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1 Introduction

In recent years, many interesting and surprising relations have been obtained between
quantum mechanical systems, on one hand, and supersymmetric gauge theories and topo-
logical strings, on the other hand. One example of such a relation is the gauge/Bethe
correspondence of [1], which connects quantum integrable systems to instanton calculus in
gauge theory. A second example is the topological string/spectral theory (TS/ST) corre-
spondence, which provides explicit predictions for the spectral determinants of quantum
mirror curves [2—4]. Finally, the study of BPS states in supersymmetric gauge theories
turns out to be closely related to the WKB method as applied to Seiberg-Witten (SW)
curves [5—7]. This relation can be upgraded to include resurgent properties of the quantum



periods [8, 9]. All these connections can be used to obtain new results in quantum theory
from gauge/string theory. For example, the results of [1, 2] lead to new exact quantization
conditions for the spectrum of the relevant operators. Conversely, one can use quantum
mechanical results to derive new results of string/gauge theories, like for example non-
perturbative definitions of topological string partition functions on local Calabi-Yau (CY)
manifolds [2, 3, 10].

Perhaps the simplest quantum-mechanical model where all these methods can be ap-
plied is the quantum version of the SW curve for N' = 2, SU(2) super Yang-Mills (SYM)
theory. The corresponding operator is the (modified) Mathieu operator, which is a tra-
ditional chapter in the theory of Schrodinger operators. This operator has been also re-
visited in the context of supersymmetric gauge theory and topological string theory in
various works (see e.g. [11-17]), but many important aspects have not been discussed yet.
In this paper we use methods from supersymmetric gauge theory and topological string
theory to obtain quantum-mechanical properties of the modified Mathieu operator at the
non-perturbative level, and we test these properties against first-principles computations.
We also discuss the relationships between these different approaches.

The first aspect that we explore is the resurgent structure of the quantum periods,
which we review in section 2. Building on [6], Gaiotto considered in [7] the conformal limit
of the TBA equations of [5] for an N' = 2 supersymmetric gauge theory, and he conjectured
that the resulting integral equations describe the quantum periods for the corresponding
quantum SW curve. In the case of Argyres-Douglas theories, this problem was studied
in detail in [8], which pointed out precise connections to the resurgent properties of these
periods, and used these properties to derive the conjecture of [7] in the case of general
polynomial potentials

In section 3 of this paper we use the conformal limit of the TBA equations to obtain
a prediction for these resurgent properties in the case of the modified Mathieu operator.
In particular, we obtain the precise structure of the Stokes discontinuities of the quantum
periods. We then test these predictions against first-principles calculations in the all-
orders WKB method, in particular against high order results for the expansion of the
quantum periods. We also comment on how to use these TBA equations to compute Borel
resummations of the quantum periods.

As pointed out in [11] and explored in many subsequent papers, the NS limit of in-
stanton calculus [1] provides a different resummation of the WKB expansion, in terms of a
convergent expansion in the instanton counting parameter. However, this resummation has
a very different flavor from the Borel resummation appearing in the theory of resurgence,
and it is important to have a precise dictionary between the two types of resummation.
We address this issue in section 4.

As we mentioned above, the TS/ST correspondence gives explicit expressions for spec-
tral determinants of operators obtained in the quantization of mirror curves. As pointed
out in [18], there is a four-dimensional limit of the correspondence in which the relevant
operator is the quantization of the SW curve for pure N' = 2, SU(N) Yang-Mills theory.
This leads to a spectral problem which is different from the one considered in [1] for N > 2.
In the case of the SU(2) theory considered in this paper, the spectral problems coincide,



but the TS/ST correspondence gives, in addition to the quantization condition of [1], an
explicit expression for the spectral determinant, which we derive in detail in section 5 of
this paper. The resummed quantum periods defined by instanton calculus are key ingre-
dients in this expression. We test the resulting formula and in particular we compare our
result to the TBA equation describing this spectral determinant which was conjectured by
Al. B. Zamolodchikov in [19].

In section 6, based on previous works, we use the vanishing Nakajima-Yoshioka blowup
equations to prove that the exact spectrum of the modified Mathieu operator is computed
by the zeros of the 7 function of Painlevé I113. Finally, in section 7 we conclude and discuss
some open problems.

We have also included two appendices: in the first one we extend the derivation of
section 5 to SU(N) quantum SW curves, while in the second one we review some of the
results of Zamolodchikov’s paper [19].

2 The all-orders WKB method

Our first approach to the quantum SW curve will be based on the so-called exact WKB
method, see for example [20-23]. We will now summarize the basic ingredients of the theory.

The Schrodinger equation for a non-relativistic particle in a potential V(z) and with
energy F reads as follows:

— 12" (2) + (V(x) - E)i(x) = 0. (2.1)

The standard WKB method produces asymptotic expansions in A for the solutions to this
equation. Let us consider the following ansatz for the wavefunction,

W(x) = exp (; / Y (', E; h)dac’) . (2.2)
The function Y (z, E; h) satisfies the Riccati equation

171@ E—-V(x). (2.3)

It has the formal power series expansion in powers of &
Y(z,E;h) = an x, E)h (2.4)

where in particular po(x, E') is the classical momentum as a function of x and the conserved
energy. If one splits Y into the even component and the odd component,

Y = peven + Dodd, (25)

with

oo
peven x, E; h Zan z, E 7 podd(xaE; h) = Zp2n+1 ($3E)h2n+17 (26)
n=0



one finds that the odd component is in fact a total derivative

ih d
podd($aE§ h) = falogpeven(xaEQ h) (27)

By substituting (2.2) into the Schrédinger equation, one finds (see for instance [24])

pon = (=1)"v2,, n >0 (2.8)
1 n—1

Up = T <8xvn_1 — kavnk> s (29)
Po —1

from which the components po,(x, F) can be solved recursively, starting from the known
expression of py.
Geometrically, we can regard peven(x, F; A)dz as a meromorphic differential on the
curve defined by
y? =2(FE - V(x)). (2.10)

We will call it the WKB curve, and we will denote it as Ywkg. This curve depends on a
set of moduli which include the energy E and the parameters of the potential V(z). The
basic objects in the exact WKB method are the periods of peven(x, E'; h)dz along one-cycles
of Ywks, which we will call WKB periods or quantum periods. We will denote them as

IL(0) = § puvenl i)z, v € Hi(Swia), (2.11)
~
and they are formal power series in even powers of A, just like peyen (),

,(h) = mPeer, 1) = fpn(a:,E)dx. (2.12)
n>0 v

Note that the coeflicients Hgn) depend on the moduli of the WKB curve. We will call
Hgo) the classical periods. The calculation of these coefficients at high order can be quite
involved, even for simple quantum systems.
In this paper we are interested in the modified Mathieu Hamiltonian, with the con-
ventions
H(p,z) = p* + V(z), V(z) = 2A% cosh z. (2.13)

Upon quantization, we obtain the operator
H = p? + 2A% cosh(x), [x, p] = iA. (2.14)

We will refer to this as the modified Mathieu operator. It is well-known that the WKB curve
of the modified Mathieu Hamiltonian happens to coincide with the SW curve of NV = 2,
SU(2) Yang-Mills theory, in the conventions appropriate for the relation to integrable
systems (see e.g. [25] for a review of SW theory and [26] for its connection to integrable
systems). In order to do this, we identify £ with the Coulomb modulus u by

E=2u. (2.15)



Let us first consider the classical periods of the modified Mathieu equation. Since the
WKB curve is a torus, there will be two periods, corresponding to the two cycles of the
torus. The B period corresponds to the classical volume of phase space

+
m9(E) = 41/ dz VE — 2A% cosh z, (2.16)

0

xT

where

z, =cosh™* (2.17)

2A2
is the turning point. This classical period can be evaluated explicitly as

10 (E) = 8iVE + 2A2 [K <E_2A2) —E<E_2A2)]. (2.18)

E +2A2 E +2A2

(We denote the elliptic integrals with boldface letters K, E, and their argument is the
squared modulus m = k2). There is in addition an A period which corresponds to motion
along the imaginary axis. Classically, it is given by,

" (g = —2i/ da (\/E “oA? coshx) = 8VE + 2A%E <4A2> . (2.19)

i 202+ FE

i

In the simplest case when £ =0 and A = 1, we have

. 1673/2 1673/2

(2.20)

We note that these classical periods are, up to normalization, the famous a and ap = 9, F
periods of SW theory [27], namely

n0(E) = 2ra(u),  T9(E) = 2iap(u). (2.21)

We will denote the all-orders WKB quantum periods as
[o.¢]
Map(Eh) =Y BIY,(E). (2.22)
n=0

In the case of the modified Mathieu equation, the most efficient way to calculate the
quantum corrections is the so-called quantum operator approach (see e.g. [13]). It turns out
that, for each function ps,(x, E) appearing in (2.6), one can find a first order differential
operator O, (E) such that

OH(E) Opo(.%’,E) :p2n(x7E) (223)
up to a total derivative. Since O, (E) commutes with integration, one immediately has

N ,(E) = 04(E) o 1Yy (E) . (2.24)

)

In this way, we have computed quantum corrections up to order 193. As a simple example,

with A = 1 we have [13]
E G,
O1E) = B(A—E?) 240F° (2:25)




Therefore,

1-—1i _ (1) o i B
6\/§K( 1), HZ(E=0)= 6\/§K( 1). (2.26)

We recall that the quantum periods satisfy the so-called quantum Matone relation [14, 17,

n'(E=0)=-

28-31]. One of the consequences of this relation is that
1" el (e) - 10 E)nY (E) = const. (2.27)

which we can then evaluate at E = 0 to be —27i/3.
It is well-known that the formal power series appearing in the quantum periods diverge
generically as [24, 32]
) ~ (2n)!, n> 1 (2.28)

Therefore the expressions (2.12) are just formal power series and need to be properly
resummed. A natural way of doing so is to perform the Borel resummation. In general,
given an asymptotic series of the form

F=>Y fh", heC, (2.29)

with
fa~(2n)!, n>1 (2.30)

we split & = e'?|h|, and define the Borel resummation to be

(69¢)e¢/ M
s(F =7 / O)e=¢/Mac (2.31)

where F/(() is the Borel transform

e}

Z

¢2“ (2.32)

The analytic properties of F (¢) in the (-plane, also called the Borel plane, are crucial.
If the Borel transform has singularities along the positive real axis, the series F'(h) is
not Borel summable, as the integral in the Laplace transformation (2.31) is obstructed.
We can however deform slightly the integration contour below or above the positive real
axis, obtaining in this way the so-called lateral Borel resummations of the formal power
series F'(h):

(69¢)e ¢/ 1M
s+ (F =7 / C)e¢/1Mqc. (2.33)

These lateral resummations are in general different, and their difference is defined as the
Stokes discontinuity of F":

disc(F)(h) = s+ (F)(h) — s—(F)(h). (2.34)

Stokes discontinuities play a crucial role in the theory of resurgence, see e.g. [33].
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Figure 1. Poles of the Borel-Padé transforms, which would accumulate to branch cuts for the
Borel transform of the quantum periods I 4(E, k) (a) and IIg(FE, k) (b) at w =0 and A = 1. The
red points are the central charges of the BPS states which contribute to the branch points, and
their electromagnetic charges are labelled nearby. See discussion in section 3.2.

Let us look at some examples of the Borel plane of the quantum periods for the modified
Mathieu equation. In practice, to calculate the Borel transform, we use standard Borel-
Padé techniques, i.e. we use a finite number of terms in the formal power series (in this
case we have used 193 terms), and in order to extend analytically the resulting function,
we use a Padé transform of the Borel transform. In this method, branch cuts of the Borel
transform are indicated by a dense accumulation of poles of the Borel-Padé transform along
a segment. The first example is when u = F = 0. We plot the poles of the Borel-Padé
transforms of I14(0, /), I15(0, &) in the Borel plane in figures 1. They indicate the existence
of four branch cuts in the case of the A period, and two branch cuts in the case of B period.
Since in both cases there are branch cuts along the positive real axis, neither of the two
quantum periods are Borel summable.

Next, we consider u = E/2 = 4. Again we plot the poles of the Borel-Padé transforms
of I14(4,h),115(4, k) in the Borel plane in figures 2. In both cases we observe six branch
cuts, and they are in different locations as compared to what we found at v = 0. In this
case, the quantum A period is Borel summable, but the quantum B period is not.

As we can see, in general, the quantum periods are not Borel summable, and their Borel
transforms and resummations have a rich structure. Fortunately the connection with SW
theory gives very powerful information on this structure, which we will explore in detail in
the next section.

3 Quantum periods from TBA equations

In this section we study the TBA equations which control the analytic properties of the
quantum periods of the modified Mathieu equation. We set A = 1 throughout the section.
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Figure 2. Poles of the Borel-Padé transforms, which would accumulate to branch cuts for the
Borel transforms of the quantum periods I 4(u, i) (a) and g (u, k) (b) at w =4 and A = 1. The
red points are the central charges of the BPS states which contribute to the branch points, and
their electromagnetic charges are labelled nearby. See discussion in section 3.2.

3.1 Review of the TBA equations of Gaiotto-Moore-Neitzke

The TBA equations we will obtain are conformal limits [7] of the integral equations pro-
posed by Gaiotto-Moore-Neitzke (GMN) in [5] to describe the hyperKéahler metric on the
Coulomb branch of N = 2 theories compactified on R? x SL,, where R is the compactifica-
tion radius. We will now review some basic aspects of these equations which will be useful
in the following. The basic ingredients in these equations are the central charges of the
N = 2 supersymmetric gauge theory

Z(u) = (a,ap), (3.1)
where oF
ap = (Tao' (3.2)

We define the period associated to a vector v € I" in the lattice of electromagnetic charges as

Zy=2Z(u) 7. (3.3)

This is just a linear combination of A periods and B periods.

To such a central charge we associate a ray
Z.
A,:{g:”(“)eR}. (3.4)
¢
The semiflat coordinate on the Coulomb branch is given by

X5 (C) = exp [TRC™ ' Zy + 10y + TRCZ, ] (3.5)



where R is the compactification radius, and

is the angular coordinate on the fiber. The semiflat coordinate is the “uncorrected” or
“classical” coordinate, and it is corrected by exponentially small effects in the large R limit.
These effects are encoded in a non-linear, TBA-like integral equation, which reads as

1

_ st /. /

XA =xy(Qexp | == > v 5w (1,7 )Ty ()| (3.7)
v'er

where Q(~;u) is the number of BPS states with electromagnetic charge « at the point u of

the Coulomb branch, and

d¢’ ¢'+¢

T, = / — = log (1= o(v)x~(¢)). (3.8)
e, ¢ ¢—=¢

Here, o() is the quadratic refinement. It has been argued in [6] that, for BPS hypermul-

tiplets/vectormultiplets, one has, respectively,

o(vy) =F1L (3.9)

We have used the normalization of [34], which is more appropriate for our normalization
of charges/periods. An important feature of (3.7) is that only those states whose charge
~’ has a non-vanishing Dirac pairing with « contributes to the equation of x~(¢). The
quantities x~(() characterize in a precise way the hyperKéahler metric of the moduli space
of the N = 2 theory compactified on R? x S}-‘v and they can be realized as cluster coordinates
on this moduli space [6]. They satisfy the property

X'7+'7’(<) = XW(C)XW’(O- (3.10)

Very often we have both charges 4+ appearing in the sum in the r.h.s. of (3.7). If
0 = 0, we have an extra symmetry [7],

X'V(C) = x—v(—C), (3.11)
and we can combine

d/ / , d/ !/
C,Y:I,Y—I_V:/K ég,fglog(l—a(v)m(ﬁ)— , ég,ig

:/ dC'(CUFC_C/_C)1og(1—a(7)x~,(é’))

log (1—a(=v)x—~(¢"))

e, ¢ \C=C ¢+¢
d¢’ /
=4¢ vajlog (1=o(1)x~ (<)) - (3.12)

In going from the first to the second line we have changed variables ¢’ — —(’, and we used
the symmetry (3.11).



Resurgence BPS states

WKB curve SW curve
classical limit H(VO) central charge Z(7)
quantum period II, cluster coordinate log x-
Borel singularities BPS spectrum

Stokes discontinuities | KS symplectomorphisms

Table 1. Correspondence between the mathematical structures in the resurgent approach to the
WKB method, and those in the theory of BPS states.

In order to put the equations in a form similar to the TBA equations, we will perform
a change of variables akin to the one made in [5]. If

Zy = |Z,] (3.13)

then we change variables in (3.12) as follows:

(= —ei¢_9, (= —eiqﬁ/_el, (3.14)
and we obtain /
log (1 —a(v)x+(¢") .
=2 de’. 1
Cy /R sinh(f — ¢’ 4 i¢/ — i¢) (3.15)

3.2 TBA equations for the modified Mathieu equation

Building on [7, 8], we expect to have a general correspondence between the mathematical
description of BPS states in [5, 6], and the “resurgent” properties of the quantum periods
associated to the corresponding SW curve. As noted in [7], this correspondence involves
the conformal limit of the TBA equations of [5], which is given by

R—0, ¢(—0, (/R finite. (3.16)
In this correspondence, the classical limit of the WKB periods Hgo) corresponds to the cen-
tral charge Z,, while the full quantum period is obtained as the logarithm of the Coulomb
branch coordinates x~(¢) (in the conformal limit). The Borel singularities of the Borel
transforms ﬁpy are closely related to the BPS spectrum of the theory, and the Stokes discon-
tinuities of the quantum periods are closely related to the so-called Kontsevich-Soibelman
symplectomorphisms [5, 6, 35]. This correspondence is summarized in table 1, and it can be
used to obtain integral equations of the TBA type governing the quantum periods. We will
now apply this correspondence to obtain such equations for the modified Mathieu operator.
Let us then consider the SW theory [27], i.e. pure N' = 2 SYM with gauge group
SU(2). We will denote the charge by

Y =7 = (Ne; ). (3.17)

~10 -



We will use the conventions of [34] for the symplectic product,
(1:9") = ((ne; nm), (g, ny,)) = —neng, + nipng. (3.18)
We will denote

Xe(Q) = x1,00(CQ)s  xm(Q) =x0,)(),  xa(Q) = x(1,1)(Q), (3.19)

and because of (3.10) we have
Xd(€) = Xe(E)xm(C)- (3.20)
We will write TBA equations for x.(¢) and x,,(¢), as in [34]. We have

1l =X (Qexp |5 3 eI (0)]

v (3.21)
Xn(€) = (O exp | —5 = S em()Ze(0)]
v
where
ce(7) = Qv u)((1,0),7),  em(y) = Q(v;u)((0,1),7). (3.22)

In order to write the integral equations, we need to know the structure of the BPS
spectrum in SW theory. It is known that there is a curve of marginal stability C in the
Coulomb branch of the SW theory, separating a strong coupling region or chamber § inside
C, from a weak coupling region or chamber W outside C [27, 36, 37]. As we move from the
strong coupling region to the weak coupling region, the spectrum of BPS states changes
drastically by the famous wall-crossing phenomenon. We consider the two chambers in turn.

3.2.1 Strong coupling region

We start with the region W inside the curve of marginal stability. The spectrum consists
of one monopole with charge

o = (0,1) (3.23)
and one dyon with charge

Yd = (171)7 (324)

see [27, 36, 37] (we follow the conventions in [36]). We also have the corresponding an-
tiparticles, carrying opposite charges. Then, the only nonzero coefficients in (3.21) are

ce(Ym) = ce(ya) = —1, cm(va) = 1. (3.25)

Therefore, the equations (3.21) read

0 = Qe |5 €+,

(3.26)
(€)= X 00 | -5

- 11 -



and it is better to write them in terms of x4, Xm,

€)= (e |51,

1 (3.27)
(6 =t e [-c,]
We now write the central charges
Zy=e%Zy|,  Zy = —ie"|Z,]. (3.28)

These conventions are such that, when u € R inside the curve of marginal stability, we
have ¢q = ¢, = 0. Let us define the functions €g,, and €g,,(0) as follows (this is similar
to the notation used in [8, 38]):

xa (=670 = exp (—ea(0 — i64)) = exp (Ea(6)).

- (3.29)
Xm (iel‘z’m* ) = exp (—€m (0 — idm)) = exp (—€n(0)) .
Then, the conformal limit of the TBA equations reads:
N L (0) d¢’
0) = | Zyle? — 2 T —
24(60) = 7| Zale /Rcoshw_g,mm_wd) L .
N Lq(0) e’ '
m(0) = 7| Zp e’ — 2 —,
em(0) = m|Zmle /Rcosh(e— 0 + idg — idm) 27
where we have shifted 8 — 6 — log R, and
Lm.a(6) = log (1 + e_gm»d(9)> . (3.31)
We have used here the fact that the BPS spectrum consists of hypermultiplets, therefore
o(y)=-1
The equations simplify further when w is real, i.e. w € RNW = [—1,1]. Then one has
04 = ¢m =0, i.e.
Zy, >0, Ly = —i|Zy,., (3.32)
and we obtain,
Lm / /
Ed(e) = ’ﬂ"Zd|ee — 2/ }1(9(0)0/)(;0,
r cosh(0 — T
(3.33)

0 Lqg(0')  d¢’

em(0) = | Z|e” — Q/R cosh(0— ) 2"

We also note that, before taking the conformal limit, we find the more conventional

TBA equations

L, (0) d¢
cosh( — 0') 21

Lq(0")  do

cosh(0 — 0') 27’

eq(0) = mrZycosh(9) — 2/
® (3.34)
em(0) = wr|Zy,| cosh(0) — Q/R

- 12 —



where
r=2R. (3.35)

The definition of r is such that we have the same conventions as in [39].

The TBA equations simplify greatly when v = 0. In this case, we have that
Za| = |Zm| = &, (3.36)
and that!
€a(0) = em(0) = €(0). (3.37)
The two TBA equations collapse to one,

) L) do
€(0) = mée” — Q/RCOSh(H—G’)Qﬂ" (3.38)

which coincides with the integral equation (B.19) associated to the modified Mathieu equa-
tion and the Sinh-Gordon model and studied by Zamolodchikov (the factor £ can be ab-
sorbed in a redefinition of the angle ). The equation (3.38) was written down in [7] as
governing the quantum periods at v = 0.

We claim that the functions €, (0) are identified with quantum periods as follows

e + ibg) = %s(l’[p)(h),

) 1 (3.39)
€m (x + 1¢m — 2) = ﬁs(HB)(h),
with
h=n"te™® TIp=1IM14+1Ip, (3.40)

where IIp denotes the dyonic quantum period. Then the TBA equations (3.30) are consis-
tent with the leading order contribution by the classical periods in the small A expansion

s(p.B)(h) = Zam + O(h?). (3.41)

Furthermore, the TBA equations (3.30) clearly indicate that for some argument angles of
h the quantum periods have discontinuities. These discontinuities are determined by the
BPS spectrum of SW theory and give the singularity structure of the Borel transform of
the quantum periods. These Stokes discontinuities can also be deduced from (3.30). The
location of the singularities in the Borel plane, as well as the precise discontinuities, can
be checked against the asymptotic series of the quantum periods, by inspecting the Borel
plane and by performing lateral Borel resummations, respectively.

! Anticipating the identification with quantum periods, this equation does not mean that the dyonic and
magnetic quamtum periods IIp(u, i), IIg(u, i) are identical at w = 0, as # is identified with 6 differently,
cf. (3.39).
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terms lateral Borel sum r.h.s. of (3.42)
181 0.17499253901611 0.1749925390148815032360
185 0.17499253901578 0.1749925390148815032482
189  0.17499253901545 0.1749925390148815032553
193 0.17499253901519 0.1749925390148815032595

Table 2. Discontinuity across the ray arg(h) = 0 for g(u = 0,h = 1) computed by lateral
Borel resummation and by using (3.42) with increasing number of terms in the asymptotic series.
Underlined are stabilised digits.

For instance, from the TBA equations (3.30), we conclude that s(Ilg) are discontinuous
across the rays arg(h) = ¢4, pq + 7, with

1
diSC¢d(+7T) (HB)(h) = +2h10g <1 + e_hs(HD)(h)>

1 1
= 2h (e_hs(HD)(h’) - %e_QﬁS(HD)(h) +.. ) ) (3.42)

When u = 0, we have ¢4 = 0, and the discontinuities are located at arg(h) = 0,7. The
discontinuity across the ray arg(h) = 0 can be computed by a lateral Borel resummation
of the quantum B period. We check it against the right hand side of (3.42), and find good
agreement. See table 2. Similarly, s(Ilp) is discontinuous across the rays arg(h) = ¢, = 5,
and one has

1
discy,,+z (Ip)(h) = —2hlog (1 + enS(HBXh)) . (3.43)

Numerical checks for this discontinuity formula are completely analogous.
From the discontinuity formula (3.42) we can deduce in the standard way a formula
for the large order behavior of HS,;), of the form (see e.g. [40])

n 2A—2n+b
i ~ 25— T(2n+b) (3.44)
m
(oA pz A B pg A
2n+b—1 (2n+b-1)2n+b—2) (2n+b—1)2n+b—2)(2n+b—3)

If we write the dyonic quantum period as

p =Y 1y n, (3.45)
n>0
we can identify
A=1P, b=-1, p=15, py=UH)%/2, p=@p)P/6+0p, ... (3.46)

These identities are numerically checked at u = 0 up to all stabilised digits (more than 40)
with the help of Richardson transforms.

The large order behavior of Hg) also indicates that the Borel transform ﬁB(C) has
branch points at { = iﬂg), which is the central charge of the BPS state (dyon) whose
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electromagnetic charge has non-vanishing Dirac pairing with the charge of the monopole.

Similarly, the Borel transform of IT 4 (u, i) should have branch points at the central charges

of monopoles and dyons with electromagnetic charges (0, 1), £(1, 1), while the Borel trans-

form of I1p(u, k) have branch points only at the central charges of dyons. This explains

the Borel plane plots in figure 1, where we also superimpose the central charges of the

contributing BPS states as red spots.

3.2.2 Weak coupling region

Let us now consider the region outside the curve of marginal stability. The spectrum

consists of dyons with charge +~,, where
Fy'ﬂ:(na 1)7 TLEZ,
and W boson with charges ++., where

Ye = (1,0).
From (3.22) we conclude that
Ce(m) = —1
and
cm(m) =1, cm(Ye) = 2,
where we used the fact that
QYesu) =2

in the weak coupling region.
As in [34], we write the equations for x., xm. We find

Xn(Q) = xik(C) exp [—;mo -5 3,0

Xe(©) = X' () exp [2; Zc%@)] .

neL

In this region we will write

I = 1697|200, Ze = €%\ Z,|,  Zy = €97y,

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

where we have denoted Z, = Z,, the central charge of a dyon. This is chosen in such a

way that, if u is real, we have ¢, = ¢, = 0. We now define

Xe (—ei¢e—9) — exp (—ee(f — ide)) = exp (—e.(8))

X (16970} = exp (=6 (0 — idm)) = exp (~En(6))

xe (=) = exp (—er(6 — i6r)) = exp (<&(0)),
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We then obtain the equations,

N 1 Z (0/) , Lg 9/ de’
=7|Z
€e(0) = mlZele” + — / cosh(0 — 0/ + iy, — ige) 0 WIZ/R sinh(6 — 6" + iy — ige)’

00
_ 2 L(0)d¢’ L(0)do’
n(6) = 7| Znle” - / cosh(0 — 0 + ide — ibm) *Z / cosh(0 — 0 + iy — i)
(3.55)
where
Lem(0) = log (1 + e_ge’m(9)> . Le(0) =1log (1 + e—?ﬂ@)) . (3.56)

Here we have assumed that
o(ve) =1, (3.57)

since the W boson is a vector multiplet [6]. In the equation for €.(0) we have written down
explicitly the term corresponding to the dyon with zero electric charge v,—g = v, which
is the magnetic monopole. We can also deduce the TBA equation for €,(#), by combining
the two equations above. We find

~ Le(0)do’ 1 / Li(0")d¢’
=7|Z — (—k .
@(0) = mlZile’ + mi /R sinh(0 — 0" + ipe — i¢y) + mi ;2( ) r sinh(0 — 0" + igy, — igy)
(3.58)
It is useful to isolate the contribution from the magnetic monopole k& = 0 explicitly in the

last term, so that we obtain

2 Le(6)de’ 1 Li(6))de’
&) = m|Zle” + m/Rsmh(e 0 +ide —idg) | m kzﬂ](g k)/Rsinh(H—H’—H(bk—igzﬁg)

¢ Lin(6")d0’

= m(®)d6 (3.59)
7 Jr cosh(0 — 0 + ip,, — igy)

The above equations have some interesting reality properties along the real axis, where

e = ¢ = 0. In that case, since

Zy = Ze| + 1| Zm], (3.60)
one has that
Qe+ oy =m, Lel. (3.61)
It is then easy to see that the conjugation property
Zu6) =) (3.62)

is compatible with the TBA system. In addition, € ,,(#) are real in this case.
In the weak coupling region, we propose the following identification with quantum
periods
i

e (240,45 ) = sl

Ele +i60) = 2 s(TA)(h), (3.63)

Falw +ig0) = 75(11) (),
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with
h=r"te™® T, =14 +1p. (3.64)

The TBA equations (3.55) then imply that the Borel transforms of II14(h),IIg(h) have
branch points at the central charges of the BPS states whose electromagnetic charges have
non-vanishing Dirac pairing with those of the W-boson and monopole, respectively. For
IT4(h), these are the BPS states with charges +(¢,+1),¢=0,1,2,...; for IIg(h), these are
the BPS states with charges +(1,0),4(¢, +1),¢ = 1,2,.... This explains the Borel plane
plots in figure 2 with u = 4, well in the weak coupling region. We also superimpose in the
plots the central charges of the contributing BPS states as red spots.

In addition, the TBA equations (3.55) also indicate the following discontinuities for the
resummed quantum periods s(I14)(h), s(Ilg)(h) in the A-plane. The resummed quantum
A period s(I14) is discontinuous

e across the rays arg(h) = ¢, £ § with the discontinuity
1
discy,,+z (IL4) = —2hlog <1 + e—hS(HB)(ﬁ)> : (3.65)

e across the rays arg(h) = ¢y(+m) with the discontinuity

1
discg, (+m) (ILa) = 2hlog <1 + e—hs(ﬂ/f)(h’)) , L€Z. (3.66)

On the other hand, the quantum B period s(Ilg) is discontinuous

e across the rays arg(h) = ¢e(+m) with the discontinuity

1
discg, (1) (Ilp) = —4hilog (1 —e hs(HA>(ﬁ)> ; (3.67)

e across the rays arg(h) = ¢p(+7) (£ # 0) with the discontinuity

1
disc, () (Ilp) = —2¢hlog (1 + eﬁs(nﬂ(h)) . 0#0. (3.68)

To test these formulae, we consider the case of u = 1 4 4i, where the branch cuts of the
Borel transform of quantum A and B periods are well separated, as seen in figure 3. We
compute the discontinuity via lateral Borel resummation for various rays and find good
agreement with the r.h.s. of the formulae (3.65)—(3.68), see tables 3, 4.

Finally, we would like to mention that different TBA-like equations for the quantum pe-
riods of the modified Mathieu operator have been proposed in [41] and more recently in [42].

3.3 Solving the TBA equations in the strong coupling region

As we have argued, Borel sums of quantum periods are solutions to the TBA equa-
tions (3.30), (3.55). In principle the resummed quantum periods can be computed from
these TBA equations by using the dictionaries (3.39) and (3.63). In practice, however,
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50+ 50

* -s0f° . © ., -50f

(a) I1a (b) IIp

Figure 3. Poles of the Borel-Padé transforms, which would accumulate to branch cuts for the
Borel transform of the quantum periods IT4(E, k) (a) and Hp(E,h) (b) at u =1+ 4i and A = 1.
The red points are the central charges of the BPS states which contribute to the branch points, and
their electromagnetic charges are labelled nearby.

BPS state (0,-1) (1,1)
lateral Borel sum  1.77819420225 x 10710 — i4.0146843089 x 101! 5.37838410 x 10713 +13.166367886 x 10712
r.hs. of (3.65), (3.66) 1.7781942022540 x 10710 — i4.014684308966 x 10~ 5.3783841037 x 10713 +i3.16636788673 x 10712

Table 3. Discontinuity of II4(u = 1 + 4i,i = 1) across the rays associated to BPS states v =
(0,—1),(1,1), computed by lateral Borel resummation and by using (3.65), (3.66) with up to 193
terms in the asymptotic series. Only stabilised digits are listed.

BPS state (1,1) (1,0)
lateral Borel sum  5.37838 x 107!3 +i3.166367 x 10712 5.979 x 10716 +i4.701 x 10716
r.h.s. of (3.67), (3.68) 5.3783841 x 10713 4+-13.16636788 x 1072 5.97982 x 10716 4-14.70119 x 10716

Table 4. Discontinuity of IIg(u = 1 + 4i,h = 1) across the rays associated to BPS states v =
(1,1),(1,0), computed by lateral Borel resummation and by using (3.67), (3.68) with up to 193
terms in the asymptotic series. Only stabilised digits are listed.

these equations are difficult to use. First of all, one needs information on the boundary
conditions at strong coupling in order to solve the equations. In addition, the standard
tools to solve these equations numerically converge very slowly.

Let us first consider the simplest example at © = 0, where the TBA system collapses to
a single equation (3.38), which we reproduce here (we have absorbed the factor £ in (3.38)
in the angle ) "

0 log(1 +e™* o ) 1
€(0) = me” — /]R md@ . (3.69)

The solution can be identified with the quantum dyon period through the dictionary

€(t) = %S(HD)(U =0,h), h=T3r e = Flf3(\1/)7;e_9 : (3.70)
i
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Furthermore, the asymptotic behavior of the solution €() as § — oo is of the form

€(0) ~ me? + Z eMe1=2n)0 (3.71)

n>1

whose coefficients are identified with the quantum corrections to the dyon period

2n—1
- 1 (m®)" . (3.72)

- 7.‘.Qn—l

It turns out that the equation (3.69) admits many possible boundary conditions at
0 — —oo. This is in stark contrast to the TBA equations for polynomial potentials studied
in [7, 8], where the equations themselves fix the behavior of the solutions at § — —oo. One
possibility for the boundary conditions at § — —oo is the linear behavior (5.28). This type
of behavior was considered by Zamolodchikov in [19] but in a slightly different context, as
we will discuss in section 5 (see also appendix B). However, it can be seen that this is not
well suited for the quantum periods we are studying.? One quick way to see this is that
the linear boundary condition with P # 0 implies (") < —1/3 (cf. (B.29)), while from the
quantum Matone relation (2.27) we find

1 1 1
1) _ Lo _ O qOm) _ 1
V= —mpnp) = (HA ) — HA) 3 (3.73)

It turns out that the appropriate boundary condition in this case is given by
20
€f)=—-2log|—— |+, 6 — —o0. (3.74)
T

This boundary condition for the TBA equation (3.69) was also studied by Zamolodchikov
in [43].> One can use a small modification of the “dilogarithm trick” of [44] to show that,
with the boundary condition (3.74), one has indeed (3.73) (in the context of [43], this
calculation gives the central charge ¢ = 1 for the corresponding sinh-Gordon theory).

To implement numerically the boundary condition (3.74), we borrow a trick from [19].
We define a continuous function

f1(0) = —21log <1 + %log(l + e—f’)) , (3.75)

which has the same boundary behavior as (3.74) and is exponentially suppressed when
6 — +o00. We then look for a function Fj(#) which satisfies

1
)= [ KO-0F(0)do', K)=—~. .
ho) = [ KO-0)R@W0. KO = —0 (3.76)
The generic solution to this linear integral equation is
1 N T
F(0) = (1 (9+1§) + 5 (6- 1§>) . (3.77)

2In [7] it was also pointed out that (3.69) admits many boundary conditions at § — —oco. However, it is
claimed there that the correct boundary condition for the quantum period is precisely of the type (B.14),
namely, €(0) ~ /2 + ... for  — —oo, which is not quite correct for the reasons explained here.

3 Alternatively we can justify this boundary condition by using the results in section 5, see equation (5.40).
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h=1 h=1/2
TBA  6.62781 13.47880
Borel sum  6.62781917... 13.47880936. ..

Table 5. Quantum dyon period at u = 0.

h=1 h=1/2
TBA  9.16476 18.61486
Borel sum  9.16476545... 18.61486738. ..

Table 6. Quantum dyon period at u = 1/3.

For our particular f;(6), we thus have

F(0) = —log (1 + ;log (1 + ie—9>) “log (1 + %log (1 . ie—9>> . (3.78)

This is a real function for # € R. The TBA equation (3.69) can then be written as

e(0) = me? + f1(6) — / L (1og (1 + e—6<9’>) + F1(9’)> : (3.79)

r  mcosh(6 —0")
where both boundary conditions at oo are explicitly spelt out.

The numerical solution to the TBA equation (3.69) converges rather slowly, and we
managed to obtain 6 stabilised digits for & = 1 and 7 stabilised digits for & = 1/2. These
results, on the other hand, do agree with the Borel resummation of the quantum dyon
period. See table 5.

Let us now move away from the point © = 0 but remain in the strong coupling region
with v € (—1,0) U (0,1). The TBA system (3.33) has two integral equations coupled to

each other. Nevertheless, at § — —oo the first terms o e’

on the r.h.s. of both equations
in (3.33) are negligible, and the TBA system also collapses to the single equation (3.69)
(with the first term on the r.h.s. suppressed). Therefore both €4(0), €,,,(6) should have the

same boundary condition as (3.74), in other words
20
€q(l) ~ em(0) ~ =2log | —— | +..., 08— —0. (3.80)
v

This is corroborated by the fact that the Matone relation (3.73) can be reproduced with
this boundary behavior by using again a slight modification of the “dilogarithm trick” [44].
We use again the trick of inserting the pair of f1(6), F1(8’) functions, and we find that the
numerical solution to the TBA system (3.33) has roughly the same speed of convergence
as the solution to (3.69) for u = 0. We tabulate the results for u = 1/3 in tables 6, 7 and
they also agree with the Borel sum of the quantum periods. Note that the TBA system
is solved with # € R, which in light of (3.39) corresponds to real i for the quantum dyon
period and to imaginary A for the quantum monopole period.
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h=—i h=—i/2
TBA  4.26480 8.716486
Borel sum  4.26480153... 8.716486917...

Table 7. Quantum monopole period at u = 1/3.

4 Quantum periods from instanton calculus

Instanton calculus [1, 45] leads to a resummation of the quantum periods of the modified

Mathieu equation (2.22), as pointed out in [11]. This produces exact functions of A which

we will denote by
ii(,B (Ev h) .

(4.1)

In this section we explain this resummation in detail and we compare it to the Borel

resummation obtained in the context of the exact WKB method.

4.1 Review of instanton calculus

Let us first review some basic ingredients of instanton calculus in the 4d N = 2 SYM with

gauge group G = SU(N) [1, 45-48].
We denote a partition (or Young tableaux) by

Y = (y17y2a"')7

its transposed by
Yt = (yi’yé7 U )7
and a vector of Young tableaux as
Y =(, - ,Yn).
It is useful to define
hy(s)=wi—j,  vy(s)=y}—1i,
where s = (7, ) is a box (not necessarily in the partition Y'). We will also use

N
I=1
whith
(YY) = Z Yi -

The four dimensional SU(N) Nekrasov partition function is [45, 47]

Z(a;er,€2) = Z ((—1)NA2N)Z(Y) Zy,
Y

— 21 —
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where

N
1
Zy = H H Oq—aJ—Elvyj(5)+€2(hY1(S)+1)

1,J=1s€Y; (4'9)
« [ — S ,
seY, g ag+ €1 ('UYI(S) + 1) Eghyj (S)
with
N
> i =0, (4.10)
=1
and
A; = O — 41, Z'Zl,'”,N—l. (4.11)

The four dimensional SU(/V) Nekrasov-Shatashvili (NS) free energy is then defined by [1]

E¥(a,h) = ih lim_ ey log Z(a; iR, €2). (4.12)
ea—0
An important property of this free energy is that it is given as a power series in A which
is expected to have a non-vanishing radius of convergence in a certain range of values of a
and h around the semiclassical region |A/a| < 1.4
In order to make contact with the (modified) Mathieu equation, the relevant gauge
theory is N' =2, SU(2) SYM theory, hence we have to consider (4.12) with N = 2. In this
case the first few terms read

24t AB (Th? — 5a?)
a? + 1?2 (a2 + h2)® (a2 + 4h2)

Fist(a, h) = O (A'9). (4.13)

Once the NS free energy is known, the quantum A period a(u,h) can be obtained by
inverting the quantum Matone relation [29, 49-54]

2 A .
u= % — SN (a, B A). (4.14)

This leads to a series expansion for a(u,h) in powers of A* which is expected to con-
verge in an appropriate range of the parameters A, E, h around the semiclassical region
|A2/E| < 1. The quantum B period ap(u, k) is then obtained from the quantum special
geometry relation

pla, h) = 8uFxs(a, b, A) =27(a, h, A) + 9, Fixs* (a, h, A) (4.15)

where [55]

a h? wh ik ia ia
~v(a,h) = §log <A2> ~ 1 3 <logF (1 + h> —logT (1 — h)) , (4.16)

and we replace a by a(u, h).

*Recall that for i = 0, in the electric frame both a(u) and ap(u) are convergent series of A% /u up to the
monopole and dyon points. The prepotential, which is related to a,ap by the special geometry relation, is
thus also convergent series of A/a up to these points. The NS free energy is its smooth deformation which
tends to enlarge the domain of convergence.
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We also note that it is possible to express the NS free energy via a TBA system [1, 56]
(different from the one discussed in section 3.2). This TBA system however has a range of
validity /convergence which is smaller than the one of the instanton calculus. For instance,
the TBA breaks down if Re(a) # 0, while the instanton counting expression for Fifs® (4.12)
is still well defined.

It was found in [11] that by expanding (4.13), (4.14) at small values of £, it is possible
to recover the WKB periods (2.22). More precisely, at order A2, one finds an expansion
in A which agrees with the expansion of I (E) at large E:

oma(u,h) — Y KB = 2u),
n=0 (4.17)

2iap(a(u, h), h) = 210, (Fns(a, b))

o0
2ny7(n) —
ety nzoh 13 (E = 2u).
Therefore, the Bethe/gauge correspondence provides an analytic way to resum the WKB
periods period into well defined functions which are exact in A. We will denote these
functions by I 5(E, i), and we will refer to them as “exact” quantum periods. In terms
of the quantities that we have introduced, they are given by
ex _

H:;(E, h) = 2?m(E, h), (4.18)

I (E, h) = 2i0,Fxs(a(E, ), h),
where we use the notation a(E, h) := a(u = E/2,h).

It turns out that one can find the series expansion for a(u, /) by using elementary

methods. To do this, we use the WKB method, but we solve the Riccati equation (2.3)
perturbatively in A, i.e. we solve

dY (z)

Y%(z) —ih . E — 2A? cosh(z) (4.19)
with an ansatz
Y(2) =) Yu(w,h, E)A™™. (4.20)
n>0
Clearly, we should set
Yo(z, b, E) = VE. (4.21)
The equation for Y (z, h, F) is
dY;
2Y,Y; — ithj — —2cosh(z). (4.22)

The general solution to this equation is of the form

B 4V/E cosh(z) + 2ihsinh(x) e 21/
4F + h? ’

We note that the term involving the unknown coefficient leads to a non-perturbative effect

Yi(z,h, E) = (4.23)

in . We will set it to zero to recover the perturbative series. The general term Y, satisfies

n—1
dy,,
IWEY,(z,h,E) — ih- + > Yilw,h, E)Y,_g(x,h, E) =0. (4.24)
k=1
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This can be integrated order by order, setting to zero non-perturbative terms. We find in

this way,

4B + 5ER’ +iVER (8E — I*) sinh(2z) + E (4E — 5h°) cosh(2) + h4
VE (E + h?) (4E + h2)?

}/é(x7 h7 E) =

(4.25)
The functions Y, (x, A, E) are complicated, but their integrals are slightly simpler. As it
follows from (2.19), we have to calculate
1 s
T (Eh) = — | Y(iz, b, E)dz. (4.26)

2 J_,
As expected, only even terms contribute. We find, for example,

1

L(Eh) = ——
B =~y B
60E? + 35Eh? 4 2h*
Zy(E, h) = — 35 (4.27)
4E3/2 (E + h?) (AE + h?)
To(B.h) = _ 6720E° + 18480E*h* 4 15260E°h* + 4705 E2h° + 413E1° 4 18h'°
o AF5/2 (B + 12)? (AE + h2)° (4E + 9h2) ’
and so on. Then, one finds
a(E,h) =2 <\/E+ > Tom(E, h)A4m> . (4.28)
m=1
When £ = 0, we recover the standard SW period (2.19):
2ra(E,0) = 47v/2 + E 5 F L1 =8V2A2+ EE 4A2 (4.29)
s y = am 24771 2 27 7 2 + E 2A2 : '

At finite h, A we also find perfect agreement between (4.28) and the standard result of
instanton calculus.
We note that the integrals above can be calculated as residues, since

dx Yo (X, h, E
To(E, h) = ]'{ Yo(X, h E)—= = ~ Resy_o 2GR E) (4.30)
X|=1 X X
where
X =e". (4.31)

In fact, it is more convenient to solve the differential equation directly in the X variable,
since everything is algebraic, i.e. it is better to solve

n—1
ay,
WEY,(X,h E) — ihX —= T (X1, E) )+ > Yi(X, b E)Y, (X, h, E) = 0. (4.32)
k=1

It turns out that the function Y (iz, hi, E') can be calculated exactly in terms of Mathieu
functions. To see this, we note that Y(x, i, F) = Y (iz, h, E') satisfies the Riccati equation

V3(x,h, E) — h%(a;, h,E) = E — 2A% cos(z), (4.33)
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which is the Mathieu equation with imaginary Planck constant. The solution to this
equation is

d AE  4A% 2 4E  4A% 2z

where ¢ is an integration constant and S(a,q,z), C(a,q,z) are the odd (even) Mathieu
functions, respectively. Since we want

V(z,h, E)~VE (4.35)

as A — 0, we find that this leads to
c=+i (4.36)

(where the sign depends on the branch cut of the square root). We eventually find

™ S <_%)_%7%> +CC <_%)_%)g>
(B, R) =2 | Y(x)de = —2hlog G G

AE _4A2 7 AE 4A% 7\ (4.37)
i =5 (_TQ’_?7 5) +cC (_rTQ’_rT?’ 5)
Note that )
y , AE  4A

where v is the characteristic exponent of the Mathieu equation (this relation has been
noted in the context of the Mathieu equation in e.g. [12, 15]). The advantage of the expres-
sions (4.37), (4.38) is that they make sense for values of E for which the A expansion (4.28)
does not converge, so they extend (4.28) to a larger domain.

Let us consider some numerical examples. When E = 100, A = 3w and A = 1, we can
evaluate the series (4.28) by truncating it up to order A8, and we find:

1
4—1_[‘2((100, 3m) = —9.9997954179096157891757 . ... (4.39)
I

This is precisely what is also obtained from (4.37) and (4.38). At the same time, by
using (4.37) we can go all the way to E = 0, where (4.28) cannot be used. We find,
for example,

1
1150, 3m) = 0.1501122164563802133431995 . ... (4.40)
v

This procedure for evaluating the value of IIG* at £ = 0 seems to be well-defined for
sufficiently large AA~2 (e.g. AA~2 > 1 works).

We conclude that the “exact” quantum A period can be computed either by the expres-
sion given by instanton calculus (or equivalently, by the closely related series (4.28)), or by
the expression (4.38) involving the Mathieu characteristic exponent (4.38). When these two
expressions are both well-defined, they agree, but (4.38) has a larger range of validity. In
the case of the quantum B period, it might be possible to obtain an alternative expression
to the one in (4.18), in terms of infinite Hill determinants, by using results in [57].
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terms included Borel sum
190 35.40661948105291481767982565157
191 35.40661948105291481767982565207
gauge theory  35.40661948105291481767982564492

Table 8. Borel sum of quantum A period at © = 4 and i = 1. Underlined are stabilised digits.

4.2 Comparison to Borel resummation

We now have two different approaches to the calculation of (resummed) quantum periods:
on the one hand, we have the Borel resummation of the all-orders WKB expansion in /2,
which is also calculated by the TBA equations of section 3. On the other hand, instanton
calculus gives a different resummation, based on a convergent expansion in A, as a function
of A. An obvious question is: what is the precise relation between these two resummations?
Since both lead to the same asymptotic expansion in powers of s, we expect that they
will differ in non-perturbative effects. In this section we will address this issue. Results
along these lines have been previously obtained in [15, 16]. For simplicity, we will restrict
ourselves to the case in which A > 0 and u is real.

Let us first consider the weak coupling region WW. Here, the all-orders WKB quantum
A period is Borel summable for A real, and we find that its Borel sum agrees well with
2ma(u, h) obtained by inverting (4.14) or with the solution (4.37) to the Riccati equation, i.e.

s(IA)(E, ) = (B, R),  |u/>1, h>0. (4.41)

We illustrate this in table 8 where we compare the Borel sum of the WKB quantum A
period at u = 4 and A = 1, with increasing number of corrections, to the result of instanton
calculus. They agree with almost all the stabilised digits (27 of them).

The quantum B period, on the other hand, is not Borel summable along the real axis
in the weak coupling region. Nevertheless, we can make the following observation. The
“exact” quantum B period is given by

2iap(u, h) = 4iy(a, h) + 210, Fi(a, h) (4.42)
where 7 is defined in (4.16) and has the following asymptotic expansion for large a/h:
a (=1)"Bgy, (B\*"
R ~ (1 <f)—1> o) Pen (R 4.43
v(a,h) ~a (log A +a;2n(2n—l) a (443)

The series in i/a in the r.h.s. is not Borel summable along the positive real axis. More
precisely, let us consider the following formal power series:

n (_1 nBQn
p(2) =Y 2™, 1= 2n(231 — (4.44)
n>0

A little numerical experimentation shows that the lateral resummations of this series along
the positive real axis are given by

52(0)(2) = f(2) % o log (1 - e77/7), (4.45)
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Figure 4. Poles of the Borel-Padé transform of the “reduced” series I at u = 4.

where ) .
F(2) = % log(2) + 1)~ 7= Llogn UL (4.46)

(A similar series has been considered in [55]).

The above analysis suggests that the non-Borel summability of the sequence ng) along

the positive real axis in the weak coupling region is due to the asymptotic series appearing
in y(a, h). In view of (4.45), this leads to the right discontinuity across the positive real axis:

— 4hlog(1 — e~ 4ma/hy, (4.47)

This suggests that the “reduced” formal power series

re — - (=1)"Ban h n
IISY(E, h) := I p(E, h) — 4ill o (E, h) gl TIeD _21) (2HA(E7 h)> , (4.48)

where we subtract the non-Borel summable series in the function ~y(a, i), is actually Borel
summable along the positive real axis. We verified numerically that this indeed is true, as
can be seen from the Borel plane plot at u = 4 given in figure 4. In fact the Borel sum
of II$4(E, h) agrees with the gauge theory calculation in which the contribution of v(a, k)
has been removed; in other words,

OF(a, h)

el (4.49)

s (Hrgd) (E, k) = 213 (u, k) := dia (log (%) - 1) 42
We illustrate this in table 9, where both the Borel sum of II'$(FE, h) and 2ia’sd(u, h)
are evaluated at u = 4 and A = 1. We find that all stabilised digits are in agreement
(26 of them)."

®We also notice that the exact B period IIE(E, k) with E > 2 agrees with the average of lateral Borel
resummations of the quantum B period g (E, k).
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terms

159  16.474810551500808917635392219

Hred
B 161 16.474810551500808917635392368
i gred 14 16.47481055150080891763539232909

15 16.47481055150080891763539232920

Table 9. Comparison between the Borel sum of the “reduced” quantum B period 1T} at u = 4 and
h =1 (with increasing number of terms), and the exact, “reduced” period 2ia%$? defined in (4.49)
(with increasing number of instanton corrections). Underlined are stabilised digits.

terms first line of r.h.s. of (4.50)
191 806502.11499751621351505261143
193 806502.11499751621351505261260
Lh.s. of (4.50) 806502.11499751621351505261016

Table 10. Numerical verification of the characteristic exponent formula (4.50) at v = 0 and
h = 1/4, with increasing number of terms for the lateral Borel resummations on the r.h.s. All the
stabilised digits (underlined) are in agreement.

We can now see a clear difference between the TBA equations of [1] and the TBA
equations of [5]. The TBA equations of [1] compute the Borel-summable part of the B
period, where we have removed the perturbative contribution due to the « function, i.e. they
compute (4.49), which is the Borel resummation of TI%$¢ in (4.48). On the contrary, the
conformal limit of the GMN TBA equations computes the Borel resummation of the full
quantum B period IIg(E, k), including the perturbative  function. Since the latter is not
Borel summable, the corresponding TBA has discontinuities, as discussed in section 3.2.

In the strong coupling region we have the following relation between the “exact” quan-

tum A period and lateral Borel resummations of quantum periods [15]

2 cosh(I1%/(2h)) = e2rs+[La) 4 qors+(Ta+2p) 4 o—gpss (La+2015)

L L L (4.50)
eﬁs_(HA) + efﬁs_(HA) + eﬁs_(HA+2HB) )

Numerical evidence for this relation is presented in table 10 for the first line of the formula,
evaluated at v = 0 and h = 1/4. The second line of (4.50) can be derived from the
Stokes automorphism of quantum periods discussed in section 3.2. In the strong coupling
region, IIp = Ilp 4+ II4 is Borel summable along the positive real axis, while both the
Borel resummations of IIg and I14 have discontinuities across the positive real axis. The
discontinuities for the B, and A periods are:

s+ () — s—_(IIp) = 2hlog(1 + e_%S(HD)) ,

1 (4.51)
s+(ITyx) —s_(I14) = —2hlog(1 + e_ﬁS(HD)) .

Starting from the first line on the right hand side of (4.50), and applying the discontinuity
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formulae, we immediately get the second line

first line

— eﬁsﬁt(ﬂA) + 671,35+(HA+2HB) + e*g*lﬁSJr(HAJr?HB)

= 3= (0) (1 4 ¢~ ha(lTo)) T g (at2mlp) (14 e7retrmo))

4 e_%S*(HA"FQHB) (1 + e_%S(HD)>71

_ (e%s,(ﬂA) +e—;73,(HA+2HB)) (1 +e—%s(HD)>’1 4 emrs—(Ma+2Mp) | o= s (ILa)
= ezn®-(Ma) 4 o255 -(Ma) 4 oors-(Mat2005) — gecond line. (4.52)

On the other hand, to derive a similar result for the “exact” quantum B period we can use
results on the Fredholm determinant of the modified Mathieu equation, which we present
in section 5. Eq. (5.44) then together (4.50) imply that

2sinh(I1%/(2h)) = e s+(B) _ o—5ps+(B) _ o= g5s+(2Ma+311p)

)

(4.53)

1 1 1
— e?th(HB) _ e—?ﬁS,(HB) + e—ThS,(QHA—‘rHB) ,

and we have tested these identities numerically to very high precision.

Summarizing, in the weak coupling region the all-orders WKB quantum A period and
the B period (once the gamma function is subtracted) are Borel summable. Their Borel
sums agree with the gauge theory expressions of section 4.1. In the strong coupling region,
the A and B periods are not Borel summable, although their lateral Borel resummations can
be related to the exact quantum A period via (4.50). We finally note that the combination
IIp = 14 + g is Borel summable in the strong coupling region (only). However, its Borel
sum does not agree with the gauge theory expression of section 4.1, namely

s(Ilp) # OF + F = 2ma + 2iap, (4.54)

and one should include additional non-perturbative corrections. We will find the correct
formula at the end of section 5.3.

5 The Fredholm determinant from topological string theory

Let O be an operator on L?(R) such that O~! is of trace class. Then, O has a discrete
spectrum {E, }n>0, and its Fredholm determinant

= =de — -1y = —£ .
E(E) = det (1 - EO™') Tgﬁ@ Eﬂ) (5.1)

is an entire function of E whose zeros give the spectrum of O: Z(E,) = 0 (see e.g. [58] for
these and other properties of Fredholm determinants).

The Fredholm determinant contains very rich information about the spectral properties
of O. For example, the spectral traces, defined as

Zy=>_ % (5.2)

n>0" "
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can be computed by expanding the spectral determinant around E = 0. Indeed, we have

E(E)= > (-E)NZ(N,h) (5.3)

N>0

where -
)( - )mZZZ L

2N =3 'T] (-1 o (5.4)

{m¢} ¢

and the " means that the sum is over the integers my satisfying the constraint

> tmy=N. (5.5)
14

From the quantities Z(N,h) (which were called fermionic spectral traces in [2]) one can
extract the conventional spectral traces (5.2).

Although Fredholm determinants are central objects in spectral theory, it is difficult
to obtain explicit expressions for them. It is easy to show (see for instance [59]) that the
inverse of the modified Mathieu operator (2.14) is of trace class. Therefore, the Fredholm
determinant is well-defined, and it is an interesting question to find an explicit, closed form
expression for this quantity.

In recent years it was discovered [2, 3, 60-62] that, by using topological string tools, it
is possible to obtain explicitly expression for Fredholm determinants of operators arising
in the context to quantum mirror curves. We will refer to this relationship as the TS/ST
correspondence. As explained in section 5.1, the modified Mathieu operator (2.14) can be
related, upon a suitable limiting procedure, to the quantum mirror curve of local Fy. There-
fore we can study (5.1) within the context of topological string theory and in particular, by
using [2, 18], we can deduce an explicit, closed form expression for the Fredholm determi-
nant of the modified Mathieu operator. We will first state the main result and then explain
how to derive it within topological string theory. We also present several independent tests
of our result, including an interesting connection to the TBA system of [19].

5.1 A closed formula and its derivation
By using the approach of [2, 18] we find the following expression for the spectral determinant

of (2.14)% 1
=(B) = A(h) (sinh (Hj(égh)»_ cosh <21hneg(E, h)) , (5.6)

where II 5 (E, h) are given by (4.18) and A(h) is an u-independent constant which can be
fixed from Z(0) = 1, namely,

A(R) = sinh (W) (cosh (;ing((o, h)>>_1 | (5.7)

SWhile presenting these results at the conference Irreqular singularities in Quantum Field Theory

(http://irregular.rd.ciencias.ulisboa.pt/conference), S. Lukyanov informed us that he had independently
derived this result [63] by using completely different methods.
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From this expression we can read off explicit formulae for the spectral traces. We find
for instance

1 I1%(0, 1 I1%4(0, 1
Zh=—5r (8EH§‘(O, %) tanh <B(O)> — coth <A(O)> ORI (0, h)) . (5.8)

2h 2h
as well as
I15(0, A I15(0, A
4h2 Zy = 2hO%TI(0, h) coth <A2(h)> — (OIS0, h))%csch? <f‘2(h)>

(5.9)

HQX h HeX h

— sech? (BQ(QL)) (h@%ﬂ%‘(o,h) sinh <B(f?)> + (6EH%‘(O,h))2> :

Note that in order to calculate I15(0, i) we have to use (4.37) or (4.38), so the above formula
7

tests as well the analytic continuation of instanton calculus beyond the semiclassical region.
The explicit formula (5.6) can be extended to the family of operators considered in [18],
see appendix A for more details.
Let us now explain how to derive (5.6) from the TS/ST correspondence of [2, 3.
The relevant CY geometry is the canonical bundle over Fy, also known as resolved Y2
singularity. The corresponding quantum mirror curve is

O—k=(RA* e +e™)—r+eP+e P [xp] =ik (5.10)
According to the TS/ST correspondence we have
det(1 — kO™1) = Z exp [J(p + im + 2mim, RA,R)], K =¢€H, (5.11)
mez

where J(u, &, ) is the grand potential of the resolved Y29 singularity as defined in [18],
section 5.1. The expression (5.6) is obtained by implementing the geometric engineering
limit [37, 64] in (5.11). More precisely, we consider the limit

p— Rp, h— Rh, k=2+FER*+O(R%, R—0. (5.12)

This has to be done carefully since both sides of (5.11) diverge, therefore they need to be
properly regularized. For that it is convenient to study the trace of the resolvent

Go(k) = e logdet(1 — kO™ ") =Tr (m — O) , (5.13)
rather than the spectral determinant. It is easy to see that in the limit (5.12) one has
1 1

where H is the modified Mathieu operator in (2.14). Likewise the limit (5.12) can be imple-
mented on the r.h.s of (5.11) in a quite straightforward way by following [18], section 5.2
and by using the identity (3.9) in [65]. The overall divergent piece R~2 cancels and we find

G(E)= —aiha (83FNS tanh (8‘1?\]8> + mcoth (ig)) . (5.15)

By integrating w.r.t. E we obtain (5.6), where A(h) is an integration constant.

"In evaluating the derivative of the periods w.r.t. E, we used the quantum Matone relation (4.14) and
instanton calculus.
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5.2 Tests of our formula

We will now test the expression (5.6) in several ways.

A first simple test is that the zeros of Z(F) give the correct spectrum of the modified
Mathieu operator. This should be expected from the general results of [18], but it is
instructive to check it explicitly. The zeros correspond to the vanishing of the cosh in (5.6),
and by using (4.18) we find,

0o Fys(a, ) = hr <n + ;) , (5.16)

which is the exact quantization condition obtained from the conjecture in [1], subsequently
proved in [56].

Another check can be obtained by comparing our expression to the asymptotics of
Fredholm determinants obtained in [20, 21, 66] by using the all-orders WKB method.
This asymptotic expansion is valid when E < 0, where the Fredholm determinant is not
oscillatory. In order to write down the asymptotics, we need some ingredients. Let

GE)=) + _1E (5.17)
n=0 n

be the trace of the resolvent, and

1 dx
TiE) = Q/R V/2A%cosh(z) — E (5.18)

the transit time. We also need the formal power series in i

b(E) =expqiy B! / pon(z, E)dz 3, (5.19)

n>1 R

where the functions po, (z, E') are the ones appearing in the solution to the all-orders WKB
method in (2.4). Let us now define K = —FE, which will be taken to be positive. It is
convenient to introduce the functions

Q
Z
Il
Q
|
2
[

(k) = E(—k), b(k) = b(—k), T(k) =T(—k). (5.20)

Then, one has the following small A asymptotics,
~ ~ 1 [~ 0/ 1~
(k) ~ b(k) exp {h/o T(x")dr — /0 (G(Ii/) + hT(Ii/)) d/{’} . (5.21)

The second term in the exponent is independent of x but depends on h. We note that all
the integrals involved in this expression are well defined precisely because E is negative.
The very first terms in the asymptotics can be easily worked out, and one finds®
= o LeY
logE(—k) ~ _ﬁHB (k) + 5113 (K)+---, k>0, (5.22)

8This agrees with an unpublished calculation of Y. Hatsuda, who obtained the same result by considering

the semiclassical expansion of the spectral traces.

~32 -



up to k-independent terms. Note that the sign in the subleading correction is the opposite
one to what one finds in the WKB expansion of the quantum B period.

Let us now compare this result to the exact expression for the spectral determi-
nant (5.6), which can be written as

=() = A(h) (sinh (7)) " cos (;fggS) | (5.23)

From the explicit expression (4.28) it is easy to see that, when F is negative, a is purely

imaginary. More precisely, one has

a(—k,h) = ia, a = a(k,ih), (5.24)
and we take o > 0 for definiteness. In addition,

Do TS (a, h) = 10, FiISt (v, iR). (5.25)

By using the explicit expression (4.16) and standard identities for the I' function, we find
=(—k) 1 a o' a h? 1 inst /.
:fr(1 7>r<7> Dog (L) + 20, Finst(a,in
am ot LR U)o g loe | 5 ) + 0I5 (1)

1 o o o h? 1 in .

The term in the second line gives an exponentially small correction to the leading asymp-

(5.26)

totics. The small A asymptotics of the quantity in the first line is given by

1 o o o h? 1 inst s
1 n n n
~ = S (=) (k) R20

2h
n>0

(5.27)

We have used that, due to (5.24) and (5.25), the quantum period is evaluated at —FE, where
FE = —k < 0, and we have to change h — ih. The result is in agreement with the WKB
asymptotics obtained in (5.22).

A more precise test of (5.6) can be made by comparing the analytical formulae for the
spectral traces with numerical results. These are obtained by calculating the spectrum of
H with standard techniques. An example of such a comparison is shown in table 11.

We finally note that Z(FE) is an entire function of E. In particular, the would-be
singularities due to the denominator of (5.23) or to the Gamma functions in (4.16) must
cancel in the end. This leads in turn to constraints on the form of the singularities of Ff\InSSt,
which might be testable against the results in [67] (see also [68]).

5.3 Comparison to Zamolodchikov’s TBA equation

An additional test of our formula (5.6) comes from a comparison with [19]. Inspired
by the ODE/IM correspondence [69, 70], Zamolodchikov found in [19] a TBA equation
which computes precisely the spectral determinant (5.6). Let us state the main result
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Ny Z

2 0.00479478611468342466
4 0.00479478607391381196
6 0.00479478607391375025
Num 0.00479478607391375025

Table 11. The second spectral trace Zs as computed from (5.9) for # = 37 and A = 1. The number
N, means that we truncate the series (4.13) at order A*No. The last line gives the numerical result
obtained from the spectrum of H.

of [19], referring to appendix B for more details. Let €(f, P) be a solution of the TBA
equation (3.69) but with the boundary condition at § — —oo given by
€(6,P) ~8P6 —2C(P), 0 — —o0, P >0, (5.28)

where C(P) is written down in (B.15). Let us now introduce the function

X(u, P) =exp[—e(8,P)/2], (5.29)

(TG
u—e9<16ﬁ> .

Then, according to [19], the spectral determinant of the modified Mathieu operator (2.14)

where p is related to 6 by

(5.30)

is given by

=(p) = 220
X(p,0)

where the parameters A, F and & of the operator are related to the parameters appearing

in X (u, P) by

(5.31)

p=Ah?  P’=_—Fn?Z (5.32)

If we compare the result of [19] with ours we should have (by using the dictionary (5.32))

m = A(h) <sinh (W»—l cosh <217:LH€§<(E, h)) - (5.33)

In order to find the relation between the two normalization constants X (p,0) and A(h),
it is useful to first derive the asymptotic behavior (5.28) from our expression (5.6). We
need to expand around small AR~! and take u < 0, which means that a is imaginary, as
discussed in (5.24). In this regime, and by using (4.18), we have

(s (57)) " cost (3 2uvstaan))

= ((/};) TR + <2>2 r(1- S)F(—s)> 7 .
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Ny log ((sinh (%))71 cosh (10, Fxs(a, h)))

2 11.360025317439438
4 11.360025299112863
6 11.360025299117259

TBA 11.360025299117

Table 12. The un-normalized spectral determinant as computed by using instanton counting
and by solving numerically the TBA (3.69) with (5.28). We use P2 = —F = 5, u = A? =

2
(F (1/4)2/(16ﬁ)) , and i = 1. The number N, means that we truncate the series (4.13) at

order A*Ne,

where
a o
=—i-=—>0. 5.35
s lh - ( )
By using (4.14) we have
E~a%/4 (5.36)
and therefore
P=s/2>0. (5.37)

Hence we can neglect the second term in the r.h.s. of (5.34). It follows from (5.32)
that (5.34) agrees precisely with (5.28). In particular this means that the two normal-
ization constants are identified and we have

X(, P) = (sinh (Hfégh)»l cosh (;hng(E, h)> . (5.38)

We test this equality by solving numerically the TBA equation (3.69) with the boundary
condition (5.28). Some results are given in table 12. We find perfect agreement.

An important spinoff of this comparison is that our result (5.6) provides an analytic,
closed form solution to the TBA equation of [19]. This also has the following consequence.
When we derived the Fredholm determinant from the topological string perspective, and
due to our regularization procedure, we generated an integration constant A(h) whose
explicit expression is given in (5.7). Given the identity (5.38) between our Fredholm de-
terminant and the solution to the Zamolodchikov’s TBA, we expect A(h) to be computed
by the integral equation (3.69) at P = u = 0. More precisely we expect

2log A(h) = €(6, P = 0), (5.39)

where we used the dictionary (5.32). For P = 0 the asymptotic condition (5.28) does
not make sense, strictly speaking. Nevertheless, we can derive the appropriate asymptotic
condition for the TBA at P = 0 by using our analytic expression (5.38). We find that,
as 0 — —oo,

€9, P =0) ~ —2log <_2(9 + YEuler) + log(m) — 4log (r (Z))) . (5.40)
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This is precisely the boundary condition used in section 3.3, equation (3.74). One can now
check (5.39) numerically. For instance, by solving the TBA of section 3.3 we find

€(0,P = 0)‘ — 0.51888 - -- (5.41)

Likewise, by using instanton counting, and in particular (4.18) and (5.7), we have (A = 1)

16

2log (A ( e;/?)) = 0.51887965286656 - - - (5.42)
r'(3)

We have 5 matching digits which is consistent with the precision achieved with the

TBA equation.

This discussion provides an additional result along the lines of what we obtained in sec-

tion 4.2. As we discussed in section 3.3, the function €(#) with the boundary condition (3.74)
computes the dyonic period IIp(0, /). As pointed out in section 4.2, such period is Borel
summable, and we can indeed test that its Borel resummation agrees with (5.7), namely

sinh (%)
cosh (%8GFN5(CL, h))

_ sinh (51150, 1))  (543)
a=a(0,h) cosh (%H%’{(O, h))

exp (355 ) (0.1)) =

We have verified this identity numerically. In addition we have tested that (5.43) also holds
for other values of w in the strong coupling region, and we conjecture that, for v € [—1, 1],
one has

sinh (o115 (u, 7))

1
exp (%8 (I1p) (u, h)) == (ﬁﬂ%"(u, h)) . (5.44)

6 On the modified Mathieu operator and Painlevé 1113

It was observed by many authors [63, 71, 72] that the movable poles of Painlevé 1113 are
somehow related to Mathieu functions. In particular in [73], based on [65], it was observed
that the zeros of the Painlevé IIl3 7 function compute the spectrum of modified Math-
ieu (with a suitable dictionary). From the view point of the TS/ST correspondence [2]
this connection comes naturally since both systems arise as limiting cases of this duality.
In particular, the modified Mathieu operator arises in the standard geometric engineer-
ing limit [18, 55, 74], while Painlevé III3 arises in the dual geometric engineering limit
considered in [65].

In this section we prove the connection between the zeros of the Painlevé 1113 7 func-
tion and the spectrum of the modified Mathieu operator by using [75]. From the CFT
perspective this is a connection between Liouville conformal blocks at ¢ = 1 and ¢ = oo.
We proceed as follows. First we write the Painlevé III3 7 function as [76-78]

T(A,a,n, h) = Z ™M exp (FSD(a + 2ihn, h, A)) (6.1)
nez
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where
a2

A\ w2 1
exp (F7(a, h, A)) = <h) G —i9)G( +12)

( 204 A3 (202 — 1?)
X

(6.2)

12
a2h? * a?h? (a® + h2)2 +OM )>

is the so-called four dimensional Nekrasov partition function in the selfdual €2 back-
ground [45] (namely, the equivariant parameters are ¢, = —ey = h). The parameters
(a,m) in (6.1) play the role of initial conditions while A is the time. We are interested in
the case in which

n=0. (6.3)

We now recall the result of [75], where it was demonstrated that, in the NS limit, the
Nakajima-Yoshioka blowup equations for SU(2) pure SYM [79-81] can be written as’

Z exp <in7r + FSP (a4 2ifin + ih, h, A) — Zinh_I%FNS (a, h)) =0. (6.4)
neL

Finally, we use the quantization condition for the modified Mathieu operator in the NS
form (5.16). It then follows from (6.4) that, if a value of a satisfies this exact quantization
condition, one finds a vanishing condition for the tau function of Painlevé III3, namely

7 (A, a+ih,0,h) = Z exp (FSD (a + 2ihn +ih, B, A)) = 0. (6.5)
neL

Notice that we think of (5.16) and (6.5) as quantization conditions for the variable a. In
order to obtain the spectrum of modified Mathieu one has to use the quantum Matone
relation (4.14).

7 Conclusions

In this paper we have used non-perturbative techniques inspired by supersymmetric gauge
theory and topological string theory to study the quantization of the Seiberg-Witten curve
of N = 2, SU(2) super Yang-Mills theory, which gives the modified Mathieu operator.
On the one hand, building upon [5-8], we have obtained integral equations for the Borel
resummation of the quantum periods obtained with the all-orders WKB method. These
equations predict as well the resurgent structure of these periods, and in particular their
Stokes discontinuities. The results obtained in this way have been tested against calcula-
tions in the WKB method to very high order. We have also clarified the relation between
these Borel-resummed quantum periods and the “exact” quantum periods given by instan-
ton calculus (in the NS limit). On the other hand, we have used the T'S/ST correspondence

9Strictly speaking this is the four-dimensional limit of [75]. This type of expressions first appeared in [82]
as compatibility conditions between the exact quantization conditions of [2, 3] and those of [55, 83, 84]. A
different connection between blowup and Painlevé equations was used in [85—87] to prove the so-called Kiev
formula [76, 88] or its g-deformed version [89, 90].
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of [2, 3] to obtain a closed formula for the spectral determinant of the modified Mathieu
operator, and we have compared this formula to previous results by Zamolodchikov.

Our results raise several issues. An important problem concerns the relation between
the TBA equations obtained in the context of SW theory, and the analytic bootstrap
program first proposed in [21] and reloaded in [8, 9]. In the TBA equations obtained
in [7, 8] for quantum mechanics with polynomial potentials, one only needs the boundary
condition associated to the classical behavior (i.e. at A — 0, or equivalently at 8 — 00).
The boundary behavior when § — —oo is fixed by the integral equations. As pointed out
already in [7] and further discussed in section 3.3 of this paper, the integral equations for
the modified Mathieu operator admit many possible boundary conditions at § — —oo, and
one needs additional information to fix them. One can use the quantum Matone relation
and the first quantum correction to the periods to obtain additional constraints. However,
it seems clear from the study of this example that the analytic bootstrap might require
additional asymptotic information to determine uniquely the resummed quantum periods.
As suggested in [7], one might obtain the appropriate boundary conditions by first solving
the full TBA equations of [5] (before taking the conformal limit) and then implementing
the conformal limit directly on the solution.

Another problem that should be discussed more carefully is how to solve efficiently
the TBA equations to compute the Borel resummed quantum periods. In particular, we
should understand in detail how to solve the infinite tower of TBA equations appearing in
the weak coupling region.

It would be very interesting to extend the techniques developed in this paper to quan-
tum mirror curves. This would provide a relation between BPS states in local CY threefolds
(studied for example in [91]) and the resurgent properties of the corresponding quantum
periods. Work along this direction has been already done in [92, 93]. Another interesting
class of quantum curves which could be studied with our methods is the one given by quan-
tum A-polynomials of knots (see e.g. [94]). In this case, the resurgent properties should be
closely related to the resurgent properties of Andersen-Kashaev invariants [95], which have
been considered in [96-98]. They might correspond to BPS states in the supersymmetric
dual obtained with the 3d/3d correspondence of [99].

Another intriguing point is the following. Based on previous works [7, 8], we have
shown that the conformal limit of the GMN TBA equations encode in a precise way the
NS limit of the Omega background for the pure SU(2) theory. On the other hand it is
interesting to observe that, as pointed out in [65], there is another set of TBA equations
which computes the selfdual limit of the Omega background. The latter was obtained
by Zamolodchikov in [100], see also [101]. Interestingly also such TBA can be obtained
from [5] upon a suitable limiting procedure. It would be interesting to investigate more
concretely if and how the full TBA equations of [5] encode the full Omega background.
Work along this direction was performed in [102].

In addition it should be possible to extend the results of section 6 to Painlevé 1115, ITI;,
V and VI. In these cases, the role of the modified Mathieu operator is replaced by the
quantum SW curve of SU(2) gauge theory with Ny = 1,2, 3,4 flavours, respectively. In
particular, for Ny = 4 one should recover the connection between Painlevé VI and the
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Heun operator [103] (see also [104]). Likewise the spectrum of the Calogero-Moser system
should make contact with the 7 function describing the isomonodromic deformations on
the torus [105]. The details will appear somewhere else [106].

The situation for Painlevé I, 11,1V is more subtle since these correspond to Argyres-
Douglas theories of type Hy, Hy, Ha, respectively [107]. At present we do not know how
to write Nakajima-Yoshioka blowup equations for these theories. Nevertheless, it should
be possible to connect the NS limit to the selfdual limit of the 2 background also in these
theories, since the H; theories can be derived from SU(2) gauge theories with Ny =1,2,3
upon a suitable limiting procedure [108, 109]. By following [110, 111], such connection
would provide a relation between the exact spectrum of the quantum SW curves underlying
the Hy, Hq, Hy theories, and Painlevé I,1I,IV tau functions. Note that the quantum SW
curve of the Hy and H; theories correspond to the cubic and quartic oscillators, respectively.
Connections between Painlevé equations and the above quantum mechanical systems have
been observed in [112-115].
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A The four dimensional SU(IN) spectral determinant

In this appendix we explain how the exact formula (5.6) can be extended to the family of
operators studied in [18]. These operators have the form,

N-1
Hy =AY (P +e7P) + > (=D Fhy,  [x,p] =ih, (A1)
k=0
where N > 2 is a positive integer and we set hg = 1, hy = 0. They can be regarded
as deformations of the standard non-relativistic Schrodinger operators with a polynomial
potential. When N is even, they have a discrete spectrum and their inverses are of trace
class. When N is odd, one can perform a standard analytic continuation and obtain a
discrete spectrum of resonances, as explained in [18]. In both cases, one can define a
Fredholm determinant as

hy(—1)N
Sn(ha, -+ hy) = det <1+N()>. (A.2)
Hy
Here, hs,--- ,hxy_1 are the moduli appearing in the potential, while (—l)N_th can be

identified with the energy and is the standard auxiliary variable appearing in the definition
of Fredholm determinants.
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As explained in [18], we can engineer the following operator from the quantum mirror
curve to the YN0 geometry. We follow [18] and define

1 .
7= 1Yy (A3)

=1

where e; are the weights of the fundamental representation of SU(N). We denote by
Wn -y ={w(y) :w e Wn} (A.4)

the Weyl orbit of 4, and we introduce

N—-1
ai)\, (A5)
j=1

where {A;};=1... n—1 are the fundamental weights of SU(NN). The quantities a; are related
to the parameters h; in (A.1) by using the four dimensional mirror maps or quantum
Matone relations (see for instance egs. (3.95)—(3.107) in [18] and reference therein). For
instance, we have

ha (a; ) = lim (-é (—1)N a2y CQ(a,Y)Zy>,
Y (A.6)

hs (Cl,; h) = lim <; Z ((_1)NA2N)€(Y) Cg(a, Y)Zy> :
Y

where Zy, Z are defined in (4.9) and (4.8), and Y is a vector of Young diagrams as in (4.4).

Moreover,
1
=3 Z a7 — iheal(Y
ih —|— 62 ) N ¢ N N
Cs( = ihey Y)+ihY eV +e ) alr) =Y oY) (A7)
I=1 I=1 I=1

+ af,

|~
TMZ

1

where £(Y") is defined in (4.6) and we use

1
=52 vilyi = 1), (A-8)
i>1
We also denote
a; =a; — iy, 1=1,--- N -1, (A.9)
with
N
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With a procedure analogous to the one of section 5.1, we obtain the explicit formula

EN(hQ,"',hN):AN(h,A,hQ,"‘thl) Z eJ;lld. (A.ll)
neWn -~y

The quantity e’n’ is defined as follows. If N is even we have:

e’n' = exp (;Laggs . n> H <2 sinh (wah- a)>_(n.a)2 , (A.12)

a€A+

while if N is odd we have

2

eJﬁd = exp (;3525 -n — %a . n) H (2 sinh <7rah~ a))_(n.a) ; (A.13)

aEA L

where Fyg is defined in (4.12). The quantity An(h, A, ho,---hy—1) is an integration con-
stant, analogous to A(h) in (5.6), which now depends on the moduli hg,--- ,hy_;. The
above spectral determinant vanishes precisely when the quantization conditions obtained
in [18] are satisfied. When N = 2 we recover exactly the result (5.6). When N = 3 we have

1— e—27ra1/h ) ) 1— e—27ra2/ﬁ )
- o —2mag/h i¢ ip
E3(h3, ha) = A3(h, A, ho) |1+ [ o2r(avaa)/i® 2/NelP2 4 [~ or(aran/h 1
x csch (%) csch (%) e ﬁ(aégmf%((ﬁﬁ@), (A.14)

where ¢;, i = 1,2, are defined as [18]

ey 1 (OFNs  OFns oy L OFNs  OFns
¢1(a17a27h) - A ( aa2 2 aal >7 ¢2(a’17a27h) - A (2 aa2 8@1 > (A15)

We have tested (A.14) by expanding the r.h.s of (A.14) around h3 = 0 and comparing with
the numerical values of the spectral traces. We find perfect agreement.

B Zamolodchikov’s TBA equation for the modified Mathieu equation

In [116] Zamolodchikov considered the thermodynamic TBA ansatz for the sinh-Gordon
model. This model depends on the parameter b € C, and we introduce

Q=b+ % (B.1)

as well as ) )

b 1-5
— =1-2p= .
1+p2 P= 15
The TBA equation for this theory is given by

p= (B.2)
€(6) = mRcosh(0) — (¢ + L) (6). (B.3)

In this equation, R is the radius of the circle where the theory lives, m is the mass of the
particle in the spectrum,
L(0) = log (1 + e_E(e)) , (B.4)

— 41 —



1 1 1 1 4sin(7p) cosh(0)
9(6) = o (cosh(9 —ima/2) + cosh(f + i7ra/2)> "~ 27 cosh(26) — cos(27p)’ (B-5)

The * in (B.3) denotes, as it is standard, the convolution
(F*9)®) = [ 16— 0)9(000. (B.6)
The ground state energy is then given by
m
BE(R) = - / cosh(0)L(6)do, (B.7)
2T R

and the effective central charge is

Coff = —$E(R). (B.8)

The formal conformal limit of the above TBA equation was analyzed in [19] in relation
to the generalized Mathieu equation

—u"(z) + (u_e*bm + ,u+ebx) u(z) = —P%u(x). (B.9)
The parameters u+ have the following obvious symmetry

Ly — u+e*5/b, po = p_ett . r s a4e, (B.10)

and therefore only the combination
1/b
= pbpt (B.11)

matters. The parameter b is identified with the parameter of the sinh-Gordon model, p
corresponds to its coupling constant, while the energy

E=—-p? (B.12)

is identified with the Liouville momentum, and enters into the effective central charge of
the theory, see (B.28). In the conformal limit, the TBA equation (B.3) becomes

€(0) =me? —2(px L) (0). (B.13)

The dependence on P comes through as the boundary condition of the TBA solution when
0 — —o0,
€(0) ~4QPO —2C(P) + - -- (B.14)

where P > 0 and

I(2P)I(1 + 2P) 4 4Plog 16y/7 (B.15)

C(P) =1log o T(1/42"
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It is then argued in [116] that the Fredholm determinant of the generalized Mathieu equa-
tion is given by [19]

EWJﬁ:i%j} (B.16)
where
X(pu, P) =exp|—€(0, P)/2] (B.17)

and p is related to 6 by (5.30). We have indicated the explicit dependence of € on P
through the boundary condition (B.14).
The ordinary modified Mathieu equation is obtained when

b=1, U = fhy = [L. (B.18)

Let us focus on this case. The TBA equation becomes

B L) d¢
() = me? — /R cosh(0—0) 7 (B.19)

To impose the boundary condition (B.14), we use a trick due to Zamolodchikov. We first
note that, as a consequence of (B.14), we have

L(0) ~ —8PO + 2C(P), 0 — —oo, (B.20)
and we introduce the function
Lo(6) = 4Plog(1 + e~ %), (B.21)
which has the same leading asymptotics than L(6),
Lo(0) ~ —8PO + O™, 6 - —c. (B.22)

We have
fo=26xLo=8Plog(1 +e7?), (B.23)

and we can rewrite the TBA equation as
€(0) = me — fo —2¢ % (L — Ly). (B.24)

This has by construction the right asymptotic behavior (B.14).
One property of (B.19) which is relevant for our analysis is the following. The asymp-
totic behavior of the solution €(f) as § — oo is of the form

e0) =me? +eMe 0 ... (B.25)

where

e = 2 / e’ log (1 + 6_6(9)> deé. (B.26)
R

™
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On the other hand, this correction is proportional to the effective central charge of the

theory, 'Y

o = © / o’ log (1 + 6_6(0)) dg = 3¢, (B.27)
T JR

which according to [19] can be computed in terms of P only

Cof = 1 + 24 P2 (B.28)

This means that

el = —% (1+24P?%). (B.29)
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