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1 Introduction

Supergravity interpretation of integrable deformations of string theory σ-models has seen

rapid progress in the recent years. Yang-Baxter deformations [1–3], η-deformed [4, 5] and λ-

deformed [6, 7] σ-models may all be represented by combinations of T-dualities [8, 9], as well

as their non-abelian [10–12] and Poisson-Lie [13] extensions. An element of the T-duality

group O(d, d), acting on a supergravity background, can be conveniently represented by

the so-called β-shift, parametrised by a bi-vector β [14, 15]. Basic building blocks of

integrable deformations in the supergravity language, the Lunin-Maldacena (TsT) [16, 17]

transformations, correspond to constant β [18]. General Yang-Baxter deformations result

from using an r-matrix solution to the classical Yang-Baxter equation as a deformation

bi-vector. The transformation of the NSNS supergravity background fields (g, b)→ (G,B)

is given by the Seiberg-Witten open/closed string map [19], with β playing the role of

an anticommutativity parameter [20, 21]. Extended to the case of backgrounds with the

b-field, this map takes the form:

G+B = (g + b)
(
1 + β(g + b)

)−1
. (1.1)

Here β = 1
2r
αβkα ∧ kβ is the deformation bi-vector written in terms of a constant antisym-

metric r-matrix and the Killing vectors of the initial background, which obey the isometry
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algebra [kα, kβ ] = fαβ
γkγ . Assuming that rαβ satisfies the classical Yang-Baxter equation,

rα[γr|β|δfαβ
ε] = 0, (1.2)

is sufficient for the deformed fields G,B to be a supergravity solution [22, 23]. This allows

to view the map (1.1) as a supergravity solution generating method, valid for generic

spacetimes with isometries [24, 25].

The reason that the classical Yang-Baxter equation (1.2) is instrumental in the d = 10

deformation prescription is ultimately that the two-dimensional string worldsheet theory

exists behind the scenes of the supergravity approximation. Similarly, it is natural to expect

that some fundamental properties of M-theory could be manifested by finding a consistent

extension of the Yang-Baxter deformations to the d = 11 supergravity. In the absence of

an M-theory version of the σ-model deformation narrative, we propose that supergravity

symmetries can be employed to build such a generalisation.

Supergravity formulations that are natural to look at in this context are the Double [26]

and Exceptional [27] Field Theories (DFT and ExFT, respectively). Specifically designed

to render supergravities in various dimensions covariant under T- and U-duality groups

at the expense of extending the spacetime dimension, they are useful in describing Yang-

Baxter deformations [15, 28–31] and Poisson-Lie T-duality [14, 32–37]. The proof of [23]

that (1.1), (1.2) is a supergravity symmetry relied upon the DFT techniques, in particular

the β-supergravity formalism [38–40]. In this approach the map (1.1) is viewed as an

expression of the intrinsic freedom of frame choice in DFT, which admits a straightforward

extension into the ExFT realm, and hence to d = 11 supergravity. The deformation bi-

vector β becomes a dynamical field, and it can be shown that the CYBE (1.2) is sufficient

to put β on-shell.

In [41] a tri-vector deformation prescription for d = 11 supergravity was proposed,

based on the freedom of frame choice in the SL(5) ExFT [42]. The NSNS 2-form b and the

deformation bi-vector β are replaced by rank 3 tensors C and Ω, with a Killing tri-vector

ansatz for the latter,

Ω =
1

3!
ραβγkα ∧ kβ ∧ kγ , (1.3)

and a slightly more involved deformation prescription (3.16) instead of the open/closed

map. When the Killing vectors form a U(1)3 subgroup, this prescription reproduces an

uplift of TsT to d = 11 [43, 44]. For a single commuting ∂∗ the tri-vector can be written

as Ω = ∂∗ ∧ β, and non-abelian YB deformations with respect to β can be recovered

after the dimensional reduction. Whether any intrinsically 11-dimensional deformations

exist has been left an open question because of a technical restriction imposed by the

formalism. Namely, the simplified SL(5) ExFT setup of [41] required that there be no flux

of the 3-form C inside the 4-dimensional submanifold, where the deformation acts. Thus,

the consideration was essentially restricted to the flat space or a sphere and it was hard to

come up with an isometry algebra nontrivial enough to provide a completely non-abelian Ω.

It is one of the aims of the present paper to overcome these restrictions. We adopt

the approach similar to that of [23], only now instead of the β-supergravity field equations

one has to deal with the dynamical equations of a certain truncation of the SL(5) ExFT.
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This theory is designed to describe the mechanics of U-duality within the 4-dimensional

submanifold in a 4 + 7 split. Thus, it can become a natural tool in studying tri-vector

deformations of AdS4 within the Freund-Rubin solution. Conformal algebra of AdS4 is

nontrivial enough to harbour non-abelian tri-vectors, so that the resulting deformations of

AdS4 × S7 cannot be interpreted as mere uplifts of d = 10 Yang-Baxter deformations in

any obvious manner.

Using the generators of momentum Pa, angular momentum Mab, and dilatation D,

we study the deformations corresponding to Ω ∼ P ∧ P ∧M and D ∧ P ∧ P . Such Ω

cannot be represented in the form Ω = ∂∗ ∧ β such that ∂∗ commutes with the generators

of β. More importantly, one shows that the 11-dimensional analogue of the I vector of

generalised supergravity is non-zero for these backgrounds. Hence, although these two

deformed backgrounds are solutions of the conventional d = 11 supergravity, one might

expect them to connect to solutions of d = 10 generalised supergravity upon reduction.

This might be a hint of non-existence of an analogue to generalised supergravity in d = 11.

The paper is structured as follows. After briefly introducing the SL(5) exceptional field

theory in the section 2, we derive explicit relations between the fields of d = 11 supergravity

in the 4 + 7 split and the ExFT. In the section 3 we truncate the theory to backgrounds

of the form M11 = M4 ×M7 with the metric on M7 that does not depend on coordinates

of M4. We define the deformation map for background with the 3-form flux on M4 and

provide equations of motion that the deformed background must satisfy. In the section 4

we apply this formalism to the AdS4× S7 background and present the deformed solutions.

We discuss the results in the section 5, and comment on the tentative d = 11 generalisation

of the CYBE that has yet to be determined.

2 Exceptional field theory: SL(5) group

The SL(5) exceptional field theory describes supergravity dynamics, while being explicitly

covariant under the transformations of the SL(5) U-duality group. The theory is formulated

in terms of the fields

hµν , Aµ
MN , BµνM , mMN , (2.1)

that depend on 7 coordinates yµ parametrising the so-called ‘external’ space and 10 coordi-

nates XMN paramterising the so-called ‘internal’ space (M,N = 1, . . . , 5 are fundamental

SL(5) indices and XMN is antisymmetric. We refer to the appendix A for our index con-

ventions). hµν is the external space metric, while mMN , collection of scalars from the d = 7

theory viewpoint, forms what is called the ExFT generalised metric. The internal space is

endowed with the structure of extended geometry [45, 46] with SL(5) as the group of local

coordinate transformations. Under these a generalised vector VM of weight λ transforms

as defined by the following generalised Lie derivative

δΛV
M =

1

2
ΛPQ∂PQV

M − 1

4
(TMN )KLPQ∂KLΛPQV N + λ∂PQΛPQVM , (2.2)

where TMN represent the generators of SL(5). Algebra of such local generalised diffeomor-

phisms closes upon imposing the section constraint

εMNKLP∂MN • ∂KL• = 0, (2.3)
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where bullets represent any combinations of any fields. In what follows we will always

assume the solution of the section constraint ∂mn = 0 that corresponds to d = 11 super-

gravity [47] by removing the dependence on six out of ten extended coordinates (m,n =

1, . . . , 4).

Lagrangian of the SL(5) exceptional field theory reads [47]

e−1L = R̂[h(7)]∓
1

8
mMNmKLFµνMKFµνNL +

1

48
hµνDµmMNDνmMN + e−1Lsc

+
1

3 · (16)2
mMNFµνρMFµνρN + e−1 Ltop,

(2.4)

where e = (dethµν)
1
2 and the scalar part part is given by

e−1Lsc =±
(

1

8
∂MNmPQ ∂KLm

PQmMKmNL +
1

2
∂MNmPQ ∂KLm

MP mNKmLQ

+
1

2
∂MNm

LN ∂KLm
MK +

1

2
mMK∂MNm

NL(hµν∂KLhµν)

+
1

8
mMKmNL(hµν∂MNhµν)(hρσ∂KLhρσ) +

1

8
mMKmNL∂MNh

µν∂KLhµν

)
.

(2.5)

Here and further in the text the upper sign corresponds to the case where the external d = 7

space has Lorentzian signature, while the lower corresponds to the Euclidean signature.

When the time direction falls into the internal space of ExFT (lower sign), we are dealing

with timelike U-dualities [48, 49]. The ExFT formalism relevant for this case has been

developed in [50]. Irrespective of the signature choice, the U-duality group is SL(5); it is

the local duality group that accommodates for the difference.

Splitting the fundamental SL(5) index as M = 1, . . . , 4, 5 = (m, 5), components of the

generalised metric can be parametrised as

mMN = h
1
10

h− 1
2hmn −Vm

−Vn ±h
1
2 (1± VkV k)

 , mMN = h−
1
10

h 1
2 (hmn ± V mV n) ±V m

±Vn ±h−
1
2


(2.6)

with V m = 1
3!ε

mnklCnkl and h = dethmn. The variables hmn and Cmnk will be later related

to the components of the ordinary metric and the 3-form on the d = 4 subspace. Under

generalised Lie derivatives the metric transforms as

LΛKLmMN =
1

2
ΛKL∂KLmMN + (∂MKΛLK)mLN + (∂NKΛLK)mML

− 2

5
(∂KLΛKL)mMN ,

(2.7)

that is as a generalised tensor of weight λ[mMN ] = 0.

In order to obtain an explicit relationship between the 11-dimensional fields and those

of the full SL(5) exceptional field theory one must perform the Kaluza-Klein decomposition

under the 7 + 4 split, and then rearrange the resulting fields into combinations covariant

under the generalised Lie derivative of the SL(5) theory. Proceeding along these lines, we
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closely follow the E6 discussion of [51] with minor changes relevant for the SL(5) group.

One starts with the fields hµν and hmn which are related to the full d = 11 metric by the

usual Kaluza-Klein ansatz for the vielbein E (µ̂, â = 1, . . . 11):

Eµ̂
â =

h− 1
10hµ

µ̄ Aµ
mhm

m̄

0 hm
m̄

 . (2.8)

Here hµ
µ̄ is the 7-dimensional vielbein defined as hµν = hµ

µ̄hν
ν̄ηµ̄ν̄ , hm

m̄ is the 4-

dimensional vielbein defined as hmn = hm
m̄hn

n̄ηm̄n̄ and h = dethmn. Note the factor

h−
1
10 that is needed to end up with the correct Einstein-Hilbert action in 7 dimensions.

An important point is that the external metric is not a scalar under the generalised

Lie derivative, since it transforms under its four-dimensional part Λm as

δΛhµν = Λm∂mhµν +
2

5
∂mΛm hµν . (2.9)

Thus, hµν is a weighted scalar of weight λ[hµν ] = 2
5 . This is crucial for defining the

procedure of deformation in analogy with the d = 10 case as in [23, 52], namely as a rotation

of the generalised metric by a specific matrix taking values in the duality group (SL(5) in

our case). In order to perform this in a consistent manner, we rescale the generalised

metric so as to absorb the degrees of freedom contained in det hµν . As explained below,

this makes a connection between the full exceptional field theory defined above and its

truncated version described in [53].

Similarly, one can apply the general prescription of the Kaluza-Klein reduction to the

d = 11 3-form to obtain the following tower of p-forms:

Amnk = Cmnk,

Aµmn = Cµmn −Aµk Ckmn,
Aµν m = Cµνm − 2A[µ

nCν]mn +Aµ
nAν

k Cmnk,

Aµνρ = Cµνρ − 3A[µ
mCνρ]m + 3A[µ

mAν
nCρ]mn −AµmAνnAρk Cmnk.

(2.10)

Note that in contrast to [51] we are using the conventions where the 3-form kinetic La-

grangian has the prefactor −1/48,

L 3-form = − 1

48
E F µ̂ν̂ρ̂σ̂Fµ̂ν̂ρ̂σ̂. (2.11)

This, together with the action for the Kaluza-Klein vector Aµ
m following from the eleven-

dimensional Einstein-Hilbert action produces kinetic terms for all p-forms in the theory.

The ExFT generalised metric mMN contains the scalar degrees of freedom, which are

encoded in the metric hmn and the gauge field Cmnk. The corresponding terms in the

d = 11 action read

Lsc = LEH −
1

48
eh−

1
5hmphnqhkrhlsFmnklFpqrs, (2.12)

where LEH denotes the Lagrangian

h
1
5 e−1LEH(h, e) = R[h(4)] +

1

4
hmn (Dmh

µν Dnhµν + hµνDmhµν h
ρσDnhρσ) , (2.13)
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and we define the following combinations covariant under the internal diffeomorphisms

Dmhµν = ∂mhµν −
1

5
(hkl∂mhkl)hµν . (2.14)

Substituting the explicit form of the generalised metric (2.6) it is straightforward to check

that the above can be written in an SL(5) covariant form as (2.5). Note how the above

expression differs from that of [42] in the part that includes only mMN and its derivatives.

The reason is that the above reproduces the action with a prefactor of h−
1
5 , which follows

from the proper Kaluza-Klein ansatz, rather than the action
√
h(R[h(4)]− 1/48F 2) as one

would expect in a truncated theory. More details on that in the following section.

Although by using the dualisation procedure it is possible to provide full identification

between the 11-dimensional action and the SL(5) covariant action, for the purposes of the

present paper we are not interested in topological terms of the SL(5) theory. Moreover, in

the next section we will truncate the theory to describe only a special class of backgrounds

that are relevant for our discussion.

3 Equations of motion

3.1 Truncation to the extended space

The general procedure for deforming a supergravity background in the ExFT/DFT formal-

ism is based on switching between the geometric and non-geometric frames representation of

the same generalised metric, and interpreting the non-geometric tri/bi-vector as a deforma-

tion parameter rather than a fundamental field [23, 41]. In this approach the deformation

tensor can only include Killing vectors of the ‘internal’ part of the background, using the

terms of exceptional field theory.

In order to simplify the discussion further, we consider only the backgrounds with

the metric in a block-diagonal form, i.e. M11 = M4 ×M7, where the internal metric hmn
does not depend on the external coordinates yµ. This allows to significantly simplify the

equations of motion by truncating the theory to the purely scalar SL(5) extended geometry,

similar to that of [42, 45], however keeping track of the external space geometry. Taking

this into account, the equations of motion following from the full SL(5) exceptional field

theory are truncated to the case when

hµν = hµν(yµ, xm), mMN = mMN (xm),

Aµ
MN = 0, Bµν m = 0.

(3.1)

Moreover, given the structure of the theory, the second line above can be applied already

at the Lagrangian level. This simplifies the exceptional field theory setup, leaving us with

only the d = 7 Einstein-Hilbert term and the scalar potential for the generalised metric in

the action

e−1L = R[h(7)]−
(

1

8
∂MNmPQ ∂KLm

PQmMKmNL +
1

2
mMK∂MNm

NL(hµν∂KLhµν)

+
1

2
∂MNm

LN ∂KLm
MK +

1

2
∂MNmPQ ∂KLm

MP mNKmLQ (3.2)

+
1

8
mMKmNL(hµν∂MNhµν)(hρσ∂KLhρσ) +

1

8
mMKmNL∂MNh

µν∂KLhµν

)
,
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where R[h(7)] is the Ricci curvature scalar of the metric hµν . It is important to note, that

such a truncation is background dependent, based on the specific ansatz (3.1), and does

not provide a full consistent truncation of the theory. However, taking a specific initial

solution of the form (3.1), one is guaranteed to end up with a valid d = 11 solution when

making a tri-vector deformation, as long as the chosen Killing vectors do not introduce any

dependence on the external coordinates yµ. Note that although we truncate the Lagrangian,

the structure of the couplings is such that the truncation at the level of equations of motion

would be equivalent.

In what follows we will be interested in the case where a deformation results in rescaling

of the 7-dimensional part of the metric by a single xm-dependent factor. The d = 7 metric

before the deformation will be restricted to the form hµν(yµ, xm) = e−2φ(xm)h
1
5 h̄µν(yµ),

which allows to hide the xm dependence φ(xm) inside a properly rescaled generalised metric.

To achieve this, define the rescaling as follows

hµν = e−2φh
1
5 h̄µν ,

mMN = e−φh
1
10MMN .

(3.3)

This implies that the Lagrangian L = eR̂[h(7)] + Lsc can be rewritten as

L = ēM−1

(
R[h̄(7)]−

1

8
MKLMMN∂KMMPQ ∂LNM

PQ − 1

2
∂NKM

MN ∂MLM
KL

+
1

2
MKLMMN∂MKM

PQ ∂PLMNQ +MKLMMN∂KPMMN ∂LQM
PQ

− 15

24
MKLMMNMPQMRS∂MPMKL ∂NQMRS

)
,

(3.4)

where M = detMMN = e5φh−1/2 and ē = (det h̄µν)1/2. For the rescaling (3.3) the d = 11

vielbein can be written in the following nice form

Eµ̂
â =

(
e−φēµ

a Aµ
mhm

α

0 hm
α

)
, (3.5)

while the generalised metric becomes

MMN = eφ

|h|− 1
2hmn −Vn

−Vm ±|h|
1
2 (1± VkV k)

 , MMN = e−φ

|h| 12 (hmn ± V mV n) ±Vn

±Vm ±|h|−
1
2


(3.6)

with V m = 1
3! ε

mnklCnkl and h = dethmn. Substituting this into (3.4) one gets for the

Lagrangian

ē−1h−
1
2L = e−5φR[h̄(7)] + e−7φ

(
R[h(4)] + 42hmn∂mφ∂nφ∓

1

2
∇mV m∇nV n

)
. (3.7)

Note that when R[h̄(7)] = 0, the covariant Lagrangian (3.4) reproduces the SL(5)×R+

Lagrangian of [42] up to full derivative terms.
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3.2 Deformation map

The rescaled metric MMN (3.6) can be written in terms of the generalised vielbein, MMN =

EMAηABENB, using

EMA = e
φ
2

[
|g|−1/4gm

a |g|1/4va

0 |g|1/4

]
, ηAB =

[
ηab 0

0 1

]
, (3.8)

where gm
a is a vielbein for the metric gmn and g = det gmn.

Representation in terms of the vielbein proves to be the most convenient to define the

deformations through an extension of the DFT β-shift, which we call the Ω-shift:

EMA −→ O[Ω]M
NENB, (3.9)

with the matrix O[Ω] given by

O[Ω] =

[
δm

n 0

1
3!εmpqrΩ

pqr 1

]
, (3.10)

where εmnkl is the epsilon symbol and Ωmnk are tensor components of the deformation

tri-vector Ω = 1
3!ρ

αβγ kα ∧ kβ ∧ kγ . The deformation in this form is completely frame

independent and allows to define deformations for backgrounds with fluxes.

Consider the initial background comprised by the internal metric gmn, gauge 3-form

field encoded by vm = 1
3! ε

mnklcnkl and the 7× 7 block of the 11-dimensional metric gµν =

e−2φ(x)ḡµν(y). The deformation map (3.9) changes the corresponding generalised vielbein

by a factor of O[Ω]. The generalised metric acquires some Ω dependence; however, we

are free to interpret the new metric as a standard expression (3.6), only with some new

deformed background fields Gmn, V
m and Gµν = e−2Φ(x)ḡµν(y) (recall that we restrict

ourselves to such deformations, where the external metric changes only by an xm-dependent

factor). Explicitly this can be written as

MMN = eφ

[
|g|−1/2(gmn ± (1± v2)WmWn − 2v(mWn)) −vn ± (1± v2)Wn

−vm ± (1± v2)Wm ±|g|1/2(1± v2)

]

= eΦ

[
|G|−1/2Gmn −Vm

−Vn ±|G|1/2(1± V 2)

]
,

(3.11)

where Wm = 1
3! εmnkl Ω

nkl. The first matrix above is just the result of multiplica-

tion (3.9), while the second matrix already contains the deformed fields. Equality between

these two generalised metrics is what defines the deformation in terms of d = 11 fields

(gmn, gµν , cmnk) −→ (Gmn, Gµν , Cmnk). Since the main transformation (3.9) is essentially

a frame change, it is convenient to refer to these two representations of the generalised

metric as the C-frame and the (C −Ω)-frame, depending on which fields appear inside the

generalised metric.
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In order to recover the explicit relations for d = 11 fields, we follow the same procedure

as in [41] and start by equating determinants of the generalised metric in both frames (3.11)

to obtain

e5Φ|G|−
1
2 = e5φ|g|−

1
2 , (3.12)

where G = detGmn. Next, equating the generalised metrics block-by-block one writes

eΦ|G|−
1
2Gmn = eφ|g|−

1
2
(
gmn ± (1± v2)WmWn − 2v(mWn)

)
, (3.13a)

eΦVm = eφ
(
vm±(1± v2)Wm

)
. (3.13b)

Taking determinant of the first line and using the algebraic identity

det
(
δm

n ± (1± v2)WmW
n − vmWn −Wmv

n
)

= 1±WmW
m − 2Wmv

m +
(
Wmv

m
)2
,

(3.14)

we can define

K−1 = e−6(Φ−φ) = 1±WmW
m − 2Wmv

m +
(
Wmv

m
)2
. (3.15)

This gives the transformation rule eΦ = K
1
6 eφ for the field φ and hence for the external

metric. Understanding K as a function of the deformation parameter Wm, the equations

in (3.13) express the deformed fields in terms of the original metric gmn, gauge field vm

and the deformation tensor Wm. Altogether, the deformation rules can be summarised as

follows:
Gµν = K−

1
3 gµν ,

Gmn = K
2
3
(
gmn ± (1± v2)WmWn − 2v(mWn)

)
,

Cmnk = K−1

(
cmnk +

(
1± 1

3!
c2

)
Ωmnk

)
.

(3.16)

Note that the indices of Cmnk are raised by the deformed metric Gmn, while the indices of

cmnk are raised by the corresponding initial metric gmn. It is worth reminding ourselves

that the external Gµν and the internal Gmn blocks of the full d = 11 metric are defined by

the following interval

ds2 = Gµν(y, x)dyµdyν +Gmn(x)dxmdxn, (3.17)

and the external metric has the form Gµν(y, x) = e−2Φ(x)ḡµν(y) for the initial ḡµν that does

not depend on the internal coordinates.

Observe that while the deformation prescription (3.16) is an extension of the recipe

of [41, 42], it also reproduces the earlier results of [54, 55]. In the latter context (3.16)

is to be viewed as a field redefinition between the open and closed membrane frames in

M-theory.

3.3 Equations of motion

Consider now the dynamical equations that control the deformation tensor Wm, given that

the initial and the deformed backgrounds satisfy the equations of motion of the full d = 11

supergravity, or equivalently of the truncated theory.
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For technical reasons we will consider the equations that govern deformations of the

AdS4 × S7 background in the C-frame, i.e., using the second form of the metric in (3.11).

Hence, equations for the deformation tensor Wm are implicit in this case. One starts with

the Lagrangian of the truncated SL(5) ExFT in the C-frame (3.7)

ē−1h−
1
2L = e−5φR[h̄(7)] + e−7φ

(
R[h(4)] + 42hmn∂mφ∂nφ+

1

2
∇mV m∇nV n

)
. (3.18)

Equations of motion for the dynamical fields φ, hmn and Vm then become

δφ :
5

7
e2φR[h̄(7)] +R[h(4)] + 12∇m∇nφ hmn − 42∇mφ∇nφhmn +

1

2
(∇V )2 = 0,

δV m : ∂m(∇V )− 7 (∇V )∂mφ = 0,

δhmn : Rmn[h(4)]− 7 ∂mφ∂nφ + 7∇m∇nφ+ hmn

(
− 1

2
e2φR[h̄(7)] (3.19)

− 1

2
R[h(4)] + 28 ∂kφ∂lφh

kl − 7∇k∇lφhkl +
1

4
(∇V )2

)
= 0,

These prove to be much simpler for further calculations than the original equations of

motion of eleven-dimensional supergravity. The external space is always fixed to be the

7-sphere with the metric ḡµν up to a prefactor e−2φ. Any supergravity solution of the

form (3.1), before or after the deformation, must also be a solution to these equations.

To derive explicit equations for the deformation tensor in the AdS4 × S7 background,

one would have to work in the mixed (C−Ω)-frame using the generalised metric (3.11) in the

Lagrangian (3.4). This provides formulation of eleven-dimensional supergravity in terms

of both Cmnk and Ωmnk, however, with the restriction that Ωmnk is non-dynamical and

rather encodes deformations. Given the complicated form of the generalised metric (3.11),

this appears to be a technically involved procedure and we will leave it beyond the scope

of the present paper. Explicit construction of such a formulation for both DFT and ExFT

is an open problem.

4 AdS4 × S7 background

As an application of the developed formalism, let us look at the deformations of AdS4×S7

spacetime. We will study the deformations that correspond to Ω ∼ P∧P∧M and D∧P∧P .

The fields of the initial eleven-dimensional solution may be expressed as

ds2 =
1

4
ds2(AdS4) +R2dΩ2

(7), F4 =
3

8R
volAdS4 , (4.1)

with a unit metric on the seven-sphere. We consider the AdS part as the ‘internal’ space

for the SL(5) ExFT. Denoting the AdS coordinates as xm = (x0, x1, x2, z), the metric is

as usual

ds2(AdS4) =
R2

z2

[
−(dx0)2 + (dx1)2 + (dx2)2 + (dz)2

]
. (4.2)

The only component of the flux and the corresponding 3-form gauge potential then become

F012z = −3R3

8z4
, c012 = − R

3

8z3
. (4.3)
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In this work we are interested in the tri-vector deformations of generalised Yang-

Baxter type

Ω =
1

3!
ραβγkα ∧ kβ ∧ kγ , (4.4)

where kα are Killing vectors of the initial background, in our case AdS4 × S7. As it has

been mentioned in the previous section, the deformation matrix O[Ω] does not depend on

the frame chosen, which implies that one may use Killing vectors of AdS4 in the C-frame.1

Hence, we list Killing vectors of the AdS4 space:

Pa = ∂a, Ka = x2∂a + 2xaD,

D = −xm∂m, Mab = xa∂b − xb∂a,
(4.5)

where a, b = 0, 1, 2 and m,n = 0, 1, 2, z, and we define x2 = ηmnx
mxn and xa = ηabx

b.

To proceed with explicit examples of deformed AdS4× S7 backgrounds systematically,

we consider such combinations of the Killing vectors, that the resulting Ω is polynomial

of order 0, 1, etc. in powers of AdS coordinates. Applying the transformation rule (3.16)

we derive the deformed metrics Gµν , Gmn and the 3-form Cmnk from their undeformed

initial values gmn, gµν , cmnk and the deformation tensor Wm defined by the given choice

of Ωmnk. To check whether a deformation gives a solution of equations of motion of 11-

dimensional supergravity we substitute the deformed background written in terms of the

fields Φ, Gmn, V
m into the equations of motion (3.19) of the truncated ExFT. Since the S7

part only receives a correction encoded in the prefactor e−2φ, using the truncated equation

proves technically much simpler than the full d = 11 theory.

4.1 P ∧ P ∧ P

Start with the tri-vector as a polynomial of order 0 in coordinates, which corresponds to

the trivial abelian P ∧ P ∧ P deformation defined as

Ω =
1

3!
ραβγkα ∧ kβ ∧ kγ = 4η P0 ∧ P1 ∧ P2. (4.6)

The deformation tensor and the prefactor K then become

W = −η
4

R4

z4
dz, K =

(
1 + η

R3

z3

)−1

. (4.7)

Following the prescribed procedure one finds for the deformed background

ds2 =
R2

4z2

(
1 + η

R3

z3

)− 2
3 [
−(dx0)2 + (dx1)2 + (dx2)2

]
+R2

(
1 + η

R3

z3

) 1
3
(

1

4z2
dz2 + dΩ2

(7)

)
,

F = − 3

8

R3

z4

(
1 + η

R3

z3

)−2

dx0 ∧ dx1 ∧ dx2 ∧ dz,

(4.8)

which is a solution of the equations (3.19) and hence of the d = 11 equations of motion.

1To arrive at the same conclusions one may follow arguments based on generalised Killing vectors of the

initial undeformed backgrounds in the spirit of [15].

– 11 –



J
H
E
P
0
5
(
2
0
2
0
)
1
1
3

For this deformation the Q-flux Qm
nkl = ∂mΩnkl can be checked to have no trace

Qm
mnk = 0, hence the solution can be consistently reduced to a solution of the 10-

dimensional type IIA theory. In fact, this P ∧ P ∧ P deformation is abelian in the sense

that there exists a generator that commutes with the other two. In the present case any

of the Pa’s satisfies this property, say P2. This implies that the deformation (4.8) can be

viewed as a result of dimensional reduction of the initial AdS4 × S7 to IIA along x2, then

a TsT deformation with respect to the bi-vector β, such that Ω = ∂2 ∧ β:

β = 4η ∂0 ∧ ∂1, (4.9)

and finally an uplift back to d = 11. As expected, this reflects the fact that the corre-

sponding deformation is simply a d = 11 extension of a TsT [43, 44].

4.2 P ∧ P ∧M

The very next example with Ω being a polynomial of order 1 in xa provides a nonabelian

deformation. Using the coefficients with the symmetry ρab,cd = ρ[ab],[cd], consider

Ω =
1

4
ρab,cdPa ∧ Pb ∧Mcd =

4

R3
ρax

a ∂0 ∧ ∂1 ∧ ∂2, (4.10)

where

ρ0 =
R3

4
(ρ02,01 − ρ01,02),

ρ1 =
R3

4
(ρ01,12 − ρ12,01),

ρ2 =
R3

4
(ρ02,12 − ρ12,02),

(4.11)

and we have introduced a numerical coefficient for convenience. It is easy to see that there

is no such generator that commutes with all the others, which means that this deformation

is non-abelian. The deformation tensor is

W = − R

4z4
ρax

a dz, K =
z3

z3 − ρaxa
, (4.12)

and the resulting deformed background then is given by

ds2 =
R2

4

(
z3 − ρaxa

)− 2
3
[
−(dx0)2 + (dx1)2 + (dx2)2

]
+
R2

z

(
z3 − ρaxa

) 1
3

(
1

4z2
dz2 + dΩ2

(7)

)
,

F = −3R

8

(
Rz

z3 − ρaxa

)2

dx0 ∧ dx1 ∧ dx2 ∧ dz.

(4.13)

Using (3.19) one can check that this provides a solution to 11-dimensional equations of

motion for arbitrary values of the constants ρa. In contrast to the previous example, trace

of the Q-flux is non-zero and reads

2∂[mWn]dx
m ∧ dxn = − R

3

4z4
ρadx

a ∧ dz 6= 0. (4.14)
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Upon dimensional reduction from ExFT in the Ω-frame to β-supergravity one expects that

non-vanishing trace Qm
mkl generates non-vanishing trace of the Q-flux of β-supergravity.

The latter is known [56] to correspond to the vector I of generalised supergravity.

4.3 D ∧ P ∧ P

Another way to build a tri-vector of the first order in powers of xm is to use the dilatation

generator D together with momenta. For the conformal algebra of AdS4 there are three

possible pairs of Pa, Pb. It is convenient to parametrise a generic tri-vector of the form

D ∧ P ∧ P as

Ω =
2

R3
ρaε

abcD ∧ Pb ∧ Pc =
4

R3
ρax

a ∂0 ∧ ∂1 ∧ ∂2 −
2

R3
z ρaε

abc ∂b ∧ ∂c ∧ ∂z, (4.15)

with ρa corresponding to the three independent components of the ρ-matrix. Using this

Ω, the deformation tensor and the prefactor are

W =
R

4z3
ρa

(
dxa − xa dz

z

)
, K =

(
1 +

ρax
a

z3
− ρ2

4z4

)−1

, (4.16)

where we define ρ2 = ρaρbη
ab. The deformed background is then given by

ds2 =
R2

4

(
z3 + ρax

a − ρ2

4z

)− 2
3
[
− (dx0)2 + (dx1)2 + (dx2)2 +

(
1 +

ρax
a

z3

)
dz2

− 1

z2
ρadx

adz

]
+
R2

z

(
z3 + ρax

a − ρ2

4z

) 1
3

dΩ2
(7),

F = −3R3z2

8

(
1 +

ρ2

12z4

)(
z3 + ρax

a − ρ2

4z

)−2

dx0 ∧ dx1 ∧ dx2 ∧ dz.

(4.17)

By checking either (3.19) or the field equations of d = 11 supergravity one can show that

this background is a solution, if parameters ρa form a null vector:

ρ2 = −ρ2
0 + ρ2

1 + ρ2
2 = 0. (4.18)

This is reminiscent of the d = 10 Yang-Baxter deformation with Θ = τaMab ∧ P b, also

parametrised by a null vector τ . The exact manner in which the condition (4.18) arises is

completely analogous to the way in which the Yang-Baxter equation is encoded in d = 10

supergravity. One simply finds a factor of ρ2 out front every field equation after some

simplifying algebra. We take this as a hint, that the condition (4.18) may be an elementary

example of a generalised Yang-Baxter equation, as applied to the tri-vector (4.15).

Similar to the P ∧ P ∧M case, this background is an example of a deformation with

vanishing R-flux, but non-vanishing trace of the Q-flux. For the latter one calculates

2∂[mWn]dx
m ∧ dxn = −R

z4
ρadx

a ∧ dz 6= 0. (4.19)

Following the same arguments as in the previous subsection we conclude that the obtained

deformed background cannot be reduced to a solution of conventional d = 10 supergravity.
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Moreover, since the tri-vector Ω is non-ablelian the P ∧P ∧M and D∧P ∧P deformations

cannot be put to the form Ω = ∂∗∧β. The conclusion is that both these solutions are proper

11-dimensional deformations that cannot be accessed via 10-dimensional techniques.

An important question is what fraction of supersymmetry is preserved by the tri-vector

deformation. We note that only half of the AdS Killing spinors are invariant under the

spinorial Lie derivative [57, 58] with respect to shifts, LPiε = 0. We expect therefore that

the P ∧ P ∧ P and P ∧ P ∧M solutions of the present article have their supersymme-

tries halved by the deformation. Moreover, the dilatations break even these remaining

Killing spinors of AdS, LDε = 1
2ε, which presumably makes the D ∧ P ∧ P deformed so-

lution non-supersymmetric. Preservation of supersymmetry in the bi-vector deformation

case was the subject of a recent investigation [59–61], which has produced a closed form

expression for the Killing spinors after the deformation in terms of the bi-vector parameter

Θ. Implementing this for the tri-vector deformations in full generality deserves a detailed

separate study.

4.4 D ∧K ∧K

The outer automorphism of the conformal algebra

Pa ←→ Ka, D ←→ −D (4.20)

can be realised geometrically by an inversion, which is an isometry of AdS spacetime:

xa −→ xa

x2 + z2
, z −→ z

x2 + z2
. (4.21)

Applying this map to the D ∧ P ∧ P -deformed background (4.17), one should be able to

recover the deformation with Ω ∼ D∧K ∧K. Given the geometric symmetry, one expects

this D∧K ∧K deformation to also be a solution. Note that the tri-vectors are in fact very

closely related,

D ∧Ka ∧Kb = (x2 + z2)2D ∧ Pa ∧ Pb. (4.22)

Explicit calculation shows, however, that already the second equation in (3.19), which

states ∇mV me−7φ = const, does not hold for the obtained background. This negative

result makes it very intriguing to derive explicit equations for the deformation tensor, that

is the equations of motion (3.19) in the mixed (C − Ω)-frame, and investigate the reason

of such unexpected behaviour more closely.

5 Conclusions and discussions

In this work we studied tri-vector deformations of the AdS4×S7 solution of 11-dimensional

supergravity, generalising the results of [41] to the case of non-abelian deformations. Work-

ing in the formalism of SL(5) exceptional field theory properly truncated to describe back-

grounds of the form M4 ×M7, we generalise the deformation map of [41] to the case of

backgrounds with non-vanishing 3-form flux and provide two examples of non-abelian de-

formations. The corresponding tri-vector deformation parameter is schematically given
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by Ω ∼ P ∧ P ∧M and Ω ∼ D ∧ P ∧ P , where D,Pa,Mab stand for generators of the

AdS4 symmetry algebra. Both deformations are non-abelian, that is one cannot represent

the tri-vector in the form Ω = ∂∗ ∧ β where ∂∗ commutes with the generators of β. The

deformed backgrounds cannot be obtained by reducing to 10 dimensions, performing a

bi-vector deformation and uplifting back to d = 11, as there is no obvious direction for the

reduction (see e.g. [44]).

Our proposed procedure may be used to further investigate the AdS4 × S7 solution

in search for more non-abelian deformations, as well as to address the deformations of

the sphere part of AdS7 × S4. The isometry algebra of a sphere may turn out to be too

restrictive, though. Indeed, the only deformations of d = 10 supergravity backgrounds

found so far are either abelian or of the so-called Jordanian type. The latter means that

the generators chosen for the Killing bi-vector deformation ansatz belong to the Borel

subalgebra of the full isometry algebra. So are the tri-vector deformations D ∧ P ∧ P and

M ∧P ∧P discussed in this paper, which may be referred to as the tri-vector deformations

of generalised Jordanian type. It is an interesting question, whether these correspond to

solutions of a generalisation of the Yang-Baxter equation. Based on the known examples

in d = 10 and d = 11 and on the analysis of the equations of motion, one can expect that

the algebraic equations that restrict a deformation to be a solution must be quadratic in

ρabc. By an appropriate choice of basis for the algebra such constraints can be brought to

the form ρIρJκIJ = 0, where κIJ is some invariant tensor and I, J are some (multi)indices

corresponding to the chosen basis. In the examples of this paper the Borel subalgebra

contains in particular the generators P0, P1, P2 with the symmetry group SO(1, 2) and

the invariant tensor becomes just the Minkowski metric ηab. This may be viewed as a

motivation of the non-trivial equation (4.18). For SO(d+ 1), which is the symmetry group

of Sd with the Euclidean metric δIJ as its invariant tensor, we expect an equation of

the type
∑

(ρI)2 = 0, which has only a trivial solution. This has already been observed

in [41], where no nontrivial non-abelian bi-vector deformations of the flat Euclidean space

were found.

Part of the motivation for constructing the non-abelian tri-vector deformations was

to test the proposals for generalised Yang-Baxter equation that have appeared recently.

In [25] it has been shown using techniques of Double Field Theory and β-supergravity that

for a bi-vector deformation β = 1
2r
αβkα ∧ kβ to generate a solution to the field equations

of d = 10 supergravity, it is sufficient that the matrix rαβ satisfy the classical Yang-Baxter

equation. The same condition is imposed by assuming that the R-flux vanishes. Turning

to M-theory backgrounds one naturally considers tri-vector instead of bi-vector. In [41] the

vanishing of the ExFT R-flux Rm,nklp = Ωmq[n∂qΩ
klp] was proposed as the condition for a

tri-vector deformation to be a solution. Assuming the tri-Killing ansatz for Ω (1.3), R = 0

translates into

6ραβ[γρδε|ζ|fαζ
η] + ρ[γδερη]αζfαζ

β = 0. (5.1)

Explicit check shows that for the P ∧ P ∧ M and D ∧ P ∧ P deformations the R-flux

indeed vanishes. However, at least for the D ∧P ∧P this is not sufficient to end up with a

solution to d = 11 equations of motion, and a stronger algebraic constraint on ραβγ (4.18)

is required.
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Based on the generalisation of Poisson-Lie T-duality to the U-duality setup [36, 62], an

algebraic constraint for ραβγ was proposed that was conjectured to be a sufficient condition

for the deformation to be a supergravity solution. The non-abelian deformed solutions

described in the present work are in the non-unimodular class, meaning ∂mΩmnk 6= 0,

therefore the corresponding ραβγ cannot satisfy the equations of [36] as the latter suppose

unimodularity. It is then natural to expect that the algebraic constraints for the tri-vector

components ραβγ , such as (4.18), are manifestations of the M-theory generalisation of the

CYBE with non-unimodularity properly taken into account. The Exceptional Drinfeld

Algebra construction of [37] includes non-unimodular terms and may turn out to be the

way that leads to the correct generalisation of the CYBE. Note that while in the d = 10

case both unimodular and non-unimodular deformations are required to satisfy the same

classical Yang-Baxter equation, this seems not to be the case for M-theory. Moreover, the

condition of the vanishing R-flux, which is equivalent to the CYBE in d = 10, appears to

be only a part of the equations of [36].

Given these results, searching for the general algebraic equations for ραβγ that gener-

alise the classical Yang-Baxter equation appears to be an interesting direction of further

research. From the algebraic point of view a natural expectation is that the CYBE, which

is relevant for the scattering of particles in 1+ 1 dimensions, will be promoted to the tetra-

hedron equation describing scattering of strings in d = 1 + 2 [63, 64]. Depending on the

labeling scheme, the tetrahedron equation may be referred to as Zamolodchikov or Frenkel-

Moore equation. Deriving a representation independent form of the semi-classical limit of

the tetrahedron equation and comparing the results to those of [36] is an open problem.

More transparent is the algebraic interpretation of the vanishing R-flux condition.

Following [65, 66] one notices that the M2-brane world-volume dynamics brings about a

non-commutativity parameter given by a tri-vector Ωmnk, as well as the following Nambu-

Poisson 3-bracket

{xm, xn, xk} = Ωmnk. (5.2)

The fundamental identity for such a bracket,

{{xi, xj , xk}, xl, xm} − {{xi, xl, xm}, xj , xk}
− {xi, {xj , xl, xm}, xk} − {xi, xj , {xk, xl, xm}} = 0,

(5.3)

which is at the same time the closure condition for the Exceptional Drinfeld Algebra [37], is

precisely the vanishing R-flux condition of the SL(5) theory. Indeed, when written in terms

of Wm = 1
3! εmnklΩ

nkl the fundamental identity is proportional to εmnklW[n∂kWl] = 0, that

is Rm,ijklεijkl = 0. Given this observation and the fact that all particular examples of tri-

vector deformations are R-fluxless, it is reasonable to conjecture that any sensible M-theory

background must have vanishing R-flux.

In this article our attention was focused on the d = 11 supergravity deformations and

underlying symmetries. On a more practical note, however, one may look into the holo-

graphic interpretations of the deformations that were obtained here. The dual field theory

description of the AdS4 × S7 supergravity background is given by the ABJM theory [67],

while some deformations thereof should correspond to the solutions that we have presented.
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The abelian deformation P ∧P ∧P considered in this paper is a tri-vector analogue of the

Maldcena-Russo deformation of AdS5 × S5 [68]. In the field theory language this is repre-

sented by a non-commutative gauge theory whose product can be recovered either following

the brane picture (see e.g. [69]), or by considering Drinfeld twists of the Hopf algebra struc-

ture of the corresponding tensor algebra as in [70]. In general, for any abelian tri-vector

deformations along the AdS4 isometries one should expect non-commutative structures

defined by the standard Moyal star product to appear in the ABJM theory [71]. More

interesting are the non-abelian deformations D ∧ P ∧ P and M ∧ P ∧ P , which can be un-

derstood as tri-vector generalisations of the so-called jordanian Yang-Baxter deformations.

To gain some understanding of these deformations on the gauge theory side one could take

the approach of [70], extending it to what for want of a better name can be termed the

“exceptional Drinfeld twist”. This should define a twist of the matrix ρabc such that the

tetrahedron equation is satisfied. Authors are not aware whether and to what extent such

structures have been considered in the mathematical literature.

As a final remark we notice that in contrast to the approach of [23], in the present work

we did not derive explicit equations for the deformation tensor Ωmnk from exceptional field

theory, rather working in the C-frame. The dynamical differential equations for Ω seem

to be the optimal starting point for deriving algebraic constraints for the deformation

parameters ραβγ . However, to address backgrounds with fluxes one should go to the mixed

(C − Ω)-frame, which we leave for future work.
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A Notations and conventions

In this paper we use the following conventions for indices

µ̂, ν̂,= 1 . . . 11 eleven directions, curved;

α̂, β̂,= 1 . . . 11 eleven directions, flat;

µ, ν, ρ, . . . = 1 . . . 7 external seven directions, curved;

µ̄, ν̄, ρ̄, . . . = 1 . . . 7 external seven directions, flat;

m,n, k, l, . . . = 1, . . . , 4 internal four directions, curved;

m̄, n̄, k̄, l̄, . . . = 1, . . . , 4 internal four directions, flat;

M,N,K,L, . . . = 1, . . . , 5 fundamental ExFT indices, curved;

A,B,C,D, . . . = 1, . . . , 5 fundamental ExFT indices, flat;

α, β, γ, . . . = 1, . . . , N indices labelling Killing vectors;

a, b, c, d, . . . = 0, . . . , 2 first three directions of AdS4 in Poincaré patch.

(A.1)
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Totally antisymmetric tensor in n dimensions is defined as

εi1...in = g1/2εi1...in , ε1...n = 1. (A.2)

Curvature tensors are defined as

[∇m,∇n]V k = Rmn
k
lV

l,

Rmn
k
l = ∂mΓnl

k − ∂nΓml
k + Γmq

kΓnl
q − ΓknqΓ

q
ml,

Rmn = Rkm
k
n.

(A.3)

In our notations non-vanishing commutators of the AdS algebra read

[D,Pa] = Pa, [D,Ka] = −Ka,

[Mab, Pc] = −2ηc[aPb], [Mab,Kc] = −2ηc[aKb],

[Pa,Kb] = 2Mab + 2ηabD, [Mab,Mcd] = −2ηc[aMb]d + 2ηd[aMb]c.

(A.4)

These can be mapped to standard commutation relations of so(2,3) algebra by defining

Jab = iMab, J0∗ = iD,

J∗a =
i

2
(Pa −Ka), J0a =

i

2
(Pa +Ka).

(A.5)
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