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corrections to the WKB periods, which are regarded as the quantum periods of N = 2 SU (2) super Yang-
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the spectral problem for the Mathieu equation based on the TBA equations numerically.
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1. Introduction

The exact WKB analysis for the one-dimensional Schrödinger 
equation provide a rigorous approach to the study of the spectral 
problem [1–4]. In this analysis, the Schrödinger equation is formu-
lated in a complex plane. The WKB periods are asymptotic series 
in the Planck constant h̄, which is also regarded as a complex pa-
rameter. The WKB periods have the discontinuities in the complex 
h̄-plane. In [1], the author has pointed out that their discontinu-
ity structure and their classical limit determine the WKB periods 
completely (analytic bootstrap program [1]). Recently, the solution 
to this problem has been explicitly derived for arbitrary polyno-
mial potentials [5], and for potentials with a regular singularity [6]. 
The solutions in [5,6] take the form of the Thermodynamic Bethe 
Ansatz equations (for short, the TBA equations), which are the in-
tegral equations that appear in the study of the integrable field 
theories represented by 2-dimensional CFT.

An interesting generalization is the case of the periodic poten-
tial. In particular, the Mathieu equation has been studied in detail 
using the exact WKB analysis [7,8]. In [7], the Borel transformation 
to the WKB periods for the modified version of the Mathieu equa-
tion are shown to agree numerically with the result of the TBA 
equations [9,10].

The spectral problem for the Mathieu equation has been also 
investigated as an example of the theories which have an infinite 
number of vacua (e.g. [11,12]). The energy spectrum of the Math-
ieu equation has the band structure, in which the non-perturbative 
effects contribute to the bandwidth. Moreover, in the weak cou-
pling regime, the one-instanton contribution for the energy spec-
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trum can be expressed in terms of the perturbative WKB pe-
riods [13,14]. This shows a specific example of the “resurgence 
structure” between perturbative sectors and non-perturbative sec-
tors.

The WKB periods for the Mathieu equation can also be re-
garded as the quantum periods, which are the Seiberg-Witten pe-
riods [15] in the Nekrasov-Shatashivili limit of the �-background, 
for 4-dimensional N = 2 SU (2) super Yang-Mills theory [16,17]. 
This relation is used to the calculation of the instanton correction 
to the Nekrasov partition function [18]. And in [8], the instanton 
corrections to the prepotential of N = 2 SU(2) SYM has been com-
puted by using the exact WKB analysis. The quantum SW curve for 
N = 2 gauge theories have been studied in [19–21].

The purpose of the present paper is to derive the TBA equa-
tions for the exact WKB periods of the Mathieu equation in the 
weak coupling region. We will use the TBA equations to calculate 
the quantum corrections to the WKB periods, which are regarded 
the quantum periods of N = 2 SU (2) super Yang-Mills theory at 
strong coupling. We calculate the effective central charge of the 
TBA equations, which is found to be proportional to the coefficient 
of the one-loop beta function of the 4d theory. We also study the 
spectral problem for the Mathieu equation based on the TBA equa-
tions numerically.

This paper is organized as follows. In section 2, we apply the 
exact WKB analysis to the Mathieu equation and compute the 
discontinuities for the WKB periods. In section 3, using the dis-
continuities, we derive the TBA equations for the Mathieu equa-
tion. This TBA equation clarify non-trivial relations between the 
4-dimensional QFT and the underlying 2-dimensional CFT. We also 
present some numerical results of the TBA equations. Finally, in 
section 4, we apply the TBA equations to study the energy spec-
trum of the Mathieu equation numerically.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Exact WKB analysis for the Mathieu equation

We consider the Mathieu equation1 on the Riemann sphere 
C∗ =C ∪ {∞},(

−h̄2 d2

dq2
+ �2 cos q

)
φ(q) = uφ(q), (2.1)

where � ∈R, u, ̄h ∈C and q is a complex coordinate on C∗ .
In the standard WKB method, we assume that the wave func-

tion φ(q) has the following asymptotic expansion in h̄,

φ(q) = 1√
P (q)

exp(
i

h̄

q∫
P (q′)dq′), (2.2)

P (q) =
∞∑

n=0

pn(q)h̄2n. (2.3)

We can obtain pn recursively by substituting (2.2) into (2.1). In 
particular, p0(q) = √

u − �2 cos(q) is the classical momentum.
The one-form P (q)dq can be regarded as a meromorphic differ-

ential on the curve

y2 = u − �2 cos(q). (2.4)

This curve defines a Riemann surface �̂, which we will call WKB 
curve. The WKB curve �̂ is a branched covering of C∗ . Along 
the one-cycles γ ∈ H1(�̂), we can define the period integrals of 
P (q)dq, which we will call “standard” WKB periods,

aγ :=
∮
γ

P (q)dq, γ ∈ H1(�̂). (2.5)

These periods are expanded as the power series in h̄,

aγ =
∞∑

n=0

a(n)
γ h̄2n, a(n)

γ =
∮
γ

pn(q)dq. (2.6)

In particular, we will call a(0)
γ classical periods, which are the inte-

grals of the classical momentum along γ .
The standard WKB periods are an asymptotic series in h̄. Then 

we define the Borel transformation,

âγ (ξ) =
∞∑

n=0

1

(2n)!a(n)
γ ξ2n, (ξ ∈C) (2.7)

and the Borel resummation,

sϕ
(
aγ

)
(h̄) = 1

h̄

eiϕ∞∫
0

e−ξ/h̄âγ (ξ)dξ, (2.8)

where ϕ is the phase of h̄ (h̄ = |h̄|eiϕ ). We can obtain an analytic 
function sϕ

(
aγ

)
(h̄), from which we recover the standard WKB pe-

riods aγ as the asymptotic expansion in h̄. In this paper, we refer 
to the analytic continuation of sϕ

(
aγ

)
(h̄) as “exact” WKB periods. 

The Borel summability of the standard WKB periods for a class of 
meromorphic potentials has been discussed in [22,23].

The analytic continuations of the Borel transformations can 
have some poles and branch cuts in the ξ -plane. To avoid the sin-
gularities in the integration contour of (2.8), we define the lateral 
Borel resummation,

1 Our analysis is converted to the modified Mathieu equation [7] by the change 
of variables q → ix, h̄ → ih̄.
Fig. 2.1. The branch points and cycles with the identification q ∼ q + 4π .

sϕ±
(
aγ

)(
eiϕ |h̄|

)
= lim

δ→+0
sϕ±δ

(
aγ

)(
ei(ϕ±δ)|h̄|

)
. (2.9)

sϕ
(
aγ

)
has discontinuity along the direction ϕ , which is can be 

expressed as

discϕaγ := sϕ+
(
aγ

) − sϕ−
(
aγ

)
. (2.10)

Let us now calculate the discontinuities of the exact WKB pe-
riods for the Mathieu equation (2.1). First, we define the canonical 
one-cycles on �̂. On the complex q-plane, we define the branch 
cuts between the turning points. We use the coordinate with the 
identification q ∼ q + 4π while the potential cos q has the period-
icity 2π . This choice is useful to formulate the TBA equations as 
we will see. In this coordinate, the complex plane is compactified 
by adding the points at ±i∞ and these points are not the branch 
points. This is in contrast with the case of [8], where the coordi-
nate q identified as q ∼ q + 2π . In this coordinate, the points ±i∞
become the branch points and one needs to consider the cuts be-
tween the turning point and infinity.

In the following analysis, we will restrict to the parameter re-
gion as −�2 < u < �2, which correspond to the weak coupling 
region of the Mathieu equation. This parameter region is called the 
minimal chamber [24]. In this regime, we can take the WKB curve 
�̂ so that the branch cuts lie on the classically allowed intervals. 
These branch cuts define four independent cycles, the cycles α and 
α̃ which encircle the classically allowed intervals, and β , β̃ which 
encircle the classically forbidden intervals (Fig. 2.1).

We choose the orientations of the cycles in such a way that the 
classical periods,

m1 := a(0)
α =

∮
α

p0(q)dq, m2 := ia(0)
β = i

∮
β

p0(q)dq,

m3 := a(0)

α̃
=

∮
α̃

p0(q)dq, m4 := ia(0)

β̃
= i

∮
β̃

p0(q)dq,

(2.11)

are real and positive. In fact, from the periodicity of cos q, the pe-
riods satisfy

aα = aα̃ , aβ = aβ̃ . (2.12)

Thus we take aα , aβ as the independent periods for the Mathieu 
equation.

The discontinuities of the exact periods can be captured by the 
Delabaere-Pham formula (Theorem 2.5.1 of [3], and Theorem 3.4 
of [22]). The Delabaere-Pham formula says that the exact periods 
for the classically allowed intervals have the discontinuities in the 
directions for ϕ = 0 in the complex h̄-plane, and its discontinuities 
are determined by the exact periods for the classically forbidden 
intervals which cycles intersect with the each classically allowed 
intervals,

i

h̄
disc0 aα = − log

[
1 + exp

(
− i

|h̄| s0(aβ)

)]

− log

[
1 + exp

(
− i

|h̄| s0(aβ̃ )

)]
. (2.13)

The r.h.s. of (2.13) is rearranged by the identification (2.12) as
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i

h̄
disc0 aα = −2 log

[
1 + exp

(
− i

|h̄| s0(aβ)

)]
. (2.14)

The similar formula hold for the directions for ϕ = π ,

i

h̄
discπ aα = +2 log

[
1 + exp

(
− i

|h̄| s0(aβ)

)]
. (2.15)

In contrast, the exact periods for the classically forbidden intervals 
have the discontinuities in the directions for ϕ = ±π

2 , and its dis-
continuities are determined by the exact periods for the classically 
allowed intervals which cycles intersect with the each classically 
forbidden intervals,

i

h̄
disc± π

2
aβ = ±2 log

[
1 + exp

(
− i

ei π
2 |h̄| s π

2
(aα)

)]
. (2.16)

3. TBA equations for WKB periods

3.1. TBA equations

To simplify the discontinuities (2.14)∼(2.16), we introduce the 
functions εi(θ) by

ε1

(
θ + iπ

2
− iϕ

)
= i

h̄
sϕ (aα) (h̄) , ε2 (θ − iϕ) = i

h̄
sϕ

(
aβ

)
(h̄) ,

(3.1)

where we define θ by

1

h̄
= eθ−iϕ. (3.2)

Now we can express the discontinuity formulae in the form:

disc±π/2εi (θ) = ± [Li−1(θ) + Li+1(θ)] , (i = 1,2) (3.3)

where

Li(θ) = log
(

1 + e−εi(θ)
)

(3.4)

and we define L0 = L2, L3 = L1. From the large θ expansion of 
(3.1), εi(θ) has the asymptotic behavior

εi(θ) = mie
θ +O(e−θ ), θ → ∞. (3.5)

Now we can find that the functions εi(θ) is given by the following 
TBA equations [5]

ε1(θ) = m1eθ − 2
∫
R

log
(

1 + e−ε2(θ ′)
)

cosh(θ − θ ′)
dθ ′

2π
,

ε2(θ) = m2eθ − 2
∫
R

log
(

1 + e−ε1(θ ′)
)

cosh(θ − θ ′)
dθ ′

2π
.

(3.6)

This TBA equations coincide with the “conformal limit” of the 
low-energy effective theory of the N = 2 gauge theory on R3 × S1

[9,10]. We derived the TBA equations by using the discontinuity 
formula. On the other hand, the TBA equations for the Mathieu 
equation are also considered in [25], where the authors derive the 
TBA equations for the periods aβ(h̄, u) and aβ(h̄, −u) by using the 
functional relation of the wronskian for the subdominant asymp-
totic solutions. The derivation in [25] is based on the ODE/IM cor-
respondence [26,27].

The TBA equations are simplified when we choose u = 0. Then 
we have
m1 = m2 =: m. (3.7)

In this case, from the calculation of (3.6), we can see that ε1 and 
ε2 are identified

ε1 = ε2 =: ε. (3.8)

Therefore the two TBA equations collapse to one,

ε(θ) = meθ − 2
∫
R

log
(

1 + e−ε(θ ′)
)

cosh(θ − θ ′)
dθ ′

2π
. (3.9)

This TBA equation coincides with the massless Sinh-Gordon TBA 
equation, which is the result of the conformal limit of the TBA 
equation for the Sinh-Gordon model [28]. The TBA equation (3.9)
is also studied in the context of the ODE/IM correspondence for 
the generalized Mathieu equation [29].

So far we investigate the TBA equations for real u satisfying 
−�2 < u < �2. But we can extend the TBA equations for complex 
u as far as u belongs to the minimal chamber [7,9]. On the com-
plex u-plane, the minimal chamber coincide with the inside of the 
marginal stability curve [30]. The marginal stability curve is real 
co-dimension one curve in u-plane which runs through the points 
u = ±�2. In the inside of the marginal stability curve, the TBA 
equations are written as follows:

m1 = |m1|eiφ1 = a(0)
α , m2 = |m2|eiφ2 = ia(0)

β (3.10)

ε̃1(θ) = |m1|eθ − 2
∫
R

log
(

1 + e−ε̃2(θ ′)
)

cosh(θ − θ ′ + iφ2 − iφ1)

dθ ′

2π
,

ε̃2(θ) = |m2|eθ − 2
∫
R

log
(

1 + e−ε̃1(θ ′)
)

cosh(θ − θ ′ + iφ1 − iφ2)

dθ ′

2π
,

(3.11)

where

ε̃i(θ) := εi(θ − iφi) (i = 1,2), (3.12)

and |φ1 − φ2| < π
2 .

The integral equations for the outside of the marginal stability 
region can be also obtained, but this equation is no longer of the 
form of the TBA equations and it is difficult to solve even numeri-
cally.

3.2. All-order expansion of the WKB periods

In this subsection, we study the h̄ = e−θ expansion of the solu-
tion to the TBA equations and compare their with the WKB expan-
sion of the periods. When we expand (3.6) at large θ , we obtain 
all-order asymptotic expansion,

εi(θ) = mie
θ +

∞∑
n=1

m(n)
i e(1−2n)θ , θ → ∞, (3.13)

where

m(n)

k = (−1)n

π

∫
R

e(2n−1)θ (Lk−1(θ)+ Lk+1(θ))dθ (k = 1,2). (3.14)

From m(n)

k , we can recover the coefficients of the standard WKB 
periods as

m(n) = (−1)na(n)
α , m(n) = ia(n)

. (3.15)
1 2 β



4 K. Imaizumi / Physics Letters B 806 (2020) 135500

Fig. 3.2. The numerical results of [a] the first order and [b] the second order (� = 1, u = −0.6). The green lines show the results of (−1)na(n)
α , m(n)

1 and the red lines show 
the results of ia(n)

β , m(n)
2 .
Table 1
The numerical results of the coefficients of the standard WKB periods (� = 1, u =
−0.6). The numerical calculation in the TBA equations is done by Fourier discretiza-
tion with 218 points and a cutoff of the integrals (−L, L) where L = 41.837877.

n (−1)na(n)
α m(n)

1 ia(n)
β m(n)

2

0 1.82531050 8.22561885
1 -0.15993792 -0.15993849 -0.42667081 -0.42667143
2 0.00420150 0.00420150 0.22398998 0.22398999

In Table 1 we compare m(n)

k to a(n)
α and a(n)

β for the first two terms 
at u = −0.6, � = 1. We note that we can choose � = 1 with-
out loss of generality from the quasi-homogeneous property of 
the Mathieu equation. We also compare the numerical results with 
−1 < u < 1 in Fig. 3.2. To compute the higher order corrections of 
a(n)
α and a(n)

β , we used the differential operator technique [8,31]. 
The classical periods a(0)

α and a(0)
β for −1 < |u| < 1 can be ex-

pressed in terms of the hypergeometric function,

a(0)
α = 16√

2

π

2

(
2 F1

(
1

2
,−1

2
,1,

1 + u

2

)

− 1

2
(1 − u)2 F1

(
1

2
,

1

2
,1,

1 + u

2

))
,

a(0)
β = −16i√

2

π

2

(
2 F1

(
1

2
,−1

2
,1,

1 − u

2

)

− 1

2
(1 + u)2 F1

(
1

2
,

1

2
,1,

1 − u

2

))
.

(3.16)

The higher order corrections can be computed by the differential 
operators Dn that act on the classical periods,

a(n)
γ = Dna(0)

γ . (3.17)

For � = 1, the first few orders of the differential operators can be 
expressed as follows:

D1 = 1

24
(2u∂2

u + ∂u),

D2 = 1

27 (
28

45
u2∂4

u + 8

3
u∂3

u + 5

3
∂2

u ).

(3.18)

From the TBA equations, we can also calculate higher order col-
lections to the standard periods numerically. In Fig. 3.3, we show 
that the poles of the Borel transformation of the standard peri-
ods. To compute the Borel transformations, we use the standard 
periods which are determined by (3.14) and the diagonal Padé ap-
proximant of order 12. These positions of the poles are consistent 
with the discontinuities (2.14)∼(2.16). The poles of the Borel-Padé 
transformations are also calculated in [7]. They use 193 terms of 
the standard periods which is determined by the differential op-
erator technique. To reproduce their results, we need higher order 
corrections and more precision of the calculation of (3.14).

3.3. Effective central charge and PNP relation

In the TBA systems (3.6), the functions εi(θ) are regarded as 
the energy of pseudo particles of the integrable field theories. In 
the UV limit, we can evaluate the “effective central charge” ceff =
c − 24�min of the underlying CFT, where c is the central charge of 
the Virasoro algebra and �min is the minimum eigenvalue of the 
Virasoro operator L0. ceff is given by

ceff = 6

π2

2∑
i=1

mi

∫
R

eθ Li(θ)dθ

= 2 + 3

π2

2∑
i=1

(
ε�

i log(1 + eε�
i ) + 2Li2(−eε�

i )
)

, (3.19)

where

ε�
i = lim

θ→−∞εi(θ). (3.20)

We calculate the effective central charge for the TBA equations 
(3.6). The θ → −∞ limit of the pseudo-energies for (3.6) satisfy

e−ε�
1 = 1 + e−ε�

2 , e−ε�
2 = 1 + e−ε�

1 . (3.21)

In [10,32], it is pointed out that there are no mathematically rig-
orous solutions to these equations. But we can formally consider 
that ε�

i → −∞ are the solutions to these equations. Then we can 
identify the effective central charge associated with TBA equations 
(3.6),

ceff = 2. (3.22)

This result agrees with the numerical calculation.
We can also compute the effective central charge of the second 

term of (3.19) from the standard WKB periods. The large θ expan-
sion for (3.11) leads to

ceff = −3i

π

(
a(0)
α a(1)

β − a(1)
α a(0)

β

)
. (3.23)

We can evaluate this by the hypergeometric form of the standard 
WKB periods, which is again equal to 2. Note that the classical 
periods (3.16) satisfy the second-order Picard-Fuchs equation [33],
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Fig. 3.3. The poles of the Borel transformation of [a] aα and [b] aβ on the complex ξ -plane (� = 1, u = −0.6).
∂2

∂u2

(
a(0)
α ,a(0)

β

)
= −1

4(u + 1)(u − 1)

(
a(0)
α ,a(0)

β

)
. (3.24)

This equation allows us to rewrite (3.23) as

−3i

π

(
a(0)
α a(1)

β − a(1)
β a(0)

α

)
= − i

8π

(
a(0)
α

∂a(0)
β

∂u
− ∂a(0)

α

∂u
a(0)
β

)
.

(3.25)

From the wronskian relation [34] satisfied by the classical periods

a(0)
α

∂a(0)
β

∂u
− ∂a(0)

α

∂u
a(0)
β = 16π i, (3.26)

we obtain

−3i

π

(
a(0)
α a(1)

β − a(1)
β a(0)

α

)
= 2. (3.27)

This non-trivial relation between the independent standard periods 
is called the PNP-relation. The PNP-relation also exists for several 
classes of the potentials [35], [36].

In [16], it is claimed that the standard WKB periods aα , aβ are 
equivalent to the quantum periods for 4-dimensional N = 2 SU (2)

super Yang-Mills theory and explicitly demonstrated up to the low-
est orders. Therefore the TBA equations (3.11) imply that the Borel 
resummation of the quantum periods, which are the quantities of 
the 4-dimensional QFT, are equal to the pseudo-energies, which 
is the quantities of the 2-dimensional CFT, at least on the inside 
of the marginal stability. Moreover, in [37,38], it is show that the 
r.h.s of (3.25) is proportional to the coefficient of the one-loop beta 
function for the N = 2 theory. Therefore (3.23) indicates that the 
quantum collection to the beta function for the N = 2 theory is 
governed by the effective central charge of the 2-dimensional CFT.

4. Spectral problem for the Mathieu equation

The energy spectrum of the Mathieu equation has the band 
structure. In [39], Zinn-Justin and Jentschura have conjectured that 
the exact quantization condition for the periodic cosine potential 
is given by the following equation,
(
32√
2h̄

)−BZJJ e
AZJJ

2

�
( 1

2 − BZJJ
) +

(
− 32√

2h̄

)BZJJ e
−AZJJ

2

�
( 1

2 + BZJJ
)

= 2 cos θB√
2π

, (4.1)

where θB is the Bloch angle. AZJJ and BZJJ are formal power series 
in h̄ and related to the standard WKB periods as follows [11]:

BZJJ (u, h̄) = 1

2π h̄
aα (u, h̄) , (4.2)

AZJJ (u, h̄) = i

h̄
aβ (u, h̄) − 2 ln �

(
1

2
+ BZJJ (u, h̄)

)
+ ln (2π)

− 2BZJJ (u, h̄) ln

(√
2h̄

32

)
. (4.3)

In particular, the perturbative contribution to the energy spectrum 
can be obtained by the following condition,

BZJJ (u, h̄) = N + 1

2
, (N ∈ N≥0). (4.4)

This equation corresponds to the Bohr-Sommerfeld quantization 
condition for aα .

The quantization conditions (4.1)∼(4.4) are only valid for u � 1
and h̄ � 1, in which we can use the approximation by the stan-
dard WKB periods. Instead of the standard periods, we will use the 
exact WKB periods smed (aα), s0

(
aβ

)
, where smed indicates the me-

dian resummation. The median resummation can be easily com-
puted as the principal value of the singular integral [5],

1

h̄
smed (aα) (u, h̄) = m1eθ + P

∫
R

2L2(θ)

sinh (θ − θ ′)
dθ ′

2π
, (4.5)

where

P
∫

2L2(θ)

sinh (θ − θ ′)
dθ ′

2π

R
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Fig. 3.4. (i) The exact energy bands (green lines). (ii) The energy spectrum determined by the Bohr-Sommerfeld condition for smed (aα) (u, h̄) (blue lines). (iii) The exact 
spectrum at θB = π

2 (orange lines). (iv) The energy bands determined by (4.1) with the exact periods (gray region). The numerical calculation in the TBA equations is done 
by taking the value δ = 10−15.
:= lim
δ→0

∫
R

2L2(θ
′) sinh (θ − θ ′) cos δ

sinh2 (θ − θ ′) cos2 (δ) + cosh2 (θ − θ ′) sin2 (δ)

dθ ′

2π
.

(4.6)

In Fig. 3.4, we depict the energy spectrum with several com-
putations. The gray region indicates the energy bands calculated 
by (4.1) with the exact periods. We can see that the gray region 
partially reproduce the exact band spectrum (green lines). Thus 
the exact WKB periods extend the valid region of the quantiza-
tion condition (4.1). The blue lines show the results of the Bohr-
Sommerfeld condition for smed (aα) (u, h̄). And the orange lines are 
the exact spectrum at θB = π

2 , which includes the two and much 
higher instanton contributions but approximately determines the 
exact perturbative spectrum.

5. Conclusions and discussions

In this paper, we derived the TBA equations which govern the 
exact WKB periods for the Mathieu equation at weak coupling. The 
TBA equations gave an efficient way to calculate not only the exact 
periods but also the all-order coefficients for the standard peri-
ods. The TBA equations also provided some new perspectives for 
the related subjects. First, we have seen that the coefficients of 
the one-loop beta function for 4-dimensional N = 2 SU (2) super 
Yang-Mills theory is proportional to the effective central charge for 
the 2d CFT. Second, in section 4, the exact WKB period with the 
Bohr-Sommerfeld quantization condition determined the perturba-
tive contribution to the energy spectrum at least −�2 < u < �2.

Our results raise several open problems. In section 4, the band-
width determined by the TBA equations were not agreed with the 
exact results as u or h̄ become large. To compute the energy spec-
trum for these regions, we may be necessary to consider the exact 
quantization conditions for the Mathieu equation by using the ex-
act WKB method [4]. It is also interesting to apply our method to 
other periodic potentials and study their band structure. The Hill’s 
differential equation is one of them, which includes the Mathieu 
equation as a special case.

There are also many crucial generalizations in the context of 
gauge theories. First of all, whether we can apply our method 
to the theories with matters or not. These theories have more 
complicated forms of the potentials (see e.g. [19]). Another direc-
tion for generalization is N = 2∗ SU (2) super Yang-mills theory, 
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hose quantum periods can be calculated from the Lamé equation 
1,40,41].

The most important problem is the formulation for the outside 
f the strong coupling region. As stated in subsection 3.1, inte-
ral equations in the outside of marginal stability have no longer 
e form of TBA equations. On the other hand, in [42], other type 

f integral equations for these regions are derived by using the 
belianization technique. They use a form of the Mathieu equation 
hich can be obtained from the change of variable eiq = z. We 

robably need the exact WKB analysis in this coordinate [43].
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