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1 Introduction

In recent years, many interesting and surprising relations have been obtained between

quantum mechanical systems, on one hand, and supersymmetric gauge theories and topo-

logical strings, on the other hand. One example of such a relation is the gauge/Bethe

correspondence of [1], which connects quantum integrable systems to instanton calculus in

gauge theory. A second example is the topological string/spectral theory (TS/ST) corre-

spondence, which provides explicit predictions for the spectral determinants of quantum

mirror curves [2–4]. Finally, the study of BPS states in supersymmetric gauge theories

turns out to be closely related to the WKB method as applied to Seiberg-Witten (SW)

curves [5–7]. This relation can be upgraded to include resurgent properties of the quantum
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periods [8, 9]. All these connections can be used to obtain new results in quantum theory

from gauge/string theory. For example, the results of [1, 2] lead to new exact quantization

conditions for the spectrum of the relevant operators. Conversely, one can use quantum

mechanical results to derive new results of string/gauge theories, like for example non-

perturbative definitions of topological string partition functions on local Calabi-Yau (CY)

manifolds [2, 3, 10].

Perhaps the simplest quantum-mechanical model where all these methods can be ap-

plied is the quantum version of the SW curve for N = 2, SU(2) super Yang-Mills (SYM)

theory. The corresponding operator is the (modified) Mathieu operator, which is a tra-

ditional chapter in the theory of Schrödinger operators. This operator has been also re-

visited in the context of supersymmetric gauge theory and topological string theory in

various works (see e.g. [11–17]), but many important aspects have not been discussed yet.

In this paper we use methods from supersymmetric gauge theory and topological string

theory to obtain quantum-mechanical properties of the modified Mathieu operator at the

non-perturbative level, and we test these properties against first-principles computations.

We also discuss the relationships between these different approaches.

The first aspect that we explore is the resurgent structure of the quantum periods,

which we review in section 2. Building on [6], Gaiotto considered in [7] the conformal limit

of the TBA equations of [5] for an N = 2 supersymmetric gauge theory, and he conjectured

that the resulting integral equations describe the quantum periods for the corresponding

quantum SW curve. In the case of Argyres-Douglas theories, this problem was studied

in detail in [8], which pointed out precise connections to the resurgent properties of these

periods, and used these properties to derive the conjecture of [7] in the case of general

polynomial potentials

In section 3 of this paper we use the conformal limit of the TBA equations to obtain

a prediction for these resurgent properties in the case of the modified Mathieu operator.

In particular, we obtain the precise structure of the Stokes discontinuities of the quantum

periods. We then test these predictions against first-principles calculations in the all-

orders WKB method, in particular against high order results for the expansion of the

quantum periods. We also comment on how to use these TBA equations to compute Borel

resummations of the quantum periods.

As pointed out in [11] and explored in many subsequent papers, the NS limit of in-

stanton calculus [1] provides a different resummation of the WKB expansion, in terms of a

convergent expansion in the instanton counting parameter. However, this resummation has

a very different flavor from the Borel resummation appearing in the theory of resurgence,

and it is important to have a precise dictionary between the two types of resummation.

We address this issue in section 4.

As we mentioned above, the TS/ST correspondence gives explicit expressions for spec-

tral determinants of operators obtained in the quantization of mirror curves. As pointed

out in [18], there is a four-dimensional limit of the correspondence in which the relevant

operator is the quantization of the SW curve for pure N = 2, SU(N) Yang-Mills theory.

This leads to a spectral problem which is different from the one considered in [1] for N > 2.

In the case of the SU(2) theory considered in this paper, the spectral problems coincide,
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but the TS/ST correspondence gives, in addition to the quantization condition of [1], an

explicit expression for the spectral determinant, which we derive in detail in section 5 of

this paper. The resummed quantum periods defined by instanton calculus are key ingre-

dients in this expression. We test the resulting formula and in particular we compare our

result to the TBA equation describing this spectral determinant which was conjectured by

Al. B. Zamolodchikov in [19].

In section 6, based on previous works, we use the vanishing Nakajima-Yoshioka blowup

equations to prove that the exact spectrum of the modified Mathieu operator is computed

by the zeros of the τ function of Painlevé III3. Finally, in section 7 we conclude and discuss

some open problems.

We have also included two appendices: in the first one we extend the derivation of

section 5 to SU(N) quantum SW curves, while in the second one we review some of the

results of Zamolodchikov’s paper [19].

2 The all-orders WKB method

Our first approach to the quantum SW curve will be based on the so-called exact WKB

method, see for example [20–23]. We will now summarize the basic ingredients of the theory.

The Schrödinger equation for a non-relativistic particle in a potential V (x) and with

energy E reads as follows:

− ~2ψ′′(x) + (V (x)− E)ψ(x) = 0. (2.1)

The standard WKB method produces asymptotic expansions in ~ for the solutions to this

equation. Let us consider the following ansatz for the wavefunction,

ψ(x) = exp

(
i

~

∫ x

Y (x′, E; ~)dx′
)
. (2.2)

The function Y (x,E; ~) satisfies the Riccati equation

Y 2 − i~
dY

dx
= E − V (x) . (2.3)

It has the formal power series expansion in powers of ~

Y (x,E; ~) =
∞∑
n=0

pn(x,E)~n , (2.4)

where in particular p0(x,E) is the classical momentum as a function of x and the conserved

energy. If one splits Y into the even component and the odd component,

Y = peven + podd, (2.5)

with

peven(x,E; ~) =
∞∑
n=0

p2n(x,E)~2n , podd(x,E; ~) =
∞∑
n=0

p2n+1(x,E)~2n+1 , (2.6)
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one finds that the odd component is in fact a total derivative

podd(x,E; ~) =
i~
2

d

dx
log peven(x,E; ~). (2.7)

By substituting (2.2) into the Schrödinger equation, one finds (see for instance [24])

p2n = (−1)nv2n , n ≥ 0 (2.8)

vn =
1

2p0

(
∂xvn−1 −

n−1∑
k=1

vkvn−k

)
, (2.9)

from which the components p2n(x,E) can be solved recursively, starting from the known

expression of p0.

Geometrically, we can regard peven(x,E; ~)dx as a meromorphic differential on the

curve defined by

y2 = 2(E − V (x)). (2.10)

We will call it the WKB curve, and we will denote it as ΣWKB. This curve depends on a

set of moduli which include the energy E and the parameters of the potential V (x). The

basic objects in the exact WKB method are the periods of peven(x,E; ~)dx along one-cycles

of ΣWKB, which we will call WKB periods or quantum periods. We will denote them as

Πγ(~) =

∮
γ
peven(x,E; ~)dx, γ ∈ H1(ΣWKB), (2.11)

and they are formal power series in even powers of ~, just like peven(x),

Πγ(~) =
∑
n≥0

Π(n)
γ ~2n, Π(n)

γ =

∮
γ
pn(x,E)dx. (2.12)

Note that the coefficients Π
(n)
γ depend on the moduli of the WKB curve. We will call

Π
(0)
γ the classical periods. The calculation of these coefficients at high order can be quite

involved, even for simple quantum systems.

In this paper we are interested in the modified Mathieu Hamiltonian, with the con-

ventions

H(p, x) = p2 + V (x), V (x) = 2Λ2 coshx. (2.13)

Upon quantization, we obtain the operator

H = p2 + 2Λ2 cosh(x), [x, p] = i~. (2.14)

We will refer to this as the modified Mathieu operator. It is well-known that the WKB curve

of the modified Mathieu Hamiltonian happens to coincide with the SW curve of N = 2,

SU(2) Yang-Mills theory, in the conventions appropriate for the relation to integrable

systems (see e.g. [25] for a review of SW theory and [26] for its connection to integrable

systems). In order to do this, we identify E with the Coulomb modulus u by

E = 2u . (2.15)
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Let us first consider the classical periods of the modified Mathieu equation. Since the

WKB curve is a torus, there will be two periods, corresponding to the two cycles of the

torus. The B period corresponds to the classical volume of phase space

Π
(0)
B (E) = 4 i

∫ x+

0
dx
√
E − 2Λ2 coshx, (2.16)

where

x+ = cosh−1 E

2Λ2
(2.17)

is the turning point. This classical period can be evaluated explicitly as

Π
(0)
B (E) = 8 i

√
E + 2Λ2

[
K

(
E − 2Λ2

E + 2Λ2

)
−E

(
E − 2Λ2

E + 2Λ2

)]
. (2.18)

(We denote the elliptic integrals with boldface letters K, E, and their argument is the

squared modulus m = k2). There is in addition an A period which corresponds to motion

along the imaginary axis. Classically, it is given by,

Π
(0)
A (E) = −2 i

∫ πi

−πi
dx
(√

E − 2Λ2 coshx
)

= 8
√
E + 2Λ2E

(
4Λ2

2Λ2 + E

)
. (2.19)

In the simplest case when E = 0 and Λ = 1, we have

Π
(0)
A (0) = (1 + i)

16π3/2

Γ(1/4)2
, Π

(0)
B (0) = −i

16π3/2

Γ(1/4)2
. (2.20)

We note that these classical periods are, up to normalization, the famous a and aD = ∂aF

periods of SW theory [27], namely

Π
(0)
A (E) = 2πa(u), Π

(0)
B (E) = 2iaD(u). (2.21)

We will denote the all-orders WKB quantum periods as

ΠA,B(E, ~) =
∞∑
n=0

~2nΠ
(n)
A,B(E). (2.22)

In the case of the modified Mathieu equation, the most efficient way to calculate the

quantum corrections is the so-called quantum operator approach (see e.g. [13]). It turns out

that, for each function p2n(x,E) appearing in (2.6), one can find a first order differential

operator On(E) such that

On(E) ◦ p0(x,E) = p2n(x,E) (2.23)

up to a total derivative. Since On(E) commutes with integration, one immediately has

Π
(n)
A,B(E) = On(E) ◦Π

(0)
A,B(E) . (2.24)

In this way, we have computed quantum corrections up to order 193. As a simple example,

with Λ = 1 we have [13]

O1(E) =
E

48(4− E2)
+

∂

24∂E
. (2.25)
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Therefore,

Π
(1)
A (E = 0) = −1− i

6
√

2
K(−1) , Π

(1)
B (E = 0) = − i

6
√

2
K(−1) . (2.26)

We recall that the quantum periods satisfy the so-called quantum Matone relation [14, 17,

28–31]. One of the consequences of this relation is that

Π
(0)
A (E)Π

(1)
B (E)−Π

(0)
B (E)Π

(1)
A (E) = const. , (2.27)

which we can then evaluate at E = 0 to be −2πi/3.

It is well-known that the formal power series appearing in the quantum periods diverge

generically as [24, 32]

Π(n)
γ ≈ (2n)!, n� 1. (2.28)

Therefore the expressions (2.12) are just formal power series and need to be properly

resummed. A natural way of doing so is to perform the Borel resummation. In general,

given an asymptotic series of the form

F =

∞∑
n=0

fn~2n , ~ ∈ C , (2.29)

with

fn ∼ (2n)! , n� 1 (2.30)

we split ~ = eiφ|~|, and define the Borel resummation to be

s(F )(~) =
1

|~|

∫ ∞
0

F̂ (eiφζ)e−ζ/|~|dζ , (2.31)

where F̂ (ζ) is the Borel transform

F̂ (ζ) =

∞∑
n=0

fn
(2n)!

ζ2n . (2.32)

The analytic properties of F̂ (ζ) in the ζ-plane, also called the Borel plane, are crucial.

If the Borel transform has singularities along the positive real axis, the series F (~) is

not Borel summable, as the integral in the Laplace transformation (2.31) is obstructed.

We can however deform slightly the integration contour below or above the positive real

axis, obtaining in this way the so-called lateral Borel resummations of the formal power

series F (~):

s±(F )(~) =
1

|~|

∫ ei0
±∞

0
F̂ (eiφζ)e−ζ/|~|dζ. (2.33)

These lateral resummations are in general different, and their difference is defined as the

Stokes discontinuity of F :

disc(F )(~) = s+(F )(~)− s−(F )(~). (2.34)

Stokes discontinuities play a crucial rôle in the theory of resurgence, see e.g. [33].
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Figure 1. Poles of the Borel-Padé transforms, which would accumulate to branch cuts for the

Borel transform of the quantum periods ΠA(E, ~) (a) and ΠB(E, ~) (b) at u = 0 and Λ = 1. The

red points are the central charges of the BPS states which contribute to the branch points, and

their electromagnetic charges are labelled nearby. See discussion in section 3.2.

Let us look at some examples of the Borel plane of the quantum periods for the modified

Mathieu equation. In practice, to calculate the Borel transform, we use standard Borel-

Padé techniques, i.e. we use a finite number of terms in the formal power series (in this

case we have used 193 terms), and in order to extend analytically the resulting function,

we use a Padé transform of the Borel transform. In this method, branch cuts of the Borel

transform are indicated by a dense accumulation of poles of the Borel-Padé transform along

a segment. The first example is when u = E = 0. We plot the poles of the Borel-Padé

transforms of ΠA(0, ~),ΠB(0, ~) in the Borel plane in figures 1. They indicate the existence

of four branch cuts in the case of the A period, and two branch cuts in the case of B period.

Since in both cases there are branch cuts along the positive real axis, neither of the two

quantum periods are Borel summable.

Next, we consider u = E/2 = 4. Again we plot the poles of the Borel-Padé transforms

of ΠA(4, ~),ΠB(4, ~) in the Borel plane in figures 2. In both cases we observe six branch

cuts, and they are in different locations as compared to what we found at u = 0. In this

case, the quantum A period is Borel summable, but the quantum B period is not.

As we can see, in general, the quantum periods are not Borel summable, and their Borel

transforms and resummations have a rich structure. Fortunately the connection with SW

theory gives very powerful information on this structure, which we will explore in detail in

the next section.

3 Quantum periods from TBA equations

In this section we study the TBA equations which control the analytic properties of the

quantum periods of the modified Mathieu equation. We set Λ = 1 throughout the section.
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Figure 2. Poles of the Borel-Padé transforms, which would accumulate to branch cuts for the

Borel transforms of the quantum periods ΠA(u, ~) (a) and ΠB(u, ~) (b) at u = 4 and Λ = 1. The

red points are the central charges of the BPS states which contribute to the branch points, and

their electromagnetic charges are labelled nearby. See discussion in section 3.2.

3.1 Review of the TBA equations of Gaiotto-Moore-Neitzke

The TBA equations we will obtain are conformal limits [7] of the integral equations pro-

posed by Gaiotto-Moore-Neitzke (GMN) in [5] to describe the hyperKähler metric on the

Coulomb branch of N = 2 theories compactified on R3 × S1
R, where R is the compactifica-

tion radius. We will now review some basic aspects of these equations which will be useful

in the following. The basic ingredients in these equations are the central charges of the

N = 2 supersymmetric gauge theory

Z(u) = (a,aD) , (3.1)

where

aD =
∂F0

∂a
. (3.2)

We define the period associated to a vector γ ∈ Γ in the lattice of electromagnetic charges as

Zγ = Z(u) · γ. (3.3)

This is just a linear combination of A periods and B periods.

To such a central charge we associate a ray

`γ =

{
ζ :

Zγ(u)

ζ
∈ R−

}
. (3.4)

The semiflat coordinate on the Coulomb branch is given by

χsf
γ (ζ) = exp

[
πRζ−1Zγ + iθγ + πRζZγ

]
, (3.5)
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where R is the compactification radius, and

θγ = θ · γ (3.6)

is the angular coordinate on the fiber. The semiflat coordinate is the “uncorrected” or

“classical” coordinate, and it is corrected by exponentially small effects in the large R limit.

These effects are encoded in a non-linear, TBA-like integral equation, which reads as

χγ(ζ) = χsf
γ (ζ) exp

− 1

2πi

∑
γ′∈Γ

Ω(γ ′;u)〈γ,γ ′〉Iγ′(ζ)

 , (3.7)

where Ω(γ;u) is the number of BPS states with electromagnetic charge γ at the point u of

the Coulomb branch, and

Iγ =

∫
`γ

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1− σ(γ)χγ(ζ ′)

)
. (3.8)

Here, σ(γ) is the quadratic refinement. It has been argued in [6] that, for BPS hypermul-

tiplets/vectormultiplets, one has, respectively,

σ(γ) = ∓1. (3.9)

We have used the normalization of [34], which is more appropriate for our normalization

of charges/periods. An important feature of (3.7) is that only those states whose charge

γ′ has a non-vanishing Dirac pairing with γ contributes to the equation of χγ(ζ). The

quantities χγ(ζ) characterize in a precise way the hyperKähler metric of the moduli space

of theN = 2 theory compactified on R3×S1
R, and they can be realized as cluster coordinates

on this moduli space [6]. They satisfy the property

χγ+γ′(ζ) = χγ(ζ)χγ′(ζ). (3.10)

Very often we have both charges ±γ appearing in the sum in the r.h.s. of (3.7). If

θγ = 0, we have an extra symmetry [7],

χγ(ζ) = χ−γ(−ζ), (3.11)

and we can combine

Cγ = Iγ−I−γ =

∫
`γ

dζ ′

ζ ′
ζ ′+ζ

ζ ′−ζ
log
(
1−σ(γ)χγ(ζ ′)

)
−
∫
`−γ

dζ ′

ζ ′
ζ ′+ζ

ζ ′−ζ
log
(
1−σ(−γ)χ−γ(ζ ′)

)
=

∫
`γ

dζ ′

ζ ′

(
ζ ′+ζ

ζ ′−ζ
− ζ
′−ζ
ζ ′+ζ

)
log
(
1−σ(γ)χγ(ζ ′)

)
= 4ζ

∫
`γ

dζ ′

(ζ ′)2−ζ2
log
(
1−σ(γ)χγ(ζ ′)

)
. (3.12)

In going from the first to the second line we have changed variables ζ ′ → −ζ ′, and we used

the symmetry (3.11).
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Resurgence BPS states

WKB curve SW curve

classical limit Π
(0)
γ central charge Z(γ)

quantum period Πγ cluster coordinate log χγ

Borel singularities BPS spectrum

Stokes discontinuities KS symplectomorphisms

Table 1. Correspondence between the mathematical structures in the resurgent approach to the

WKB method, and those in the theory of BPS states.

In order to put the equations in a form similar to the TBA equations, we will perform

a change of variables akin to the one made in [5]. If

Zγ = eiφ′ |Zγ | (3.13)

then we change variables in (3.12) as follows:

ζ = −eiφ−θ, ζ ′ = −eiφ′−θ′ , (3.14)

and we obtain

Cγ = 2

∫
R

log (1− σ(γ)χγ(θ′))

sinh(θ − θ′ + iφ′ − iφ)
dθ′. (3.15)

3.2 TBA equations for the modified Mathieu equation

Building on [7, 8], we expect to have a general correspondence between the mathematical

description of BPS states in [5, 6], and the “resurgent” properties of the quantum periods

associated to the corresponding SW curve. As noted in [7], this correspondence involves

the conformal limit of the TBA equations of [5], which is given by

R→ 0 , ζ → 0 , ζ/R finite . (3.16)

In this correspondence, the classical limit of the WKB periods Π
(0)
γ corresponds to the cen-

tral charge Zγ , while the full quantum period is obtained as the logarithm of the Coulomb

branch coordinates χγ(ζ) (in the conformal limit). The Borel singularities of the Borel

transforms Π̂γ are closely related to the BPS spectrum of the theory, and the Stokes discon-

tinuities of the quantum periods are closely related to the so-called Kontsevich-Soibelman

symplectomorphisms [5, 6, 35]. This correspondence is summarized in table 1, and it can be

used to obtain integral equations of the TBA type governing the quantum periods. We will

now apply this correspondence to obtain such equations for the modified Mathieu operator.

Let us then consider the SW theory [27], i.e. pure N = 2 SYM with gauge group

SU(2). We will denote the charge by

γ = γ = (ne, nm). (3.17)

– 10 –
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We will use the conventions of [34] for the symplectic product,

〈γ, γ′〉 = 〈(ne, nm), (n′e, n
′
m)〉 = −nen′m + nmn

′
e. (3.18)

We will denote

χe(ζ) = χ(1,0)(ζ), χm(ζ) = χ(0,1)(ζ), χd(ζ) = χ(1,1)(ζ), (3.19)

and because of (3.10) we have

χd(ζ) = χe(ζ)χm(ζ). (3.20)

We will write TBA equations for χe(ζ) and χm(ζ), as in [34]. We have

χe(ζ) = χsf
e (ζ) exp

− 1

2πi

∑
γ′

ce(γ
′)Iγ′(ζ)

 ,
χm(ζ) = χsf

m(ζ) exp

− 1

2πi

∑
γ′

cm(γ′)Iγ′(ζ)

 ,
(3.21)

where

ce(γ) = Ω(γ;u)〈(1, 0), γ〉, cm(γ) = Ω(γ;u)〈(0, 1), γ〉. (3.22)

In order to write the integral equations, we need to know the structure of the BPS

spectrum in SW theory. It is known that there is a curve of marginal stability C in the

Coulomb branch of the SW theory, separating a strong coupling region or chamber S inside

C, from a weak coupling region or chamber W outside C [27, 36, 37]. As we move from the

strong coupling region to the weak coupling region, the spectrum of BPS states changes

drastically by the famous wall-crossing phenomenon. We consider the two chambers in turn.

3.2.1 Strong coupling region

We start with the region W inside the curve of marginal stability. The spectrum consists

of one monopole with charge

γm = (0, 1) (3.23)

and one dyon with charge

γd = (1, 1), (3.24)

see [27, 36, 37] (we follow the conventions in [36]). We also have the corresponding an-

tiparticles, carrying opposite charges. Then, the only nonzero coefficients in (3.21) are

ce(γm) = ce(γd) = −1, cm(γd) = 1. (3.25)

Therefore, the equations (3.21) read

χe(ζ) = χsf
e (ζ) exp

[
1

2πi
(Cγm + Cγd)

]
,

χm(ζ) = χsf
m(ζ) exp

[
− 1

2πi
Cγd
]
,

(3.26)
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and it is better to write them in terms of χd, χm,

χd(ζ) = χsf
d (ζ) exp

[
1

2πi
Cγm

]
,

χm(ζ) = χsf
m(ζ) exp

[
− 1

2πi
Cγd
]
.

(3.27)

We now write the central charges

Zd = eiφd |Zd|, Zm = −ieiφm |Zm|. (3.28)

These conventions are such that, when u ∈ R inside the curve of marginal stability, we

have φd = φm = 0. Let us define the functions εd,m and ε̃d,m(θ) as follows (this is similar

to the notation used in [8, 38]):

χd

(
−eiφd−θ

)
= exp (−εd(θ − iφd)) = exp (−ε̃d(θ)) ,

χm

(
ieiφm−θ

)
= exp (−εm(θ − iφm)) = exp (−ε̃m(θ)) .

(3.29)

Then, the conformal limit of the TBA equations reads:

ε̃d(θ) = π|Zd|eθ − 2

∫
R

L̃m(θ′)

cosh(θ − θ′ + iφm − iφd)

dθ′

2π
,

ε̃m(θ) = π|Zm|eθ − 2

∫
R

L̃d(θ
′)

cosh(θ − θ′ + iφd − iφm)

dθ′

2π
,

(3.30)

where we have shifted θ → θ − logR, and

L̃m,d(θ) = log
(

1 + e−ε̃m,d(θ)
)
. (3.31)

We have used here the fact that the BPS spectrum consists of hypermultiplets, therefore

σ(γ) = −1.

The equations simplify further when u is real, i.e. u ∈ R ∩W = [−1, 1]. Then one has

φd = φm = 0, i.e.

Zγd > 0, Zγm = −i|Zγm |, (3.32)

and we obtain,

εd(θ) = π|Zd|eθ − 2

∫
R

Lm(θ′)

cosh(θ − θ′)
dθ′

2π
,

εm(θ) = π|Zm|eθ − 2

∫
R

Ld(θ
′)

cosh(θ − θ′)
dθ′

2π
.

(3.33)

We also note that, before taking the conformal limit, we find the more conventional

TBA equations

εd(θ) = πrZd cosh(θ)− 2

∫
R

Lm(θ′)

cosh(θ − θ′)
dθ′

2π
,

εm(θ) = πr|Zm| cosh(θ)− 2

∫
R

Ld(θ
′)

cosh(θ − θ′)
dθ′

2π
,

(3.34)
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where

r = 2R. (3.35)

The definition of r is such that we have the same conventions as in [39].

The TBA equations simplify greatly when u = 0. In this case, we have that

|Zd| = |Zm| = ξ, (3.36)

and that1

εd(θ) = εm(θ) = ε(θ). (3.37)

The two TBA equations collapse to one,

ε(θ) = πξeθ − 2

∫
R

L(θ′)

cosh(θ − θ′)
dθ′

2π
, (3.38)

which coincides with the integral equation (B.19) associated to the modified Mathieu equa-

tion and the Sinh-Gordon model and studied by Zamolodchikov (the factor ξ can be ab-

sorbed in a redefinition of the angle θ). The equation (3.38) was written down in [7] as

governing the quantum periods at u = 0.

We claim that the functions ε̃d,m(θ) are identified with quantum periods as follows

ε̃d(x+ iφd) =
1

~
s(ΠD)(~),

ε̃m

(
x+ iφm −

iπ

2

)
=

1

~
s(ΠB)(~),

(3.39)

with

~ = π−1e−x, ΠD = ΠA + ΠB , (3.40)

where ΠD denotes the dyonic quantum period. Then the TBA equations (3.30) are consis-

tent with the leading order contribution by the classical periods in the small ~ expansion

s(ΠD,B)(~) = Zd,m +O(~2) . (3.41)

Furthermore, the TBA equations (3.30) clearly indicate that for some argument angles of

~ the quantum periods have discontinuities. These discontinuities are determined by the

BPS spectrum of SW theory and give the singularity structure of the Borel transform of

the quantum periods. These Stokes discontinuities can also be deduced from (3.30). The

location of the singularities in the Borel plane, as well as the precise discontinuities, can

be checked against the asymptotic series of the quantum periods, by inspecting the Borel

plane and by performing lateral Borel resummations, respectively.

1Anticipating the identification with quantum periods, this equation does not mean that the dyonic and

magnetic quamtum periods ΠD(u, ~),ΠB(u, ~) are identical at u = 0, as ~ is identified with θ differently,

cf. (3.39).
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terms lateral Borel sum r.h.s. of (3.42)

181 0.17499253901611 0.1749925390148815032360

185 0.17499253901578 0.1749925390148815032482

189 0.17499253901545 0.1749925390148815032553

193 0.17499253901519 0.1749925390148815032595

Table 2. Discontinuity across the ray arg(~) = 0 for ΠB(u = 0, ~ = 1) computed by lateral

Borel resummation and by using (3.42) with increasing number of terms in the asymptotic series.

Underlined are stabilised digits.

For instance, from the TBA equations (3.30), we conclude that s(ΠB) are discontinuous

across the rays arg(~) = φd, φd + π, with

discφd(+π)(ΠB)(~) = +2~ log

(
1 + e−

1
~ s(ΠD)(~)

)
= 2~

(
e−

1
~ s(ΠD)(~) − 1

2
e−2

1
~ s(ΠD)(~) + . . .

)
. (3.42)

When u = 0, we have φd = 0, and the discontinuities are located at arg(~) = 0, π. The

discontinuity across the ray arg(~) = 0 can be computed by a lateral Borel resummation

of the quantum B period. We check it against the right hand side of (3.42), and find good

agreement. See table 2. Similarly, s(ΠD) is discontinuous across the rays arg(~) = φm± π
2 ,

and one has

discφm±π2 (ΠD)(~) = −2~ log

(
1 + e−

1
~ s(ΠB)(~)

)
. (3.43)

Numerical checks for this discontinuity formula are completely analogous.

From the discontinuity formula (3.42) we can deduce in the standard way a formula

for the large order behavior of Π
(n)
B , of the form (see e.g. [40])

iΠ
(n)
B ∼

2A−2n+b

π
Γ(2n+b) (3.44)

·
(

1− µ2A

2n+b−1
+

µ3A
2

(2n+b−1)(2n+b−2)
− µ4A

3

(2n+b−1)(2n+b−2)(2n+b−3)
· · ·
)
.

If we write the dyonic quantum period as

ΠD =
∑
n≥0

Π
(n)
D ~2n, (3.45)

we can identify

A = Π
(0)
D , b = −1, µ2 = Π

(1)
D , µ3 = (Π

(1)
D )2/2, µ4 = (Π

(1)
D )3/6 + Π

(2)
D , . . . (3.46)

These identities are numerically checked at u = 0 up to all stabilised digits (more than 40)

with the help of Richardson transforms.

The large order behavior of Π
(n)
B also indicates that the Borel transform Π̂B(ζ) has

branch points at ζ = ±Π
(0)
D , which is the central charge of the BPS state (dyon) whose
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electromagnetic charge has non-vanishing Dirac pairing with the charge of the monopole.

Similarly, the Borel transform of ΠA(u, ~) should have branch points at the central charges

of monopoles and dyons with electromagnetic charges ±(0, 1),±(1, 1), while the Borel trans-

form of ΠB(u, ~) have branch points only at the central charges of dyons. This explains

the Borel plane plots in figure 1, where we also superimpose the central charges of the

contributing BPS states as red spots.

3.2.2 Weak coupling region

Let us now consider the region outside the curve of marginal stability. The spectrum

consists of dyons with charge ±γn, where

γn = (n, 1), n ∈ Z, (3.47)

and W boson with charges ±γe, where

γe = (1, 0). (3.48)

From (3.22) we conclude that

ce(γn) = −1 (3.49)

and

cm(γn) = n, cm(γe) = 2, (3.50)

where we used the fact that

Ω(γe;u) = 2 (3.51)

in the weak coupling region.

As in [34], we write the equations for χe, χm. We find

χm(ζ) = χsf
m(ζ) exp

[
− 1

πi
Cγe(ζ)− 1

2πi

∑
n∈Z

nCγn(ζ)

]
,

χe(ζ) = χsf
e (ζ) exp

[
1

2πi

∑
n∈Z
Cγn(ζ)

]
.

(3.52)

In this region we will write

Zm = ieiφm |Zm|, Ze = eiφe |Ze|, Z` = eiφ` |Z`|, (3.53)

where we have denoted Z` = Zγ` the central charge of a dyon. This is chosen in such a

way that, if u is real, we have φe = φm = 0. We now define

χe

(
−eiφe−θ

)
= exp (−εe(θ − iφe)) = exp (−ε̃e(θ)) ,

χm

(
−i eiφm−θ

)
= exp (−εm(θ − iφm)) = exp (−ε̃m(θ)) ,

χ`

(
− eiφ`−θ

)
= exp (−ε`(θ − iφ`)) = exp (−ε̃`(θ)) ,

(3.54)
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We then obtain the equations,

ε̃e(θ) = π|Ze|eθ +
1

π

∫
R

L̃m(θ′)

cosh(θ − θ′ + iφm − iφe)
dθ′ +

1

πi

∑
` 6=0

∫
R

L̃`(θ
′)dθ′

sinh(θ − θ′ + iφ` − iφe)
,

ε̃m(θ) = π|Zm|eθ −
2

π

∫
R

L̃e(θ
′)dθ′

cosh(θ − θ′ + iφe − iφm)
− 1

π

∑
`∈Z

`

∫
R

L̃`(θ
′)dθ′

cosh(θ − θ′ + iφ` − iφm)

(3.55)

where

L̃e,m(θ) = log
(

1∓ e−ε̃e,m(θ)
)
, L̃`(θ) = log

(
1 + e−ε̃`(θ)

)
. (3.56)

Here we have assumed that

σ(γe) = 1, (3.57)

since the W boson is a vector multiplet [6]. In the equation for ε̃e(θ) we have written down

explicitly the term corresponding to the dyon with zero electric charge γ`=0 = γm, which

is the magnetic monopole. We can also deduce the TBA equation for ε̃`(θ), by combining

the two equations above. We find

ε̃`(θ) = π|Z`|eθ +
2

πi

∫
R

L̃e(θ
′)dθ′

sinh(θ − θ′ + iφe − iφ`)
+

1

πi

∑
k∈Z

(`− k)

∫
R

L̃k(θ
′)dθ′

sinh(θ − θ′ + iφk − iφ`)
.

(3.58)

It is useful to isolate the contribution from the magnetic monopole k = 0 explicitly in the

last term, so that we obtain

ε̃`(θ) = π|Z`|eθ +
2

πi

∫
R

L̃e(θ
′)dθ′

sinh(θ − θ′ + iφe − iφ`)
+

1

πi

∑
k 6=0

(`− k)

∫
R

L̃k(θ
′)dθ′

sinh(θ − θ′ + iφk − iφ`)

− `

π

∫
R

L̃m(θ′)dθ′

cosh(θ − θ′ + iφm − iφ`)
. (3.59)

The above equations have some interesting reality properties along the real axis, where

φe = φm = 0. In that case, since

Z` = `|Ze|+ i|Zm|, (3.60)

one has that

φ` + φ−` = π, ` ∈ Z. (3.61)

It is then easy to see that the conjugation property

ε̃−`(θ) = ε̃∗` (θ) (3.62)

is compatible with the TBA system. In addition, εe,m(θ) are real in this case.

In the weak coupling region, we propose the following identification with quantum

periods

ε̃m

(
x+ iφm +

iπ

2

)
=

1

~
s(ΠB)(~),

ε̃e(x+ iφe) =
1

~
s(ΠA)(~),

ε̃`(x+ iφ`) =
1

~
s(Π`)(~),

(3.63)
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with

~ = π−1e−x, Π` = `ΠA + ΠB . (3.64)

The TBA equations (3.55) then imply that the Borel transforms of ΠA(~),ΠB(~) have

branch points at the central charges of the BPS states whose electromagnetic charges have

non-vanishing Dirac pairing with those of the W-boson and monopole, respectively. For

ΠA(~), these are the BPS states with charges ±(`,±1), ` = 0, 1, 2, . . .; for ΠB(~), these are

the BPS states with charges ±(1, 0),±(`,±1), ` = 1, 2, . . .. This explains the Borel plane

plots in figure 2 with u = 4, well in the weak coupling region. We also superimpose in the

plots the central charges of the contributing BPS states as red spots.

In addition, the TBA equations (3.55) also indicate the following discontinuities for the

resummed quantum periods s(ΠA)(~), s(ΠB)(~) in the ~-plane. The resummed quantum

A period s(ΠA) is discontinuous

• across the rays arg(~) = φm ± π
2 with the discontinuity

discφm±π2 (ΠA) = −2~ log

(
1 + e−

1
~ s(ΠB)(~)

)
; (3.65)

• across the rays arg(~) = φ`(+π) with the discontinuity

discφ`(+π)(ΠA) = 2~ log

(
1 + e−

1
~ s(Π`)(~)

)
, ` ∈ Z . (3.66)

On the other hand, the quantum B period s(ΠB) is discontinuous

• across the rays arg(~) = φe(+π) with the discontinuity

discφe(+π)(ΠB) = −4~ log

(
1− e−

1
~ s(ΠA)(~)

)
; (3.67)

• across the rays arg(~) = φ`(+π) (` 6= 0) with the discontinuity

discφ`(+π)(ΠB) = −2`~ log

(
1 + e−

1
~ s(Π`)(~)

)
, ` 6= 0 . (3.68)

To test these formulae, we consider the case of u = 1 + 4i, where the branch cuts of the

Borel transform of quantum A and B periods are well separated, as seen in figure 3. We

compute the discontinuity via lateral Borel resummation for various rays and find good

agreement with the r.h.s. of the formulae (3.65)–(3.68), see tables 3, 4.

Finally, we would like to mention that different TBA-like equations for the quantum pe-

riods of the modified Mathieu operator have been proposed in [41] and more recently in [42].

3.3 Solving the TBA equations in the strong coupling region

As we have argued, Borel sums of quantum periods are solutions to the TBA equa-

tions (3.30), (3.55). In principle the resummed quantum periods can be computed from

these TBA equations by using the dictionaries (3.39) and (3.63). In practice, however,
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(1, 1)

(0, 1)

(-1, -1)

(0, -1)
-50 50

-50

50

(a) ΠA

(1, 0)
(1, 1)

(1, -1)

(-1, 0)
(-1, -1)

(-1, 1)

-50 50

-50

50

(b) ΠB

Figure 3. Poles of the Borel-Padé transforms, which would accumulate to branch cuts for the

Borel transform of the quantum periods ΠA(E, ~) (a) and ΠB(E, ~) (b) at u = 1 + 4i and Λ = 1.

The red points are the central charges of the BPS states which contribute to the branch points, and

their electromagnetic charges are labelled nearby.

BPS state (0,−1) (1, 1)

lateral Borel sum 1.77819420225× 10−10 − i4.0146843089× 10−11 5.37838410× 10−13 + i3.166367886× 10−12

r.h.s. of (3.65), (3.66) 1.7781942022540× 10−10 − i4.014684308966× 10−11 5.3783841037× 10−13 + i3.16636788673× 10−12

Table 3. Discontinuity of ΠA(u = 1 + 4i, ~ = 1) across the rays associated to BPS states γ =

(0,−1), (1, 1), computed by lateral Borel resummation and by using (3.65), (3.66) with up to 193

terms in the asymptotic series. Only stabilised digits are listed.

BPS state (1, 1) (1, 0)

lateral Borel sum 5.37838× 10−13 + i3.166367× 10−12 5.979× 10−16 + i4.701× 10−16

r.h.s. of (3.67), (3.68) 5.3783841× 10−13 + i3.16636788× 10−12 5.97982× 10−16 + i4.70119× 10−16

Table 4. Discontinuity of ΠB(u = 1 + 4i, ~ = 1) across the rays associated to BPS states γ =

(1, 1), (1, 0), computed by lateral Borel resummation and by using (3.67), (3.68) with up to 193

terms in the asymptotic series. Only stabilised digits are listed.

these equations are difficult to use. First of all, one needs information on the boundary

conditions at strong coupling in order to solve the equations. In addition, the standard

tools to solve these equations numerically converge very slowly.

Let us first consider the simplest example at u = 0, where the TBA system collapses to

a single equation (3.38), which we reproduce here (we have absorbed the factor ξ in (3.38)

in the angle θ)

ε(θ) = πeθ −
∫
R

log(1 + e−ε(θ
′))

π cosh(θ − θ′)
dθ′ . (3.69)

The solution can be identified with the quantum dyon period through the dictionary

ε(θ) =
1

~
s(ΠD)(u = 0, ~) , ~ = Π

(0)
D π−1e−θ =

16
√
π

Γ
(

1
4

)2 e−θ . (3.70)
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Furthermore, the asymptotic behavior of the solution ε(θ) as θ →∞ is of the form

ε(θ) ∼ πeθ +
∑
n≥1

ε(n)e(1−2n)θ, (3.71)

whose coefficients are identified with the quantum corrections to the dyon period

ε(n) =
1

π2n−1

(
Π

(0)
D

)2n−1
Π

(n)
D . (3.72)

It turns out that the equation (3.69) admits many possible boundary conditions at

θ → −∞. This is in stark contrast to the TBA equations for polynomial potentials studied

in [7, 8], where the equations themselves fix the behavior of the solutions at θ → −∞. One

possibility for the boundary conditions at θ → −∞ is the linear behavior (5.28). This type

of behavior was considered by Zamolodchikov in [19] but in a slightly different context, as

we will discuss in section 5 (see also appendix B). However, it can be seen that this is not

well suited for the quantum periods we are studying.2 One quick way to see this is that

the linear boundary condition with P 6= 0 implies ε(1) < −1/3 (cf. (B.29)), while from the

quantum Matone relation (2.27) we find

ε(1) =
1

π
Π

(0)
D Π

(1)
D =

1

2πi

(
Π

(0)
A Π

(1)
B −Π

(0)
B Π

(1)
A

)
= −1

3
. (3.73)

It turns out that the appropriate boundary condition in this case is given by

ε(θ) = −2 log

(
−2θ

π

)
+ · · · , θ → −∞ . (3.74)

This boundary condition for the TBA equation (3.69) was also studied by Zamolodchikov

in [43].3 One can use a small modification of the “dilogarithm trick” of [44] to show that,

with the boundary condition (3.74), one has indeed (3.73) (in the context of [43], this

calculation gives the central charge c = 1 for the corresponding sinh-Gordon theory).

To implement numerically the boundary condition (3.74), we borrow a trick from [19].

We define a continuous function

f1(θ) = −2 log

(
1 +

2

π
log(1 + e−θ)

)
, (3.75)

which has the same boundary behavior as (3.74) and is exponentially suppressed when

θ → +∞. We then look for a function F1(θ) which satisfies

f1(θ) =

∫
R
K(θ − θ′)F1(θ′)dθ′ , K(θ) =

1

π cosh(θ)
. (3.76)

The generic solution to this linear integral equation is

F1(θ) =
1

2

(
f1

(
θ + i

π

2

)
+ f1

(
θ − i

π

2

))
. (3.77)

2In [7] it was also pointed out that (3.69) admits many boundary conditions at θ → −∞. However, it is

claimed there that the correct boundary condition for the quantum period is precisely of the type (B.14),

namely, ε(θ) ∼ θ/2 + . . . for θ → −∞, which is not quite correct for the reasons explained here.
3Alternatively we can justify this boundary condition by using the results in section 5, see equation (5.40).
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~ = 1 ~ = 1/2

TBA 6.62781 13.47880

Borel sum 6.62781917. . . 13.47880936. . .

Table 5. Quantum dyon period at u = 0.

~ = 1 ~ = 1/2

TBA 9.16476 18.61486

Borel sum 9.16476545 . . . 18.61486738 . . .

Table 6. Quantum dyon period at u = 1/3.

For our particular f1(θ), we thus have

F1(θ) = − log

(
1 +

2

π
log
(

1 + ie−θ
))
− log

(
1 +

2

π
log
(

1− ie−θ
))

. (3.78)

This is a real function for θ ∈ R. The TBA equation (3.69) can then be written as

ε(θ) = πeθ + f1(θ)−
∫
R

dθ′
1

π cosh(θ − θ′)

(
log
(

1 + e−ε(θ
′)
)

+ F1(θ′)
)
, (3.79)

where both boundary conditions at ±∞ are explicitly spelt out.

The numerical solution to the TBA equation (3.69) converges rather slowly, and we

managed to obtain 6 stabilised digits for ~ = 1 and 7 stabilised digits for ~ = 1/2. These

results, on the other hand, do agree with the Borel resummation of the quantum dyon

period. See table 5.

Let us now move away from the point u = 0 but remain in the strong coupling region

with u ∈ (−1, 0) ∪ (0, 1). The TBA system (3.33) has two integral equations coupled to

each other. Nevertheless, at θ → −∞ the first terms ∝ eθ on the r.h.s. of both equations

in (3.33) are negligible, and the TBA system also collapses to the single equation (3.69)

(with the first term on the r.h.s. suppressed). Therefore both εd(θ), εm(θ) should have the

same boundary condition as (3.74), in other words

εd(θ) ∼ εm(θ) ∼ −2 log

(
−2θ

π

)
+ . . . , θ → −∞ . (3.80)

This is corroborated by the fact that the Matone relation (3.73) can be reproduced with

this boundary behavior by using again a slight modification of the “dilogarithm trick” [44].

We use again the trick of inserting the pair of f1(θ), F1(θ′) functions, and we find that the

numerical solution to the TBA system (3.33) has roughly the same speed of convergence

as the solution to (3.69) for u = 0. We tabulate the results for u = 1/3 in tables 6, 7 and

they also agree with the Borel sum of the quantum periods. Note that the TBA system

is solved with θ ∈ R, which in light of (3.39) corresponds to real ~ for the quantum dyon

period and to imaginary ~ for the quantum monopole period.
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~ = −i ~ = −i/2

TBA 4.26480 8.716486

Borel sum 4.26480153 . . . 8.716486917 . . .

Table 7. Quantum monopole period at u = 1/3.

4 Quantum periods from instanton calculus

Instanton calculus [1, 45] leads to a resummation of the quantum periods of the modified

Mathieu equation (2.22), as pointed out in [11]. This produces exact functions of ~ which

we will denote by

Πex
A,B(E, ~). (4.1)

In this section we explain this resummation in detail and we compare it to the Borel

resummation obtained in the context of the exact WKB method.

4.1 Review of instanton calculus

Let us first review some basic ingredients of instanton calculus in the 4d N = 2 SYM with

gauge group G = SU(N) [1, 45–48].

We denote a partition (or Young tableaux) by

Y = (y1, y2, · · · ), (4.2)

its transposed by

Y t = (yt1, y
t
2, · · · ), (4.3)

and a vector of Young tableaux as

Y = (Y1, · · · , YN ). (4.4)

It is useful to define

hY (s) = yi − j, vY (s) = ytj − i, (4.5)

where s = (i, j) is a box (not necessarily in the partition Y ). We will also use

`(Y ) =
N∑
I=1

`(YI) , (4.6)

whith

`(Y ) =
∑
i

yi . (4.7)

The four dimensional SU(N) Nekrasov partition function is [45, 47]

Z(a; ε1, ε2) =
∑
Y

(
(−1)NΛ2N

)`(Y )ZY , (4.8)
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where

ZY =
N∏

I,J=1

∏
s∈YI

1

αI − αJ − ε1vYJ (s) + ε2 (hYI (s) + 1)

×
∏
s∈YJ

1

αI − αJ + ε1 (vYI (s) + 1)−ε2hYJ (s)
,

(4.9)

with
N∑
i=1

αi = 0, (4.10)

and

ai = αi − αi+1, i = 1, · · · , N − 1. (4.11)

The four dimensional SU(N) Nekrasov-Shatashvili (NS) free energy is then defined by [1]

F inst
NS (a, ~) = i~ lim

ε2→0
ε2 logZ(a; i~, ε2). (4.12)

An important property of this free energy is that it is given as a power series in Λ which

is expected to have a non-vanishing radius of convergence in a certain range of values of a

and ~ around the semiclassical region |Λ/a| � 1.4

In order to make contact with the (modified) Mathieu equation, the relevant gauge

theory is N = 2, SU(2) SYM theory, hence we have to consider (4.12) with N = 2. In this

case the first few terms read

F inst
NS (a, ~) = − 2Λ4

a2 + ~2
+

Λ8
(
7~2 − 5a2

)
(a2 + ~2)3 (a2 + 4~2)

+O
(
Λ16
)
. (4.13)

Once the NS free energy is known, the quantum A period a(u, ~) can be obtained by

inverting the quantum Matone relation [29, 49–54]

u =
a2

8
− Λ

8
∂ΛF

inst
NS (a, ~,Λ). (4.14)

This leads to a series expansion for a(u, ~) in powers of Λ4 which is expected to con-

verge in an appropriate range of the parameters Λ, E, ~ around the semiclassical region

|Λ2/E| � 1. The quantum B period aD(u, ~) is then obtained from the quantum special

geometry relation

aD(a, ~) = ∂aFNS(a, ~,Λ) =2γ(a, ~,Λ) + ∂aF
inst
NS (a, ~,Λ) (4.15)

where [55]

γ(a, ~) =
a

2
log

(
~2

Λ2

)
− π~

4
− i~

2

(
log Γ

(
1 +

ia

~

)
− log Γ

(
1− ia

~

))
, (4.16)

and we replace a by a(u, ~).

4Recall that for ~ = 0, in the electric frame both a(u) and aD(u) are convergent series of Λ2/u up to the

monopole and dyon points. The prepotential, which is related to a, aD by the special geometry relation, is

thus also convergent series of Λ/a up to these points. The NS free energy is its smooth deformation which

tends to enlarge the domain of convergence.
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We also note that it is possible to express the NS free energy via a TBA system [1, 56]

(different from the one discussed in section 3.2). This TBA system however has a range of

validity/convergence which is smaller than the one of the instanton calculus. For instance,

the TBA breaks down if Re(a) 6= 0, while the instanton counting expression for F inst
NS (4.12)

is still well defined.

It was found in [11] that by expanding (4.13), (4.14) at small values of ~, it is possible

to recover the WKB periods (2.22). More precisely, at order ~2n, one finds an expansion

in Λ which agrees with the expansion of Π(n)(E) at large E:

2π a(u, ~) −→
∞∑
n=0

~2nΠ
(n)
A (E = 2u),

2i aD(a(u, ~), ~) = 2i∂a(FNS(a, ~))
∣∣∣
a=a(u,~)

−→
∞∑
n=0

~2nΠ
(n)
B (E = 2u).

(4.17)

Therefore, the Bethe/gauge correspondence provides an analytic way to resum the WKB

periods period into well defined functions which are exact in ~. We will denote these

functions by Πex
A,B(E, ~), and we will refer to them as “exact” quantum periods. In terms

of the quantities that we have introduced, they are given by

Πex
A (E, ~) = 2πa(E, ~),

Πex
B (E, ~) = 2i∂aFNS(a(E, ~), ~),

(4.18)

where we use the notation a(E, ~) := a(u = E/2, ~).

It turns out that one can find the series expansion for a(u, ~) by using elementary

methods. To do this, we use the WKB method, but we solve the Riccati equation (2.3)

perturbatively in Λ, i.e. we solve

Y 2(x)− i~
dY (x)

dx
= E − 2Λ2 cosh(x) (4.19)

with an ansatz

Y (x) =
∑
n≥0

Yn(x, ~, E)Λ2n. (4.20)

Clearly, we should set

Y0(x, ~, E) =
√
E. (4.21)

The equation for Y1(x, ~, E) is

2Y0Y1 − i~
dY1

dx
= −2 cosh(x). (4.22)

The general solution to this equation is of the form

Y1(x, ~, E) = −4
√
E cosh(x) + 2i~ sinh(x)

4E + ~2
+ ce−

2i
√
Ex
~ . (4.23)

We note that the term involving the unknown coefficient leads to a non-perturbative effect

in ~. We will set it to zero to recover the perturbative series. The general term Yn satisfies

2
√
EYn(x, ~, E)− i~

dYn
dx

+

n−1∑
k=1

Yk(x, ~, E)Yn−k(x, ~, E) = 0. (4.24)
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This can be integrated order by order, setting to zero non-perturbative terms. We find in

this way,

Y2(x, ~, E) = −
4E2 + 5E~2 + i

√
E~
(
8E − ~2

)
sinh(2x) + E

(
4E − 5~2

)
cosh(2x) + ~4

√
E (E + ~2) (4E + ~2)2 .

(4.25)

The functions Yn(x, ~, E) are complicated, but their integrals are slightly simpler. As it

follows from (2.19), we have to calculate

In(E, ~) =
1

2π

∫ π

−π
Yn(ix, ~, E)dx. (4.26)

As expected, only even terms contribute. We find, for example,

I2(E, ~) = − 1

4E3/2 +
√
E~2

,

I4(E, ~) = − 60E2 + 35E~2 + 2~4

4E3/2 (E + ~2) (4E + ~2)3 ,

I6(E, ~) = −6720E5 + 18480E4~2 + 15260E3~4 + 4705E2~6 + 413E~8 + 18~10

4E5/2 (E + ~2)2 (4E + ~2)5 (4E + 9~2)
,

(4.27)

and so on. Then, one finds

a(E, ~) = 2

(
√
E +

∞∑
m=1

I2m(E, ~)Λ4m

)
. (4.28)

When ~ = 0, we recover the standard SW period (2.19):

2πa(E, 0) = 4π
√

2 + E 2F1

(
−1

2
,

1

2
, 1;

4

2 + E

)
= 8
√

2Λ2 + E E

(
4Λ2

2Λ2 + E

)
. (4.29)

At finite ~,Λ we also find perfect agreement between (4.28) and the standard result of

instanton calculus.

We note that the integrals above can be calculated as residues, since

In(E, ~) =

∮
|X|=1

Yn(X, ~, E)
dX

X
= ResX=0

Yn(X, ~, E)

X
, (4.30)

where

X = ex. (4.31)

In fact, it is more convenient to solve the differential equation directly in the X variable,

since everything is algebraic, i.e. it is better to solve

2
√
EYn(X, ~, E)− i~X

dYn
dX

(X, ~, E) +
n−1∑
k=1

Yk(X, ~, E)Yn−k(X, ~, E) = 0. (4.32)

It turns out that the function Y (ix, ~, E) can be calculated exactly in terms of Mathieu

functions. To see this, we note that Y(x, ~, E) = Y (ix, ~, E) satisfies the Riccati equation

Y2(x, ~, E)− ~
dY
dx

(x, ~, E) = E − 2Λ2 cos(x), (4.33)
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which is the Mathieu equation with imaginary Planck constant. The solution to this

equation is

Y(x, ~, E) = −~ d

dx
log

{
S

(
−4E

~2
,−4Λ2

~2
,
x

2

)
+ cC

(
−4E

~2
,−4Λ2

~2
,
x

2

)}
, (4.34)

where c is an integration constant and S(α, q, x), C(α, q, x) are the odd (even) Mathieu

functions, respectively. Since we want

Y(x, ~, E) ≈
√
E (4.35)

as Λ→ 0, we find that this leads to

c = ±i (4.36)

(where the sign depends on the branch cut of the square root). We eventually find

Πex
A (E, ~) = 2

∫ π

−π
Y(x)dx = −2~ log

S
(
−4E

~2 ,−
4Λ2

~2 ,
π
2

)
+ cC

(
−4E

~2 ,−
4Λ2

~2 ,
π
2

)
−S

(
−4E

~2 ,−
4Λ2

~2 ,
π
2

)
+ cC

(
−4E

~2 ,−
4Λ2

~2 ,
π
2

) . (4.37)

Note that

Πex
A (E, ~) = 2πi~ ν

(
−4E

~2
,−4Λ2

~2

)
, (4.38)

where ν is the characteristic exponent of the Mathieu equation (this relation has been

noted in the context of the Mathieu equation in e.g. [12, 15]). The advantage of the expres-

sions (4.37), (4.38) is that they make sense for values of E for which the Λ expansion (4.28)

does not converge, so they extend (4.28) to a larger domain.

Let us consider some numerical examples. When E = 100, ~ = 3π and Λ = 1, we can

evaluate the series (4.28) by truncating it up to order Λ28, and we find:

1

4π
Πex
A (100, 3π) = −9.9997954179096157891757 . . . (4.39)

This is precisely what is also obtained from (4.37) and (4.38). At the same time, by

using (4.37) we can go all the way to E = 0, where (4.28) cannot be used. We find,

for example,
1

4π
Πex
A (0, 3π) = 0.1501122164563802133431995 . . . i. (4.40)

This procedure for evaluating the value of Πex
A at E = 0 seems to be well-defined for

sufficiently large ~Λ−2 (e.g. ~Λ−2 ≥ 1 works).

We conclude that the “exact” quantum A period can be computed either by the expres-

sion given by instanton calculus (or equivalently, by the closely related series (4.28)), or by

the expression (4.38) involving the Mathieu characteristic exponent (4.38). When these two

expressions are both well-defined, they agree, but (4.38) has a larger range of validity. In

the case of the quantum B period, it might be possible to obtain an alternative expression

to the one in (4.18), in terms of infinite Hill determinants, by using results in [57].
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terms included Borel sum

190 35.40661948105291481767982565157

191 35.40661948105291481767982565207

gauge theory 35.40661948105291481767982564492

Table 8. Borel sum of quantum A period at u = 4 and ~ = 1. Underlined are stabilised digits.

4.2 Comparison to Borel resummation

We now have two different approaches to the calculation of (resummed) quantum periods:

on the one hand, we have the Borel resummation of the all-orders WKB expansion in ~2,

which is also calculated by the TBA equations of section 3. On the other hand, instanton

calculus gives a different resummation, based on a convergent expansion in Λ, as a function

of ~. An obvious question is: what is the precise relation between these two resummations?

Since both lead to the same asymptotic expansion in powers of ~, we expect that they

will differ in non-perturbative effects. In this section we will address this issue. Results

along these lines have been previously obtained in [15, 16]. For simplicity, we will restrict

ourselves to the case in which ~ > 0 and u is real.

Let us first consider the weak coupling region W. Here, the all-orders WKB quantum

A period is Borel summable for ~ real, and we find that its Borel sum agrees well with

2πa(u, ~) obtained by inverting (4.14) or with the solution (4.37) to the Riccati equation, i.e.

s(ΠA)(E, ~) = Πex
A (E, ~), |u| > 1, ~ > 0. (4.41)

We illustrate this in table 8 where we compare the Borel sum of the WKB quantum A

period at u = 4 and ~ = 1, with increasing number of corrections, to the result of instanton

calculus. They agree with almost all the stabilised digits (27 of them).

The quantum B period, on the other hand, is not Borel summable along the real axis

in the weak coupling region. Nevertheless, we can make the following observation. The

“exact” quantum B period is given by

2iaD(u, ~) = 4iγ(a, ~) + 2i∂aF
inst
NS (a, ~) (4.42)

where γ is defined in (4.16) and has the following asymptotic expansion for large a/~:

γ(a, ~) ∼ a
(

log
( a

Λ

)
− 1
)

+ a
∑
n≥1

(−1)nB2n

2n(2n− 1)

(
~
a

)2n

. (4.43)

The series in ~/a in the r.h.s. is not Borel summable along the positive real axis. More

precisely, let us consider the following formal power series:

ϕ(z) =
∑
n≥0

cnz
2n, cn−1 =

(−1)nB2n

2n(2n− 1)
. (4.44)

A little numerical experimentation shows that the lateral resummations of this series along

the positive real axis are given by

s±(ϕ)(z) = f(z)± i

2z
log
(

1− e−2π/z
)
, (4.45)
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-50

50

Figure 4. Poles of the Borel-Padé transform of the “reduced” series Πred
B at u = 4.

where

f(z) =
1

z2
(log(z) + 1)− π

4z
− i

2z
log

Γ(1 + i/z)

Γ(1− i/z)
. (4.46)

(A similar series has been considered in [55]).

The above analysis suggests that the non-Borel summability of the sequence Π
(n)
B along

the positive real axis in the weak coupling region is due to the asymptotic series appearing

in γ(a, ~). In view of (4.45), this leads to the right discontinuity across the positive real axis:

− 4~ log(1− e−4πa/~). (4.47)

This suggests that the “reduced” formal power series

Πred
B (E, ~) := ΠB(E, ~)− 4iΠA(E, ~)

∑
n≥1

(−1)nB2n

2n(2n− 1)

(
~

2ΠA(E, ~)

)2n

, (4.48)

where we subtract the non-Borel summable series in the function γ(a, ~), is actually Borel

summable along the positive real axis. We verified numerically that this indeed is true, as

can be seen from the Borel plane plot at u = 4 given in figure 4. In fact the Borel sum

of Πred
B (E, ~) agrees with the gauge theory calculation in which the contribution of γ(a, ~)

has been removed; in other words,

s
(

Πred
B

)
(E, ~) = 2iared

D (u, ~) := 4ia
(

log
( a

Λ

)
− 1
)

+ 2i
∂F inst

NS (a, ~)

∂a
. (4.49)

We illustrate this in table 9, where both the Borel sum of Πred
B (E, ~) and 2iared

D (u, ~)

are evaluated at u = 4 and ~ = 1. We find that all stabilised digits are in agreement

(26 of them).5

5We also notice that the exact B period Πex
B (E, ~) with E > 2 agrees with the average of lateral Borel

resummations of the quantum B period ΠB(E, ~).
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terms

Πred
B

159 16.474810551500808917635392219

161 16.474810551500808917635392368

2iared
D

14 16.47481055150080891763539232909

15 16.47481055150080891763539232920

Table 9. Comparison between the Borel sum of the “reduced” quantum B period Πred
B at u = 4 and

~ = 1 (with increasing number of terms), and the exact, “reduced” period 2iaredD defined in (4.49)

(with increasing number of instanton corrections). Underlined are stabilised digits.

terms first line of r.h.s. of (4.50)

191 806502.11499751621351505261143

193 806502.11499751621351505261260

l.h.s. of (4.50) 806502.11499751621351505261016

Table 10. Numerical verification of the characteristic exponent formula (4.50) at u = 0 and

~ = 1/4, with increasing number of terms for the lateral Borel resummations on the r.h.s. All the

stabilised digits (underlined) are in agreement.

We can now see a clear difference between the TBA equations of [1] and the TBA

equations of [5]. The TBA equations of [1] compute the Borel-summable part of the B

period, where we have removed the perturbative contribution due to the γ function, i.e. they

compute (4.49), which is the Borel resummation of Πred
B in (4.48). On the contrary, the

conformal limit of the GMN TBA equations computes the Borel resummation of the full

quantum B period ΠB(E, ~), including the perturbative γ function. Since the latter is not

Borel summable, the corresponding TBA has discontinuities, as discussed in section 3.2.

In the strong coupling region we have the following relation between the “exact” quan-

tum A period and lateral Borel resummations of quantum periods [15]

2 cosh(Πex
A /(2~)) = e

1
2~ s+(ΠA) + e

1
2~ s+(ΠA+2ΠB) + e−

1
2~ s+(ΠA+2ΠB)

= e
1
2~ s−(ΠA) + e−

1
2~ s−(ΠA) + e

1
2~ s−(ΠA+2ΠB) .

(4.50)

Numerical evidence for this relation is presented in table 10 for the first line of the formula,

evaluated at u = 0 and ~ = 1/4. The second line of (4.50) can be derived from the

Stokes automorphism of quantum periods discussed in section 3.2. In the strong coupling

region, ΠD = ΠB + ΠA is Borel summable along the positive real axis, while both the

Borel resummations of ΠB and ΠA have discontinuities across the positive real axis. The

discontinuities for the B, and A periods are:

s+(ΠB)− s−(ΠB) = 2~ log(1 + e−
1
~ s(ΠD)) ,

s+(ΠA)− s−(ΠA) = −2~ log(1 + e−
1
~ s(ΠD)) .

(4.51)

Starting from the first line on the right hand side of (4.50), and applying the discontinuity
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formulae, we immediately get the second line

first line

= e
1
2~ s+(ΠA) + e

1
2~ s+(ΠA+2ΠB) + e−

1
2~ s+(ΠA+2ΠB)

= e
1
2~ s−(ΠA)

(
1 + e−

1
~ s(ΠD)

)−1
+ e

1
2~ s−(ΠA+2ΠB)

(
1 + e−

1
~ s(ΠD)

)
+ e−

1
2~ s−(ΠA+2ΠB)

(
1 + e−

1
~ s(ΠD)

)−1

=
(

e
1
2~ s−(ΠA) + e−

1
2~ s−(ΠA+2ΠB)

)(
1 + e−

1
~ s(ΠD)

)−1
+ e

1
2~ s−(ΠA+2ΠB) + e−

1
2~ s−(ΠA)

= e
1
2~ s−(ΠA) + e−

1
2~ s−(ΠA) + e

1
2~ s−(ΠA+2ΠB) = second line . (4.52)

On the other hand, to derive a similar result for the “exact” quantum B period we can use

results on the Fredholm determinant of the modified Mathieu equation, which we present

in section 5. Eq. (5.44) then together (4.50) imply that

2 sinh(Πex
B /(2~)) = e

1
2~ s+(ΠB) − e−

1
2~ s+(ΠB) − e−

1
2~ s+(2ΠA+3ΠB),

= e
1
2~ s−(ΠB) − e−

1
2~ s−(ΠB) + e−

1
2~ s−(2ΠA+ΠB) ,

(4.53)

and we have tested these identities numerically to very high precision.

Summarizing, in the weak coupling region the all-orders WKB quantum A period and

the B period (once the gamma function is subtracted) are Borel summable. Their Borel

sums agree with the gauge theory expressions of section 4.1. In the strong coupling region,

the A and B periods are not Borel summable, although their lateral Borel resummations can

be related to the exact quantum A period via (4.50). We finally note that the combination

ΠD = ΠA+ ΠB is Borel summable in the strong coupling region (only). However, its Borel

sum does not agree with the gauge theory expression of section 4.1, namely

s(ΠD) 6= Πex
A + Πex

B = 2πa+ 2iaD, (4.54)

and one should include additional non-perturbative corrections. We will find the correct

formula at the end of section 5.3.

5 The Fredholm determinant from topological string theory

Let O be an operator on L2(R) such that O−1 is of trace class. Then, O has a discrete

spectrum {En}n≥0, and its Fredholm determinant

Ξ(E) = det
(
1− EO−1

)
=
∏
n≥0

(
1− E

En

)
(5.1)

is an entire function of E whose zeros give the spectrum of O: Ξ(En) = 0 (see e.g. [58] for

these and other properties of Fredholm determinants).

The Fredholm determinant contains very rich information about the spectral properties

of O. For example, the spectral traces, defined as

Z` =
∑
n≥0

1

E`n
, (5.2)
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can be computed by expanding the spectral determinant around E = 0. Indeed, we have

Ξ(E) =
∑
N≥0

(−E)NZ(N, ~) (5.3)

where

Z(N, ~) =
∑
{m`}

′∏
`

(−1)(`−1)m`Zm``

m`!`m`
, (5.4)

and the
′

means that the sum is over the integers m` satisfying the constraint∑
`

`m` = N. (5.5)

From the quantities Z(N, ~) (which were called fermionic spectral traces in [2]) one can

extract the conventional spectral traces (5.2).

Although Fredholm determinants are central objects in spectral theory, it is difficult

to obtain explicit expressions for them. It is easy to show (see for instance [59]) that the

inverse of the modified Mathieu operator (2.14) is of trace class. Therefore, the Fredholm

determinant is well-defined, and it is an interesting question to find an explicit, closed form

expression for this quantity.

In recent years it was discovered [2, 3, 60–62] that, by using topological string tools, it

is possible to obtain explicitly expression for Fredholm determinants of operators arising

in the context to quantum mirror curves. We will refer to this relationship as the TS/ST

correspondence. As explained in section 5.1, the modified Mathieu operator (2.14) can be

related, upon a suitable limiting procedure, to the quantum mirror curve of local F0. There-

fore we can study (5.1) within the context of topological string theory and in particular, by

using [2, 18], we can deduce an explicit, closed form expression for the Fredholm determi-

nant of the modified Mathieu operator. We will first state the main result and then explain

how to derive it within topological string theory. We also present several independent tests

of our result, including an interesting connection to the TBA system of [19].

5.1 A closed formula and its derivation

By using the approach of [2, 18] we find the following expression for the spectral determinant

of (2.14)6

Ξ(E) = A(~)

(
sinh

(
Πex
A (E, ~)

2~

))−1

cosh

(
1

2~
Πex
B (E, ~)

)
, (5.6)

where Πex
A,B(E, ~) are given by (4.18) and A(~) is an u-independent constant which can be

fixed from Ξ(0) = 1, namely,

A(~) = sinh

(
Πex
A (0, ~)

2~

)(
cosh

(
1

2~
Πex
B (0, ~)

))−1

. (5.7)

6While presenting these results at the conference Irregular singularities in Quantum Field Theory

(http://irregular.rd.ciencias.ulisboa.pt/conference), S. Lukyanov informed us that he had independently

derived this result [63] by using completely different methods.
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From this expression we can read off explicit formulae for the spectral traces. We find

for instance

Z1 = − 1

2~

(
∂EΠex

B (0, ~) tanh

(
Πex
B (0, ~)

2~

)
− coth

(
Πex
A (0, ~)

2~

)
∂EΠex

A (0, ~)

)
, (5.8)

as well as

4~2Z2 = 2~∂2
EΠex

A (0, ~) coth

(
Πex
A (0, ~)

2~

)
− (∂EΠex

A (0, ~))2csch2

(
Πex
A (0, ~)

2~

)
− sech2

(
Πex
B (0, ~)

2~

)(
~∂2

EΠex
B (0, ~) sinh

(
Πex
B (0, ~)

~

)
+ (∂EΠex

B (0, ~))2

)
.

(5.9)

Note that in order to calculate Πex
A (0, ~) we have to use (4.37) or (4.38), so the above formula

tests as well the analytic continuation of instanton calculus beyond the semiclassical region.7

The explicit formula (5.6) can be extended to the family of operators considered in [18],

see appendix A for more details.

Let us now explain how to derive (5.6) from the TS/ST correspondence of [2, 3].

The relevant CY geometry is the canonical bundle over F0, also known as resolved Y 2,0

singularity. The corresponding quantum mirror curve is

O− κ = (RΛ)2(ex + e−x)− κ+ ep + e−p, [x, p] = i~. (5.10)

According to the TS/ST correspondence we have

det(1− κO−1) =
∑
m∈Z

exp [J(µ+ iπ + 2πim,RΛ, ~)] , κ = eµ, (5.11)

where J(µ, ξ, ~) is the grand potential of the resolved Y 2,0 singularity as defined in [18],

section 5.1. The expression (5.6) is obtained by implementing the geometric engineering

limit [37, 64] in (5.11). More precisely, we consider the limit

p→ Rp, ~→ R~, κ = 2 + ER2 +O(R3), R→ 0. (5.12)

This has to be done carefully since both sides of (5.11) diverge, therefore they need to be

properly regularized. For that it is convenient to study the trace of the resolvent

GO(κ) =
d

dκ
log det(1− κO−1) = Tr

(
1

κ− O

)
, (5.13)

rather than the spectral determinant. It is easy to see that in the limit (5.12) one has

GO(κ)→ 1

R2
G(E), G(E) = Tr

(
1

E − H

)
, (5.14)

where H is the modified Mathieu operator in (2.14). Likewise the limit (5.12) can be imple-

mented on the r.h.s of (5.11) in a quite straightforward way by following [18], section 5.2

and by using the identity (3.9) in [65]. The overall divergent piece R−2 cancels and we find

G(E) = −∂Ea
~

(
∂2
aFNS tanh

(
∂aFNS

~

)
+ π coth

(aπ
~

))
. (5.15)

By integrating w.r.t. E we obtain (5.6), where A(~) is an integration constant.

7In evaluating the derivative of the periods w.r.t. E, we used the quantum Matone relation (4.14) and

instanton calculus.
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5.2 Tests of our formula

We will now test the expression (5.6) in several ways.

A first simple test is that the zeros of Ξ(E) give the correct spectrum of the modified

Mathieu operator. This should be expected from the general results of [18], but it is

instructive to check it explicitly. The zeros correspond to the vanishing of the cosh in (5.6),

and by using (4.18) we find,

∂aFNS(a, ~) = ~π
(
n+

1

2

)
, (5.16)

which is the exact quantization condition obtained from the conjecture in [1], subsequently

proved in [56].

Another check can be obtained by comparing our expression to the asymptotics of

Fredholm determinants obtained in [20, 21, 66] by using the all-orders WKB method.

This asymptotic expansion is valid when E < 0, where the Fredholm determinant is not

oscillatory. In order to write down the asymptotics, we need some ingredients. Let

G(E) =

∞∑
n=0

1

E − En
(5.17)

be the trace of the resolvent, and

T (E) =
1

2

∫
R

dx√
2Λ2 cosh(x)− E

(5.18)

the transit time. We also need the formal power series in ~

b(E) = exp

i
∑
n≥1

~2n−1

∫
R
p2n(x,E)dx

 , (5.19)

where the functions p2n(x,E) are the ones appearing in the solution to the all-orders WKB

method in (2.4). Let us now define κ = −E, which will be taken to be positive. It is

convenient to introduce the functions

G̃(κ) = G(−κ), Ξ̃(κ) = Ξ(−κ), b̃(κ) = b(−κ), T̃ (κ) = T (−κ). (5.20)

Then, one has the following small ~ asymptotics,

Ξ̃(κ) ∼ b̃(κ) exp

{
1

~

∫ κ

0
T̃ (κ′)dκ′ −

∫ ∞
0

(
G̃(κ′) +

1

~
T̃ (κ′)

)
dκ′
}
. (5.21)

The second term in the exponent is independent of κ but depends on ~. We note that all

the integrals involved in this expression are well defined precisely because E is negative.

The very first terms in the asymptotics can be easily worked out, and one finds8

log Ξ(−κ) ∼ − i

2~
Π

(0)
B (κ) +

i~
2

Π
(1)
B (κ) + · · · , κ > 0, (5.22)

8This agrees with an unpublished calculation of Y. Hatsuda, who obtained the same result by considering

the semiclassical expansion of the spectral traces.
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up to κ-independent terms. Note that the sign in the subleading correction is the opposite

one to what one finds in the WKB expansion of the quantum B period.

Let us now compare this result to the exact expression for the spectral determi-

nant (5.6), which can be written as

Ξ(E) = A(~)
(

sinh
(πa

~

))−1
cos

(
1

~
∂FNS

∂a

)
. (5.23)

From the explicit expression (4.28) it is easy to see that, when E is negative, a is purely

imaginary. More precisely, one has

a(−κ, ~) = iα, α = a(κ, i~), (5.24)

and we take α > 0 for definiteness. In addition,

∂aF
inst
NS (a, ~) = i∂αF

inst
NS (α, i~). (5.25)

By using the explicit expression (4.16) and standard identities for the Γ function, we find

Ξ(−κ)

A(~)
=

1

2π
Γ
(

1 +
α

~

)
Γ
(α
~

)
exp

[
α

~
log

(
~2

Λ2

)
+

1

~
∂αF

inst
NS (α, i~)

]
+

1

2π
Γ
(

1− α

~

)
Γ
(
−α
~

)
exp

[
−α
~

log

(
~2

Λ2

)
− 1

~
∂αF

inst
NS (α, i~)

]
.

(5.26)

The term in the second line gives an exponentially small correction to the leading asymp-

totics. The small ~ asymptotics of the quantity in the first line is given by

log

[
1

2π
Γ
(

1 +
α

~

)
Γ
(α
~

)]
+
α

~
log

(
~2

Λ2

)
+

1

~
∂αF

inst
NS (α, i~)

∼ − i

2~
∑
n≥0

(−1)nΠ
(n)
B (κ)~2n.

(5.27)

We have used that, due to (5.24) and (5.25), the quantum period is evaluated at −E, where

E = −κ < 0, and we have to change ~ → i~. The result is in agreement with the WKB

asymptotics obtained in (5.22).

A more precise test of (5.6) can be made by comparing the analytical formulae for the

spectral traces with numerical results. These are obtained by calculating the spectrum of

H with standard techniques. An example of such a comparison is shown in table 11.

We finally note that Ξ(E) is an entire function of E. In particular, the would-be

singularities due to the denominator of (5.23) or to the Gamma functions in (4.16) must

cancel in the end. This leads in turn to constraints on the form of the singularities of F inst
NS ,

which might be testable against the results in [67] (see also [68]).

5.3 Comparison to Zamolodchikov’s TBA equation

An additional test of our formula (5.6) comes from a comparison with [19]. Inspired

by the ODE/IM correspondence [69, 70], Zamolodchikov found in [19] a TBA equation

which computes precisely the spectral determinant (5.6). Let us state the main result
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Nb Z2

2 0.00479478611468342466

4 0.00479478607391381196

6 0.00479478607391375025

Num 0.00479478607391375025

Table 11. The second spectral trace Z2 as computed from (5.9) for ~ = 3π and Λ = 1. The number

Nb means that we truncate the series (4.13) at order Λ4Nb . The last line gives the numerical result

obtained from the spectrum of H.

of [19], referring to appendix B for more details. Let ε(θ, P ) be a solution of the TBA

equation (3.69) but with the boundary condition at θ → −∞ given by

ε(θ, P ) ∼ 8Pθ − 2C(P ), θ → −∞, P > 0, (5.28)

where C(P ) is written down in (B.15). Let us now introduce the function

X(µ, P ) = exp [−ε(θ, P )/2] , (5.29)

where µ is related to θ by

µ = e2θ

(
Γ
(

1
4

)2
16
√
π

)2

. (5.30)

Then, according to [19], the spectral determinant of the modified Mathieu operator (2.14)

is given by

Ξ(E) =
X(µ, P )

X(µ, 0)
, (5.31)

where the parameters Λ, E and ~ of the operator are related to the parameters appearing

in X(µ, P ) by

µ = Λ2~−2, P 2 = −E~−2. (5.32)

If we compare the result of [19] with ours we should have (by using the dictionary (5.32))

X(µ, P )

X(µ, 0)
= A(~)

(
sinh

(
Πex
A (E, ~)

2~

))−1

cosh

(
1

2~
Πex
B (E, ~)

)
. (5.33)

In order to find the relation between the two normalization constants X(µ, 0) and A(~),

it is useful to first derive the asymptotic behavior (5.28) from our expression (5.6). We

need to expand around small Λ~−1 and take u < 0, which means that a is imaginary, as

discussed in (5.24). In this regime, and by using (4.18), we have(
sinh

(πa
~

))−1
cosh

(
i

~
∂aFNS(a, ~)

)
≈ 2−1π−1

((
Λ

~

)−2s

Γ(1 + s)Γ(s) +

(
Λ

~

)2s

Γ(1− s)Γ(−s)

)
,

(5.34)
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Nb log
((

sinh
(
πa
~
))−1

cosh
(

i
~∂aFNS(a, ~)

))
2 11.360025317439438

4 11.360025299112863

6 11.360025299117259

TBA 11.360025299117

Table 12. The un-normalized spectral determinant as computed by using instanton counting

and by solving numerically the TBA (3.69) with (5.28). We use P 2 = −E = 5, µ = Λ2 =(
Γ (1/4)

2
/(16
√
π)
)2

, and ~ = 1. The number Nb means that we truncate the series (4.13) at

order Λ4Nb .

where

s = −i
a

~
=
α

~
> 0. (5.35)

By using (4.14) we have

E ≈ a2/4 (5.36)

and therefore

P = s/2 > 0. (5.37)

Hence we can neglect the second term in the r.h.s. of (5.34). It follows from (5.32)

that (5.34) agrees precisely with (5.28). In particular this means that the two normal-

ization constants are identified and we have

X(µ, P ) =

(
sinh

(
Πex
A (E, ~)

2~

))−1

cosh

(
1

2~
Πex
B (E, ~)

)
. (5.38)

We test this equality by solving numerically the TBA equation (3.69) with the boundary

condition (5.28). Some results are given in table 12. We find perfect agreement.

An important spinoff of this comparison is that our result (5.6) provides an analytic,

closed form solution to the TBA equation of [19]. This also has the following consequence.

When we derived the Fredholm determinant from the topological string perspective, and

due to our regularization procedure, we generated an integration constant A(~) whose

explicit expression is given in (5.7). Given the identity (5.38) between our Fredholm de-

terminant and the solution to the Zamolodchikov’s TBA, we expect A(~) to be computed

by the integral equation (3.69) at P = u = 0. More precisely we expect

2 logA(~) = ε(θ, P = 0), (5.39)

where we used the dictionary (5.32). For P = 0 the asymptotic condition (5.28) does

not make sense, strictly speaking. Nevertheless, we can derive the appropriate asymptotic

condition for the TBA at P = 0 by using our analytic expression (5.38). We find that,

as θ → −∞,

ε(θ, P = 0) ∼ −2 log

(
−2(θ + γEuler) + log(π)− 4 log

(
Γ

(
5

4

)))
. (5.40)
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This is precisely the boundary condition used in section 3.3, equation (3.74). One can now

check (5.39) numerically. For instance, by solving the TBA of section 3.3 we find

ε(θ, P = 0)
∣∣∣
θ=−1

= 0.51888 · · · (5.41)

Likewise, by using instanton counting, and in particular (4.18) and (5.7), we have (Λ = 1)

2 log

(
A

(
16e
√
π

Γ
(

1
4

)2
))

= 0.51887965286656 · · · (5.42)

We have 5 matching digits which is consistent with the precision achieved with the

TBA equation.

This discussion provides an additional result along the lines of what we obtained in sec-

tion 4.2. As we discussed in section 3.3, the function ε(θ) with the boundary condition (3.74)

computes the dyonic period ΠD(0, ~). As pointed out in section 4.2, such period is Borel

summable, and we can indeed test that its Borel resummation agrees with (5.7), namely

exp

(
1

2~
s (ΠD) (0, ~)

)
=

sinh
(
πa
~
)

cosh
(

i
~∂aFNS(a, ~)

)∣∣∣∣
a=a(0,~)

=
sinh

(
1
2~Πex

A (0, ~)
)

cosh
(

1
2~Πex

B (0, ~)
) . (5.43)

We have verified this identity numerically. In addition we have tested that (5.43) also holds

for other values of u in the strong coupling region, and we conjecture that, for u ∈ [−1, 1],

one has

exp

(
1

2~
s (ΠD) (u, ~)

)
=

sinh
(

1
2~Πex

A (u, ~)
)

cosh
(

1
2~Πex

B (u, ~)
) . (5.44)

6 On the modified Mathieu operator and Painlevé III3

It was observed by many authors [63, 71, 72] that the movable poles of Painlevé III3 are

somehow related to Mathieu functions. In particular in [73], based on [65], it was observed

that the zeros of the Painlevé III3 τ function compute the spectrum of modified Math-

ieu (with a suitable dictionary). From the view point of the TS/ST correspondence [2]

this connection comes naturally since both systems arise as limiting cases of this duality.

In particular, the modified Mathieu operator arises in the standard geometric engineer-

ing limit [18, 55, 74], while Painlevé III3 arises in the dual geometric engineering limit

considered in [65].

In this section we prove the connection between the zeros of the Painlevé III3 τ func-

tion and the spectrum of the modified Mathieu operator by using [75]. From the CFT

perspective this is a connection between Liouville conformal blocks at c = 1 and c = ∞.

We proceed as follows. First we write the Painlevé III3 τ function as [76–78]

τ(Λ, a, η, ~) =
∑
n∈Z

e4πinη exp
(
F SD(a+ 2i~n, ~,Λ)

)
(6.1)
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where

exp
(
F SD(a, ~,Λ)

)
=

(
Λ

~

)−a2~2 1

G(1− ia~ )G(1 + ia~ )

×

(
1− 2Λ4

a2~2
+

Λ8
(
2a2 − ~2

)
a2~2 (a2 + ~2)2 +O(Λ12)

) (6.2)

is the so-called four dimensional Nekrasov partition function in the selfdual Ω back-

ground [45] (namely, the equivariant parameters are ε1 = −ε2 = ~). The parameters

(a, η) in (6.1) play the role of initial conditions while Λ is the time. We are interested in

the case in which

η = 0. (6.3)

We now recall the result of [75], where it was demonstrated that, in the NS limit, the

Nakajima-Yoshioka blowup equations for SU(2) pure SYM [79–81] can be written as9

∑
n∈Z

exp

(
inπ + F SD (a+ 2i~n+ i~, ~,Λ)− 2in~−1 ∂

∂a
FNS (a, ~)

)
= 0. (6.4)

Finally, we use the quantization condition for the modified Mathieu operator in the NS

form (5.16). It then follows from (6.4) that, if a value of a satisfies this exact quantization

condition, one finds a vanishing condition for the tau function of Painlevé III3, namely

τ (Λ, a+ i~, 0, ~) =
∑
n∈Z

exp
(
F SD (a+ 2i~n+ i~, ~,Λ)

)
= 0. (6.5)

Notice that we think of (5.16) and (6.5) as quantization conditions for the variable a. In

order to obtain the spectrum of modified Mathieu one has to use the quantum Matone

relation (4.14).

7 Conclusions

In this paper we have used non-perturbative techniques inspired by supersymmetric gauge

theory and topological string theory to study the quantization of the Seiberg-Witten curve

of N = 2, SU(2) super Yang-Mills theory, which gives the modified Mathieu operator.

On the one hand, building upon [5–8], we have obtained integral equations for the Borel

resummation of the quantum periods obtained with the all-orders WKB method. These

equations predict as well the resurgent structure of these periods, and in particular their

Stokes discontinuities. The results obtained in this way have been tested against calcula-

tions in the WKB method to very high order. We have also clarified the relation between

these Borel-resummed quantum periods and the “exact” quantum periods given by instan-

ton calculus (in the NS limit). On the other hand, we have used the TS/ST correspondence

9Strictly speaking this is the four-dimensional limit of [75]. This type of expressions first appeared in [82]

as compatibility conditions between the exact quantization conditions of [2, 3] and those of [55, 83, 84]. A

different connection between blowup and Painlevé equations was used in [85–87] to prove the so-called Kiev

formula [76, 88] or its q-deformed version [89, 90].
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of [2, 3] to obtain a closed formula for the spectral determinant of the modified Mathieu

operator, and we have compared this formula to previous results by Zamolodchikov.

Our results raise several issues. An important problem concerns the relation between

the TBA equations obtained in the context of SW theory, and the analytic bootstrap

program first proposed in [21] and reloaded in [8, 9]. In the TBA equations obtained

in [7, 8] for quantum mechanics with polynomial potentials, one only needs the boundary

condition associated to the classical behavior (i.e. at ~ → 0, or equivalently at θ → ∞).

The boundary behavior when θ → −∞ is fixed by the integral equations. As pointed out

already in [7] and further discussed in section 3.3 of this paper, the integral equations for

the modified Mathieu operator admit many possible boundary conditions at θ → −∞, and

one needs additional information to fix them. One can use the quantum Matone relation

and the first quantum correction to the periods to obtain additional constraints. However,

it seems clear from the study of this example that the analytic bootstrap might require

additional asymptotic information to determine uniquely the resummed quantum periods.

As suggested in [7], one might obtain the appropriate boundary conditions by first solving

the full TBA equations of [5] (before taking the conformal limit) and then implementing

the conformal limit directly on the solution.

Another problem that should be discussed more carefully is how to solve efficiently

the TBA equations to compute the Borel resummed quantum periods. In particular, we

should understand in detail how to solve the infinite tower of TBA equations appearing in

the weak coupling region.

It would be very interesting to extend the techniques developed in this paper to quan-

tum mirror curves. This would provide a relation between BPS states in local CY threefolds

(studied for example in [91]) and the resurgent properties of the corresponding quantum

periods. Work along this direction has been already done in [92, 93]. Another interesting

class of quantum curves which could be studied with our methods is the one given by quan-

tum A-polynomials of knots (see e.g. [94]). In this case, the resurgent properties should be

closely related to the resurgent properties of Andersen-Kashaev invariants [95], which have

been considered in [96–98]. They might correspond to BPS states in the supersymmetric

dual obtained with the 3d/3d correspondence of [99].

Another intriguing point is the following. Based on previous works [7, 8], we have

shown that the conformal limit of the GMN TBA equations encode in a precise way the

NS limit of the Omega background for the pure SU(2) theory. On the other hand it is

interesting to observe that, as pointed out in [65], there is another set of TBA equations

which computes the selfdual limit of the Omega background. The latter was obtained

by Zamolodchikov in [100], see also [101]. Interestingly also such TBA can be obtained

from [5] upon a suitable limiting procedure. It would be interesting to investigate more

concretely if and how the full TBA equations of [5] encode the full Omega background.

Work along this direction was performed in [102].

In addition it should be possible to extend the results of section 6 to Painlevé III2, III1,

V and VI. In these cases, the rôle of the modified Mathieu operator is replaced by the

quantum SW curve of SU(2) gauge theory with Nf = 1, 2, 3, 4 flavours, respectively. In

particular, for Nf = 4 one should recover the connection between Painlevé VI and the
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Heun operator [103] (see also [104]). Likewise the spectrum of the Calogero-Moser system

should make contact with the τ function describing the isomonodromic deformations on

the torus [105]. The details will appear somewhere else [106].

The situation for Painlevé I, II, IV is more subtle since these correspond to Argyres-

Douglas theories of type H0, H1, H2, respectively [107]. At present we do not know how

to write Nakajima-Yoshioka blowup equations for these theories. Nevertheless, it should

be possible to connect the NS limit to the selfdual limit of the Ω background also in these

theories, since the Hi theories can be derived from SU(2) gauge theories with Nf = 1, 2, 3

upon a suitable limiting procedure [108, 109]. By following [110, 111], such connection

would provide a relation between the exact spectrum of the quantum SW curves underlying

the H0, H1, H2 theories, and Painlevé I, II, IV tau functions. Note that the quantum SW

curve of the H0 and H1 theories correspond to the cubic and quartic oscillators, respectively.

Connections between Painlevé equations and the above quantum mechanical systems have

been observed in [112–115].
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A The four dimensional SU(N) spectral determinant

In this appendix we explain how the exact formula (5.6) can be extended to the family of

operators studied in [18]. These operators have the form,

HN = ΛN
(
ep + e−p

)
+
N−1∑
k=0

(−1)kxN−khk, [x, p] = i~, (A.1)

where N ≥ 2 is a positive integer and we set h0 = 1, h1 = 0. They can be regarded

as deformations of the standard non-relativistic Schrödinger operators with a polynomial

potential. When N is even, they have a discrete spectrum and their inverses are of trace

class. When N is odd, one can perform a standard analytic continuation and obtain a

discrete spectrum of resonances, as explained in [18]. In both cases, one can define a

Fredholm determinant as

ΞN (h2, · · · , hN ) = det

(
1 +

hN (−1)N

HN

)
. (A.2)

Here, h2, · · · , hN−1 are the moduli appearing in the potential, while (−1)N−1hN can be

identified with the energy and is the standard auxiliary variable appearing in the definition

of Fredholm determinants.
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As explained in [18], we can engineer the following operator from the quantum mirror

curve to the Y N,0 geometry. We follow [18] and define

γ =
1

2

N∑
i=1

(−1)i−1ei, (A.3)

where ei are the weights of the fundamental representation of SU(N). We denote by

WN · γ = {w(γ) : w ∈ WN} (A.4)

the Weyl orbit of γ, and we introduce

a =

N−1∑
j=1

aiλ, (A.5)

where {λi}i=1,··· ,N−1 are the fundamental weights of SU(N). The quantities ai are related

to the parameters hi in (A.1) by using the four dimensional mirror maps or quantum

Matone relations (see for instance eqs. (3.95)–(3.107) in [18] and reference therein). For

instance, we have

h2 (a; ~) = lim
ε2→0

(
− 1

Z

∑
Y

(
(−1)NΛ2N

)`(Y ) C2(a,Y )ZY

)
,

h3 (a; ~) = lim
ε2→0

(
2

Z

∑
Y

(
(−1)NΛ2N

)`(Y ) C3(a,Y )ZY

)
,

(A.6)

where ZY , Z are defined in (4.9) and (4.8), and Y is a vector of Young diagrams as in (4.4).

Moreover,

C2(a,Y ) =
1

2

N∑
I=1

α2
I − i~ε2`(Y ),

C3(a,Y ) = i~ε2

(
i~ + ε2

2
`(Y ) + i~

N∑
I=1

c2(Y t
I ) + ε2

N∑
I=1

c2(YI)−
N∑
I=1

αI`(YI)

)

+
1

6

N∑
I=1

α3
I ,

(A.7)

where `(Y ) is defined in (4.6) and we use

c2(Y ) =
1

2

∑
i≥1

yi(yi − 1). (A.8)

We also denote

ai = αi − αi+1, i = 1, · · · , N − 1, (A.9)

with
N∑
i=1

αi = 0. (A.10)
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With a procedure analogous to the one of section 5.1, we obtain the explicit formula

ΞN (h2, · · · , hN ) = AN (~,Λ, h2, · · ·hN−1)
∑

n∈WN ·γ
eJ

4d
n . (A.11)

The quantity eJ
4d
n is defined as follows. If N is even we have:

eJ
4d
n = exp

(
i

~
∂FNS

∂a
· n
) ∏
α∈∆+

(
2 sinh

(πa ·α
~

))−(n·α)2

, (A.12)

while if N is odd we have

eJ
4d
n = exp

(
i

~
∂FNS

∂a
· n− π

~
a · n

) ∏
α∈∆+

(
2 sinh

(πa ·α
~

))−(n·α)2

, (A.13)

where FNS is defined in (4.12). The quantity AN (~,Λ, h2, · · ·hN−1) is an integration con-

stant, analogous to A(~) in (5.6), which now depends on the moduli h2, · · · , hN−1. The

above spectral determinant vanishes precisely when the quantization conditions obtained

in [18] are satisfied. When N = 2 we recover exactly the result (5.6). When N = 3 we have

Ξ3(h3, h2) = A3(~,Λ, h2)

[
1 +

1− e−2πa1/~

1− e−2π(a1+a2)/~ e−2πa2/~eiφ2 +
1− e−2πa2/~

1− e−2π(a1+a2)/~ eiφ1

]
× csch

(πa1

~

)
csch

(πa2

~

)
e−

π(a1−a2)
3~ −i 1

3
(φ1+φ2), (A.14)

where φi, i = 1, 2, are defined as [18]

φ1(a1, a2; ~) =
1

~

(
∂FNS

∂a2
− 2

∂FNS

∂a1

)
, φ2(a1, a2; ~) =

1

~

(
2
∂FNS

∂a2
− ∂FNS

∂a1

)
. (A.15)

We have tested (A.14) by expanding the r.h.s of (A.14) around h3 = 0 and comparing with

the numerical values of the spectral traces. We find perfect agreement.

B Zamolodchikov’s TBA equation for the modified Mathieu equation

In [116] Zamolodchikov considered the thermodynamic TBA ansatz for the sinh-Gordon

model. This model depends on the parameter b ∈ C, and we introduce

Q = b+
1

b
, (B.1)

as well as

p =
b2

1 + b2
, a = 1− 2p =

1− b2

1 + b2
. (B.2)

The TBA equation for this theory is given by

ε(θ) = mR cosh(θ)− (φ ? L) (θ). (B.3)

In this equation, R is the radius of the circle where the theory lives, m is the mass of the

particle in the spectrum,

L(θ) = log
(

1 + e−ε(θ)
)
, (B.4)
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and

φ(θ) =
1

2π

(
1

cosh(θ − iπa/2)
+

1

cosh(θ + iπa/2)

)
=

1

2π

4 sin(πp) cosh(θ)

cosh(2θ)− cos(2πp)
. (B.5)

The ? in (B.3) denotes, as it is standard, the convolution

(f ? g) (θ) =

∫
R
f(θ − θ′)g(θ′)dθ′. (B.6)

The ground state energy is then given by

E(R) = −m
2π

∫
R

cosh(θ)L(θ)dθ, (B.7)

and the effective central charge is

ceff = −6R

π
E(R). (B.8)

The formal conformal limit of the above TBA equation was analyzed in [19] in relation

to the generalized Mathieu equation

− u′′(x) +
(
µ−e−bx + µ+ebx

)
u(x) = −P 2u(x). (B.9)

The parameters µ± have the following obvious symmetry

µ+ → µ+e−ε/b , µ− → µ−e+εb , x→ x+ ε , (B.10)

and therefore only the combination

µ = µb+µ
1/b
− (B.11)

matters. The parameter b is identified with the parameter of the sinh-Gordon model, µ

corresponds to its coupling constant, while the energy

E = −P 2 (B.12)

is identified with the Liouville momentum, and enters into the effective central charge of

the theory, see (B.28). In the conformal limit, the TBA equation (B.3) becomes

ε(θ) = πeθ − 2 (φ ? L) (θ). (B.13)

The dependence on P comes through as the boundary condition of the TBA solution when

θ → −∞,

ε(θ) ∼ 4QPθ − 2C(P ) + · · · (B.14)

where P > 0 and

C(P ) = log
Γ(2P )Γ(1 + 2P )

2π
+ 4P log

16
√
π

Γ(1/4)2
. (B.15)
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It is then argued in [116] that the Fredholm determinant of the generalized Mathieu equa-

tion is given by [19]

Ξ(µ, P ) =
X(µ, P )

X(µ, 0)
, (B.16)

where

X(µ, P ) = exp [−ε(θ, P )/2] (B.17)

and µ is related to θ by (5.30). We have indicated the explicit dependence of ε on P

through the boundary condition (B.14).

The ordinary modified Mathieu equation is obtained when

b = 1, µ− = µ+ = µ. (B.18)

Let us focus on this case. The TBA equation becomes

ε(θ) = πeθ −
∫
R

L(θ′)

cosh(θ − θ′)
dθ′

π
. (B.19)

To impose the boundary condition (B.14), we use a trick due to Zamolodchikov. We first

note that, as a consequence of (B.14), we have

L(θ) ∼ −8Pθ + 2C(P ), θ → −∞, (B.20)

and we introduce the function

L0(θ) = 4P log(1 + e−2θ), (B.21)

which has the same leading asymptotics than L(θ),

L0(θ) ∼ −8Pθ +O(e−|θ|), θ → −∞. (B.22)

We have

f0 = 2φ ? L0 = 8P log(1 + e−θ), (B.23)

and we can rewrite the TBA equation as

ε(θ) = πeθ − f0 − 2φ ? (L− L0). (B.24)

This has by construction the right asymptotic behavior (B.14).

One property of (B.19) which is relevant for our analysis is the following. The asymp-

totic behavior of the solution ε(θ) as θ →∞ is of the form

ε(θ) = πeθ + ε(1)e−θ + · · · , (B.25)

where

ε(1) = − 2

π

∫
R

eθ log
(

1 + e−ε(θ)
)

dθ. (B.26)
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On the other hand, this correction is proportional to the effective central charge of the

theory,10

ceff =
6

π

∫
R

eθ log
(

1 + e−ε(θ)
)

dθ = −3ε(1), (B.27)

which according to [19] can be computed in terms of P only

ceff = 1 + 24P 2. (B.28)

This means that

ε(1) = −1

3

(
1 + 24P 2

)
. (B.29)
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[arXiv:1501.05671] [INSPIRE].

[15] A.-K. Kashani-Poor and J. Troost, Pure N = 2 super Yang-Mills and exact WKB, JHEP

08 (2015) 160 [arXiv:1504.08324] [INSPIRE].

[16] S.K. Ashok, D.P. Jatkar, R.R. John, M. Raman and J. Troost, Exact WKB analysis of

N = 2 gauge theories, JHEP 07 (2016) 115 [arXiv:1604.05520] [INSPIRE].

[17] S. Codesido, M. Mariño and R. Schiappa, Non-Perturbative Quantum Mechanics from

Non-Perturbative Strings, Annales Henri Poincaré 20 (2019) 543 [arXiv:1712.02603]
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02 (2019) 060 [arXiv:1803.02320] [INSPIRE].

[111] K. Ito and H. Shu, ODE/IM correspondence and the Argyres-Douglas theory, JHEP 08

(2017) 071 [arXiv:1707.03596] [INSPIRE].

[112] D. Masoero, Poles of Integrale Tritronquee and Anharmonic Oscillators. Asymptotic

localization from WKB analysis, Nonlinearity 23 (2010) 2501 [arXiv:1002.1042] [INSPIRE].

[113] D. Masoero, Poles of integrale tritronquée and anharmonic oscillators. A WKB approach,

J. Phys. A 43 (2010) 2501 [arXiv:0909.5537].

[114] V. Novokshenov, Poles of Tritronquée Solution to the Painlevé I Equation and Cubic
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