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Abstract In this work, we study some thermodynamical
aspects associated with torsion in a flat FLRW spacetime
cosmic evolution. By implementing two Ansatze for the tor-
sion term, we find that the model admits a phantom regime
or a quintessence behavior. This scheme differs from the
�CDM model at the thermodynamical level. The resulting
cosmic expansion is not adiabatic, the fulfillment of the sec-
ond law of thermodynamics requires a positive torsion term,
and the temperature of the cosmic fluid is always positive.
The entropy of the torsion phantom scenario is negative, but
introducing chemical potential solves this issue. For a Dirac-
Milne type Universe, the torsion leads to a growing behavior
for the temperature of the fluid but has no incidence on the
rate of expansion.

1 Introduction

Our current understanding of the Universe at large scales lies
mainly in Einstein’s theory of General Relativity. However,
the golden age we are living in astrophysical data acquisition
unveiled several aspects of the Universe that have forced us to
question whether this formulation for gravity is the definitive
one or requires extra assumptions. For instance, we still have
to understand the nature of the component responsible for
the current accelerated cosmic expansion [1–5]. A possible
solution is to modify the spacetime geometry, as in the case
of f (R) gravity [6], in this approach an extra degree of free-
dom given by a scalar field appears providing the possibility
of having a consistent unified scenario for the description of
early and late times of the Universe [7]. This smooth transi-
tion from early to late times evolution can be also obtained
if an arbitrary function of the torsion scalar, T , is considered
as gravitational action. An interesting review on this topic
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can be found in [8]. Therefore the identification of torsion as
catalyst of cosmic accelerated expansion have been explored
exhaustively. As discussed in Ref. [9], the �CDM model
dynamics can be imitated by considering torsion effects in
a homogeneous and isotropic spacetime, thus the acceler-
ated expansion of the Universe could be explained only by
geometrical considerations of spacetime without invoking
the dark sector. The restriction of parameters for a torsional
model with the type Ia Supernovae, CMB, BAO and Hubble
parameter measurements data is performed in Refs. [10,11],
these studies revealed that this kind of model is viable to
describe the current status of the Universe and also exhibits
consistently a radiation and matter era followed by an accel-
eration stage; besides the corresponding value for the matter
density parameter obtained in this model is close to the pre-
diction given by the standard cosmology.

The Riemannian geometry is fully described by the met-
ric, being the connection given the Christoffel symbol. In the
case of Riemann–Cartan geometry, the metric and the con-
nection correspond to independent degrees of freedom. In
this case, the metric and the contorsion (contortion) tensor
locally describe the geometry.

From an experimental point of view, we have no evidence
in favor nor against the existence of torsion. In general, it
plays the role of a new dark source of torsionless Riemannian
gravity. Some authors have even proposed that dark matter
could be torsion in disguise Ref. [12]. Its detection through
particle physics experiments seems hard (See Ref. [13] and
Chap. 8.4 of Ref. [14]) but not impossible in the future.

An interesting proposal for the detection of torsion effects
by means of the symmetry Lorentz violation in some exper-
iments can be found in Ref. [15]. It is important to point out
that this symmetry violation is present in some of the neutrino
experiments, therefore there exists the possibility that torsion
could play a fundamental role to understand the nature of the
neutrinos; specifically on how neutrinos acquire mass or what
kind of mass they have (see for instance the Ref. [16], where
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it is studied that torsion effects can also be used to understand
the neutrino oscillation mechanism). The Lorentz symmetry
is contained in the CPT theorem, thus the torsion could be
related to the matter–antimatter asymmetry generated in the
early universe [17].

From a more theoretical point of view, the relation of tor-
sion with the relativistic description of the movement of a
supersymmetric particle with spin [18], in the construction
of topological invariants in higher dimensional spaces [19]
or in the study of the conformal symmetry of gravity theory
[20].

In the context of Riemann–Cartan geometry, there are
two kinds of theories. The closer ones to General Rela-
tivity are Einstein–Cartan–Sciama–Kibble (ECSK) theories
(Refs. [21–31].). In this case, the source of torsion is the spin
tensor of matter σλ

μν , similarly as the stress-energy tensor
τμν is the source of curvature,

Rμν − 1

2
gμνR + �gμν = 8πG

c4 τμν, (1)

T λ
μν − δλ

μT
γ

γ ν + δλ
ν T

γ
γμ = 8πG

c4 σλ
μν. (2)

Since torsion T λ
μν depends algebraically on σλ

μν , it cannot
propagate in a vacuum, and it depends on the energy density
through the spin density.

A different option is to look for a different Lagrangian
and to depart from GR more dramatically. Some theories in
this family are Poincaré Gauge Theory (see Refs.[32,33])
and nonminimal couplings with topological invariants (see
Refs. [34–47]). In these kinds of theories, torsion propa-
gates in a vacuum,1 and it is not necessary a spin tensor to
have a nonvanishing torsion. In the current work, we restrict
our attention to the first kind of ECSK theories with non-
propagating torsion (but closer to GR).

Our aim in this work is to discuss some aspects of the cos-
mology that results from the torsional formalism when it is
implemented for a Friedmann–Lemaitre–Robertson–Walker
(FLRW) type spacetime, as in Refs. [52,53], and to study a
possible relationship between torsion and dark energy.

We found that the corresponding parameter state for the
cosmic fluid takes values within the region of quintessence
or phantom, this depends on the election of the Ansatz to
describe the torsional term. On the other hand, in the ther-
modynamics description of torsion cosmology we obtain that
the cosmic evolution is governed by a non adiabatic behav-
ior for the entropy, this interesting behavior for the entropy
is also present in the dark energy–dark matter interaction
schemes as well as in cosmological scenarios that consider

1 For more information on the wave operator on spaces with Riemann–
Cartan geometry and the propagation of perturbations, see Refs. [39,48–
51].

matter creation [54,55]. This is a clear indication that the
model is beyond the �CDM model, where the entropy takes
a constant value. As we will see later, the review of some
thermodynamic aspects in the presence of torsion show that
the second law of thermodynamics can be guaranteed for a
positive torsion term and the temperature of the fluid is pos-
itive. In general grounds we can say that the consideration
of torsional effects in the cosmological description does not
lead to contradictions with the standard formulation of ther-
modynamics theory.

This work is organized as follows: In Sect. 2 we discuss
the torsion dynamics in a flat FLRW spacetime with the use
of a barotropic fluid, as we will see later, the inclusion of tor-
sion in the fluid description can lead to a phantom cosmology
under certain conditions. We also discuss two Ansatze for the
torsion term found in the literature; while one of them leads
to a phantom regime the other only provides a quintessence
behavior. The thermodynamics of torsion cosmology is dis-
cussed in Sect. 3. This cosmological model is in agreement
with the second law of thermodynamics. The corresponding
temperature of the fluid is always positive. However, for a
dark matter type fluid and a barotropic temperature the fluid
behaves as in the �CDM model, i.e., its temperature remains
constant. We consider the inclusion of chemical potential
in order to solve the positivity problem of entropy. In this
section we also discuss a generalized form for the internal
energy known as Komar energy, under this description we
found explicit expressions for the pressure and density of
the cosmological fluid, in such case a phantom cosmology
is allowed and the early Universe does not obey the second
law of thermodynamics. In Sect. 4 we provide a brief discus-
sion of the Dirac-Milne Universe when torsion is included.
In Sect. 5 we give the final comments of our work. We will
use 8πG = c = kB = 1 units throughout this work.

2 Torsion dynamics

The parity, and the homogeneity and isotropy of a FLRW type
spacetime with non-zero torsion are preserved for a torsion
tensor of the form [52]

Sabc = 2φha[buc], (3)

where φ := φ(t) is a scalar function that depends only on
time. Therefore, by considering the standard form of energy-
momentum tensor for the matter content and the line element
for a flat FLRW Universe; the Friedmann and acceleration
equations can be written as follows

3H2 = ρ − 12φ(φ + H), (4)

Ḣ + H2 = −
[

1

6
(ρ + 3p) + 2(φ̇ + φH)

]
, (5)
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where the quantities p and ρ characterize the pressure and
density of the fluid, respectively. Besides, the dot stands for
derivative with respect to time and H is the well-known Hub-
ble parameter, which is written in terms of the scale factor as,
H := ȧ/a. The conservation equation for the energy density
of the fluid takes the following form

ρ̇ + 3H(ρ + p) + 2φ(ρ + 3p) = 0, (6)

note that in the absence of torsion we recover the standard
cosmology. Using the Eqs. (4) and (5) we can construct the
deceleration parameter straightforwardly

q = −1 − Ḣ

H2 = 1

2

{
(1 + 3ω)ρ + 12(φ̇ + φH)

ρ − 12φ(φ + H)

}
. (7)

In general, the pressure and density of the fluid are related
as, p = p(ρ); in the previous expression we have considered
a barotropic equation of state, i.e., p = ωρ, which is the
most simple assumption. We will refer as parameter state for
the constant ω. If the following condition is fulfilled by the
parameter state

ω ≤ −1 − 4

ρ

[
φ̇ − φ(2φ + H)

]
, (8)

therefore the deceleration parameter given in Eq. (7) will
obey the condition, q ≤ −1. For q = −1 we have a cosmo-
logical constant type evolution and for q < −1 the model
has an over-accelerated expansion also known as phantom
cosmology. It is worthy to mention that the crossing to the
phantom regime is due only to the introduction of torsion in
the cosmological description of the Universe. On the other
hand, if we use the Eqs. (4) and (6) we can obtain for the
normalized Hubble parameter, E(t) := H(t)/H0, where H0

is the Hubble constant

E (t)=
(a0

a

)3(1+ω)/2

√√√√
ρ (a0) exp

[
−6

(
1

3
+ω

)∫ t

t0
φ (t) dt

]
−2

φ (t)

H0
,

(9)

where the subscript zero denotes the value of any cosmolog-
ical quantity at present time, in the previous expression we
introduced the density parameter, 
ρ (a0) and it is defined
in the usual form as 
ρ (a0) := ρ(a0)/3H2

0 . Commonly it is
more convenient to express the normalized Hubble parameter
as a function of the redshift, this can be done by employing the
following relationship, 1 + z = a0a−1, this expression leads
to dt = −[(1 + z)H(z)]−1dz = −[(1 + z)H0E(z)]−1dz,
then the Eq. (9) can be written as

Fig. 1 Comparison between �CDM model and non-zero torsion cos-
mological model

E (z)

=(1+z)3(1+ω)/2

√

ρ (0) exp

[
6

(
1

3
+ω

) ∫ z

0

φ(z)

(1+z)H0E(z)
dz

]
−2

φ (z)

H0
,

(10)

in terms of the redshift the evaluation of the cosmological
quantities at present time is given at z = 0. Note that once
we choose a specific form for the torsion term, φ; the Eqs. (9)
and (10) become solvable for the normalized Hubble param-
eter. In order to have explicit expressions for H , we will
discuss some Ansatz for the torsion term and some of its
cosmological consequences in the following section.

2.1 Ansatze for φ

In this section we will consider some Ansatze for the torsion
term. As first choice we consider the Ansatz given in Ref.
[52], where the torsion term has the form

φ = λH, (11)

being λ a constant that lies in the interval [−0.005813,

0.019370]. The bounds for the constant λ were constrained
with the use of Big Bang Nucleosynthesis data. If we insert
the expression (11) in Eq. (10) one gets

E(z) =
√


ρ (0)

(1 + 2λ)
(1 + z)

1
2

[
3(1+ω)+6λ

(
1
3 +ω

)]
. (12)

In Fig. (1) we perform a comparison between the normal-
ized Hubble parameter of the �CDM and the one given in Eq.
(12). The region between the dashed lines corresponds to the
non-zero torsion cosmological model, notice that the models
are closer at the past (z > 0). As can be seen in the plot, as
we approach to the far future (z = −1) the Hubble parameter
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of the �CDM model tends to a bounded value while for the
non-zero torsion model goes to zero, this behavior represents
a main difference between the models. In order to compare
both models we considered a pressureless fluid (or simply
dark matter) given by the condition ω = 0 in Eq. (12) and
the density parameter, 
ρ(0), plays the role of the parameter

m,0 that appears in the �CDM model. According to the
latest Planck results, 
m,0 = 0.315 ± 0.007 [56].

If we insert the relationship between the scale factor and
the redshift in Eq. (12), we can obtain an explicit expression
for the scale factor as function of time

a (t) = a0

[
(1 + 2λ)2


ρ (0) H2
0

]−1/�

(ts − t)2/� , (13)

for simplicity in the notation we have defined � :=
3 (1 + ω) + 6λ (1/3 + ω) and

ts = t0 − 2

�

√
(1 + 2λ)2


ρ (0) H2
0

. (14)

Some comments are in order. For � < 0, we have a singular
behavior for the scale factor when, t = ts ; in this case ts
represents some time at the future. Note that also the nor-
malized Hubble parameter given in Eq. (12) diverges as the
model evolves towards the future when the condition � < 0
is considered; this implies a divergent behavior for the den-
sity, ρ, and the pressure since we are considering a barotropic
equation of state. According to the classification for future
singularities provided in Refs. [57,58], these features repre-
sent a Big Rip singularity. As discussed before, for the pres-
sureless fluid we have E(z → −1) → 0 and in consequence
� > 0, therefore no future singularity can be obtained in this
case.

On the other hand, in Ref. [53] an Ansatz for the torsion
term is given as a function of the energy density as follows

φ(z)

H(z)
= −α

(
ρ(z)

3H2
0

)n

, (15)

where α and n are constants that were constrained with the
use of Hubble parameter measurements and Pantheon com-
pilation data, yielding α = 0.14+0.14

−0.12 and n = −0.47+0.23
−0.36.

If we write the continuity equation (6) in its standard form
for a barotropic fluid we have

ρ̇ + 3Hρ(1 + ωe f f ) = 0, (16)

where the effective parameter state has the form

ωe f f = 2

3

φ

H
+ ω

(
1 + 2φ

H

)
. (17)

In order to visualize if the Ansatz for the torsion term as the
one given in (15) has relevant role in the cosmic evolution
we simply compare with the �CDM model, we set ω = 0
in the previous expression and evaluate at present time, one
gets

ωe f f = 2

3

φ

H
= −α

2

3

n

ρ(0), (18)

where the Eq. (15) was considered. Using the values given
before for α, n and the density parameter 
ρ(0), we find
that the effective parameter state lies in the interval, −0.5 <

ωe f f < 0. Therefore, the Ansatz (15) for the torsion term
can not emulate the �CDM model and in some cases the
cosmological fluid can behave as quintessence dark energy.
From the Friedmann constraint (4) we can solve for the φ/H
term, one gets

φ

H
= −1

2

[
1 ±

( ρ

3H2

)1/2
]

, (19)

note that the previous expression is similar to the Ansatz (15),
given that we have the condition, φ/H < 0, we will take only
the positive branch of the solution. If we insert the obtained
φ/H term (19) in Eq. (18) and evaluate at present time, we
can write

ωe f f = −1

3

[
1 + √


ρ(0)
]
, (20)

using the values for the density parameter we have for the
effective parameter state, −0.522 < ωe f f < −0.518, i.e.,
in this case the cosmological fluid behaves as quintessence
dark energy. Therefore from the previous results we have the
following statement, an Ansatz of the form as given in (15)
or torsion terms proportional to the density of the fluid can
not lead to over-accelerated expansion.

3 Thermodynamics

As starting point we consider the first law of thermodynamics

TdS = d(ρV ) + pdV, (21)

being V the scalar volume,2 T the temperature of the cos-
mological fluid and S its entropy. Using the definition of the

2 If we consider a non-zero torsion spacetime its scalar volume takes
the form V = V + Ka

baub, where Ka
ba is the contortion tensor and

V corresponds to the torsionless counterpart, with a torsion tensor as

given in Eq. (3) we have, V = 3H +6φ = 3H
(

1 + 2φ
H

)
. Note the first

term corresponds to the Hubble volume.
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scalar volume for a non-zero torsion spacetime, we can write
the continuity Eq. (6) as follows

ρ̇ + 3H

(
1 + 2φ

H

)
(ρ + p) − 4φρ = 0. (22)

If we compute the time derivative of the first law of thermo-
dynamics (21), we can write the following expression

T

V

dS

dt
= 4φρ, (23)

where we have considered dV/V = 3H
(

1 + 2φ
H

)
dt ,

together with the continuity Eq. (22). Note that the cosmic
evolution governed by the above expression differs from the
standard cosmology at thermodynamics level when torsion
it is included, the previous expression indicates that the adia-
baticity condition given by, S = constant, is no longer avail-
able, besides, always that the scalar function φ remains pos-
itive, the entropy will exhibit a positive growth (dS/dt > 0)
which will be in agreement with the second law of thermo-
dynamics. Alternatively we can compute the change of the
entropy via the Gibbs equation

TdS = d
(ρ

n

)
+ pd

(
1

n

)
, (24)

but now we have introduced the density number n 3. Then
we can write

nTdS = − (ρ + p)
dn

n
+ dρ, (25)

taking the time derivative of the previous expression one gets

nT
dS

dt
= − (ρ + p)

ṅ

n
+ ρ̇ = 4φρ, (26)

where we have considered the particle conservation equation
and the continuity equation given in (22) for the density,
this result coincides with Eq. (23), as expected. From Eqs.
(23) and (26) we can observe that torsion acts as a source
for the entropy production. The adiabatic expansion of the
Universe can be recovered in the zero torsion case. Note
that the r.h.s. of Eq. (25) suggests the functional form for the

3 For a perfect fluid we have, na := nua [59]. Therefore the covariant
form of the particle conservation is given by ∇ana = −ṅuaua + nV =
0, where we have considered ∇aub = (V/3)hab as deduced in Ref. [52]
for a FLRW type spacetime, being hab the projection tensor defined
as hab := gab + uaub and haa = 3, uaua = −1. As commented
previously, V is the scalar volume and corresponds to a non-zero torsion
spacetime.

temperature, we can consider T = T (n, ρ). We can compute
for the temperature

Ṫ = ∂T

∂n
ṅ + ∂T

∂ρ
ρ̇, (27)

and from the previous expression we have the following tem-
perature evolution4

Ṫ

T
= 4φρ

(
∂T

∂ρ

)
−3H

(
∂p

∂ρ

)
= 4φρ

(
∂T

∂ρ

)
−3Hω

(
1 + 2φ

H

)
,

(28)

where we have considered a barotropic equation of state.
Always that the Gibbs integrability condition holds together
with the number (n) and energy conservation, the previous
expression will be valid. As can be seen, the resulting tem-
perature will depend of the density, ρ, then we say we have a
barotropic temperature, the most simple assumption for this
kind of temperature is T (ρ) ∝ ρω/(1+ω) [59]. However, other
more general forms for the temperature can appear. Using the
relation between the redshift and the scale factor we can write
the evolution Eq. (28) in terms of the redshift as follows

T (z) = T0 exp

[
−4

∫
ρφ

H(z)

(
∂T

∂ρ

)
dz

(1 + z)

+3ω

∫ (
1 + 2φ

H(z)

)
dz

(1 + z)

]
. (29)

If we consider the Ansatz given in (11) for the torsion term
the previous expression can be simplified, yielding

T (z) = T0(1 + z)α exp

[
−4λ

∫
ρ

(
∂T

∂ρ

)
dz

(1 + z)

]
, (30)

where we have defined α := 3ω(1 + 2λ). It is worthy to
mention that for the null torsion case (λ = 0) the above
equation reduces to the standard expression for the temper-
ature, i.e., T (z) = T0(1 + z)3ω. Besides, the temperature
defined in (30) will be always positive and becomes singular
at the far future for α < 0. For the dark matter case, ω = 0,
we have α = 0. However, the temperature is not a constant.
This is another difference with the �CDM model, where
Tdm = constant. The variating behavior for the temperature
of dark matter seems to be a more consistent description from

4 From the integrability condition

∂2S

∂T ∂n
= ∂2S

∂n∂T
,

the Gibbs Eq. (25) becomes [59]

n
∂T

∂n
+ (ρ + p)

∂T

∂ρ
= T

∂p

∂ρ
.
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the thermodynamics point of view, see Refs. [54,55], where
this kind of behavior was obtained for the dark matter tem-
perature. Finally, by considering the must simple form for
the barotropic temperature in Eq. (30) leads to

T (z) = T0(1 + z)α exp

[
− 4λω

(1 + ω)

∫
ρω/(1+ω) dz

(1 + z)

]
,

(31)

then we have that T = T0 for ω = 0, i.e., the same behav-
ior as in the �CDM model for the dark matter temperature;
this means that under the must simple assumption for the
barotropic temperature, the dark matter thermodynamics it
is not affected by the torsion effects.

Given that the temperature of the cosmological fluid dis-
cussed previously it is always positive, from the Euler relation
[60] with a barotropic equation of state one gets

T S = (1 + ω)ρV, (32)

and as can be observed for the phantom regime we have
T S < 0 since ω < −1, this implies a negative entropy
for the phantom cosmology. Within the scheme of standard
cosmology was found that the aforementioned problem for
the entropy can be solved if a chemical potential, denoted
as μ, it is introduced at cosmological level [61,62], i.e., the
Euler relation takes the form

T S = (1 + ω)ρV − μN , (33)

where N is the number of particles contained in the volume
V , N = nV . Always that μ > − |1 + ω| (ρV )/N we will
have, T S > 0, as expected in standard thermodynamics.
Note that in our description we must also include chemical
potential in order to avoid the negativity entropy problem
for the phantom scenario. With the inclusion of chemical
potential the first law (21) reads

TdS = d(ρV ) + pdV − μdN , (34)

and given the usual interpretation for the chemical potential,
the conservation of the density number must be modified to
ṅ+nV = νn or in terms of the number N we have ṅ/n+V =
ν = Ṅ/N , where ν is the particle production (annihilation)
rate if ν > 0 (ν < 0). Taking the time derivative of Eq.
(34) and using the Eqs. (22), (26) together with the modified
particle number conservation equation we can write

μ = 4φρ

nν

(
N − 1

N

)
. (35)

Note that for null torsion the chemical potential vanishes,
besides the chemical potential can turn negative in some

cases, for annihilation of particles or if φ < 0. However,
this latter case can be discarded since this condition leads to
a negative growth for the entropy (see Eqs. (23) and (26)).
Therefore, if the following condition is satisfied

4φ

ν

(
N − 1

N

)
> − |1 + ω| , (36)

the positivity of the entropy is guaranteed. As commented
before, the introduction of chemical potential leads to a well
defined thermodynamics for the phantom regime. See for
instance the Refs. [63,64] where the introduction of chemical
potential in models beyond the standard cosmology resolves
the negativity problem of entropy or temperature in a phan-
tom scenario.

3.1 Generalized form of the energy

In this section we will briefly discuss a generalization for
the energy expression that appears in the first law of thermo-
dynamics. Besides, in order to find some solutions we will
consider the Ansatz given in Eq. (11) for the torsion term.
Usually can be found that the internal energy is given by
the Misner-Sharp term, UMS = ρV , see Eq. (21). However,
some works show that this expression for the energy can
lead to thermodynamics inconsistencies when it is applied
to describe an expanding Universe. A simple generalization
for the energy that overcomes some of the thermodynam-
ics inconsistencies is the Komar energy, which is given by
UK = (ρ + 3p)V , see for instance the Refs. [65,66], where
some cosmological features of this energy are explored in
detail. Note that when the Komar energy is considered we
are taking into account the effects of the cosmological fluid
pressure, therefore we have a more realistic description of
the cosmic evolution. We start from the standard definition
for the pressure [60]

p = −
(

∂U

∂V

)
, (37)

and the previous expression is valid always that the num-
ber of particles is conserved. On the other hand, from the
Friedmann constraint (4) we can have a simple expression
between the energy density and the scalar volume given as
ρ = V 2/3, therefore if we consider that ∂

∂V = ∂ρ
∂V

∂
∂ρ

, we can
write the following differential equation for the pressure by
considering the Komar energy in (37)

dp

dρ
+ 2

3

p

ρ
+ 1

2
= 0, (38)
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yielding the solution

p(ρ) = ρ

(
c1

ρ5/3
− 3

10

)
, (39)

where c1 is an integration constant and we have assumed that
p = p(ρ) in Eq. (38). Now, if we insert the obtained pressure
in the continuity Eq. (22), we obtain for the density

ρ(a) = ρ0a
−γ

[
1 − 3c1(1 + 2λ)aγ

γ

]3/5

, (40)

where we have defined γ := 21
10

(
1 + 2λ

21

)
, for simplicity in

the notation. By means of the previous expression for the den-
sity we can compute straightforwardly the Hubble parameter
using the Friedmann constraint (4)

H2(a) = ρ(a)

3(1 + 2λ)2 . (41)

Then, for a barotropic fluid, p = ωρ, by means of Eqs. (39)
and (40) we can write

ω(z) = p

ρ
= cγ

(1 + z)(2γ )/3 [(1 + z)γ − 3c1(1 + 2λ)]
− 3

10
,

(42)

where the usual relation between the scale factor and the
redshift was used and c := c1/ρ

5/3
0 is a constant. It is worthy

to mention that as the model evolves to the future (z →
−1), the term 3c1(1 + 2λ) dominates over (1 + z), therefore
the parameter state becomes negative and |ω| > 1, i.e., this
model crosses the phantom divide. As can be seen, the torsion
effects have a direct contribution on the parameter state ω.

We can also compute the behavior of the entropy from the
first law of thermodynamics but now considering the Komar
energy in the Eq. (21), one gets

T

V

dS

dt
= 4φρ + 3

[
ṗ + 3Hp

(
1 + 2φ

H

)]
, (43)

where we used the form of the continuity equation given in
(22). We can write the previous expression in equivalently as
follows

T

V

dS

da
= 4λ

ρ

a
+ 3

[
dp

dρ

dρ

da
+ 3

p

a
(1 + 2λ)

]
. (44)

This model is in agreement with the second law of thermo-
dynamics (dS/da > 0) as the scale factor grows, from the
results obtained previously for the pressure and density we
have a negative growth for the entropy as a → 0. There-
fore when torsion effects are considered, the second law of
thermodynamics it is not fulfilled in the early Universe.

4 The Dirac–Milne universe

In this section we will discuss some generalities of the Dirac–
Milne Universe. This kind of Universe it is characterized by
a non accelerated expansion, ä = 0, or in other words null
deceleration parameter. In standard cosmology (φ = 0), the
acceleration equation given in the expression (5) takes the
following form for a barotropic fluid

ä

a
= −1

6
(1 + 3ω) ρ, (45)

and the deceleration parameter (7) can be written as, q =
(1 + 3ω)/2, then for ω = −1/3 we have ä = q = 0. On the
other hand, taking into account the aforementioned value for
the parameter state in the torsion cosmology we have that the
normalized Hubble parameter (12) can be simplified to

E(z) =
√


ρ(0)

(1 + 2λ)
(1 + z). (46)

By considering the definition of the deceleration parameter

1 + q(z) = (1 + z)
d ln E(z)

dz
, (47)

and the Eq. (46) one gets q(z) = 0. Therefore, the inclusion
of torsion in the cosmological description maintains unal-
tered the Dirac–Milne Universe. In this case the temperature
of the fluid given in Eq. (30) has a growing behavior and
becomes singular at the far future given that α < 0. It is
worthy to mention that torsion effects do not have incidence
on the acceleration expansion of the Dirac–Milne Universe.
This differs from other extended theories where the incorpo-
ration of additional effects in the fluid can modify the evo-
lution of the Dirac-Milne type Universe; see for instance the
Ref. [67], where the inclusion of dissipative effects leads to
a deceleration parameter different from zero in the Dirac–
Milne Universe.

5 Final remarks

At the moment, the most successful theoretical proposal to
describe the current state of the Universe is the �CDM
model. It depends on two components: cold dark matter
(ω = 0), crucial to forming structures, and dark energy
(ω = −1) to drive the accelerated cosmic expansion.

According to the standard thermodynamical scheme, these
fluids should not interact, and the cosmic evolution should
be adiabatic, i.e., the entropy is a constant quantity. However,
this picture of the Universe lacks physical consistency. One
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of the possibilities to alleviate this issue is given by allowing
dark matter - dark energy interaction in standard cosmology
or going to descriptions beyond the standard cosmological
model.

Based on the results obtained in this work, we observe
that torsion in cosmic dynamics behaves similarly to the
interacting dark matter–dark energy scheme, leading to non-
adiabaticity for the cosmic expansion. Moreover, the fulfill-
ment of the second law of thermodynamics requires a positive
torsion term. This feature is essential, given that everything
seems to indicate that the second law is still obeyed by the
Universe at large scales [68]. Even further, the fluid tempera-
ture must be positive independently of the parameters of the
model. On the other hand, under certain circumstances, the
inclusion of torsion can lead to a phantom or quintessence
behavior, depending on the Ansatz considered for the torsion
term, φ/H . As found in the literature for other cosmological
models, the phantom torsion regime has the negativity prob-
lem for the entropy, but considering the chemical potential in
the thermodynamical picture solves this issue. A generaliza-
tion of the Misner-Sharp energy, ρV , was also considered, we
focused on the Komar energy which is given by (ρ + 3p)V ,
this represents a more realistic scenario at thermodynamics
level. Within this context, the parameter state of the fluid
crosses the phantom divide and corresponds to a function of
the torsion parameter. In this case, the second law of ther-
modynamics breaks in the early Universe. It is worthy of
mentioning that Komar energy is not the unique choice to
generalize the internal energy.

Another remarkable result is that the dark matter temper-
ature is not affected by the torsion term when one considers
a barotropic temperature, i.e., as in the �CDM model, the
dark matter temperature has a positive and constant value.
Additionally, a brief review of the Dirac–Milne Universe
reveals that, in the presence of torsion, its temperature shows
a growing behavior. However, contrary to what happens in
other modified gravity theories, the value of the deceleration
parameter for this Universe vanishes.

Many features of torsion deserve more research. One of
them is its possible role as dark energy and dark matter, or as
a component of dark energy and dark matter. For instance,
Ref. [69] analyzed a simple model of dark matter with non-
vanishing spin tensor. The torsion arising from it behave as a
dark matter amplifier and solved the Hubble parameter ten-
sion, but much more complex scenarios are also possible. A
possible way to decide these kinds of questions is through
gravitational waves. Refs. [37,39,48] proved that a torsional
background changes the propagation of the polarization and
amplitude of a gravitational wave, leaving its dispersion rela-
tion untouched. It opens the possibility to distinguish torsion
from other dark components using gravitational waves as
probes.
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