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Abstract We compute the quasinormal modes (QNMs) of
a massive scalar field in the background of a rotating three-
dimensional Hořava AdS black hole, and we analyze the
effect of the breaking of Lorentz invariance on the QNMs.
Imposing on the horizon the requirements that there are only
ingoing waves and at infinity the Dirichlet boundary condi-
tions and the Neumann boundary condition hold, we calcu-
late the oscillatory and the decay modes of the QNMs. We
find that the propagation of the scalar field is stable in this
background and employing the holographic principle we find
the different times of the perturbed system to reach thermal
equilibrium for the various branches of solutions.

1 Introduction

If a dynamical system is perturbed, it will return to equilib-
rium, and this process is completely determined by the poles
of the retarded correlation function of the perturbation. In
gravity theories, black holes are thermodynamical systems
and perturbations of them at equilibrium are described by
the quasinormal modes (QNMs) [1–7]. The QNMs are deter-
mined by solving the wave equation of an incident wave with
the right boundary conditions. Then the solution of the wave
equation determines the complex frequencies, the real part of
which gives the rate of oscillations of the wave, while their
complex part gives the required decay time for the system to
reach thermal equilibrium.

The QNMs and quasinormal frequencies (QNFs) have
been subjects of study for a long time and have recently
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acquired great interest due to the detection of gravitational
waves [8]. Despite the detected signal being consistent with
the Einstein gravity [9], there are great uncertainties in the
mass and angular momenta of the ringing black hole, which
leaves open possibilities for alternative theories of gravity
[10] like f (R) gravity [11–13] and Galileon gravity theo-
ries [14–16]. Also, the QNMs and the QNFs were exten-
sively studied in connection with the stability of black holes
in Einstein gravity [17–19] and in modified gravity theories
[20–22].

The gauge/gravity duality which results from the AdS/CFT
correspondence [23,25] stimulated the interest in calculat-
ing the QNMs and QNFs of black holes in AdS spacetime.
It was shown in [26] that this holographic principle leads to
the existence of a correspondence between the QNMs in AdS
black holes and linear response theory in scale invariant finite
temperature field theory. This correspondence of the decay
of perturbations in the dual conformal field theory and the
QNMs in the gravity bulk was first discussed in [27]. Con-
sidering the (2 + 1)-dimensional AdS black hole [28], it was
shown analytically [26] that there is agreement between its
QNFs and the location of the poles of the retarded correla-
tion function describing the linear response on the conformal
field theory side.

In this work we will consider a matter distribution in the
background of three-dimensional rotating Hořava AdS black
holes [29], parameterized by a scalar field. We will perturb
the scalar field assuming that there is no back reaction on
the metric. This will result in the calculation of the QNMs,
which are characterized by a spectrum that is independent
of the initial conditions of the perturbation and depends only
on the black hole and probe field parameters, and on the fun-
damental constants of the system (for a review see [30]).
It is worth mentioning that other black hole solutions in
gravitational theories with broken Lorentz invariance have
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been found; for instance, static and stationary exact solu-
tions of the full theory of the projectable Hořava gravity
with an extra U (1) symmetry in (2 + 1)-dimensions, which
is power-counting renormalizable [31]. Also, solutions for
QNMs of black holes in three spacetime dimensions have
been obtained in [32,33,35–42].

The motivation for considering the Hořava gravity the-
ory is twofold. Considering a condensed matter dynamical
system, it was argued in [43] that this condensed matter sys-
tem breaks Lorentz invariance spontaneously and its excita-
tions, the superfluid’s phonons, have to non-linearly realize
the spontaneously broken Lorentz boosts, forcing their inter-
actions to have a very constrained structure. Then, to holo-
graphically describe such a system on the boundary, we need
to have a broken Lorentz gravity theory in the bulk. The other
motivation is, by calculating the QNMs, to see what is the
effect of Lorentz breaking symmetry on the relaxation time
of the dynamical system to reach thermal equilibrium on the
boundary [44].

In this context, the QNMs for four-dimensional non-
reduced Einstein-aether theory was studied, and it was found
in [45] that the oscillation and damping rate of QNMs are
larger than those of Schwarszschild black holes of the Ein-
stein theory, for an effective potential that is known only
numerically. More recently, the QNMs for two kinds of aether
black holes were analyzed, and it was shown that quasinor-
mal ringing of the first kind of aether black hole is similar to
that of another Lorentz violation model—the QED-extension
limit of standard model [46]. Also, it was found in [47] that
both the first and the second kind of aether black holes have
larger damping rates and smaller real oscillation frequencies
of QNMs than Schwarzschild black holes.

The work is organized as follows. In Sect. 2 after giv-
ing a brief review of the BTZ black hole, we discuss the
three-dimensional Hořava gravity and its connection with
three-dimensional Einstein-aether theory. In Sect. 3 we find
the QNMs analytically for massive scalar fields with circular
symmetry and for a specify value of J . Also, for a massive
scalar field we show that the Klein–Gordon equation can be
written as the Heun equation, and we find the QNFs numer-
ically by applying the pseudospectral method. Finally, our
conclusions are in Sect. 4.

2 Three-dimensional rotating Hořava black holes

In this section, after reviewing in brief the BTZ black hole,
we discuss the Hořava gravity and its connection with three-
dimensional Einstein-aether theory. The metric of the BTZ
black hole is given by

ds2 = − sinh2 μ (r+dt − r−dφ)2 + dμ2

+ cosh2 μ (−r−dt + r+dφ)2 . (1)

The angular coordinate φ has period 2π , and the radii of the
inner and outer horizons are denoted by r− and r+, respec-
tively. The dual conformal field theory on the boundary is
(1 + 1)-dimensional, the conformal symmetry being gen-
erated by two copies of the Virasoro algebra acting sepa-
rately on left- and right-moving sectors [26]. Consequently,
the conformal field theory splits into two independent sectors
at thermal equilibrium with temperatures

TL = (r+ − r−)/2π , TR = (r+ + r−)/2π. (2)

According to the AdS3/CFT2 correspondence, to each field of
spin s propagating in AdS3 there corresponds an operator O
in the dual conformal field theory characterized by conformal
weights (hL, hR) with [25]

hR + hL = � , hR − hL = ±s, (3)

and � is determined in terms of the mass m of the scalar
field,

� = 1 +
√

1 + m2. (4)

For a small perturbation, one expects that at late times the
perturbed system will approach equilibrium exponentially
with a characteristic time-scale. This time-scale is inversely
proportional to the imaginary part of the poles, in momentum
space, of the correlation function of the perturbation opera-
tor O. For a conformal field theory at zero temperature, the
2-point correlation functions can be determined, up to nor-
malization, from conformal invariance.

Then two sets of poles were found [26]:

ωL = k − 4π iTL(n + hL),

ωR = −k − 4π iTR(n + hR), (5)

where n takes the integer values (n = 0, 1, 2, . . .). This set
of poles characterizes the decay of the perturbation on the
CFT side, and coincides precisely with the quasinormal fre-
quencies of the BTZ black hole [26].

We now discuss the three-dimensional Hořava gravity, the
action of which is given by [48]

SH = 1

16πGH

∫
dT d2xN

√
g [L2 + L4] , (6)

where GH is a coupling constant with dimensions of a length
squared and the Lagrangian L2 has the following form:

L2 = Ki j K
i j − λK 2 + ξ

(
(2)R − 2�

)
+ ηaia

i , (7)

where Ki j , K , and (2)R correspond to extrinsic, mean, and
scalar curvature, respectively, and ai is a parameter related to
the lapse function N via ai = ∂i ln N , being the line element
in the preferred foliation

ds2 = N 2dT 2 − gi j (dx
i + NidT )(dx j + N jdT ). (8)
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Also, g is the determinant of the induced metric gi j on the
constant-T hypersurfaces. L4 corresponds to a set of all the
terms with four spatial derivatives that are invariant under
diffeomorphisms. For λ = ξ = 1 and η = 0, the action
reduces to that of General Relativity. In the infrared limit of
the theory the higher order terms L4 (UV regime) can be
neglected, and the theory is equivalent to a restricted version
of Einstein-aether theory, through

uα = ∂αT√
gμν∂μT ∂νT

(9)

and

GH

Gae
= ξ = 1

1 − c13
,

λ

ξ
= 1 + c2 ,

η

ξ
= c14 , (10)

where ci j = ci + c j . With the action of the Einstein-aether:

Sae = 1

16πGae

∫
d3x

√−g (−R − 2� + Lae) , (11)

where Gae is a coupling constant with dimensions of a length
square, g is the determinant of gμν , � is the cosmological
constant, R is the 3D Ricci scalar,

Lae = −Mαβμν∇αuμ∇βuν, (12)

and

Mαβμν = c1g
αβgμν + c2g

αμgβν + c3g
ανgβμ + c4u

αuβgμν.

(13)

Another important characteristic of this theory is that only
in the sector η = 0, Hořava gravity admits an asymptotically
AdS solution [29]. Therefore, assuming stationary and cir-
cular symmetry, the theory will admit the BTZ analogue to
the three-dimensional rotating Hořava black holes described
by the metric

ds2 = Z(r)2dt2 − 1

F(r)2 dr2 − r2(dφ + �(r)dt)2, (14)

where

F(r)2 = Z(r)2 = −M + J̄ 2

4r2 − �̄r2, (15)

with

J̄ 2 = J 2 + 4a2(1 − ξ)

ξ
, �(r) = − J

2r2 , �̄

= � − b2(2λ − ξ − 1)

ξ
, (16)

where a and b are constants that can be regarded as measures
of aether misalignment, with b a measure of asymptotically
misalignment, for b �= 0, the aether does not align with the
timelike Killing vector asymptotically. Note that when ξ = 1
and λ = 1, the solution becomes that of BTZ black holes,
and for ξ = 1, the solution becomes “BTZ black holes”
with a shifted cosmological constant, �̄ = � − 2b2(λ − 1).

However, there is still a preferred direction represented by the
aether vector field which breaks Lorentz invariance for λ �= 1
and b �= 0. Also, J̄ 2 can be negative, when either ξ < 0 or
ξ > 1, a2 > J 2/(4(ξ − 1)). The sign of �̄ determines the
asymptotic behavior (flat, dS, or AdS) of the metric [29]; here
we focus on the AdS sector.

In [29] it was argued that, if ξ > 0 and λ > 0, the aether
represents a well-defined folation at large r for any value of
b. Moreover, if λ ≥ (1 + ξ)/2, then �̄ is always negative for
any b. Also, if the coupling constants are such that ξ > 0,
λ > 1/2 and λ < (1 + ξ)/2, then �̄ will switch sign at some
value of b.

In Fig. 1 we show the behavior of F(r)2 as a function of
r . When ξ increases (left panel), we observe a region where
there is no a horizon until ξ = ξe for which the black hole
becomes extremal; this value can be obtained from r− = r+.
Then there is a region where r+ increases and r− decreases
until it becomes null when ξ = ξc, and finally there is a
region ξ > ξc where there is only one horizon. Also, we can
observe the same behavior when λ decreases (right panel).
In Figs. 2 and 3, we plot the behavior of �̄ as a function of b,
and its sign determines the asymptotic behavior (flat, dS, or
AdS) of the metric. Note that, for −1.4 < b < 1.4, the sign
of �̄ is negative, as mentioned, if the coupling constants are
such that ξ > 0, λ > 1/2 and λ < (1 + ξ)/2, then �̄ will
switch sign at some value of b.

The value of ξ for which the black hole is extremal is given
by

ξe = − 1

2(M2 − 4a2(b2 + �))

(
b2(J2 + 8a2λ) + �(J2 + 4a2)

−
(
(b2(J2 + 8a2λ) + �(J2 + 4a2))2

+ 4b2(J2 + 4a2)(2λ − 1)(M2 − 4a2(b2 + �))
)1/2)

,

(17)

the value of ξ for which the black hole passes from having
two horizons to having one horizon is given by

ξc = 4a2 + J 2

4a2 , (18)

and the value of ξ for which the effective cosmological con-

stant �̄ changes sign is given by ξ = (2λ−1)b2

b2+λ
. In Fig. 4, we

plot the different regions defined by ξe, ξc, and �̄ for a choice
of parameters.

In the case J̄ �= J (ξ �= 1), there is a curvature singularity
due to the Ricci scalar

R = − 6�̄ + 1

2r2

(
J̄ 2 − J 2

)
(19)

being divergent at r = 0. This is in contrast to BTZ black
holes where the Ricci and Kretschmann scalars are finite
and smooth at r = 0. The locations of the inner and outer
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Fig. 1 The behavior of F(r)2 as a function of r , with M = 1, a = 1, b = 1, � = − 1, J = 0.5. Left panel for λ = 1 and right panel for ξ = 1
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Fig. 2 The behavior of �̄ as a function of b, with � = − 1. Left panel for λ = 0.8, central panel for λ = 1 and right panel for λ = 1.2
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Fig. 3 The behavior of �̄ as a function of b, with � = − 1. Left panel for ξ = 0.9, central panel for ξ = 1 and right panel for ξ = 1.05

horizons, r = r±, are given by

r2± = − M

2�̄

⎛

⎝1 ±
√

1 + J̄ 2�̄

M2

⎞

⎠ . (20)

Also, M and J̄ can be written as M = −�̄(r2+ + r2−) and

J̄ = 2r+r−
√

−�̄, respectively. The Hawking temperature
TH is given by

TH = −�̄(r2+ − r2−)

2πr+
. (21)

3 QNMs

The quasinormal modes of scalar perturbations for a mini-
mally coupled massive scalar field to curvature on the back-
ground of three-dimensional Hořava AdS black holes are

described by the solution of the Klein–Gordon equation

�ψ = 1√−g
∂μ

(√−ggμν∂ν

)
ψ = −m2ψ, (22)

where m is the mass of the scalar field ψ . As was argued in
Ref. [49], it is possible to consider the usual Klein–Gordon
equation by neglecting the possible strong coupling of the
scalar mode in the Hořava gravity [50,51] due to the scalar
field considered being just a probe field that perturbs the back-
ground and does not have the symmetries of the background
metric and one understands the symmetries only through the
background metric, which is the standard procedure to com-
pute the QNMs. Only if the scalar field backreacts to the
metric it can correspond to the symmetries of the background
metric but this matter is not considered in our study. Also, at
large distances and relatively small momenta the corrections
to the ordinary Lorentz-invariant physics should be relatively
small. Equation (22) can be written as

(
− 1

F(r)2 ∂2
t + F(r)2∂2

r + 1

r
∂r (r F(r)2)∂r − J

r2F(r)2 ∂t∂φ

123



Eur. Phys. J. C (2020) 80 :600 Page 5 of 15 600

Fig. 4 Different regions of the parameter space for a = 1, λ = 1,
� = − 1, M = 1.5 and J = 1. The colored region corresponds to
�̄ < 0. In the yellow regions, there are no black hole solutions. In the
orange region, the black holes have two horizons while in the light blue
region, they have one horizon

+ 1

r2F(r)2 (F(r)2 − J2

4r2 )∂2
φ − m2

)

ψ = 0. (23)

The term F(r)2 − J 2

4r2 is given by

− M + J̄ 2

4r2 − �̄r2 − J 2

4r2

= −M + J 2 + 4a2(1 − ξ)

4ξr2

−(� − b2(2λ − ξ − 1)

ξ
)r2 − J 2

4r2

= − M + J 2

4r2

(
1

ξ
+ 4a2(1 − ξ)

ξ
− 1

)

−
(

� − b2(2λ − ξ − 1)

ξ

)
r2. (24)

It is worth mentioning that the second term in the above
expression vanishes for ξ = 1. Performing the change of vari-

ables z = r2−r2+
r2−r2−

along with the ansatz ψ = R(z)e−iωt eiκφ ,

Eq. (23) yields

z(1 − z)∂2
z R(z) + (1 − z) ∂z R(z)

+
[

− ω2(zr2− − r2+)

4�̄2(r2+ − r2−)2z
− Jωκ

4�̄2(r2+ − r2−)2

1 − z

z

− κ2

4�̄2(r2+ − r2−)2

(
F(z)2 − J 2

4r(z)2

)
1 − z

z

+ m2

4(1 − z)�̄

]
R(z) = 0. (25)

3.1 Massive scalar field with circular symmetry

For a massive scalar field with circular symmetry (κ = 0)
Eq. (25) is

z(1 − z)∂2
z R(z) + (1 − z) ∂z R(z)

+
[

− ω2(zr2− − r2+)

4�̄2(r2+ − r2−)2z
+ m2

4(1 − z)�̄

]

R(z) = 0, (26)

which can be written as

z(1 − z)∂2
z R(z) + (1 − z) ∂z R(z)

+
(
A + B

z
+ C

1 − z

)
R(z) = 0, (27)

where

A = − ω2r2−
4�̄2(r2+ − r2−)2

, B = ω2r2+
4�̄2(r2+ − r2−)2

, C = m2

4�̄
.

(28)

Under the decomposition R(z) = zα(1 − z)βK (z), Eq. (27)
can be written as a hypergeometric equation for K

z(1 − z)K ′′(z) + [c1 − (1 + a1 + b1)z] K ′(z) − a1b1K (z) = 0,

(29)

where the coefficients a1, b1, and c1 are given by

a1 = α + β ∓ √
A, b1 = α + β ± √

A , c1 = 1 + 2α, (30)

and the exponents α and β are

α = ±i
√
B, β = 1

2

(
1 ± √

1 − 4C
)

. (31)

The general solution of Eq. (29) takes the form

K = C1 2F1(a1, b1, c1; z)
+C2z

1−c
2F1(a1 − c1 + 1, b1 − c1 + 1, 2 − c1; z),

(32)

which has three regular singular points at z = 0, z = 1, and
z = ∞. Here, 2F1(a1, b1, c1; z) is a hypergeometric function
and C1, C2 are constants. Then, without loss of generality,
we choose the negative sign for α, and the solution for the
radial function R(z) is

R(z) = C1z
α(1 − z)β 2F1(a1, b1, c1; z)

+C2z
−α(1 − z)β 2F1(a1 − c1

+ 1, b1 − c1 + 1, 2 − c1; z). (33)

According to our change of variables at the vicinity of the
horizon r → r+, z → 0, and at infinity r → ∞, z → 1.
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In the vicinity of the horizon, z = 0 and using the property
F(a1, b1, c1, 0) = 1, the function R(z) behaves as

R(z) = C1e
α ln z + C2e

−α ln z, (34)

and the scalar field ψ can be written in the following way:

ψ ∼ C1e
−iω(t+ r+

2|�̄|(r2+−r2−)
ln z) + C2e

−iω(t− r+
2|�̄|(r2+−r2−)

ln z)
,(35)

in which the first term represents an ingoing wave and the
second term an outgoing wave in the black hole. To compute
the QNMs, we have to impose the boundary conditions on
the horizon that there exist only ingoing waves. This fixes
C2 = 0. So, the radial solution becomes

R(z) = C1e
α ln z(1 − z)βF1(a1, b1, c1; z)

= C1e
−iω

r+
2|�̄|(r2+−r2−)

ln z
(1 − z)βF1(a1, b1, c1; z) . (36)

In order to implement boundary conditions at infinity (z =
1), we shall apply in Eq. (36) Kummer’s formula, for the
hypergeometric function [52],

2F1(a1, b1, c1; z)
= �(c1)�(c1 − a1 − b1)

�(c1 − a1)�(c1 − b1)
2F1(a1, b1, a1 + b1 − c1, 1 − z)

+(1 − z)c1−a1−b1
�(c)�(a1 + b1 − c1)

�(a1)�(b1)
2F1(c1

−a1, c1 − b1, c1 − a1 − b1 + 1, 1 − z). (37)

With this expression, the radial function results in

R(z) = C1e
−iω

r+
2|�̄|(r2+−r2−)

ln z

(1 − z)β
�(c1)�(c1 − a1 − b1)

�(c1 − a1)�(c1 − b1)
2F1(a1, b1, a1

+ b1 − c1, 1 − z) + C1e
−iω

r+
2|�̄|(r2+−r2−)

ln z

(1 − z)c1−a1−b1+β �(c1)�(a1 + b1 − c1)

�(a1)�(b1)
2F1(c1

−a1, c1 − b1, c1 − a1 − b1 + 1, 1 − z). (38)

Therefore, by imposing the requirement that the scalar field
at infinity is null, for m2/�̄ < 0 (β− < 0 and c1 − a1 −
b1 + β− = β+ > 0), the term proportional to (1 − z)β in
Eq. (38) diverges. So, we find that the scalar field is null only
upon setting the additional restriction (c1 − a1)|β− = −n or
(c1 − b1)|β− = −n. Then the QNFs yields

ω1 = −i |�̄|
(√

1 − 4C + 2n + 1
)

(r− + r+), (39)

ω2 = −i |�̄|
(√

1 − 4C + 2n + 1
)

(r+ − r−), (40)

respectively. Note that the imaginary part of the QNFs is
negative, which ensures that the propagation of scalar fields
is stable in this background.

Now, in order to observe the behavior of the QNFs (39)
and (40), we plot in Fig. 5, the behavior of the real (left

panel) and imaginary parts (right panel) of the fundamental
QNFs as a function of ξ . Note that, as mentioned, for ξ < ξe,
there is no horizon. So, for ξ > ξe, we observe that for
ω1 (continuous line) there is a range where Re(ω1) is null
and then takes positive values, when the coupling constant
ξ increases, while |Im(ω1)| decreases when ξ increases. So,
according to the gauge/gravity duality, the relaxation time in
order to reach the thermal equilibrium increases for the right
sector. However, for ω2 (dashed line) and ξ > ξe, Re(ω2)

is null and then takes negative values, while its imaginary
part increases and then decreases when the coupling constant
ξ increases, showing that the relaxation time can decrease
or increase depending on the value of ξ . It is interesting to
note that when Im(ω2) decreases Im(ω1) = Im(ω2). If we
consider the BTZ black hole, ξ = 1 and λ = 1, the real
part is null and Im(ω1) �= Im(ω2). In the following, we will
analyze the two branches of QNFs for different values of ξ .
Figure 6 is similar to Fig. 5, but in order to see the effect of b
on the behavior of the QNFs, we have plotted several curves
corresponding to different values of parameter b. For ξ = 1
the QNFs coincide and correspond to the QNFs of the BTZ
black hole. On the other hand, for ξ = ξc, the two purely
imaginary branches converge to the same value. For values
of ξ near 1, |Im(ω1)| decreases when ξ increases, decreasing
faster for large values of b, while |Im(ω2)| increases when
ξ increases, increasing faster for small values of b, which
implies that the relaxation time of the right sector increases
and the relaxation time of the left sector decreases. On the
other hand, we observe that, for ξ near ξc with ξ > ξc, only
one branch exists, and |Im(ω)| decreases for small values
of b, while it increases for large values of b. Notice that
for b = 3 the effective cosmological constant �̄ becomes
positive before reaching the value ξc.

3.1.1 ξe < ξ < ξc

Now, in order to observe the behavior of the QNFs (39) and
(40), in the range ξe < ξ < ξc, that is, where r± are positive,
first we plot r± versus J in Fig. 7, for different values of
the parameters ξ and λ, in order to see for which values of
the parameter J the horizons r± are positive. Then, for this
range, we plot the imaginary part Im(ω) of the QNFs in Fig.
8, and we observe that, for ω1, |Im(ω1)| increases when the
parameter J (or equivalently J̄ ; see Fig. 9) increases; see left
panel of Fig. 8, so the relaxation time decreases. However,
for ω2, the behavior is the opposite. |Im(ω2)| decreases when
the parameter J increases; see the right panel of Fig. 8, so
the relaxation time increases. Note that in this range Re(ω)

is null. Also, the sectors TR and TL of the conformal field
theory are well defined. Furthermore, |Im(ω1)| decreases and
|Im(ω2)| increases, when the coupling constant ξ increases;
so, the relaxation time increases and decreases, respectively.
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Fig. 5 The fundamental QNFs for M = 1, λ = 1, � = − 1, a = b = m = 1, and J = 0.5, as a function of ξ . Left panel for Re(ω), and right
panel for Im(ω). Continuous line for ω1, and dashed line for ω2

Fig. 6 The fundamental QNFs for M = 1.5, λ = 1, � = − 1, a = 1,
m = 0.1, J = 1 and b = 0.2, 1, 2, 3 as a function of ξ . Left panel for
Re(ω), and right panel for Im(ω). In the right panel, the upper curves
correspond to the ω1 branch, while the lower curves correspond to the

ω2 branch. For ξ = 1 all the frequencies coincide with the frequencies
of BTZ black holes. For ξc = 1.25, both branches converge. For ξ < ξc
the QNFs are purely imaginary, while that for ξ > ξc acquire a real
part. For b = 3, the frequencies are purely imaginary

In Fig. 10 we plot the fundamental QNFs as a function
of b. We observe that, for the BTZ black hole, the central
panel with ξ = 1, the imaginary part of the fundamental
QNF is constant; however, for an asymptotical misalignment
of the aether with the timelike Killing vector, b �= 0, the
fundamental QNFs depend on b. |Im(ω1)| increases when ξ

decreases. For |Im(ω2)| the behavior is the opposite since it
decreases when ξ decreases.

3.1.2 ξ > ξc

As mentioned, for ξ > ξc there is only one horizon.
r+ > 0 and r− become imaginary. This occurs for ξ >

(J 2 + 4a2)/(4a2), and consequently there is a gap in J ;
see Fig. 7, left panel, and for which J̄ 2 is negative; see Fig.
9, which occurs when J 2 < 4a2(ξ − 1). In Fig. 11, we
plot the fundamental QNFs for the range of values of J in
which it is positive, and there is only one horizon. So, we
observe that the fundamental QNFs acquire a real part, with
Re(ω1) = − Re(ω2), |Re(ω)| decreasing when J increases,

and Im(ω1) = Im(ω2), and it is negative. In this case, the
two branches show convergence to one branch and when the
coupling constant ξ increases |Im(ω)| decreases; see Fig. 5.

3.1.3 ξ = ξc

Finally, for ξ = ξc, that is, r− = 0, the two sectors converge,
this occurs for J̄ = 0, that is, J 2 + 4a2(1 − ξ) = 0. In this
case the QNFs are given by

ω1 = ω2 = −i |�̄|r+
(√

1 − 4C + 2n + 1
)

, (41)

where r2+ = −M
�̄

. In Fig. 12 we show the behavior of the
fundamental QNFs as a function of ξ = ξc. We observe that
|Im(ω)| decreases when ξc increases whereas Re(ω) is null.
So, according to the gauge/gravity duality, the relaxation time
in order to reach the thermal equilibrium increases.

Finally, we plot in Fig. 13 Im(ω) for different values of
the constants a and b. We observe that, for the range ξ > ξe,
|Im(ω)| increases when the constants a or b increase, so the
relaxation time decreases.

123



600 Page 8 of 15 Eur. Phys. J. C (2020) 80 :600

0.2 0.4 0.6 0.8 1.0 1.2 1.4
J

0.2

0.4

0.6

0.8

r

0.2 0.4 0.6 0.8 1.0 1.2 1.4
J

1.0

1.1

1.2

1.3

r

0.2 0.4 0.6 0.8 1.0
J

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

0.2 0.4 0.6 0.8 1.0
J

0.75

0.80

0.85

0.90

0.95

1.00

1.05

r

0.2 0.4 0.6 0.8 1.0
J

0.1

0.2

0.3

0.4

0.5

0.6

r

0.2 0.4 0.6 0.8 1.0
J

0.65

0.70

0.75

0.80

0.85

0.90
r

Fig. 7 The behavior of r− (left) and r+ (right) as a function of J , with M = 1, a = 1, b = 1, and � = − 1, dashed lines for ξ = 0.9, continuous
lines for ξ = 1.0, and dotted lines for ξ = 1.05. Top panels for λ = 0.8, central panels for λ = 1.0, and bottom panels for λ = 1.2

Neumann boundary conditions The frequencies found
above for the scalar perturbation have been obtained by
imposing the vanishing Dirichlet boundary condition at infin-
ity. It is well known that the Dirichlet boundary condition
does not lead to any QNMs for m2 < 0. However, it is also
possible to find a second set of QNFs, for negative mass
squared, if we consider that the flux of the scalar field van-
ishes at infinity or vanishing Neumann boundary condition at
infinity, which allows us to describe tachyons. Furthermore,
it was shown that for negative mass squared there are two

sets of dual operators �+ and �−, where the second set of
QNFs matches exactly the dual operators with �− [26]. So,
by using the condition that the flux, which is given by

F =
√−ggrr

2i
(ψ∗∂rψ − ψ∂rψ

∗), (42)

vanishes at asymptotic infinity, we find, for β = β− and
0 > m2 > �̄, that the flux vanishes if (a)|β− = − n or
(b)|β+ = − n, which leads to

ω = −i |�̄|
(
−√

1 − 4C + 2n + 1
)

(r+ − r−), (43)
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Fig. 8 The fundamental QNFs ω1 (left) and ω2 (right) as a function of J with M = 1, a = 1, b = 1, � = − 1, m = 1. Top panels for λ = 0.8,
central panels for λ = 1 and bottom panels for λ = 1.2. Dashed lines for ξ = 0.9, continuous lines for ξ = 1.0 and dotted lines for ξ = 1.05

ω = −i |�̄|
(
−√

1 − 4C + 2n + 1
)

(r− + r+), (44)

respectively.

3.2 Massive scalar field

For massive scalar field, the Klein–Gordon equation can be
rewritten as

z(1 − z)∂2
z R(v) + (1 − z) ∂z R(z)

+
[
A + B

z
+ C

1 − z
+ D

ā − z

]
R(z) = 0, (45)

where

A = − (ωr− − κr+)2

4�̄2(r2+ − r2−)2
, B = (ωr+ − κr−)2

4�̄2(r2+ − r2−)2
, C = m2

4�̄
,

D = κ2
(
(−1 + ā)2 J 2 + 4ā�̄(r2− − r2+)2

)

16ā�̄2r2−(r2− − r2+)2
, (46)

and

ā = r2+/r2−. (47)

123



600 Page 10 of 15 Eur. Phys. J. C (2020) 80 :600

Fig. 9 The behavior of J̄ as a function of J , with a = 1. Dashed line
for ξ = 0.9, continuous line for ξ = 1.0 and dotted line for ξ = 1.05

Under the decomposition R(z) = zα(1 − z)β(ā − z)K (z),
with

α = ±i
√
B, β = 1

2

(
1 ± √

1 − 4C
)

, (48)

Eq. (45) can be written as

∂2
z K (z) +

(
1 + 2α

z
− 2β

1 − z
− 2

ā − z

)
∂z R(z)

+ 1

(z)(1 − z)(ā − z)
(q + ε1ε2z) R(z) = 0, (49)

where

q = − 1 − B + C + D − 2α − α2 − β + β2

+ ā
(
A − (α + β)2

)
, (50)

ε1 = −√
A + (1 + α + β), ε2 = √

A + (1 + α + β), (51)

which corresponds to Heun’s differential equation. The con-
dition 2 = ε1 +ε2 − (1+2α)−2β +1, ensures regularity of
the point at ∞, and q corresponds to the accessory parame-
ter. Heun’s equation has four regular singular points: 0, 1, a,
and ∞ with exponents (0,−2α), (0, 1 − 2β), (0,−1), and
(ε1, ε2). Now, in order to obtain the QNFs, we proceed to
perform a numerical analysis by using the pseudospectral
Chebyshev method [53], which has been applied to comput-
ing the QNFs in other geometries; for instance see [54–56].
In Fig. 14 we plot the numerical results obtained for the real
and imaginary parts of the lowest QNF as a function of ξ for
different values of κ . We observe that, for ξ > 1, the absolute
value of the imaginary part decreases as κ increases; how-
ever, for ξ < 1, the behavior is the opposite; the absolute
value of the imaginary part increases as κ increases. Note
that, for the cases analyzed, the QNFs have a negative imagi-
nary part, which ensures that the propagation of scalar fields
is stable in this background.

3.3 Case: J = J̄

In this case, Eq. (45) becomes

z(1 − z)∂2
z R(v) + (1 − z) ∂z R(z) +

[
A + B

z
+ C

1 − z

]
R(z) = 0,

(52)

where A, B, and C are given by Eq. (46). Under the decom-
position R(z) = zα(1 − z)βK (z), Eq. (52) can be written as
a hypergeometric equation for K , Eq. (29), where the coef-
ficients a1, b1 and c1 are given by

a1 = α + β ∓ √
A, b1 = α + β ± √

A, c1 = 1 + 2α, (53)

and the exponents α and β are

α = ±i
√
B, β = 1

2

(
1 ± √

1 − 4C
)

. (54)

Following the same procedure as detailed in the case of
massive radial scalar field we obtain for m2/�̄ < 0 (β− < 0
and β+ > 0) the result that the field at infinity is null if
the gamma function �(x) has the poles at x = − n for
n = 0, 1, 2, . . .. Then the wave function satisfies the con-
sidered boundary condition only upon setting the additional
restriction (c1 − a1)|β− = −n or (c1 − b1)|β− = − n. These
conditions determine the form of the QNFs as

ω1 = −i |�̄|(r− + r−)(2n + 1 + √
1 − 4C) − κ

√
−�̄,

(55)

ω2 = −i |�̄|(r+ − r−)(2n + 1 + √
1 − 4C) + κ

√
−�̄,

(56)

respectively.
Now, in a similar manner to the first case, that is, using

the condition that the flux vanishes at asymptotic infinity, we
obtain for β = β+ and 0 > m2 > �̄, with (b1)|β+ = − n or
(a1)|β− = − n, the second set of QNFs, which yields

ω = −i |�̄|(r− + r−)(2n + 1 − √
1 − 4C) − κ

√
−�̄, (57)

ω = −i |�̄|(r+ − r−)(2n + 1 − √
1 − 4C) + κ

√
−�̄, (58)

respectively. In this case, the QNFs correspond to ω = ωmr ∓
κ
√

−�̄, where ωmr are the QNFs for massive radial scalar
fields. So, the condition J = J̄ , only has an effect on the
real part of the QNFs. As mentioned, when ξ = 1 (J= J̄ ),
the solution results in the “BTZ black holes” with a shifted
cosmological constant, �̄ = �−2b2(λ−1). However, there
is still a preferred direction represented by the aether vector
field which breaks Lorentz invariance for λ �= 1 and b �=
0. Note that the QNFs have real and imaginary parts, with
an imaginary part that is negative, which ensures that the
propagation of scalar fields is stable in this background.
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Fig. 10 The fundamental QNFs ω1 (left) and ω2 (right) as a function of b with M = 1, a = 1, � = − 1, J = 0.5, and m = 1. Top panels for
λ = 0.8, central panels for λ = 1, and bottom panels for λ = 1.2. Dashed lines for ξ = 0.9, continuous lines for ξ = 1.0, and dotted lines for
ξ = 1.05

4 Remarks and conclusions

In this work, we computed the QNMs of rotating three-
dimensional Hořava AdS black holes and we analyzed the
effect of the breaking of the Lorentz invariance on the
QNMs. We showed that depending on the parameters, the
lapsus function can represent a spacetime without an event
horizon, a black hole geometry with one event horizon, an
extremal black hole and finally a black hole with two hori-

zons. The QNMs have been obtained by imposing on the
horizon that there are only ingoing waves, while at infinity
Dirichlet boundary conditions and Neumann boundary con-
ditions were imposed. We found that the propagation of the
scalar field is stable in this background, since the imaginary
part of the QNFs is negative. Also, we made a systematic
study of the behavior of the QNMs and QNFs with respect
to the angular momentum J and ξ one of the parameter that
differentiates Hořava gravity from General Relativity which
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Fig. 11 The real (left) and imaginary (right) part of the fundamental quasinormal frequency (ω1) as a function of J , for 0 < J <
√

0.2, with
ξ = 1.05, M = 1, a = 1, b = 1, m = 1. Dashed line for λ = 0.8, continuous line for λ = 1, and dotted line for λ = 1.2

is obtained for ξ = 1 and λ = 1. For various values of J and
ξ , we obtained various branches of solutions with different
properties of QNMs and QNFs. In particular we found the
following.

For positive inner and outer horizons r±, the range
ξe < ξ < ξc gives Re(ω) null for the fundamental QNFs,
and the two sectors TR and TL are well defined. |Im(ω1)|
increases when the parameter J increases, so according to the
gauge/gravity duality, the relaxation time in order to reach
the thermal equilibrium decreases. Furthermore, as the cou-
pling constant ξ increases, |Im(ω1)| decreases and therefore
the relaxation time increases. However, for ω2, the behav-
ior is opposite. |Im(ω2)| decreases when the parameter J
increases and therefore the relaxation time increases. Further-
more, |Im(ω2)| increases when ξ increases; so, the relaxation
time decreases.

In the range ξ > ξc the black hole only has one horizon
r+ > 0. For this case J 2 < 4a2(ξ−1) and the QNFs acquire a
real part, with Re(ω1) = − Re(ω2), |Re(ω)| decreases when
J increases, and Im(ω1) = Im(ω2), and it is negative. Also,
when ξ increases, |Im(ω)| decreases. Finally, for ξ = ξc,
that is, r− = 0, the two sectors converge. This occurs when
J 2 + 4a2(1 − ξ) = 0. In this case |Im(ω)| decreases when

Fig. 12 The fundamental QNFs Im(ω1) as a function of ξc with M =
1, b = 1, � = − 1, λ = 1, m = 1, and J = 0.4

ξc increases whereas Re(ω) is null. Therefore, the relaxation
time increases. Also, we have considered different values of
the constants a and b that measure of aether misalignment,
and |Im(ω)| increases when the constant a or b increases; so,
the relaxation time decreases.

Moreover, for the general case, that is, a massive scalar
field, it was shown that the Klein–Gordon equation can be
written as the Heun’s differential equation, and we have stud-
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Fig. 13 The imaginary part of the fundamental QNFs ω1 (left panels) and ω2 (right panels) as a function of ξ , with J = 0.5, M = 1, � = − 1,
m = 1, and λ = 5, for different values of the constant a (top panels, with b = 1) and b (bottom panels, with a = 1)

Fig. 14 The lowest QNFs for a = 1, b = 1, λ = 1, � = −1, J = 1, m = 0.1 and M = 1.5 as a function of ξ for κ = 0, 1, 2. Left panel for
Re(ω), and right panel for Im(ω)

ied the behavior of the QNMs numerically via the pseu-
dospectral Chebyshev method, and mainly it was found that,
for the lowest QNF and ξ > 1, the absolute value of the imag-
inary part decreases as κ increases; however, for ξ < 1 the
behavior is the opposite. The absolute value of the imaginary
part increases as κ increases.

As can be seen from the above discussion, the oscillatory
and the decay modes of the QNMs have quite different behav-
ior for the various branches, indicating that the time required
for a system to reach thermal equilibrium on the boundary is
different for the various values of the parameters. An intrigu-
ing result is that, if the parameter ξ lies between two different

critical values, then the time required for the two sectors TR

and TL to reach thermal equilibrium is competing in the sense
that in one sector the time is increasing while in the other sec-
tor it is decreasing. This behavior deserves further study in
connection with trying to find a system on the boundary that
exhibits such a behavior.

It would be interesting to extend this work to higher dimen-
sional Hořava black holes [57] and calculating the QNMs and
QNFs of a massive wave to study how a gravity theory in the
bulk with broken Lorentz invariance affects the boundary
field theory to reach thermal equilibrium.
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