(4) finally reads

ϕ̈þ d
dz

lnðfb3Þ _ϕþ 3

8

b2

f
V 0ðϕÞ ¼ 0: ð5Þ

In addition, both the z-coordinate and the function bðzÞ
are closely related to the renormalization scale on the field
theory side, so that we may write

βðλÞ ¼ b
dλ
db

¼ b
dλ=dz
db=dz

; λðzÞ ¼ eϕðzÞ; ð6Þ

with the source term for λ scaling like Ncg2. Finally, the
dynamics of the model is required to reproduce the
logarithmic running of the coupling at z → 0,

λðzÞ ¼ 1

b0 lnð1=ðΛzÞÞ
þ � � � ; ð7Þ

where one can choose to work either to one- or two-loop
order. This determines the unit of energy Λ, which for the
remainder of this section we choose as Λ ¼ 1.
The single most important quantity determining the

dynamics of the model is its potential VðλÞ. Its behavior
at small z is dictated by the running of the coupling through
Eq. (6), while in the far infrared, i.e., for large z, the
behavior of VðϕÞ is constrained by requiring confinement
[20]. The potential we employ reads [25]

VðλÞ ¼ 12

�
1þ 88λ

27
þ 4619λ2

729ð1þ 2λÞ

þ 3e−1=2λð2λÞ4=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ logð1þ 2λÞ

p �
; ð8Þ

which in addition to satisfying the infrared and ultraviolet
constraints has been fitted to lattice data for large-Nc pure
YM theory [36].
As we shall demonstrate in the next section, the different

parameters in the potential have been chosen so that the
order of the phase transition and the equation of state are
reproduced to sufficient accuracy. Varying them allows
one to describe phase diagrams with higher order or even
crossover transitions [37]. More generally, tuning the
functional form of the dilaton potential VðλÞ provides
holographic realizations of theories with different types
of renormalization group flow both in the infrared [26,38]
and ultraviolet [39] (see also the discussion in [40]).
As a final remark, we note that the model can be

extended by adding another scalar field sourcing the q̄q
operator and allowing for a full treatment of fermion
backreaction, resulting in a model commonly referred to
as V-QCD [22]. The phase diagram of this extended model
has been studied at both finite temperature [23] and density
[24], and it has been extensively used in particular in the
description of the dense nuclear and quark matter found
inside compact stars [41–43].

B. Numerical solution for thermodynamics

To find a numerical solution to Eqs. (2)–(4), it is useful to
first define the new variable,

W ¼ −
_b
b2

; ð9Þ

so that the equations are transformed to the first order forms
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_W ¼ 4bW2 −
1

f

�
W _f þ 1

3
bV

�
; ð10Þ

_b ¼ −b2W; ð11Þ

_λ ¼ 3

2
λ

ffiffiffiffiffiffiffi
b _W

p
; ð12Þ

f̈ ¼ 3_fbW ð13Þ

that we can approach in a relatively straightforward manner
(see e.g., [26] for details). The horizon values of the fields
bðzÞ, fðzÞ and WðzÞ, with the horizon located at z ¼ zh,
are then obtained requiring finiteness and that the leading
dependence of λ on the energy scale in the UV be
equivalent with the known behavior of the YM gauge
coupling at two-loop order.
After generating a family of solutions parametrized by

the values λh ≡ λðzhÞ, the thermodynamic behavior of the
model can be determined from the relations

4πT ¼ − _fðzhÞ; s ¼ b3ðzhÞ
4G5

; ð14Þ

p ¼ 1

4G5

Z
∞

λh

dλ0h

�
−
dT
dλ0h

�
b3ðλ0hÞ; ð15Þ

ϵ ¼ Ts − p: ð16Þ

The overall scale of thermodynamic quantities is affected
by the choice of 4G5 in the above equations. In principle,
this choice should be made by matching with the non-
interacting Bose-Einstein limit at asymptotically high
temperatures, but to follow standard conventions in the
field, we instead choose the scale by optimizing the model’s
fit to lattice data at temperatures only slightly above the
critical temperature Tc of the first-order deconfinement
transition. This leads to overshooting the expected high-T
behavior of thermodynamic quantities by ca. 30%, but as
we will see in the following section, produces lower-
temperature thermodynamics in excellent agreement with
lattice predictions.

C. Quasinormal modes

Being equipped with the solved gravity background as
well as with the potential fitted to lattice thermodynamics,
we can now proceed to study the QNM spectra predicted by
IHQCD. Here, we specialize to a field theory operator dual
to a gauge-invariant scalar fluctuation ϕðω; zÞ, noting that
at zero momentum and in the absence of mixing with the
metric fluctuations the equation of motion for this operator
takes the form

ϕ̈þ d
dz

lnðfb3Þ _ϕþ ω2

f2
ϕ ¼ 0: ð17Þ

To aid the forthcoming analysis, we transform this equation
into a Schrödinger-type form, withω2 playing the role of an
eigenvalue. This is achieved by introducing the new
variable

u ¼
Z

z

0

dz0

fðz0Þ ð18Þ

and defining ψðuÞ ¼
ffiffiffiffiffi
b3

p
ϕðuÞ, whereby the equation of

motion becomes

−ψ 00ðuÞ þ VSchðu; zhÞψðuÞ ¼ ω2ψðuÞ; ð19Þ

VSchðu; zhÞ ¼ f2
�
2b̈
2b

þ 3_b2

4b2
þ 3_f_b
2fb

�
z¼zðuÞ

: ð20Þ

Solving for the QNMs from this equation is in principle
straightforward: the equation is linear, and its solution (for
a fixed ω) therefore fully determined by two complex
numbers. One of them corresponds to the normalization,
while the other can be determined by requiring the solution
to be ingoing at the horizon, i.e., ensuring that ψ be
proportional to eþiωu at large u. To obtain the QNMs, we
then simply need to determine those values of ω, for which
the solutions satisfying this boundary condition are normal-
izable when u → 0. To implement this boundary condition
in the numerical calculation it is convenient to find the
solution in the infrared analytically and match it with the
numerically determined ultraviolet solution. The details
required in implementing the boundary condition are given
in the Appendix.
A practical complication in the computation arises from

the fact that standard spectral methods rely on the ability to
expand solutions around u ≈ z ¼ 0 in power series, while
in the gravity model we are working with these expansions
also contain logarithmic terms. This issue can, however, be
resolved through the application of more robust numerical
methods to remove the non-normalizable component from
the solution. Here, it is crucial to recall that in a numerical
calculation the solutions always contain a small part of
the non-normalizable solution. However, if the solution is
close to the correct one, the divergence due to the non-
normalizable solution appears only when u is very small.
Then, the method introduced in [26] for finding the QNMs
proceeds as follows: for a trial value of ω, find the
numerical solution towards the boundary and determine
the minimum of jψðuÞj, denoting its location by umin. The
desired QNM is then approximately the value which
minimizes uminðωÞ. For a detailed explanation of this
method, see Appendix B of [26].
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III. RESULTS

A. Thermodynamic properties

We begin our discussion from thermodynamic quan-
tities, which we however cover only rather briefly, as they
have been extensively considered in the literature (see
e.g., [23]). Indeed, our focus is mainly on those numerical
results that serve as important consistency checks for
our model and establish a connection between its finite-
temperature phase structure and its spectrum as a function
of T.
Specifically, we want to compute the free energy, i.e., the

pressure pðTÞ, as defined in Eq. (15) in terms of the
functions bðλhÞ and TðλhÞ. Here, bðλhÞ is a monotonous
function, while TðλhÞ first decreases with increasing λh but
then starts to increase; see the illustration in Fig. 1 (left).
The behavior in the UV, or small λh, corresponds to the
weak-coupling limit, i.e., to large temperatures, while the
domain towards the IR, where temperature increases with
λh, is unstable. This can be seen e.g., by computing the
speed of sound squared: it turns out that this quantity is
proportional to −T 0ðλhÞ, so we must clearly require
T 0ðλhÞ < 0.
Evaluating the pressure from high to low temperatures,

we next determine the critical temperature as the point
where the pressure becomes negative. From this condition,
we find that

Tc ¼ 0.7546Λ; ð21Þ

which allows us to express all dimensionful quantities in
units of Tc.
Our results for the thermodynamics of the model are

displayed and compared to the lattice data of [36] in Fig. 1
(right). From here, we observe that our results for the three

key quantities—the pressure p, energy density ϵ and trace
anomaly ϵ − 3p—are in very good agreement with the
lattice calculation. In particular, the slopes of all three
functions are accurately reproduced at temperatures some-
what above the critical one, which is a strong indication that
our choice for the dilaton potential in Eq. (8) was indeed a
reasonable one. As mentioned in Sec. II B, the price to pay
for treating the overall normalization of the pressure as a
free parameter is that our results eventually overshoot the
expected high-temperature limits of these quantities by
some 30%. At the same time, it interestingly turns out that
with our normalization convention the UV behavior of
energy momentum tensor correlators becomes very accu-
rately reproduced [44].

B. Spectrum of quasinormal modes

Moving next on to the QNM spectra, we first note that
at zero temperature, corresponding to λh → ∞ and f ¼ 1,
the potential entering the Schrödinger equation is well
approximated by (see [26])

VSchðu; zhÞ ≃
15

4u2
þ 2þ u2; ð22Þ

from which one obtains a bound state spectrumwith masses

mn ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2þ n

p
; n ¼ 0; 1; 2;…: ð23Þ

As λh is lowered, a numerical calculation performed on the
unstable branch of the theory shows how the potential is
perturbed away from the harmonic-oscillator-like form as
depicted in the left panel of Fig. 2 (note, however, that
the instability analyzed in [27,45] is not present for the
potentials we consider). The corresponding spectrum of

FIG. 1. Left: The temperature T plotted as a function of λh, showing both the stable and unstable solutions to the left and right of the
minimum, respectively. Right: Thermodynamic quantities as obtained from our model. The different curves correspond to the pressure
p, energy density ϵ, and the trace of the energy-momentum tensor ϵ − 3p as functions of T=Tc, all normalized by T4. Also shown is
lattice data from Ref. [36] with only the statistical error bars indicated.
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QNMs, shown in the right panel of Fig. 2, displays a clear
and expected pattern: the spectrum moves away from the
real axis, with the states becoming broader. It should be
highlighted, however, that these results, derived on the
unstable branch, cannot be straightforwardly related to
the physics of the YM theory. Nevertheless, these
results connect smoothly with the quasinormal modes
determined on the high temperature branch where the
system enters the stable high-temperature phase. There
the states are observed to become even broader, eventually
melting away.
As our physical interest lies in the description of

thermalization dynamics at temperatures somewhat (but
not excessively) above the critical one, we next specialize
to the stable branch of the theory and analyze in more detail
the QNM spectrum for temperatures Tc < T < 3Tc. Of
particular interest here is the lowest QNM and specifically
its imaginary part, which has been argued to be inversely
proportional to the equilibration time for the correlator in
question [18]. For temperatures ranging from Tc to 3Tc,
we first display the lowest QNMs on the complex-ω
plane in the left panel of Fig. 3, observing that the
lowest mode roughly follows the trend Imω ≈ −iReω

and ω ≈ 2πTð1 − iÞ. The thermalization time obtained
from the lowest mode via the relation [18]

τth ¼ −
2π

Imω
ð24Þ

is shown as a function of temperature in the right panel of
Fig. 3. It is observed to decay slightly faster than 1=T, with
the scale being of order τth ≃ 0.5=Tc ≈ 0.5 fm=c, which is a
phenomenologically very reasonable result.
Finally, an interesting observation can be made about the

fate of higher QNMs on the stable BH branch as a function
of increasing temperature. In our numerical calculation, we
find that the string of clearly separated, individual QNMs
terminates at a structure that one is tempted to interpret as
an emerging branch cut on the complex ω-plane; cf. Fig. 4.
This structure always corresponds to a constant value of
Imω, with the number of accessible separate QNMs
decreasing with increasing T. This behavior is consistent
with the existence of quasistable states as obtained from
Eq. (20), with the potential evolving as shown in Fig. (2) (for
the unstable branch). We have checked that the existence of
this structure is independent of whether we use a leading or

FIG. 2. Left: Schrödinger potentials corresponding to the high-λh unstable branch and normalized at u ¼ 0.1 for illustrative purposes.
Right: The corresponding QNMs, displayed using the same color coding that was introduced for the potentials.

FIG. 3. Left: Location of the lowest quasinormal mode ω shown for five different temperatures on the stable BH branch. Right:
Thermalization time τth in units of T−1

c versus the temperature in units of Tc.
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next-to-leading order expansion for the analytic solution of
the Schrödinger equation in the infrared.

IV. CONCLUSIONS

In the holographic study of gauge theory equilibration,
one can identify two somewhat distinct long-term goals. On
one hand, there have been frequent attempts to make the
physical setting under study more closely resemble realistic
heavy ion collisions by considering the collision of shock
waves of finite thickness, transverse size, and anisotropy
[5,8,46,47]. At the same time, many groups have been
working on modifying the gravity background in the shock-
wave setting to have the dual gauge theory feature broken
conformality or supersymmetry, or even noninfinite coupling
strengths [10,12–14,48]. What is, however, common to both
of these lines of work is that one usually works in firmly top-
down settings, typically starting from the conformal and
supersymmetric N ¼ 4 SYM theory and departing from it
one step at a time, which makes progress towards the
description of a truly QCD-like theory rather slow.
Independently from the study of shock-wave collisions

and other developments in applied top-down holography,
systematic efforts towards constructing a bottom-up model
to closely resemble nonsupersymmetric Yang-Mills theory
and QCD have culminated in the development of the
improved holographic QCD and V-QCD frameworks that
have been demonstrated to faithfully reproduce the equi-
librium thermodynamic properties of the full theories in the
large-Nc limit [19,20,23,24]. Considering the technical
complexity of building a computational framework for
studying shock-wave collisions in this type of a setting, it is
clearly worthwhile to investigate equilibration within the
IHQCD model in a somewhat more modest way: through
the study of quasinormal modes that describe the response
of the dual field theory system to small departures from
equilibrium.
In the paper at hand, we have determined the QNM

spectrum for one particular gauge theory operator in the
IHQCD framework, dual to a scalar field on the gravity
side, for a range of temperatures from Tc up to ca. 3Tc.

In particular, we have studied the temperature dependence
of the lowest nonzero QNM to obtain an estimate for the
thermalization time of the corresponding correlator, finding
phenomenologically very reasonable results. In addition,
we have observed that the number of clearly separate
QNMs decreases with increasing temperature—a result we
have been able to link to the broadening and melting of the
corresponding states. Instead of a clean spectrum of higher
individual QNMs separated from each other by the
expected 2πT, we have witnessed the emergence of a
linear structure parallel to the real axis of the complex
frequency plane, which may point towards to the presence
of a branch cut. In this context, it is worth pointing out that
while we have only shown results for the stable BH branch
in Fig. 4, the same qualitative conclusions apply to the
unstable branch as well, with the main difference being the
somewhat higher number of individual QNMs there.
It is clearly very interesting to contrast our findings with

the results of similar exercises carried out in the past. Our
present work can be regarded as a rather direct continuation
of a series of works by other groups, in which somewhat
simpler versions of IHQCD (or other closely related
models) have been considered [26–29], although it should
in addition be recalled that some of these works considered
correlators different from the one studied by us. Of these
papers, Alanen et al. [26] and Janik et al. [27] both
employed the IHQCD framework but with simpler choices
of the potential, with e.g., [27] not enforcing the condition
that the gauge coupling should run logarithmically in the
UV. Neither of these references reported the existence of a
branch-cut-like structure, which is likely related to the IR
behaviors of the employed potentials. In this respect, a
very interesting point of comparison is the work of Betzios
et al. [28], which considered a different model of Einstein-
dilaton gravity, dual to a Chamblin-Reall plasma in the IR
and having the usual AdS form in the UV. Similarly to us,
they witnessed the emergence of a branch cut in the critical
limit, albeit exactly on the real axis. It would clearly be very
interesting to analyze the reason for this qualitative sim-
ilarity in a more explicit manner, but we leave this for
future work.

FIG. 4. Contour plots of u−1min on the stable BH branch on the complex ω-plane at T ¼ Tc, 2Tc, and 3Tc (from left to right).
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Finally, we note that while in the calculation presented
above we have worked in the context of pure gauge theory,
our results can be extended to QCD in the Veneziano limit
by employing the V-QCD model [24]. Performing a similar
study of QNM spectra in this framework and thereby
analyzing the effect of dynamical quarks on equilibration
would clearly be a very interesting, albeit technically more
demanding exercise to carry out.
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APPENDIX: ASYMPTOTIC SOLUTIONS

In this Appendix, we briefly discuss the asymptotic
expansions of the bulk fields, which turned out to be very
useful in the numerical determination of the QNM spectra.
In this context, we note that when dealing with the
Schrödinger-type equation (20), it is useful to first expand
the potential at u → ∞ and solve the equation analytically
in this limit. However, this is done more easily after
introducing a new variable A such that bðzÞ ¼ expðAðzÞÞ
and solving the equation near the limit A → Ah. For this
purpose, we also need to introduce the function

qðAÞ ¼ eA
dz
dA

; ðA1Þ

so that the fluctuation equation (20) obtains the form

ψ 00ðAÞ þ
�
4þ f0ðAÞ

fðAÞ −
q0ðAÞ
qðAÞ

�
ψ 0ðAÞ

þ e−2AqðAÞ2
fðAÞ2 ω2ψðAÞ ¼ 0: ðA2Þ

To proceed from here, we note the relation

uðAÞ ¼
Z

A

∞
e−Ã

qðÃÞ
fðÃÞ dÃ ¼

Z
A

∞

1

Ã
e−Ã

qðÃÞ
f̂ðÃÞ dÃ; ðA3Þ

where f̂ðAÞ≡ fðAÞ
A and we have set Ah ¼ 0 for convenience.

Observing that f̂ is regular and nonzero at A ¼ Ah ¼ 0, we
can isolate the divergence by integrating by parts

uðAÞ¼
�
logðÃÞe−Ã qðÃÞ

f̂ðÃÞ

�����
A

∞
−
Z

A

∞
logðÃÞ

�
e−Ã

qðÃÞ
f̂ðÃÞ

�0
dÃ

¼ logðAÞe−AqðAÞ
f̂ðAÞ−

Z
0

∞
logðÃÞ

�
e−Ã

qðÃÞ
f̂ðÃÞ

�0
dÃ

−
Z

A

0

logðÃÞ
�
e−Ã

qðÃÞ
f̂ðÃÞ

�0
dÃ; ðA4Þ

where the prime denotes differentiation with respect to A
and we have used the fact that q and f̂ grow more slowly
than the inverse of logðAÞe−A at large A.
Next, we define

u0 ¼ −
Z

0

∞
logðÃÞ

�
e−Ã

qðÃÞ
f̂ðÃÞ

�0
dÃ ðA5Þ

and write

hðAÞ ¼ e−A
qðAÞ
f̂ðAÞ ¼

X∞
k¼0

hkAk; ðA6Þ

where hk ¼ 1
k! h

ðkÞðAÞjA¼0, which can be explicitly com-
puted in terms of the near-horizon expansions of q and f.
Then, we expand around A ¼ 0 to get

uðAÞ− u0 ¼ logðAÞh0

þ
X∞
k¼1

�
logðAÞhkAk −

Z
A

0

logðÃÞhkkÃk−1dÃ

�

¼ h0 logðAÞ þ
X∞
k¼1

Ak

k
hk: ðA7Þ

¼ h0 logðAÞ þ
Z

A

0

1

Ã
ðhðÃÞ − hð0ÞÞdÃ: ðA8Þ

Note that if hðAÞ is real analytic, the logarithm appears only
in the leading term of the expansion.
In order to write the Schrödinger equation in a more

useful form, we have to invert the above relation, i.e., find
the function AðuÞ. To this end, we write û ¼ u − u0 to
simplify the notation. To leading order, we can immediately
solve

A ¼ e
û
h0 ; ðA9Þ

which is very small for large û, as h0 < 0.
To get the next-to-leading order term, we attempt to

substitute the leading term to Eq. (A7) and expand to order

A. The resulting error term is h1e
û
h0 þOðA2Þ, which leads to

the ansatz
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AðûÞ ¼ e
û
h0
þu1e

û
h0 ðA10Þ

for some number u1. Using the fact that eû=h0 is small, we
can expand

ee
û
h0 ¼ 1þ e

û
h0 þOðe2 û

h0Þ; ðA11Þ

where the last term is of order A2, leading to the ansatz

AðûÞ ¼ e
û
h0 þ u1e

2 û
h0 þOðA3Þ: ðA12Þ

Inserting this again to Eq. (A7), we get

uðAÞ − u0 ¼ uþ ðu1h0 þ h1Þe
û
h0 þOðe2 û

h0Þ; ðA13Þ

which implies

u1 ¼ −
h1
h0

: ðA14Þ

It is clear that from here the series would continue further in
powers of eû=h0 .
The numerics provide us the Schrödinger potential in

terms of A. Writing

VSchrðAÞ ¼ V 0
Schrð0ÞAþ 1

2
V 00
Schrð0ÞA2 þOðA3Þ ðA15Þ

and inserting the expansion above gives

VSchrðuÞ ¼ V 0
Schrð0Þe

û
h0 þ

�
V 0
Schrð0Þu1 þ

1

2
V 00
Schrð0Þ

�
e2

û
h0

þOðA3Þ: ðA16Þ

The corresponding equation can be solved analytically,
giving

ψðuÞ ¼ C1Uðα; β; γÞeiζ þ C2Liν
iμðρÞeiζ; ðA17Þ

where U is Tricomi’s confluent hypergeometric function,
and L is the generalized Laguerre polynomial. We have
defined the following shorthand notations:

α ¼ i
2

ffiffiffiffiffiffi
V2

p
�
−iV1h0 þ 2ω

ffiffiffiffiffiffi
V2

p
h0 − i

ffiffiffiffiffiffi
V2

p 	

β ¼ 2iωh0 þ 1

γ ¼ 2e
û
h0h0

ffiffiffiffiffiffi
V2

p
:

ζ ¼ h0
�
ω logðe û

h0Þ þ i
ffiffiffiffiffiffi
V2

p
e

û
h0

	

μ ¼ iα

ν ¼ 2h0ω

ρ ¼ 2h0
ffiffiffiffiffiffi
V2

p
e

û
h0 :

Furthermore, V1 and V2 are the coefficients appearing
in (A16) and C1 and C2 are constants of integration.
Finally, we note for reference the relations

h0 ¼
qh
f0h

ðA18Þ

h1 ¼ −
qh þ f00h

2f0h
− q0h

f0h
: ðA19Þ
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