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Among the solutions of string theory and supergravity which preserve some fraction of supersymmetry,
the best known are those that leave one half of the supersymmetry unbroken, and there is a large number of
field theory models with this pattern of supersymmetry breaking. However, a lot of brane configurations
exist which preserve only 1/4, 1/8, or more exotic fractions of supersymmetry, and field theory side of
these systems remains largely unexplored. To find whether the formalism of nonlinear realizations is useful
in construction of models of this type, we consider the systems of some N scalar and vector N = 1,d = 3
Goldstone supermultiplets. We find that it is possible to construct an SO(N,)) invariant theory of N, scalar
multiplets with N broken supersymmetries. For Ny = 3 or N > 5 its action is not of Nambu-Goto type
and its structure remains universal for arbitrary N. The cases of Ny = 1, 2 correspond to the membranes in
D = 4 and D = 5, respectively, while for N, = 4 some arbitrariness in the action remains, and with proper
choice of parameters, it is possible to obtain the action of the membrane in D = 7 in the bosonic limit. It is
also shown that the SO(N) invariant action of N, vector multiplets with 1/N, pattern of supersymmetry

breaking does not exist for arbitrary N,,.

DOI: 10.1103/PhysRevD.102.026011

I. INTRODUCTION

Studies of systems with partial spontaneous breaking of
global supersymmetry (PBGS) make up an important branch
of all supersymmetry studies. Systems with PBGS play
an important role in string theory and supergravity where
a lot of solutions that satisfy the Bogomol'nyi-Prasad-
Sommerfield (BPS) condition and preserve some fraction
of supersymmetry can be found. The best known solutions
preserve one half of the supersymmetry and comprise the
brane scan [1-3]. For many of these solutions (D-branes,
p-branes) the effective actions, superfield or component,
which can be determined by the invariance with respect to
both broken and unbroken supersymmetries, are known.
However, there are a lot of other solutions with different
patterns of supersymmetry breaking, which correspond to
intersecting branes. Solutions were found that preserve the
n/32 fraction of supersymmetry, where n =0,1,2,3,
4,5,6,8,16 (see [4], where also the 3/4 fraction was
proposed, and references therein). For systems with these
patterns of breaking, the effective actions are much less
known. These include particles with tensorial central charges
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[5-7], but attempts to construct field theory actions were
only briefly outlined and were not truly successful [8]. The
k-symmetric theories with the 3/4 and even the (n —1)/n
patterns of breaking can be found in [9,10]. Thus, it would be
of interest to try to employ the formalism of nonlinear
realizations to construct component actions for systems with
unusual patterns of supersymmetry breaking extending the
ideas of works [11,12].

The idea of constructing component actions of theories
with partial breaking of supersymmetry is related to the
fact that one can realize transformations of the super-
space coordinates, Goldstone fermions and, optionally,
Goldstone bosons by multiplications in some coset space.
If the field and coordinate transformations are to form the
standard extended Poincaré superalgebra, one can para-
metrize the coset space in such a way that the trans-
formations of superspace coordinates have standard form,
the transformations of the fermionic superfields mimic
those of the Volkov-Akulov field [13,14], and the odd
coordinates of the superspace do not transform with respect
to broken supersymmetry. Thus, the first component of the
Goldstone fermionic superfield also transforms according
to the Volkov-Akulov law, while the bosonic components
remain inert with respect to broken supersymmetry. As a
result, one can construct a broken supersymmetry invariant
action with arbitrary bosonic limit by covariantizing
integration measure and derivatives and adding the
Wess-Zumino terms and then fix the action completely
by invariance with respect to unbroken supersymmetry.
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One can note that this scheme does not explicitly depend on
the number of supersymmetries involved, as it is easy to
construct the Volkov-Akulov action for an arbitrary number
of Goldstone fermions.

To check feasibility of this idea, it would be desirable to
study the simplest possible field theoretic models which
realize patterns of supersymmetry breaking different from
1/2. Thus, we do not concentrate on the already known
systems of branes with unusual amounts of preserved
supersymmetry but study the three-dimensional models
with one unbroken N =1 supersymmetry and some N
number of spontaneously broken supersymmetries, which

|

are realized by the shifts of the Goldstone fermionic fields.
Two separate cases can be studied as the Goldstone
fermions can belong to either scalar or vector multiplets.

II. SCALAR MULTIPLETS

A. Basic formulas

Let us begin the study with the system of some N scalar
multiplets. The superalgebra under consideration is a direct
sum of Ny + 1 copies of N = 1, d = 3 superalgebra, with
some central charges Z':

{Q.. Qﬂ} = 2(0A)aﬁPAv {SgSf,,} = 25ij(6A)aﬁPAv {Qa’S};’} = 2€a/iZi' (1)
Here, a,f,...=1, 2 and A,B,...=0, 1, 2 are SO(1,2) Majorana spinor and vector indices, respectively, and
i=1,...,Ny. The ¢ matrices, used here, satisfy the property
(GA)ay(GB)yﬁ _ nAB(Sg + €ABC(GC)£’ eABC — lABC] 012 — 1. (2)
Spinor and vector indices are raised and lowered by the tensors
€ap = —€pas €q€’’ = &, € = —€? =1, (€ap)’ = €up. B = diag(1,-1,-1). (3)

The algebra (1) can also be extended by Lorenz SO(1,2) and SO(N,) generators, which together form the algebra of

external automorphisms of (1).

We consider spontaneous breaking of N = No + 1, d = 3 supersymmetry to N = 1, d = 3, with so far arbitrary N,. For

this purpose, it is natural to parametrize the coset element as

iyA a ia Qi izl
g — elx PA eg Quev/ Saelq Z . (4)

Here, x4 and 6“ are the usual coordinates of the N = 1, d = 3 superspace, while q’ and y'® are the N = 1, d = 3 superfields
that depend on x#, #%. The invariant Maurer-Cartan forms can now be easily calculated as

g 'dg =iAx P, + dO*Q, + dy*S!, +iAq'Z!,

where Ax* = dx* +i(d6°0F + dy'*w”)(6") 5.

Aq' = dq' + 2ido*yl,. (5)

Transformations in the coset space (4) are supposed to be induced by the left multiplication, gyg = ¢'h, where h is the
element of small subgroup, which contains Lorentz and SO(N,)) generators. In the most interesting cases, unbroken and

broken supersymmetries, & = 1:

Jdo = e = 000" = €“,

ia Qi H P
gs = et St = 5Swm — Em,

Spx" =10 (") 45,
Ssxt = iy (0%) 5.

5Q'I/ai =0,
5Q9a - O,

5qu = 0,
Sodi = iei6”. (6)

Using the invariant forms Ax* and d6%, one can establish a set of derivatives, which are covariant with respect to N, + 1

supersymmetries:

Vy=(E™"),20s.

v(l = D(l - ivawiﬂy/w(al})ybaB’

EAB - 5§ + iaAwiﬂww(o-B)/w’

o .
D(z = % - leﬂ(ac)aﬁaC' (7)

The derivatives (7) satisfy the following commutation relations:
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{va’ vﬂ} = _2i(o-A)aﬂvA - Zival//jﬂvﬂwjy(ac)pwvca
[VA ’ va] = _2ivAlI/jﬂvaV/jy (GB)/H/VB’
[vA ’ vB] = 21vAV/J” vBllljD (GB)MDVB . (8)

As the df9* and Aq' differential forms are covariant with respect to both supersymmetries, the df#* projection of Aq’ can
be put to zero:

. 4 i .
d6*(Vod' +2ips) =0 =y =5V, ©)
Thus, the fermionic Goldstone fields are not independent and can be expressed in terms of the derivatives of the Goldstone

bosons. This is an example of the inverse Higgs effect [15].
Studying the V derivative of relation (9), we find that the spinorial derivatives of y* are also constrained:

VoW + Vo = 5{Va, Vpha' = (6)sVed' + V" Vyr (o), V cq' (10)

Substituting here Vaq/;j as a sum of its antisymmetric and symmetric parts,

va ;j = eaﬂAl + E (Gc)a,[}"]lc" (11)

we find that the A’ superfields are not constrained by Eq. (10), while the vectors Ji, satisfy the nonlinear equation

, 1 o1 . .
Ji = (1 +AkAK - y'eﬂk) Vadl + 5 IV 5 - ,POV pq JEAT (12)

B. Broken supersymmetry

The components of N scalar N = 1, d = 3 multiplets can be found as the first components of each of the mentioned
superfields:

4" = q'ly_0- Wi =y, Al = Ay, Ty = Thlo—o- (13)

Relation (12) for the components implies
. 1 o1 . .
Ji = (1 + AkAK — ZJ'gJCk) Duq' + EJ’j\JBkDBq’ —eABDypq'IEA™. (14)

Here, £,8 = E45|,_, and D4 = (£71),80; is the usual broken supersymmetry covariant derivative, which acts on the
components. Indeed, as 6* do not transform under broken supersymmetry, the active transformation laws o63f =
Ssf|g_o — 0x*|y_oOaf of the components read

5§qi — _UCacqi’ 5§Wia — Sia _ UCacy/ia’ 5§Al — —UcacAi,
S5 = —UCQTy. UM =ity (o), (15)

It is now easy to check that

5§(€AB - —3AUC5CB - UcachB, 5;(5_1)143 - DAUB - Ucac((‘:_l)AB,
5§DAqi = —UcacpAqi, 5§ det& = —8c(UC detg) (16)

As one can recognize A’ as auxiliary components of the scalar multiplets, some covariant equations of motion should be
provided for them (or, equivalently, some terms in the Lagrangian that contain these fields and are invariant with respect to
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broken supersymmetry and the shifts of the fields g').
Moreover, the terms in both cases should be dimensionless
and Lorentz invariant. The number of terms that satisfy
these requirements is very large. To simplify the consi-
deration, let us assume that all the terms in the Lagrangian
are also SO(N,) covariant. Then one can still construct
many invariant terms, such as A'A!, A'Dpq'DBg/A/ and
terms with higher powers of D,¢’, but if no odd powers of
A' are present in the action, they lead to the homogeneous
equation of motion of A, which implies simply A’ = 0. If
one wants to avoid explicit breaking of SO(N) invariance,
it is not possible to construct a term containing odd powers
of A’ for arbitrary N,,. Thus, we remove A’ from Eq. (14) by
taking A’ = 0 as an equation of motion. However, the
invariant linear term ~e‘f¢D,q"Dgq/D-q*e'M Al can be
constructed for Ny = 4, and this case should be studied
separately.

The component approach to the actions with partial
spontaneous breaking of supersymmetry involves the con-
struction of the ansatz for the action invariant with respect
to broken supersymmetry, and fixing of remaining arbitra-
riness by demanding its invariance with respect to unbroken
supersymmetry.

The broken supersymmetry leaves much freedom in the
action. Its main effect is fixing the way how the action
depends on the Goldstone fermionic fields while leaving
the bosonic core undetermined. To explain this, let us recall
that acceptable terms in the Lagrangian can be divided into
two types according to their broken supersymmetry trans-
formation properties. The terms of the first, standard, type
transform with respect to the active laws (15), (16) into a
full derivative proportional to the term itself, just like det £.

Indeed, looking at the transformation law of covariant
derivative of ¢, it is easy to note that an arbitrary
function of D, ¢’ transforms with respect to broken super-
symmetry as 85F(Dyq') = —UCO-F(Daq') and, there-
fore, 8%[det EF(Dyq')] = —0c|UC det EF(Dyq')] is a full
derivative for any F. Construction of such terms essentially
follows the Volkov-Akulov recipe [13,14] of modifying
derivatives and integration measure in the bosonic action
with the matrix £4,8. As we are interested in the SO(N,)
invariant action, it should be assumed that the function F in
the Lagrangian depends on three possible independent
SO(N,) and Lorentz invariants

Ly = —det EF (trd, trd?, rd?),
trd = dAA, trd2 = dABdBA,

dyp = DAqiDqu,
trd3 = dABdBCdCA.

(17)

This part of the Lagrangian transforms with respect to
broken supersymmetry proportionally to itself

6§£0 - —8c(UC£0). (18)

The function F is so far arbitrary and should be fixed later
by demanding invariance of the complete action with
respect to the unbroken supersymmetry.

The second type of terms, acceptable in the proper
Lagrangian, are the Wess-Zumino terms. They transform
into full derivative which is not proportional to the term
itself. One can note that there is only one SO(N,)) invariant
of this type, with no room for arbitrary function:

Lyz = idet Ee'BCD, " Dpg/ (W *Deyrly — y/*Deyl,) =
85Lyz = —=0g(UXLyz) + idet EMECD g Dpq! (eDeyrly — Dyl
= =0k (UXLyz) +-10c(e*PC04q' Opq’ (Siall/{z — eyy,)). (19)

Some freedom still remains in this case too. This term can be added to the Lagrangian with an arbitrary coefficient Cy,,
which should be determined, together with the function F, by demanding invariance of the whole action S = [ d®x(L, +

CywzLywz) with respect to the unbroken supersymmetry.

C. Unbroken supersymmetry

The transformation laws of the first components of the superfields in the case A’ = 0 can be found with the help of the

formula:

8o f = €'Dflg_g = €'V, fly_o + HOcf,

HA = ieyy/;JAi —I—%

2 eABceywil/J% (GC)/u/' (20)

Therefore, the transformations of the basic components ¢’ and y'* under unbroken supersymmetry read

5pq' = =2ie"y), + HOcq',

, 1 . .
by = 5 (6), T + HCOa™ (21)
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The transformations of the most essential ingredients of the action can now be calculated in a straightforward way:
5*5 B = HMaMEA + 8AHM(SM - 16'78141// JIB iEFaAl//iD( ) Jl BCD
by det€ = 9y (HY det£) —idet Ee' Dyl J'C —idet Ee* Dy (o)), (€*P,
59Daq' = —2ie" Dyl + i€’ Dy I Dyq’ + ie* Dyy* (o), JeDpq €L + HY 0y Dyq'. (22)

The variation of the action under unbroken supersymmetry transformations is a combination of variations of the main part
and of the Wess-Zumino term. Let us study them separately.

As the transformation laws of the D, ¢ explicitly contain J/, and it is not possible to solve Eq. (14) for J/, in a convenient
way, let us present the main part of the action as a function of J:

Ly = —detEF (X, rX?, rX3), Xap = Ji}J5,
trX = XAA, ter = XABXBA, trX3 = XABXBCXCA. (23)

This makes sense as Eq. (14) is linear with respect to D,¢q’ and can be solved in a straightforward way:
. . 1 1 . 4
J/l4 = MABDBql7 MAB = (1 —ZtrX>5§ +§XAB = DAq’ = (M_l)ABJ}g,

o 1 1 1 1 1 .
D =—— (1 0X)? — = trX? ) == (14 tX ) X,BJ% + - (X2) B
49 detM[( 16 (1X)° — 3 ) 2( g ) a3 (X4

1 1 1 1 1 1
detM =1 —-trX trX — (trX)? — = trX? — —trXtrX? + —trX°. 24
¢ 50X+ 7 (X)o7 (0X)? — g uX® — S uXuX? + (24)
Using this formula, one can express trd, trd?, trd® in terms of trX, trX?, trX>, and also find the variations of trd, trd?, trd® in

terms of Ji,. Then the transformation laws of trX, trX?, trX> under unbroken supersymmetry can be found as a solution of
the system of linear equations:

. otrd _, oued .,  Oud 5
optrd = o F o OouX + —— X 5 optrX DX Qt rX>,
otrd? otrd? otrd
* 2 * * 2 3
0" = Gux X T G %0 G QtX
ord? ord? ord?
* 3 _ * * 2 * 3
Sptrd® = DX oprX + X SHrX? + e SHrX°. (25)

The most practical way to perform this calculation is to use a computer analytical calculation package such as Mathematica.
The result, however, is too complicated to be written explicitly. One can still note that (i) terms with H4 are combined into
full divergence 0, (H” L)) regardless of the explicit form of the function F and (ii) the variation of det £F can be written as a
sum of six linearly independent terms with coefficients that depend on F and its derivatives:

det Ee*Dyyl JA, det Ee* Dyl XAB T, det Ee* Dyt (X2)ABJL,

det Ee* Dy (op) gy P4, det Ee*Dpy P X5 (0p) 1 1P, det Ee* Dy (X*)E(0p) 4y €A, (26)
The terms in the first line can not be combined into full divergence, even in the first approximation in the fermions and when
rewritten as functions of d,¢'. Therefore, their coefficients should vanish completely. This condition is strong enough to

determine the function F up to a numerical multiplier; we normalize it as

L 2(1 —trX/4)?

F—_ 27
detM (27)

The variation of the main part of the Lagrangian, up to full divergence, can now be written as
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. det& 1 . )
5&50 = 21w (1 - ZtrX) €aDAl[/lﬁMBA (GD)aﬂJlCG'BCD. (28)
The variation of the Wess-Zumino term (19)
Lyz = ié‘McaAqiaBC]j (U/iaacll/{x - ll/jaacll’fx) (29)

with respect to unbroken supersymmetry can be written as

8y Lwz = 2ie*P 0,554 054 (W Ocwic — wIdcyl) + 204 g Opq O (™ “Swia) + 4erPCD1q' Dpg Sy * Dyl
= 210,554 0pq’ (W Dcwe = wIDcwly)] + 210,44 0pq O (y *Siyyrt)
+ 4ieMPC[HY 0),q'04q' Dy Oyl + Oaq' Opg’ HY Oy @0 eyl
— 2ie*PC0, 405 € (0”) O Ty + 8P Py 0,q Oy ™ Dcrs. (30)

Looking at this result, one can note that only the last line is essential as terms with H¥ can be proven to vanish due to the
identity eABCHM = MBCHA | AMCHB | ABMHC and the other two terms are just total divergences.

The first term in the last line of (30) can be transformed further. Restoring det £ and the covariant derivatives in it and
taking into account that Dyq' = (M~"),BJ%, one can find that

. . . o det& S .
idet SeABCDAq’Dquea(GD)aﬂDcy//ﬁJ’D = 1mGABCJ’AJbege“(O'D)aﬁMcKDKlp/ﬁ

= 2idet Ee*PDygle*(04) ys Dy’

. det& 1 ‘ ‘
T Gent (1 B ‘”X) e} (op)qpM K Dy, (31)

4

Here, we used the fact that J},Ji) = X,p = 2Mp — 2(1 — trX/4)n,p. Moreover, the term with the derivative of ¢' is
combined with the last term in the last line of (30) into full divergence:

- 4i€ABCanj€a(0K>aﬂgAKaCWjﬁ + SeABCGI’WkaquaBWiaacWé
= —4i€ABC(0A)aﬁ€aacll/jﬁanj —2e"C0pq/ "0, (ll/ﬂll/il)acl//éz- (32)

Therefore, the variation of the Wess-Zumino term (30), up to the total derivative, could be written just as

5é£WZ - —4

Cdet& 1
4

lm 1- —trX) €ABC€0(J2 (GB)aﬂMCKDKU/iﬂ. (33)
Therefore, the combination L, + 1/2 Ly, is invariant with respect to unbroken supersymmetry.

D. Comments on the general action

The action of N, scalar N = 1, d = 3 supermultiplets, which is invariant with respect to one unbroken and N,
spontaneously broken supersymmetries as well as the SO(N,) group, reads

2(1 —trX/4)2 i . o : ) )
S=- / d*x detg% +%/d3x det E'BCD,q' Dy q’ (W *Deyry — w/*Deyrl). (34)

Its structure is uniquely fixed by the mentioned requirements.

It is worth noting that (34) actually depends on g, not on J, while rewriting it in terms of D, ¢’ is not easy in general. This
can be done most easily in the particular cases of Ny = 1 and Ny = 2, when relation (14) can be solved for J/, analytically.
For Ny = 1, we find the action of the membrane in d = 4:
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1 1
]A = <1 _ZJB]B)DAq+§JAJBDBq = DAq =

SNo=1 :—/d3xdet5(1+\/1—DAqDAq).

JA ZDAq
T B A= :
1+ JpJ"/4 1 ++/1—DgqD?q

(35)

These formulas can be obtained by setting trX> = (trX)?, trX® = (trX)* in the general formulas above. This result,

obviously, coincides with one obtained in [11].

For N, = 2, one still can express trX> in terms of the traces of the lower powers of X by noting that det X = 0. Therefore,

introducing the notation

9 =q+q3 ¢ =ilqg-79).

we ZL(W +y)
o \/E a a

l//%r = (l//a - l/_/u)’ (36)

5

we obtain exactly the component action of the membrane in D =5 [12]:

1-1/4uX

Sny—2==2 / Pxdets T (X)) 16—uX"/8 +5 / d*xdetEe*PDyq' Dpq! (W' * Dyt —w/* Doyl

——/d3xdet5(1—|—\/det(nAB—ZDAqDBZ]—2DAqDBq))—2i/d3xdet8€ABCDAqDBq(w“Dclj/a—W“Dcl//a). (37)

Thus, this action is invariant with respect to additional
hidden unbroken N =1, d =3 supersymmetry and
we again deal with breaking of just one half of the
supersymmetry.

For N, >3, the effects of the unusual fraction of
supersymmetry breaking become nontrivial and the action
(34) can not be written in standard Nambu-Goto form,

V/det (745 — D4q'Dyq’) is not even a rational fraction in J.
While it is not possible to solve Eq. (14) for Ji (Dgg’) for
general N in closed form, one still can reduce the problem
to one scalar equation and obtain the general matrix
structure. Let us slightly rewrite Eq. (14) as
' o L ak ' Lok rex

J :ADAq’—i-EJAJ Dgq', A= I—ZJCJ (38)
and use A as a parameter. Now substituting J, =
M,"(d)Dgq',

1 .
<2MABdBCMCD -M,P+ A5AD> Dpq' =0. (39)

4

If Ny > 3, this equation implies that the matrix in brackets
is zero. Also noting that M and d commute, one can solve
this simple quadratic equation. The solution, which is not
singular when Dgq' — 0, is

1 B
MB=oA(— ) . 40
4 <1+\/1—2Ad)A (40)

As trM =3 —1JiJ4 =2 4 A, the parameter A can be
found as a function of D,q' by solving the equation

2+A:2Atr< ! ) (41)
1 4 /det(1 — 2Ad)

Finally, one can explicitly write the bosonic part of the
general Lagrangian (34) as

1
Ez—ﬂdet(1+\/1—2Ad). (42)
Unfortunately, it is not known how to solve Eq. (41)

nonperturbatively. The function A and the bosonic
Lagrangian still can be written as power series

16 16 64

1 1 1 5 5 5
A=1+ [——trd} + {—Ztrd2 +§(trd)2} + {——trd3 +—trd*trd — — (trd)ﬂ

1 11 7 7
+ {—— (trd*)? — — trdtrd® + 6—4trd2 (trd)? — — (trd)“} + ey

32 96

2 8

7 3 1
— (rd)* — = (trd)?trd®> + —
7{384“) 3 (rd)rd” + 55

384

24 16 24

1 1 1 1
L=-2+ [— trd] + {Z trd® — - (trd)z} + {— (trd)® — itrdtrd2 + itrdﬂ

1
(trd*)? + Etrdtrd3] + ... (43)
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E. Special case Ny,=4 Let us note that up to the function @ this relation is the most

As mentioned before, the case N, =4 offers a  general possible, as JRA" =0 for (44) and it can not be
specific possibility of combining SO(N,)) invariance with mpltiplied by matrices like J .Am-] 4- Indeed, such a multi-
the nontrivial equation of motion for the auxiliary  Pplication leads to the expression
field. We assume that this equation can be cast into the

form T et = 0, (45)
Al = QeABCEIH ) K T (44) o
being antisymmetric in A, B, C, D. The property J3;A' =0
also simplifies the relation between Ji, and Dgq':
|

. ~ ) . 1 1
J‘l4 — MABDBql7 MAB = <1 —ZtI'X + 36(132 detX)éf +§XAB, (46)

as the e*2€ term is now absent.
With the €% symbol at hand, one can construct one more Wess-Zumino term in addition to the general one (19):

‘CWZZ = idet g€ABC€ijk[DAqiDqul//ka’DCw(ll. (47)

The proof of its invariance with respect to broken supersymmetry is completely analogous to the proof of invariance of the
general term (19). The ansatz for the Lagrangian in the case Ny = 4, therefore, reads

ENU:4 = —det gF(J) + 21C] det 5€ABCDA qiDqul//iaDCy/{l + 1C2 det EEABCGiijDA qiDqul//kaDCy/la. (48)

Unbroken supersymmetry transformations can be treated using the same idea as in the previous section. The
transformation laws of ¢' and w7, under unbroken supersymmetry now read

opq' = 2ie'y, + H Ocq', Sy’ = Eey(ac ), " — " @M ABC T TR Tt + HE Oy,

i

5 eyl A + %GABcef‘y/i”JiB(oc)ﬂb. (49)

HA = —i<I)e”l//i”e,*"ﬂ‘[e:PQRJ{;J’é]ﬁe (! ) T
New linearly independent terms appear in the variation of the action, in addition to (26):
eABce"jliﬂ;Jﬁche" (6%),,Dxw™, €ABC€U"1J£J’§JIC€”(O'K)”DDLU/i”X’;(,
eABCliM I Ik J et (UK)ﬂDDLz//i”(Xz)%.

Subsequent analysis in the lowest approximation in fermions shows that to make the system invariant with respect to
unbroken supersymmetry, the following two conditions should be satisfied:

- 1 2 1
F =detM™! <4C1 (1 - ZtrX) + 18det XP(C, + 8Cy) <1 - Ztrx>>,
— Cy + C;®(24 — 6trX + 864 det XD?) = 0. (50)

In contrast to the usual case, the Lagrangian is not a rational function of the Ji, variables and the constants that accompany
the Wess-Zumino terms are not fixed (one of them is irrelevant as it would be fixed by properly normalizing the action).
With the special choice of the constants, one can find that the bosonic limit of Lagrangian is the one of the membrane in
D="17:

1 1 ) )
— — _ ~ =1 — B __ i9B i

In this case, one can expect enhancement of unbroken supersymmetry.
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III. VECTOR MULTIPLETS

Obviously, one can dualize the scalar fields in the action
(34) and obtain the action of N, electromagnetic fields.
However, to properly check that the resulting system
possesses broken and unbroken supersymmetries, it is
desirable to construct it from the first principles. This,
however, appears to be problematic.

The standard N = 1, d = 3 vector multiplet in the case
of one spontaneously broken supersymmetry is described
by a spinor superfield y* subjected to the irreducibility
condition V p* =0 [16]. It is natural to generalize this
condition to the case of N, broken supersymmetries
as V% = 0.

It is worth noting that if one wishes to keep N arbitrary
and the whole system SO(N,) invariant, it is not possible to
modify this relation. Indeed, one can try to introduce some
function of V, y”/ to the right-hand side. Let us note that
this function should depend on the traceless part of V y//,
as the terms with trace parts are combined into the term
NUV % and the matrix N/ can be factorized out. As
terms with structure NV y* should be avoided, the only
candidate cubic term VP V™V y® is zero as
V P N gyt ~ 8 if V %, V sy* are traceless. The terms
with higher powers of V, y#* also reduce to zero for the
same reasons.

It turns out, however, that the introduced condition is not
consistent. It should be used to find the proper Bianchi
identity for the field strength. In the bosonic limit it leads to
the following condition on the bosonic component of the
multiplet:

VIV ™ =0 = {V,. V;} Vi + fermions = 0.
(52)

In the vector notation the first component of (52) reads
Ai 1 J \/Bj 1 Ajy/Bj i
8AV I_ZVBV] +§V]V JHAVB:O,

. 1 )
va"’;}'ﬁ)—ﬂ) = 5 (GA)aﬁVil'

(53)
|

[6§1’ 6;‘2}1//& = _2iggkgll/k(6A)/waAl//51 and

The commutator of broken supersymmetry transforma-
tions, acting on A’, produces not only a shift but also a
gauge transformation. As the transformation laws of
fermions are standard, the broken supersymmetry covariant
derivative should be defined as D4 = (£71),205. Also note
that the quantity F4! is invariant with respect to broken
supersymmetry

Contrary to the expectation, this identity is not equivalent to
the usual one 94,FA" =0 and the inconsistency appears
already in the cubic approximation in V. Indeed, the last
term in identity (53) can be rewritten as

DA(VAIVBIVLY — 9, VAIVBIV, — VAIVBIg, Vi (54)

The first term in (54) contributes to the field strength and
the second one can be compensated by multiplying the
identity by a suitable matrix with indices i, j. The last one,
however, could not be compensated unless the equation of
motion for the field strength e8¢0V + ... = 0 is taken
into account.

The natural way to solve this problem is to assume that
the system under consideration can be defined only on-
shell, refuse to use the superfield formalism completely and
try to formulate this system in terms of fermionic fields and
vector potentials. However, even this approach, with some
moderate assumptions, seems to be unable to produce the
correct transformation laws.

To find the transformation laws of fermions and vector
potentials, a good starting point would be to consider
broken supersymmetry. It would be natural to keep the
broken supersymmetry transformation law of the fermions,
obtained within the coset approach, as it is valid for any
number of broken supersymmetries

S5yt = e = UDcyl, UM =iehyl(c"),,. (55)
As for the vector potential, it is natural to assume that it
does not experience an inhomogeneous shift under broken
supersymmetry and its transformation law combines a
standard term that is induced by the variation of the
coordinates with a compensating term to make the whole
variation gauge invariant:

85 Al = UPO, Ay — UPOpA) = espcUPFC,
FAL = eABCYL AL (56)
The algebra of these transformations closes on both

fermions and potentials without any use of the equations
of motion:

(65, 85,) Al = 2ies et (6P),,, (04 Al — OpA).

|
FAT = detETELAFBL, 5 FYN = —UCOcFY.  (57)
The next natural point would be to find the general ansatz
for unbroken supersymmetry variations, which would
commute with broken supersymmetry. The structure of
the fermionic field variation can be fixed easily by assum-
ing that [85, 6y, = 0. At first, one can find 5553y,
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856w = 885w =—ie Sy (6%),, Dty — U DS
(58)

Now it is straightforward to show that
5§5Ql[/la = —UC8C5QI//,’;,,

SoWe = 5oy + i shw'* (6%),, Dyl (59)
The quantity 5Ql//é( is a broken supersymmetry invariant
and should be some function of the unbroken supersym-
metry parameter ¢* and the covariantized field strength FA!,
The complete variation 5*Qq/£, can be expressed in terms
of it,

HA = iy 5y (c*),,.
(60)

SoWe = Sowl, — H Oy,

It again has the usual structure, and the relation
[65. 6wl = 0 is satisfied without any reference to the
equations of motion.

Now its natural to assume that the transformation law of
the vector potential can be written as

5& A == 5Q"41l4 + €ABcHB.FCi. (61)
Commuting it with the broken supersymmetry law, one can
obtain that
(65, 851 A} = =65(89.A) + UPD,(69.Af)

- UBaB(ﬁQAA) -+ 3A(UBHCfDi€BCD).

(62)
!

To close the algebra properly, the right-hand side should
reduce to a gauge transformation, and the last term already

—

has this form. To reconstruct §p.A) completely, one
should note that the leading term in it should coincide
with the transformation law of A in the free case,

5y Al ~ie“y” (64) 5. Thus, relation (62) should be used
to restore higher order fermionic terms in the transforma-
tion law.

The ansatz for the transformation law with the
most general cubic term that does not assume the
equations of motion could be, up to a gauge transformation,
written as

So Al = i€y (04) 4 + a0 syiy Pyl + be"y Pyl Oy,
(63)

Indeed, for any combination of ey/y/y/ and the derivative
with the external index A one can employ a gauge trans-
formation to make sure that the derivative acts on the
fermion with index j. Then only three following combi-
nations could be devised:

ey Pyl
(64)

Wiy o), eyPylo ),

The third one is algebraically related to two others and can
be excluded. Then the first can be integrated by parts to
obtain (63).

Substituting it into (62), one can find that the following
equation should be satisfied:

i€ e/ () + P Ou + Pyl — 2act Py — be eyl + beely POy = Duf'. (65)

The constant term can be presented as a derivative of
—ie“e”(0,),4x". The term beasi/‘l//{;a,qwé is not a deriva-
tive and has no analogues, and, therefore, » = 0. Finally,
representing

el l/’ézaAl//;} = el Oayry + e“gﬁh//};aAy/f,, (66)

one can find that the result is not a full derivative regardless
|

Yy g yi(oa)”,  whwdpul(o,)H,

Their variations, after applying the equation of motion, read

|
of a. Thus, the commutator of Q and § transformations,
acting on A, can not be closed properly. Even the use of
the equations of motion could not help here. The equation
of motion of the fermionic field in the lowest approxima-
tion implies that 94y, (c) 4y, IS symmetric in @, 3, y. As the
terms that should be compensated in (65) have a derivative
with index A, we should consider combinations which
contain ('9,1,,1//2(6/4)“/’. Four of them can be found,

ey Pyldp i)™, eyPyld o). (67)
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2e%e yféaA% + 2e%iP l//}}aAlllé,
Zeaeiﬂyf{;,aAwé — 2%y’ aAWé,

Regardless of arbitrary coefficients taken in front of these
combinations, one can not obtain a full derivative by adding
them to (65).

IV. CONCLUSION

The field theory side of nonhalf breaking of global
supersymmetry remains a relatively unexplored subject. To
test whether it is possible to construct a usual field theory
action with various patterns of supersymmetry breaking,
we have considered the systems of multiple scalar and
vector N = 1, d = 3 Goldstone superfields.

In a simpler case of N, scalar superfields, it was
determined with the usual method of nonlinear realizations
that N, fermions enter into the action as the standard
Volkov-Akulov matrix £,% = 6,% — iy 0,y (6%),, as
well as the Wess-Zumino term. By assuming overall
SO(Ny) invariance of the action, which in the case of
arbitrary N, uniquely selects V*V,q'|,_, =0 as the
equation of motion of the auxiliary field, the unbroken
supersymmetry transformation laws were found. They
determine the action uniquely. In the case of Ny = 1 and
Ny = 2, they appear to be the usual static gauge Nambu-
Goto actions of the membranes in D =4 and D =5,
respectively. For Ny > 3 the action is not of Nambu-Goto
type, though its general structure remains universal. Most
remarkably, it exists for arbitrary N, Some peculiarity
appears in the case of Ny =4 when it is possible to
consider the SO(N,) invariant action with the nontrivial
equation of motion of the auxiliary field. This relaxes the
requirements on the action and allows one, with proper
choice of the parameters, to obtain the action of the
membrane in D = 7 (in the bosonic limit).

2evely POyl — 2e%e Pyt 0y},

4€“ejﬁyf£8Aw;. (63)

Contrary to the result above, it appears to be impossible
to construct an action of an arbitrary number of vector
multiplets, at least SO(N,)) invariant one. In this case, one
should derive the Bianchi identity for the field strength as a
consequence of the irreducibility conditions, but the only
possible condition implies the identity that could not be
brought to the standard form without the use of the
equations of motion. Moreover, further analysis of this
system, formulated in terms of the vector potential, shows
that it is not possible to find the transformation law
of the potential which would commute with broken
supersymmetry.

As further development of this topic, it would be of
interest to construct higher dimensional analogs of scalar
systems, which seems to be a rather plausible possibility.
Also, it would be desirable to relax the requirement of
SO(Ny) symmetry. When it comes to the vector multiplets,
additional possibilities are to consider the actions for some
particular values of N, as well as hybrid systems that
contain scalars and one or two vector multiplets. The next
task could be adaptation of this framework to describe
particular systems with unusual patterns of supersymmetry
breaking, which are abundant in the literature. Also, it
would be interesting to construct a superfield action using
the ideas of paper [17]. As a last point, it would be
interesting to know whether models for arbitrary N, admit a
string theory interpretation.
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