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Abstract: Deep neural networks trained on jet images have been successful in classifying

different kinds of jets. In this paper, we identify the crucial physics features that could

reproduce the classification performance of the convolutional neural network in the top jet

vs. QCD jet classification. We design a neural network that considers two types of sub-

structural features: two-point energy correlations, and the IRC unsafe counting variables

of a morphological analysis of jet images. The new set of IRC unsafe variables can be

described by Minkowski functionals from integral geometry. To integrate these features

into a single framework, we reintroduce two-point energy correlations in terms of a graph

neural network and provide the other features to the network afterward. The network

shows a comparable classification performance to the convolutional neural network. Since

both networks are using IRC unsafe features at some level, the results based on simulations

are often dependent on the event generator choice. We compare the classification results

of Pythia 8 and Herwig 7, and a simple reweighting on the distribution of IRC unsafe

features reduces the difference between the results from the two simulations.
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1 Introduction

Interest in deep learning in collider physics [1–5] has been growing in recent years.

Many applications of deep learning have appeared in jet classification [6–26], anomaly

detection [27–37], particle identification [38–40], pileup mitigation [41–43], event genera-

tion [44–58], unfolding [59, 60], and parton distribution functions [61–78]. Deep learning

will be used more in the analysis of LHC run III data. Among those, jet classification

using neural networks is one of the well-established areas. Several approaches have been

proposed, and the performance of different models has been compared [79]. For the clas-

sification between top jets and QCD jets, neural networks trained on low-level inputs

showed a significant improvement in the classification performance compared to the previ-

ous methods [80].
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Before the deep learning in jet classification, the classification using the jet substructure

information achieved remarkable success. The particles coming from the decay of a boosted

heavy particle give clear substructures inside the reconstructed jet. The substructure

maybe characterized by various manners; for example, by going through the jet clustering

sequence [81–89], reclustering jet constituents into the jets with smaller radius to identify

subjets [81, 90–93], or the energy correlations [94–104]. Note that such substructures

are often defined by infrared and collinear (IRC) safe algorithms or observables which

are theoretically more predictable. The IRC unsafe quantities are also used in the jet

classification. For example, the number of charged tracks [99] is very useful quantity for

the quark jet vs. gluon jet classification. In some cases, the IRC unsafe counting variable

has an IRC safe counterpart such as soft drop multiplicity [105].

The pattern of soft radiation is also important for the classification. For example, a

color singlet boosted heavy particle has emission isolated in terms of soft activity unlike

quark and gluon jets. The related substructure quantity has been incorporated in Higgs

taggers [106, 107] and top taggers [108]. Such soft particle distribution may also contribute

to the jet classification using neural networks in order to improve the performance.

While the improvement using deep learning is impressive, the physics behind it has

not been addressed. So far, the classifier based on a convolutional neural network (CNN)

trained on the jet image performs well for selecting the top jets. It is numerically shown

that the CNN uses IRC safe features mostly [109], but it is not easy to make an estimate of

systematic uncertainties from various sources without knowing what kind of features of the

jet is used in the model. Bayesian networks are capable of tracking those uncertainties [110,

111], but it is also useful to identify the features in order to interpret the network outputs

and uncertainties. The aim of this paper is to provide a convenient parametrization of the

jet feature contributing to the classification using jet images.

In this paper, we address the question in the following steps. In section 2, we first

introduce a graph neural network [112–116] with constraints, and the network is more

restrictive than CNN. Graph networks are flexible enough for analyzing multiple objects

appears at the LHC, and have been studied in various contexts [16, 20, 25, 41, 117–124]. The

graph network in this paper has access to only IRC safe two-point energy correlations [19,

21, 96–98, 125–128]. It was shown that the network has comparable performance to the

CNN in the Higgs jet vs. QCD jet classification [21]. We use this network for top jet

vs. QCD jet classification, and it is a good starting point toward the network whose top

tagging performance is comparable to the CNN.

To integrate the IRC unsafe quantities to this framework, we formulate a sequence of

novel morphological measures based on Minkowski functionals, in section 3. The sequence

includes the number of pixels with finite energy deposit (active pixels), N (0), the number

of pixels that touch the active pixels, N (1). These numbers can be considered as a dis-

cretized version of Minkowski functionals. They are formulated in a mathematical theory

called integral geometry and describes geometric measures to the point distributions. The

application of the Minkowski functionals has already been considered in the astrophysi-

cal analysis [129–142], and statistical mechanics [143–145]. We perform a morphological

analysis to the distribution of soft activity in the jet.
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When the first few elements of the Minkowski sequence are included in the graph

network inputs, the new classifier has the same performance as the jet image CNN classifier,

as shown in section 4. This means that the improvement of the CNN classifier comes from

the geometric quantities of the pixels, and also it is summarized by just a few numbers

of additional variables. Our result suggests that the CNN output is correlated to a few

numbers of geometric quantities derived from the jet image.

In the collider study, event simulators are used extensively to estimate the signal

and background distributions. The sequence of Minkowski functionals calculated from a

jet image is IRC unsafe quantities, and the simulated data need to be calibrated by the

experimental data. We propose an event reweighting method based on the IRC unsafe

quantities for the calibration in section 5. We conclude in section 6.

2 IRC safe two-point energy correlations and relation network

The jet classifier using a deep learning model trained on the jet image has achieved better

performance compared with the other statistical methods. Still, it is not straightforward to

identify the key physical features that contributed to the improvement, other than looking

for the hidden data representations of the CNN [7, 11, 28, 146], or checking the response

of the network after perturbing the inputs [109]. Note that organized networks whose

hidden representations have physical interpretations [9, 16, 18, 21, 24] allow us to interpret

the results in terms of physics. For this purpose, we consider flexible and interpretable

quantities derived from the jet image and use them as inputs to a jet classifier modeled by

a multilayer perceptron (MLP). Additional inputs are considered until the performance of

the classifier is equivalent to that of the best classifiers using the jet image.

We first introduce two-point energy correlation spectra S2 [19, 21] as a function of the

distance between the jet constituents R,

S2,JaJb
(R) = S2,ab(R) =

∫
d~R1d~R2 PT,Ja(~R1)PT,Jb

(~R2) δ(R−R12), (2.1)

S2(R) = S2,JJ(R), (2.2)

where S2,ab is a shorthand notation of S2,JaJb
;

PT,Ja(~R) =
∑
i∈Ja

pT,i δ(~R− ~Ri), (2.3)

is an energy flow of a subjet Ja of a jet J; a and b are indices of the subjet. The Rij is the

relative angular distance between two constituents,
√

(ηi − ηj)2 + (φi − φj)2. The S2,ab is

an IRC safe quantity. For the Higgs jet vs. QCD jet classification, an MLP trained on

the transverse momenta, masses, and S2’s of the jet and trimmed jet performs nearly as

good as a CNN trained on jet images. In [21], we relate S2,ab to the generic jet classifiers

through its formal expansion with respect to the energy flow. This shows that S2,ab is

flexible enough to describe many quantities for the classification of jets.

In this section, we first derive S2,ab in terms of a vertex-labeled fully-connected graph

to integrate them into a framework of the graph network and extend it for further ML
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Figure 1. A schematic diagram of the graph representation of a jet used in this paper. Each vertex

corresponds to a jet constituent, and a line between two circles represents the variable calculated

from the two vertices. Each dashed rectangle represents a subjet that contains the enclosed jet

constituents.

analysis. A graph is a set of the points and the lines connecting them, which are called

vertices and edges, respectively. In our setup, each vertex of the graph corresponds to a

jet constituent, and the inputs to the i-th vertex are the jet constituent momentum pi.

The labels of a vertex denote the subjets to which the constituent i belongs. The graph

network also has the other inputs u calculated from the given jet, for example, (sub)jet

transverse momentum and mass. A schematic diagram of the graph is in figure 1. Each

circle represents the jet constituent assigned to the corresponding vertex. The dot-dashed

lines are the edges.

We use a kind of graph network called a relation network (RN) [114, 115] that mainly

utilizes correlations between two vertices. The reason for using this network is that the

kernel of the parton shower model is 1 → 2 splitting of partons. The classifier can focus

on the two-point correlations by using the relation network as a functional model. The

classifier output u′ is the value of a functional model φu applied to the edge outputs ēab,

the vertex outputs p̄a, and the predefined inputs u.

u′ = φu (ēab, p̄a,u) . (2.4)

The edge output ēab is the aggregated two-point correlation between Ja and Jb,

ēab =
∑
i∈Ja
j∈Jb

φeab(pi, pj ,u), (2.5)

where φeab(pi, pj ,u) is a functional model of a two-point correlation assigned on edge linking

two jet constituents i and j. The vertex output p̄a is the aggregated one-point correlation

of Ja,

p̄a =
∑
i∈Ja

φva(pi,u), (2.6)

where φva(pi,u) is a functional model of a one-point correlation assigned to a vertex that

corresponds to a jet constituent i. The correlations p̄a and ēab are symmetric for the

permutation of the jet constituents. We train u′ to be the logits for the classification.1

1See [116] for other formalism of the graph neural network.
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We use energy correlators [94, 103] for φe and φv to restrict u′ to be IRC safe. Namely,

we consider the following IRC safe C-correlators for p̄a and ēab,

p̄a =
∑
i∈Ja

pT,iwa(~Ri;u)→ pT,Jawa(u), (2.7)

ēab =
∑
i∈Ja
j∈Jb

pT,ipT,jwab(~Ri, ~Rj ;u)→
∑
i∈Ja

∑
j∈Jb

pT,ipT,jwab(Rij ;u), (2.8)

where pT,i is the transverse momentum of the i-th constituent, ~Ri = (ηi, φi) is the

pseudorapidity-azimuthal coordinate of the i-th constituent. The functions wa and wab

are the angular weighting functions of one-point and two-point energy correlators, respec-

tively. The last step of the equation comes from the assumption that the classifier does

not depend on the absolute angular coordinates of the (sub)jet constituents but uses the

relative angular distances.

The last expression in eq. (2.8) can be written in terms of an integral [19],

ēab =

∫
dRS2,ab(R)wab(R,u). (2.9)

We may absorb the angular weighting functions wab to φu so that the S2,ab and pT,Ja can

be considered as effective inputs to the network.

u′ = φu (S2,ab(R), pT,Ja ,u) . (2.10)

This setup is equivalent to the one using S2,ab as input, discussed in [19].

We now design a top tagger based on eq. (2.10). The structure of the graph is specified

by the subjet label a and b of S2,ab. We consider the following subjet labels for the top jet

vs. QCD jet classification.

• the trimmed jet, Jtrim, denoted by h,

• the compliment set of Jtrim, J \ Jtrim, denoted by s,

• the leading pT subjet, J1, denoted by 1,

• the compliment set of J1, J \ J1, denoted by c.

Examples of the vertex-labeled graphs are in figure 2. Note that the following relations

hold for S2 and S2,ab,

S2(R) = S2,hh(R) + 2S2,hs(R) + S2,ss(R), (2.11)

= S2,11(R) + 2S2,1c(R) + S2,cc(R). (2.12)

Because S2,ss contains only the correlations between soft constituents, which is theoretically

unpredictable and less reliable experimentally, we define the following combinations as

in [19].

S2,trim(R) = S2,hh(R), (2.13)

S2,soft(R) = 2S2,hs(R) + S2,ss(R). (2.14)
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Figure 2. Schematic diagrams of the graph representations of jets. (a) and (b) are top jet images,

and (c) is a QCD jet image. Lines represent the graphs on the jet images. The red solid lines

are edges between the constituents of the trimmed jet Jtrim. The green dashed lines are the edges

between the constituents of Jtrim and the constituents of J \ Jtrim. The blue dot-dashed lines are

edges between the constituents of J \ Jtrim. Note that we omitted some edges for readability.

The S2,trim and S2,soft distributions of the top jets and QCD jets in figure 2 are shown in

figure 3.

In parton level, S2,trim and S2,soft of a top quark have up to four peaks of delta functions

and written as follows if all partons are sufficiently high pT .

S2,trim(R) = (p2
T,b + p2

T,q + p2
T,q̄) δ(R)

+ 2pT,bpT,qδ(R−Rbq) + 2pT,bpT,q̄δ(R−Rbq̄) + 2pT,qpT,q̄δ(R−Rqq̄), (2.15)

S2,soft(R) = 0. (2.16)

Here, b is a bottom quark from a top quark decay, and q and q̄ are quarks from the

subsequent W boson decay. Figure 3(a) is the S2,trim of the top jet that has those four

peaks clearly. This pattern is relatively rare for QCD jets. Figure 3(c) is the S2,trim of a

typical QCD jet.

In the case where the characteristic angular scales of the top quark, Rbq, Rbq̄, and

Rqq̄, are close to each other, it is not possible to see all peak structures in the S2,trim(R)

distributions. Such an example is shown in figure 3(b), although the relative strength of the

peaks in the S2,trim distribution contains partial information of the three-prong structures.2

The information of the three-prong substructure is more clearly encoded in S2,11, S2,1c,

and S2,cc. The two-point correlations of the top jets corresponding to figure 2(a) and

figure 2(b) are shown in figure 4 and figure 5, respectively. This decomposition of a given

jet into J1 and J \ J1 factorizes the identification of a three-prong structure into that of

two-prong substructures and its relative position from the J1. Those S2,ab in parton level

2For example, if all the partons from three-prong decay carry an equal fraction of momenta and their

angular distances are the same, the ratio between the intensity of the two peaks is 1:2 in the parton level,

while it is 1:1 for a two-prong decay [19].
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Figure 3. The S2 and S2,trim distributions of the top jets and the QCD jet in figure 2. The dashed

lines are the characteristic angular scales of the top jets in the parton level.

Figure 4. S2,1c and S2,cc distributions of the top jet in figure 2(a). The intensity of S2,cc is much

smaller than S2 because the subleading pT jets have small transverse momenta. The magnified

distribution of S2,cc is shown in the green histogram. The dashed lines are the characteristic

angular scales at the parton level.

are as follows,

S2,11(R) = p2
T,i1δ(R), (2.17)

2S2,1c(R) = 2pT,i1pT,i2δ(R−Ri1i2) + 2pT,i1pT,i3δ(R−Ri1i3), (2.18)

S2,cc(R) = (p2
T,i2 + p2

T,i3)δ(R) + 2pT,i2pT,i3δ(R−Ri2i3), (2.19)

where ik is the k-th leading pT parton. Figure 4 shows that the two peaks are in S2,1c

and the other two peaks are in S2,cc. Figure 5 is the case where values of Rbq and Rbq̄ are

similar. The S2,cc distribution has a peak at R ≈ 0.6, and the peak intensity is comparable

to that of the peak at R = 0 because the J \J1 has a two-prong substructure. In addition,

the S2,1c distribution suggests that the high pT constituents of J \ J1 are away from J1 by

a distance of 0.5. Note that the analysis on S2,1c is essentially telescoping jets [147, 148]

with respect to J1.
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Figure 5. Same as figure 4 but the top jet in figure 2(b).

3 Morphological analysis of soft emissions

The number of particles of top jets and QCD jets is significantly different. For the boosted

top quark decaying hadronically, i.e., t → bW → bqq̄′, the significant fraction of energy

goes to color singlet W boson. The number of particles in a top jet is less than that of a

gluon jet with the same jet mass and momentum, and the particles are concentrated near

the quark directions. The number of active pixels in the jet image, Npixel, is correlated

to the number of particles in the jet, and therefore, it should be a crucial quantity of the

jet image in the classification. This quantity is IRC unsafe as E → 0 and depends on the

physics at a low energy scale, and its accuracy of the theoretical prediction is limited.3

Indeed PY8 and HW7 predict significantly different pixel distributions for gluon jets, even

though they are tuned to the experimental data.

To generalize the idea of Npixel, we introduce a morphological analysis of soft emissions

on jet images. We consider two morphological operations: dilation, and filtering. Let N (i)

be a number of pixels in a dilated image,

N (i) = #(V(i)), i ∈ {0, 1, · · · }, (3.1)

where V(i) is the Minkowski sum of the set of the (η, φ) coordinate vectors ~Ri of the active

pixels, V(0), and a set of discrete coordinate vectors on a square for dilation, i.e.,

V(i) = V(0) + ∆R×B(i) = {a+ ∆Rb | a ∈ V(0), b ∈ B(i)}, (3.2)

B(i) = {(k, l)|k, l ∈ {−i,−i+ 1, · · · , i− 1, i}}. (3.3)

We denote a set of pixels whose centers belong to V(i) as P(i). Note that P(0) is identical

to the set of active pixels, and N (0) is Npixel. The set P(i) is then a cover of the jet image,

i.e., it is a union of the squares that attached to each active pixel. The covers obey a

recurrence relation that P(i) includes pixels in P(i−1) and those touching one of the edges

or corners of P(i−1). This morphological mapping is illustrated in figure 6. Note that N (i)

3Note that Npixel in this paper is not calculated in the exact limit, E → 0. The electronic calorimeter

and hadronic calorimeter simulations have energy thresholds of 0.5 GeV and 1 GeV, respectively.
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+

Figure 6. An illustration of the Minkowski sum in eq. (3.2). The most left figure shows the active

pixels P(0), the figure at the center shows the pixels whose centers are B(1), and P(1) is shown in

the right figure.

(a) (b) (c) (d)

Figure 7. Illustrations of P(i) for (a) an isolated pixel, (b) a line of pixels, (c) a 5 × 5 square of

pixels, (d) a ring of six pixels. For each plot, black pixels belongs to P (0); dark gray, light gray,

blue pixels are the difference P (i) \ P (i−1) for i = 1, 2, 3, respectively.

is proportional to the area A(i) of pixels in the cover P(i) because each pixel has the same

area (∆R)2, i.e.,

A(i) = (∆R)2 ×N (i). (3.4)

For the analysis of soft activity, we consider a filtered image whose active pixels have pT
larger than E. Let N (i)(E) be the number of active pixels in the filtered image. If we

choose sufficiently large threshold E, the number N (i)(E) is relatively stable against the

choice of the event simulators. The difference between the values of N (i) and N (i)(E) will

provide us geometric information about the soft activity.

The sequence of N (i) gives a quantitative description of the spatial distribution of

pixels in the jet. Before going into some mathematical background, let us capture the

idea using simple examples. Consider the relations between N (0) and N (1) of figure 7(a),

figure 7(b), and figure 7(c):

1. Active pixels are separated by two or more pixels.

N (1) = 9N (0) (3.5)

This corresponds to the limit of sparse and scattered pixels.

2. Active pixels are aligned on a line.

N (1) = 3N (0) + 6 (3.6)
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Figure 8. The Minkowski sum P(i) of the top jet image and QCD jet image. For each plot, black

pixels belongs to P (0) dark gray, light gray, blue pixels are the difference between P (i) − P (i−1) for

i = 1, 2, 3, respectively.

This case is the limit when soft activities come from a very narrow color string

between two quarks at each end.

3. Active pixels are clustered in a square.

N (1) ∼ (
√
N (0) + 2)2 (3.7)

This is the limit of a one-prong jet such as quark jet.

The ratioN (1)/N (0) in largeN (0) limit is approximately 9, 3, 1, respectively. If pixel clusters

appear at small angular scale, N (1)/N (0) is reduced. Therefore, N (1)/N (0) quantifies the

level of isolation of the pixels.

Figure 8 shows P(i) of top and QCD jet images in figure 2(b) and figure 2(c), re-

spectively. One quick observation is that P(i) has some non-trivial structures for small i

(i = 0, 1), but the pixels quickly merge into a single cluster as the index i increases. In the

large angular scale (i ≥ 2), the only relevant physics for the top jet vs. QCD jet classification

is the color charge of the parent parton, and the N (i) does not carry significant additional

information. In the next section, we show that N (0) and N (1) are sufficient to describe the

soft structure contributing to the top jet and QCD jet classifier modeled by CNN.

The analysis based on the pixels can be generalized to the particle level analysis with

a continuous parameter R as follows. Let P(R) be a cover of particles on (η, φ) plane.

P(R) =
⋃
i∈J

Bi(R), (3.8)

where Bi(R) is a disk with radius R and whose center is the direction vector ~Ri of a particle

i. The area A(R) of the cover P(R) is a quantity related to N (i), i.e., A(i) can be considered

as a discrete analog of A(R).

The change of A(R) with respect to R also quantifies the spacial distribution of parti-

cles. As far as all the disks are isolated, A(R)/(πR2) is the number of particles. The ratio
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A(R)/R2 decreases at the scale where the disks start overlapping. Therefore, the profile of

A(R)/R2 along R encodes all the distances between particles.

A more general description of these morphological measures can be obtained from the

integral geometry. According to Hadwiger’s theorem [149], any geometric measure that

has a notion of the size of a polyconvex set in Euclidean space Rd can be described by a set

of functions called “Minkowski functionals”. The polyconvex set is a finite union of closed

and bounded convex bodies. More precisely, the geometric measure v should satisfy the

following properties,

• Valuation: v has a notion of size of a set. The value of v of the empty set φ is zero,

i.e, v(φ) = 0, and v satisfies the following inclusion-exclusion property,

v(B1 ∪B2) = v(B1) + v(B2)− v(B1 ∩B2) (3.9)

where B1 and B2 are polyconvex sets.

• Invariance: v is invariant under any rotation and translation.

• Continuity: for any sequence of polyconvex sets Bn that converges4 to B, its valu-

ation v(Bn) also converges to v(B).

Such geometric measures can be represented as a linear combination of d + 1 Minkowski

functionals Mi,

v(B) =

d∑
i=0

ciMi(B). (3.10)

In d = 2, we have three Minkowski functionals: area, perimeter, and Euler characteristic.

Since P(R) on (η, φ) plane is a finite union of closed and bounded convex bodies Bi(R),

its geometry can be described by the Minkowski functionals. We already discussed the

area A(R) of P(R), and its perimeter L(R) and Euler characteristic χ(R) are also useful

quantities. The discrete analog of L(R) and χ(R) can be used for analyzing jet images.

The Minkowski functionals show that N (1) carries independent information to N (0).

We denote the perimeter and Euler characteristic of P(i) as L(i) and χ(i). If all the active

pixels of a jet image are isolated enough, we may represent A(1) as A(0) + L(0) · (∆R) +

4χ(0) · (∆R)2 since A(1) is a valuation of P(0).5 The relation between N (0) and N (1) is then

as follows,

N (1) = N (0) + L(0)/(∆R) + 4χ(0). (3.11)

Note that this relation only holds when the squares attached to active pixels do not overlap

each other. Once some squares start to overlap, the relation begins to deviate, and the

persistence of this relation can be used as a morphological indicator for the topological

change of P(i). Therefore, N (0) and N (1) are effective variables for analyzing the geometry

of soft particles of the jet image.

4The convergence is defined in terms of the Hausdorff metric.
5For the rectangle shape pixels, the term proportional to 4χ(0) corresponds to the number of pixels that

touch only the corner of the pixels in P(0).
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Figure 7(d) is an example that the sequence of P(i) shows a non-trivial topological

change. The sequence starts with six isolated pixels, P(1) and P(2) are a ring, and P(3)

is a single large cluster. The Euler characteristic χ(i) and the perimeter L(i) of P(i) are

as follows.

χ(i) = (6, 0, 0, 1, · · · ) (3.12)

L(i)

∆R
= (24, 52, 52, 54, · · · ). (3.13)

The non-monotonic behavior of the sequence of Minkowski functionals for analyzing the

topology of point distributions is often discussed in other literature [129, 130]. Utilizing

this topological information for jet classification problems or global event topology analysis

might be interesting, but the full analysis of the sequence of the Minkowski functionals is

outside the scope of this paper.

Morphological analysis have been applied in physics to quantify the distribution of

the objects. In [129, 130], Minkowski functionals are used to identify the structure of the

astrophysical objects. In more recent papers, persistence topology turns out to be useful

tool for charcterizing seemingly random distribution of the points and applied in analysis of

cosmic microwave background [150] and string landscape [151]. It is tempting to consider

other roles of morphological analysis with Minkowski functionals in jet classifications.

4 Top tagger based on relation network and jet morphology

In this section, we describe our setup of classifiers trained on the inputs discussed in the

previous sections, S2,ab and N (i). These inputs are derivable from jet images, so the CNN

performs better than those RNs in principle. We show that the deep learning on the small

number of derived inputs reproduces the performance of the CNN. Therefore, those inputs

are associated with the relevant physics for solving the classification problem. Moreover,

the network using the derived inputs typically has less overfitting than that using the

raw inputs.

4.1 Training data and model implementation

We simulate top jet and QCD jet samples by Madgraph5 [152], followed by Pythia 8

(PY8) [153] or Herwig 7 (HW7) [154, 155]. The detector response of generated events is

simulated by Delphes [156]. Jets are reconstructed by the anti-kT algorithm with radius

parameter RJ = 1.0. The jet constituents are calorimeter towers with angular resolu-

tion approximately ∆R = 0.1. The details of the sample preparation are explained in

appendix A.

We categorize the inputs to the RNs into the four sets: xtrim, xJ1 , xkin, and xgeometry.

• xtrim is a set of discretized S2,trim and S2,soft up to angular scale R = 1.5,

xtrim = (S
(i)
2,trim|i = 0, · · · , 14)⊕ (S

(i)
2,soft|i = 0, · · · , 14), (4.1)
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where S
(i)
2,ab is the binned spectrum of S2,ab, with bin size ∆R in order to keep the

same angular resolution to the jet image,

S
(i)
2,ab =

1

∆R

∫ (i+1)∆R

i∆R
dRS2,ab(R) =

1

∆R

∑
j∈Ja,k∈Jb

Rjk∈[i∆R,(i+1)∆R)

pT,jpT,k. (4.2)

We may consider the angular scale up to the diameter 2RJ = 2.0, but S
(i)
2,trim and

S
(i)
2,soft at such large R are less useful [21].

• xJ1 is a set of discretized S2,11, S2,1c and S2,cc as follows,

xJ1 = (S
(i)
2,11|i = 0, · · · , 3)⊕ (S

(i)
2,1c|i = 0, · · · , 9)⊕ (Si

2,cc|i = 0, · · · , 14). (4.3)

Again, we consider spectra only up to the relevant angular scales. For S
(i)
2,11 and S

(i)
2,cc,

the scale is the diameter of the corresponding subjet but too large angular scale is

ignored. For S
(i)
2,1c, the scale is the jet radius because it is the correlation between the

core part J1 and its surroundings.

• xkin is a set of global inputs,

xkin = (pT,J,mJ, pT,Jtrim
,mJtrim

, pT,J\J1
,mJ\J1

). (4.4)

In addition to the transverse momenta, we include the masses as the inputs because

2mJa/pT,Ja is a characteristic angular scale of Ja.

• xgeometry is a set of the numbers of pixels of the jet images P(0) and P(1),

xgeometry = (N (0), N (1), N (0)(4 GeV), N (1)(4 GeV)). (4.5)

We modularize the implementations of the model outputs u′ = φu(x) to avoid the curse

of dimensionality. When inputs are too many, there is a potential danger of overfitting

due to sparsely distributed samples. In our previous work, we use ∼ 40 inputs for the

classification of Higgs jets and QCD jets [19, 21]. The inputs for the classification of top

jets and QCD jets are increased to ∼ 70, and training of a simple MLP classifier on these

inputs may have difficulties. Therefore, we compress xtrim and xJ1 to a smaller number of

hidden variables htrim and hJ1 by a neural network and get u′ from them. The following is

the closed-form expression of RNS2 that uses only the IRC safe inputs: xtrim, xJ1 , and xkin.

htrim = MLPtrim(xtrim,xkin;θtrim), (4.6)

hJ1 = MLPJ1(xJ1 ,xkin;θJ1), (4.7)

u′ = MLPlogit(htrim,hJ1 ,xkin;θlogit), (4.8)

where MLPa is a multilayer perceptron (MLP) and θa are its trainable parameters. We

provide xkin to each network to tell the characteristic angular scales directly. We use the

exponential linear unit (ELU) [157] as the activation function of each MLP. The dimensions
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model xkin xtrim xJ1

xgeometry

N (0) N (0)(4 GeV) N (1) N (1)(4 GeV)

RNS2 © © ©
RNS2,N(0) © © © ©
RNS2,N(0),N(0)(4 GeV) © © © © ©
RNS2,N(0),N(1) © © © © © © ©

Table 1. The list of inputs used in each RN. The circle represents that the given input is used.

The CNN trained on jet images can utilize all this information.

of htrim and hJ1 are 5. The output u′ is a dimension two vector and will be transformed

into the softmax outputs for the binary classification purpose.

ŷi =
exp(u′i)

exp(u′0) + exp(u′1)
, i = 0, 1 (4.9)

When the geometric information xgeometry is included in the inputs, we use them as

arguments of MLPlogit,

u′ = MLPlogit(htrim,hJ1 ,xkin,xgeometry;θlogit) (4.10)

We consider three additional relation networks that uses the geometric information:

RNS2,N(0) , RNS2,N(0),N(0)(4 GeV), and RNS2,N(0),N(1) . Their inputs are listed in table 1.

The detailed implementations of these RNs are in appendix C.1.

The softmax output is trained by minimizing the cross-entropy loss function. In addi-

tion, we marginalize the pT,J distribution in the classification because the top jet samples

and QCD jet samples have different pT,J distributions. To do this, we train networks in

a way that interpolates binary classifiers for the jets at given pT,J. The corresponding

cross-entropy loss function LCE is as follows.

CE(pT,J;θ) = −1

2

∑
Y =top,QCD

∫
dx̃fx̃|pT,J

(x̃;Y )
∑
i=0,1

yiY log ŷi(x;θ) (4.11)

LCE(θ) =
1

pmax
T,J − pmin

T,J

∫ pmax
T,J

pmin
T,J

dpT,J CE(pT,J;θ) (4.12)

where Y is a category label, ytop = (1, 0), and yQCD = (0, 1). The function fx̃|pT,J
(x̃;Y ) is

the conditional probability density of x̃ given pT,J, and x̃ is x without pT,J.

The integral can be approximated by a Monte-Carlo integration,

LCE(θ) ≈ −1

2

∑
Y =top,QCD

NY∑
iY =1

1

fpT,J(p
[iY ]
T,J ;Y )

∑
i=0,1

yiY log ŷi(x[iY ];θ) (4.13)

where fpT,J(pT,J;Y ) is the probability density function of pT,J given Y , and the variables

with superscript [iY ] is the value at the iY -th sample in the training dataset of Y . The

– 14 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
1

probability density function fpT,J(pT,J;Y ) is modeled by kernel density estimation (KDE)

described in appendix B. The resulting loss function is essentially a cross-entropy with

samples whose pT,J distribution is reweighted to be uniform. In addition to this cross-

entropy loss, L2 regularizer Lreg [158–160] with the weight decay constant λ = 0.001 is

added to regularize MLPa.

Lreg =
λ

2

∑
a

|Wa|2 (4.14)

where Wa are the weights of hidden layers in MLPa.

The training setup is as follows. We minimize the loss function L(θ) = LCE(θ)+Lreg(θ)

by ADAM optimizer [161] with learning rate 0.001, the first moment exponential moving

average coefficient β1 = 0.9, the second moment exponential moving average coefficient

β2 = 0.999, and stabilization constant ε = 10−7. Batched samples are used in order to

reduce overfitting. The weights of the MLP are initialized by the He initializer [162], and

the biases are initialized to be zero. We will use early stopping for the termination criterion,

but there is a chance that the network is mildly overfitted to the validation dataset during

learning the features of the rare events. If the gradients from the rare events distort the

trained results for the dominant events, the network parameters have to be corrected again,

and the training becomes noisy. The random overfitting to the validation sample occurs

during this noisy learning on the rare events. To avoid this artifact, we use the exponential

moving averages θ̂(t) of the trainable parameters θ(t) at the epoch t for the validation and

testing. The details of the moving average can be found in appendix D. We monitor the

loss Ltot(θ̂) of the validation samples during the training and terminate the training if the

loss function does not improve during 50 latter epochs. The networks and training setup

is implemented in Keras [163] with TensorFlow [164] backend. Optimization on the batch

number is performed by the grid search. We iterate the training for batch numbers, 20,

50, and 100 and two different random number seeds.

The results of the RN-based classifier will be compared to that of a CNN-based clas-

sifier. The CNN model is similar to that of the previous paper [21] but with more nodes

and layers. The closed-form expression of the CNN is as follows,

himage = CNNimage(ximage;θCNN) (4.15)

u′ = MLPlogit(himage,xkin;θMLP), (4.16)

where ximage is energy deposits of the preprocessed jet image described in appendix C.2.

The module CNNimage consists of 6 two-dimensional convolutional layers with 3× 3 filters

and ELU activations. We insert two 2 × 2 max-pooling layers after the third and sixth

convolutional layers. The himage are the flattened outputs of the CNNimage. The model

outputs u′ are from an MLP analyzing himage together with the kinematic information

xkin. The detailed implementation of this CNN is in appendix C.2. The training setup

is the same as that of the RNs, but we check batch numbers 100, 200, and 500 instead

because of the limitation of GPU memory.
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Figure 9. The ROC curves of the networks trained on PY8 samples.

4.2 Classification results

Figure 9 shows the ROC curves of the networks trained on PY8 samples. The AUC, which

is the upper area of each curve, of RNS2 , RNS2,N(0) , RNS2,N(0),N(1) , and CNN are 0.8990,

0.9352, 0.9442, and 0.9465, respectively. There is a large gap between the ROC curves of

RNS2 and CNN. This gap is partially filled by including an additional input N (0), as shown

in the ROC curve of RNS2,N(0) . Surprisingly, when we consider all the geometric inputs

xgeometry, the ROC curve of RNS2,N(0),N(1) is almost equal to that of the CNN. Therefore,

the inputs xtrim, xJ1 , xkin, and xgeometry can be considered as useful middle-level variables

for modeling the top jet classifier.

The reason for a big gap between the ROC curves of RNS2 and CNN is the difference

in N (0) distributions between top jet samples and QCD jet samples. The QCD jets in

this paper are leading pT jets of pp → jj so that they are mostly gluon jets, which have

a large N (0) than a jet from a color triplet parton. In addition, PY8 predicts significantly

higher N (0) of gluon jets than HW7, as in figure 10. Similar situations have been pointed

out for the counting variables such as the charged track multiplicity [99], and the soft drop

multiplicity [105].

The situation may be compared with the classification of Higgs jets and QCD jets,

studied in [19]. In this case, the difference between the ROC curves of RNS2 and CNN is

tiny. QCD jet samples in the study are leading pT jets of pp→ Zj with invisibly decaying

Z boson, and most of the samples are the quark jets. The difference in the N (0) distribution

of the Higgs jets and QCD jets is small, and therefore, N (0) does not play an important

role there.

The remaining gap between the ROC curves of RNS2,N(0) and CNN is almost filled by

including N (1) in the analysis. As discussed in the previous section, the ratio N (1)/N (0)
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Figure 10. N (0) and N (0)(4 GeV) distributions of PY8 and HW7 data sets. The blue histograms are

for the top jets, and the orange histograms are for QCD jets. The solid lines are for PY8 generated

samples, and the dashed lines are for HW7 generated samples.

is a morphological measure that quantifies the level of clustering of the pixels. Therefore,

N (1) is useful for distinguishing compact top jets from QCD jets whose number of pixels

is the same. The similarity of two ROC curves indicates that the information summarized

in the Minkowski functionals is used in the jet image analysis.

Not only RNS2,N(0),N(1) gives a comparable result to CNN, but it is also significantly

more stable. We compare the softmax output ŷ0 of a network N and the output of the

same network trained with a different random seed, and we call the alternative output

ŷ′ 0. The change of the seed affects the shuffling of the events between batches and alters

the initialization of the network. Since the training of the neural network is not a convex

optimization in general, the network output difference ∆ŷ0[N ] = ŷ′ 0[N ] − ŷ0[N ] 6= 0. In

figure 11, we show the histogram of two outputs (ŷ0, ŷ′ 0) for RNS2,N(0),N(1) and CNN. The

distribution for RNS2,N(0),N(1) is narrower than that for CNN. This shows that training of

RNS2,N(0),N(1) is more stable.

The better training stability of RN is due to the difference in the inputs of the functional

model. The pair of preprocessed jet image and xkin contain more information than the

two-point energy correlations and Minkowski functionals. Hence, CNN could approximate

a wider variety of functions of jet constituents than RN. In other words, the training of

CNN requires more effort in order to scan over larger space of functions. The training of

a simpler model is much stable than that of a complex model because of less number of

inputs and trainable parameters. A simpler model has a potential danger of underfitting,

but it is less severe in RN because S2,ab and N (i) are reasonable set for describing functional

space of energy correlation and geometry of the jet constituents, respectively.

We now compare the outputs ŷ0[CNN] and ŷ0[RN] = ŷ0[RNS2,N(0),N(1) ].6 Figure 12

shows the distributions of ∆ŷ0[RN], ∆ŷ0[CNN], and ∆ŷ0[CNN,RN] = ŷ0[CNN]− ŷ0[RN].

The mean and standard deviation of these differences are summarized in table 2. All the

6From here, we denote RNS2,N
(0),N(1) as RN.
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ŷ
0
[R

N
′ S 2
,N

(0
) ,
N

(1
)
]

QCD jets MG5+PY8+Delphes

0

P
D

F
[a

rb
.

sc
al

e]

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 11. The distribution of softmax output of the classifiers for different random seed. upper

two figures for ŷ0[RNS2,N(0),N(1) ], and the bottom two figures for ŷ0[RNS2,N(0),N(1) ]. The left figures

are top jets and the right figures are QCD jets.

∆ŷ0 distributions are sharply peaked approximately at ∆ŷ0 = 0, which indicates that the

classifiers make the same decision for the majority of the events. Since the training of the

CNN is less stable than that of RN, the standard deviation σ(∆ŷ0[CNN]) of ∆ŷ0[CNN]

is much larger than σ(∆ŷ0[RN]) of ∆ŷ0[RN]. The standard deviation of ∆ŷ0[CNN,RN]

is larger than the error
√
σ(∆ŷ0(CNN))2 + σ(∆ŷ(RN))2, which is 0.091 for the top jet

samples and 0.095 for the QCD jet samples. This indicates that the outputs of RN and

CNN are highly correlated, but there are still some differences. We repeat the same analysis

on non-typical events, which satisfies 0.15 < ŷ0 < 0.85 for one of RN or CNN. The results

are similar, but the standard deviations are larger by a factor 1.5 because we removed

samples easy to classify.

In order to understand the cases on which RNS2,N(0),N(1) and CNN gives us extremely

different answers, we show two examples in figure 13. To choose jets with stable CNN
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output difference
top jet samples QCD jet samples

average deviation average deviation

∆ŷ0[RN] = ŷ′0[RN]− ŷ0[RN] −9.56× 10−4 0.0271 −1.65× 10−4 0.0279

∆ŷ0[CNN] = ŷ′0[CNN]− ŷ0[CNN] −1.46× 10−3 0.0867 −6.14× 10−3 0.0911

∆ŷ0[CNN,RN] = ŷ0[CNN]− ŷ0[RN] 6.98× 10−3 0.141 3.10× 10−3 0.144

ŷ′0[CNN]− ŷ0[RN] 5.51× 10−3 0.137 9.26× 10−3 0.142

after selection: 0.15 < ŷ0[RNS2,N(0),N(1) ] < 0.85 or 0.15 < ŷ0[CNN] < 0.85

∆ŷ0[RN] = ŷ′0[RN]− ŷ0[RN] −1.60× 10−3 0.0403 −1.06× 10−3 0.0409

∆ŷ0[CNN] = ŷ′0[CNN]− ŷ0[CNN] 3.64× 10−3 0.129 3.51× 10−3 0.131

∆ŷ0[CNN,RN] = ŷ0[CNN]− ŷ0[RN] 1.61× 10−2 0.215 3.50× 10−3 0.217

ŷ′0[CNN]− ŷ0[RN] 1.97× 10−2 0.206 9.39× 10−3 0.210

Table 2. Average and standard deviation of the output difference ∆y0.
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Figure 12. The difference of softmax output for various models, ∆ŷ0[RN], ∆ŷ0[CNN], and

∆ŷ0[CNN,RN] for top jets and QCD jets.

predictions, the selected jets have similar ŷ0[CNN] and ŷ′0[CNN]. For the left jet image,

CNN judges the jet as a top jet while RN does not. The b quark and one of the light

quarks accidentally overlap in this event. This type of event is certainly not typical. The

probability that the angle Rbq or Rbq̄ is less than 0.2 is 5.6% without considering spin-

correlation. For the right jet image, CNN judges that the jet is a QCD jet, but RN does

not. It is a two-prong jet with many soft radiations and a small pT subjet from a quark

due to longitudinal decay of W boson. In the longitudinal decay, one of the quark goes

backward to the boost direction, but these jets suppressed in the phase space. Because

both of the top jets are not typical, it is not surprising the two different models give very

different results for those events.

We have checked if more aggressive training on these rare events improves the perfor-

mance, for example, relaxing the regularizer setup. The AUCs of RN and CNN with the

weight decay constant λ = 10−4 are 0.9461 and 0.9465, respectively. There are tiny im-

provements in the classification performance, but it comes together with overfitting. The
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Figure 13. Jets images of top jets that RNS2,N(0),N(1) and CNN give different answers. The

network outputs of each jet image are as follows: (left) ŷ0[RNS2,N(0),N(1) ] = 0.0795, ŷ0[CNN] =

0.908, ŷ′0[CNN] = 0.883, (right) ŷ0[RNS2,N(0),N(1) ] = 0.836, ŷ0[CNN] = 0.0905, ŷ′0[CNN] = 0.101,

validation loss L(θ̂) and training loss L(θ) are 0.3044, and 0.2969 for RN; 0.3201, and

0.2971 for CNN, respectively. The L(θ̂) and L(θ) in the original setup are 0.3076, and

0.3049 for RNS2,N(0),N(1) ; 0.3338, and 0.3371 for the CNN. The difference between the

training and validation loss is much bigger in λ = 10−4 setup, which is a sign of overfitting.

4.3 Alternative vertex label choice

Vertex label is a hyperparameter of the RNs, and we use labels based on the trimmed jet

and leading pT subjet in order to explicitly identify hard substructures and subleading pT
substructures. Other labels may be used depending on the purpose. For example, trimming

may be replaced with recursive soft drop (RSD) [89, 165] for better analytic tractability

of the two-point energy correlations. Let Jr be the groomed jet by the RSD,7 and r be its

vertex label. We define S2,RSD and S2,RSDc ,

S2,RSD(R) = S2,rr(R), (4.17)

S2,RSDc(R) = S2(R)− S2,rr(R), (4.18)

corresponding to S2,trim and S2,soft, respectively. Figure 14 shows the S2,RSD distribution

of the top jets and QCD jet in figure 2, but the difference is small. The two-point energy

correlation related to the soft activity that satisfies the soft drop condition may be included

in S2,RSD.

Figure 15 shows the ROC curves of RNS2 and RNS2,N(0),N(1) after replacing inputs

S2,trim, S2,soft, pT,Jh
, and mJh

to S2,RSD, S2,RSDc , pT,Jr , and mJr , respectively. The per-

formance does not change much because the change of inputs is simply a rearrangement

of S2 bins related to the soft activity that satisfies the soft drop condition. Therefore, the

impact on the top jet classification performance due to the change of groomer is small.

7We use soft drop parameters zcut = 0.5 and β = 1, and fully inspect whole clustering history.
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Figure 14. The S2 and S2,RSD distributions of the top jets and the QCD jet in figure 2. The

dashed lines are the characteristic angular scales of the top jets in the parton level.
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and RNS2,N(0),N(1) with trimming or RSD.

4.4 Discussion on other top taggers

So far, we compare the performance of the RNs to that of the CNN. In this subsection, we

comment on other top taggers.

In [79], ParticleNet [20, 166] and ResNeXt [167] show a better performance in the top

jet classification than the CNN.8 One may wonder if additional features should be included

in the RN inputs to reproduce their performance. However, the networks on figure 5 of [79]

are not trained on inputs at the same angular resolution. It is not clear if the better

networks learn additional physical features. The ResNeXt and CNN in [79] use jet images

with pixel size 0.025 and 0.04, respectively. We especially find that the performances of

ResNeXt and CNN trained on jet images with pixel size 0.1 are similar. Figure 16 shows

their ROC curves.
8Note that this CNN does not take xkin as inputs and is different from the CNN in this paper.
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Figure 16. The ROC curves of the CNN and its variants: ResNet and ResNeXt.

The ResNet [168] and ResNeXt in figure 16 are the CNN after replacing the chain of

the convolutional layers to ResNet [168] or ResNeXt modules described in appendix C.2.

Note that the skip connections in those residual learning networks are for solving the

degradation problem [168] without deteriorating the universal approximation property of

the filter direction of convolutional layers. If there is no performance degradation due to

the depth of the networks, all of those networks should perform similarly. If we change the

pixel size from 0.1 to 0.025, the jet image size changes from 30 × 30 to 120 × 120 and we

may need a CNN with more layers or larger filter sizes in order to cover the whole (η, φ)

range. The skip connections may be required to train the network efficiently. Figure 16

shows that the CNN is sufficient for the classification in our case.

The ResNeXt in [79] shows a similar performance to the ParticleNet. The ParticleNet is

a graph neural network that uses angular coordinates directly, and the angular resolution is

not explicitly considered in the inputs. However, since Delphes provides each constituent’s

angular position after uniform smearing over corresponding calorimeter bin range [156], the

inputs of the ParticleNet has implicit angular resolution 0.0174 and 0.1 if the constituent

is from electromagnetic and hadronic calorimeter, respectively. The jet images for the

ResNeXt uses pixel width 0.025, so that the loss of information due to pixelation is small.

We leave further investigation between our RNs to those networks in future publications.

5 Reweighting distributions of IRC unsafe morphological features

In section 4, we perform the analysis using sample generated by PY8, but in this section,

we compare the result with the analysis using another event generator and discuss the

systematic uncertainties associated with simulations. Because event generation involves the

modeling of soft radiation, the generated events are model-dependent, and the simulator

has to be tuned to experimental data. Describing the distribution of particles in the jet in all

– 22 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
1

circumstances is not trivial. Indeed, the simulated distributions of different generators are

often significantly different in an extreme kinematic regime, and sometimes neither of them

agrees with experimental data. The question is how precisely these simulated events should

agree with the data. For the analysis mainly using high pT objects, the effects of soft physics

are small. On the other hand, a neural network based jet classifier trained on jet images

are capable of utilizing the pattern of soft radiation. If the agreement between observed

and simulated data are “sufficiently good”, we could rely on the simulated data. In reality,

there are yet significant deviations between the MC predictions and experimental data,

and the calibrations are necessary. Because we know that the less controlled IRC unsafe

quantities, such as N (0) and N (1), play an important role in the classification, we focus on

calibrating the difference between the experimental and simulated data of those quantities.

To see the systematical error coming from the mismodeling of the parton shower and

hadronization, we perform the same classification analysis with different event generators

and compare the results. We choose HW7 and PY8 for the comparison. The two event

generators are quite different in modeling of the soft and collinear radiations. HW7 uses the

angular-ordered shower [169] and the cluster hadronization model [155, 170].9 PY8 uses pT
ordered-shower [171] and the string model of hadronization [172, 173]. The comparison of

the radiation pattern of QCD jets is available in various literature [100, 174, 175]. The

prediction of the gluon jet distributions differs significantly in each simulator while it more

or less agrees with each other for the quark jets. It is pointed out that prediction is sensitive

to the color reconnection modeling.

In figure 17, we show the (N (0), N (0)(4 GeV)) distributions of the QCD jet samples.

The N (0) distribution simulated by PY8 is broader than that simulated by HW7. The tail

of the N (0) distribution exceeds 60 for PY8, but it vanishes at there for HW7. On the other

hand, the N (0)(4 GeV) distributions of PY8 and HW7 are similar, as shown in figure 10.

The active pixels with pT > 4 GeV correspond to the particles from high pT partons in

the shower. Predictions on those partons in the two generators tend to agree, and the

predicted N (0)(4 GeV) distributions are also similar. The N (1)/N (0) distributions of PY8

and HW7 are also similar, as shown in figure 18. Therefore, N (0) should play an important

role in the classification.

The separation of the top jets and QCD jets is worse for HW7 compared with PY8

discussed in previous sections. The AUC of the top jet vs. QCD jet classification predicted

by HW7 is smaller than that predicted by PY8. In figure 19, we show the ROC curves of each

classifier trained on HW7 events. The performance of the RNS2 is similar to that trained

on PY8 events. Once N (0) is additionally considered in the classification, the performance

is improved. However, the improvement from adding N (0) is significantly smaller in HW7,

because the N (0) distributions of top jets and QCD jets are close, as shown in figure 10.

In the previous analysis, we have shown that inputs N (0), N (0)(4 GeV), N (1), and

N (1)(4 GeV) in addition to S2,ab is good enough for building a neural network that fits the

CNN output. At the same time, this indicates that tuning of the event generator focusing

on these counting variables can be an efficient way to obtain the simulated data that gives

consistent results with the experimental data.

9Dipole shower also can be used, but we do not study the model in this paper.
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Figure 17. (N (0), N (0)(4 GeV)) distributions for (a) PY8 and (b) HW7.
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Figure 18. (N (0), N (1)/N (0)) distributions for (a) PY8 and (b) HW7.

If the difference between the simulated and experimental data is not too large, reweight-

ing simulated events is useful for reducing the difference. We consider reweighting based

on the marginal distribution of interested variables x. Let ρtrue(x) and ρMC(x) be the x

distributions with true and simulated events, respectively. The new weight w
[iY ]
new of the

event iY is given as follows,

w[iY ]
new =

ρtrue(x
[iY ])

ρMC(x[iY ])
· w[iY ]

old , (5.1)

where w
[iY ]
old is the weight before reweighting.
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Figure 20. The N (1) and N (1)(4 GeV) distributions of PY8, HW7, and reweighted HW7 samples.

Let us perform an exercise to correct (N (0), N (0)(4 GeV)) distribution, assuming that

either one of the distributions ρPY8 and ρHW7 simulated by PY8 and HW7 is ρtrue while

the other is ρMC. We consider the reweighting of these two variables in order to con-

sider a non-trivial case that some of the variables are correlated. The reweighting factor

ρtrue(N
(0), N (0)(4 GeV))/ρMC(N (0), N (0)(4 GeV)) is calculated using the normalized his-

togram of (N (0), N (0)(4 GeV)), as stated in appendix E. The N (1) distribution in figure 20

still disagree after the reweighing, but the deviation is minor. Because the sample size is

limited, we do not attempt to correct all those distribution in this paper.
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Figure 21 shows the ŷ0 distributions for QCD jet samples, of the models trained on

PY8 samples. The orange dashed, black solid, and green dot-dashed histograms are the ŷ0

distributions with HW7, PY8, and reweighted HW7 samples, respectively.

Figure 21(a) shows the ŷ0 distributions of RNS2 . This classifier does not use N (0) and

N (0)(4 GeV) explicitly, but the distribution of reweighted HW7 samples comes quite close

to that of PY8 samples. The score difference comes from the difference of S2 distribution.

The S2,soft distribution of HW7 samples is 10% smaller than that of PY8 samples. The

reweighting reduces the difference because N (0) and S2,soft are correlated. The Pearson

correlation coefficient between N (0) and S
(i)
2,soft is 0.3 for both PY8 and HW7.10 The bin-by-

bin ratio of the average 〈S(i)
2,soft〉 between HW7 and PY8 samples is about 0.9. The average

〈S(i)
2,soft〉 of HW7 samples increases after the reweighting and the S2,soft distributions get

closer to each other. On the other hand, the reweighting increases the disagreement of pT,J
distribution. The sum of the weights of the reweighted HW7 samples with pT,J ∼ 500 GeV

is about 20% larger than that of PY8 samples. We marginalized pT,J during the training

so that the impact on the ŷ0 distribution is minimal. Therefore, the agreement seen in

figure 21(a) is mainly due to the correction of S2,ab, and it is encouraging.

Figure 21(b) shows the ŷ0 distributions of RNS2,N(0),N(0)(4 GeV). For ŷ0 ∼ 1, the ratio

of the ŷ0 distributions of HW7 and PY8 exceeds 4, and the distribution of HW7 samples

even peaks near ŷ0 ∼ 1. This means that the model trained on PY8 samples focuses on

a particular region in order to get high purity top samples, but the HW7 samples are still

populated in the region. In the situation that the HW7 distribution is “true” while PY8

samples are used to build the top jet vs. QCD jet classifier, we overestimate the top quark

event rate by dijet contamination; adding the variables whose “true distributions” are not

well understood could cause the problem of this kind.

The ratio between weighted HW7 and PY8 distributions is constant. This is nice in order

to avoid the systematics along with tightening the cut to reject QCD events. On the other

hand, the ratio of the reweighted HW7 samples is much larger than that in figure 21(a). The

deviation should come from the mismodeling of the correlation between N (0) and other

parameters. The difference is even larger if one includes N (1) in the inputs, as shown in

figure 21(c). The ratio between the weighted HW7 and PY8 sample is now nearly a factor

of two larger at y ∼ 1 and even increasing. This disagreement is not surprising given the

very poor sample of HW7 in the high N (0) region. Finally, figure 21(d) is the ŷ0 distribution

of the CNN model. The distributions looks quite similar to those in figure 21(c) before

reweighting, but the ratio of the distributions of reweighted HW7 events and PY8 events is

larger than that of RNS2,N(0),N(1) .

Figure 22 shows the ŷ0 distributions of the model RNS2,N(0),N(0)(4 GeV) trained on HW7

events. Recall that the QCD jets in PY8 samples cover the phase space of the QCD jets

simulated by HW7, and the reweighting is then effective for transforming the PY8 samples

to HW7 samples. The opposite is not true because there are QCD jets which are not in HW7

generated samples. The reweighting is not exact because we have only a small number of

10The correlation between N (0) and S
(i)
2,trim is around 0.15 for the bins dominated by the cross-correlation

between high pT constituents.
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Figure 21. The ŷ0 distributions of PY8 and HW7 test samples for the model trained on the

PY8 events. The neural networks used in the plots are (a) RNS2 , (b) RNS2,N(0),N(0)(4GeV), (c)

RNS2,N(0),N(1) , and (d) CNN.
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Figure 22. The score distribution of PY8 and HW7 test sample for the model trained by the HW7

events.

events in some phase space region, and we see some deviation in ŷ distribution, as shown

in figure 21(b). If one wishes to describe real data by assigning an appropriate weight for

each simulated events, it is better to use a generator setup that covers wider phase space

so that we can correct the event distribution by using experimental data afterwords.

The disagreement between PY8 and HW7 samples remains after the reweighting in this

exercise. We do not proceed to reweight distributions other than the (N (0), N (0)(4 GeV))

distribution in this paper because of the statistical limitation. Neural network-based

reweighing [176] can be helpful for adjusting full phase-space, but it is beyond the scope

of this paper. The difference between the two generators is too large to achieve perfect

agreement simply by reweighting. Because N (0) and N (1) are important quantities for

describing the neural network-based classifier, those generators may be tuned carefully to

reproduce the distribution of soft activities in jet images.

6 Discussions

In this paper, we have identified essential quantities that the CNN on a jet image is using

for the top jet vs. QCD jet classification. The discovered quantities consist of both IRC safe

and IRC unsafe observables. The former includes the IRC safe two-point energy correlation,

jet spectrum, as a function of the distance between two jet constituents. The latter is an

IRC unsafe Minkowski sequence inspired from the Minkowski functionals that describes

morphological information on the set of jet constituents. It gives a quantitative measure
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of the area that is occupied by the particles inside jets. The first element of the Minkowski

sequence is the number of active pixels in the jet image, N (0), and the second element N (1)

is the sum of the N (0) and the number of the pixels adjacent to the active pixels. These

quantities are derivable from a jet image, and the relation network (RN) trained on these

quantities (along with kinematic observables) has equivalent performance to the CNN.

The IRC safe quantities are theoretically more controlled, especially different event

simulators predict consistent distributions. On the other hand, the IRC unsafe quantities

are described by phenomenological models tuned by the experimental data. The classi-

fication performance of RN agrees with that of CNN only when we include IRC unsafe

Minkowski sequences among the inputs. The similarity of the performance indicates that

the top jet classifier based on CNN uses the geometric information of soft radiation, and

we have succeeded in reproducing the CNN predictions using fewer degrees of freedom.

We also point out that the training of the RN is more stable than the CNN. The sta-

bility comes from the fact that the RN classifiers use a restricted set of derived inputs from

the jet images, and the loss function of the RN is less complicated than that of CNN. We

measure the variation of the training results by randomly swapping the event orders in the

batch training and using a different initial parameter in the networks. The variation of the

RN output is about factor 3 smaller than that of the CNN output, as we have seen in table 2.

As the IRC safe inputs, we choose the jet spectrum [19, 21], which is aggregated two-

point energy correlation as the function of the ∆R. We introduce the various improvements

on the jet spectrum from the previous paper. In this paper, it is derived from a constrained

graph network. A vertex of the graph network corresponds to a jet constituent, while

each vertex carries information of the constituent momentum and the subjet ID to which

the constituent belongs. The edges links between two vertices and represent the two-

point correlation between the two constituents. For the classification of top jets and QCD

jets, we find that the correlation among the trimmed jet and the correlation between the

leading subjet and the other constituents, and their geometry are especially useful in the

classification. We systematically include the three-point structure of the top quark in the

two-point energy correlations after removing the leading subjet. The modularized networks

process the two-point correlations separately with global kinematical inputs so that the

combined network accepts significantly more inputs without inflating the parameters in

the hidden layers.

The classifiers using the IRC unsafe quantities, such as soft pixels of jet image or the

Minkowski sequence, could suffer from systematic uncertainties of the simulation. After the

identification of the key morphological quantities, we can minimize efforts on calibration by

focusing on the N (0) and N (1) distributions. The distributions may be corrected relatively

easily by reweighting events to calibrate the distributions to the observed data. We demon-

strate that the reweighting of the simulated events to reproduce the true N (0) distributions

greatly reduce the systematic error of the classifiers. Such tuning of the data reduces the

systematic uncertainties in the ML classifications that depend on the simulated events.

In summary, we propose an approach to replace a complex neural network using the

low level inputs into a simple network using the processed inputs motivated from a physics

point of view. To this end, we show surprising evidence that the CNN output depends
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on the geometrical measures expressed by discritized version of the Minkowski functionals.

These morphological quantities improve jet classification significantly. The study of jet

morphology from the data, and comparison to the prediction from event simulation might

be an exciting direction to persuade. We think the variables may be further extended not

only for jet physics but also for the analysis of event geometry or anomaly searches.
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A Setup for Monte-Carlo event simulation

We generate pp → tt̄ and pp → jj events for top jet and QCD jet samples, respectively.

The symbol j represents gluon or (anti-)quark other than the top quark. The parton level

events are generated by Madgraph5 2.6.6 [152]. The center of mass energy is 13 TeV.

Produced top quarks are forced to decay into bW and the subsequent W boson decays

into two quarks including b-quarks. Since we are only interested in boosted top quarks,

we generate events with outgoing partons whose pT is larger than 450 GeV. Numbers of

the generated pp → tt̄ and pp → jj events with this preselection are 5 million and 10

million, respectively. The renormalization and factorization scales are set to be HT /2,

where HT is the sum of the transverse energy of each parton, and the parton distribu-

tion function is NNPDF23 lo as 0130 qed [72–75]. Two parton shower and hadronization

simulations are considered in this paper: Pythia 8.226 [153] with Monash tune [177] and

Herwig 7.1.3 [154, 155] with default tune [178, 179]. The pile-ups are not included but

the underlying events and multi-parton interactions are considered.

We use Delphes 3.4.1 [156] for detector simulation with its default ATLAS detector

configuration. Jets are reconstructed from calorimeter towers whose (η, φ) resolutions at

electromagnetic and hadronic calorimeters in |η| < 2.5 are assumed to be (0.0174,1◦)

and (0.1, 10◦), respectively. Anti-kT jet clustering algorithm [180] with radius parameter

RJ = 1.0 implemented in fastjet 3.3.0 [181, 182] is used to cluster these calorimeter

towers into jets. The leading pT jets with its transverse momentum pT,J ∈ [500, 600] GeV

and mass mJ ∈ [150, 200] GeV are selected for the analysis. In addition, a top jet sample

is required to have quarks from the originating top quark within RJ from the jet axis.

After this selection, we have about 950,000 top jets and 350,000 QCD jets. Half of them

are used for the training and th others are used for testing. For jet trimming, we use kT
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algorithm [183, 184] with radius 0.2 and keep subjets whose energy fraction is larger than

0.05. The leading pT subjet J1 is the highest pT anti-kT subjet [180] with radius 0.2.

Note that we have not used matched sample, so that the modeled pT,J distribution is

not precise beyond the leading order accuracy. Nevertheless, the changes due to recoiling

from extra radiation are not a main interest in this paper, so we use this samples by

presuming that the top jets and QCD jets are factorizable.

B Kernel density estimation of pT,J distribution

We use the kernel density estimation (KDE) on a finite interval [pmin
T,J , p

max
T,J ] to model the

event-by-event weight fpT,J(pT,J;Y ) in eq. (4.13). First, we transform pT jet into a logit

t(pT,J) in order to make the domain unbounded.

t(pT,J) = logit

(
pT,J − pmin

T,J

pmax
T,J − pmin

T,J

)
= − log

pT,J − pmin
T,J

pmax
T,J − pT,J

(B.1)

The KDE of the sampled logits, t(p
[iNY

]

T,J ) is used to estimate the probability density function

fPT,J
(pT,J;Y ).

fPT,J
(pT,J;Y ) ≈

t′(pT,J)

NY

NY∑
iY =1

Kh(t(pT,J)− t(p[iY ]
T,J )), t′(pT,J) =

pmax
T,J − pmin

T,J

(pmax
T,J − pT,J)(pT,J − pmin

T,J )

(B.2)

where Kh is a scaled kernel whose bandwith parameter is h. In particular, a gaussian

kernel with bandwith h = 0.25 is used for the KDE.

Kh(x) =
1

h
K
(x
h

)
, K(x) =

1√
2π

exp

(
−x

2

2

)
(B.3)

However, t′(pT,J) is singular at pmin
T,J and pmax

T,J , and the estimation of the probability

density near the boundary is less precise. Instead of using samples after the selection

pT,J ∈ [500, 600] GeV, we use a selection with broader pT,J range, [450, 650] GeV for KDE

only in order to avoid the effects from the singularities. The KDE is then normalized for

pT,J ∈ [500, 600] GeV afterward. We show the normalized histogram of pT,J and the KDE

in figure 23.

C Network implementations

C.1 Relation networks

The relation networks used in this paper are implemented as follows. The module for

analyzing the energy correlation with jet trimming, htrim = MLPtrim(xtrim,xkin), consists

of two hidden layers,

h
(1)
trim = FC(ztrim, zkin), size: 200, activation: ELU

h
(2)
trim = FC(h

(1)
trim), size: 200, activation: ELU

htrim = FC(h
(2)
trim), size: 5, activation: linear (C.1)
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Figure 23. The histogram and modeled probability density distribution of pT,J for (left) top jet

samples and (right) QCD jet samples. Solid black line is the KDE. The vertical bar is the statistical

uncertainty of each bin. The green and yellow bands are pointwise statistical uncertainty of the

KDE calculated from squared sum of the summands.

where zi is the standardized inputs of xi, and FC is a fully-connected layer with a given

output size and activation function. Note that we do not apply L2 regularization for the

FCs with linear activation. The module for analyzing the energy correlation of J1 and

J \ J1 is as follows.

h
(1)
J1

= FC(zJ1 , zkin), size: 200, activation: ELU

h
(2)
J1

= FC(h
(1)
J1

), size: 200, activation: ELU

hJ1 = FC(h
(2)
J1

), size: 5, activation: linear (C.2)

The logits u′ for the binary classification is implemented as follows.

h
(1)
logit = FC(htrim,hJ1 , zkin), size: 200, activation: ELU

h
(2)
logit = FC(h

(1)
logit), size: 200, activation: ELU

u′ = FC(h
(2)
logit), size: 2, activation: linear (C.3)

For the relation networks with inputs xgeometry, we replace h
(1)
logit of eq. (C.3) as follows.

h
(1)
logit = FC(htrim,hJ1 , zgeometry), size: 200, activation: ELU, (C.4)

C.2 Convolutional neural networks

Our convolutional neural networks are trained on the preprocessed jet images obtained as

in [21]. We recluster given jet constituents by kT algorithm [183, 184] with radius parameter

RJ = 0.2 and translate the (η, φ) coordinate so that the leading pT subjet axis is at (0, 0).

If a subleading pT subjet exists, we rotate the (η, φ) corordinate about the origin so that

the subjet is on the positive y-axis on the rotated coordinate. If a third leading pT subjet

exists with a negative x coordinate, we reflect the coordinate to across the y axis so that
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the third leading pT subjet always has a positive x coordinate. The preprocessed jet image

ximage is a two-dimensional pT -weighted histogram of those regularized constituents on a

range [−1.5, 1.5] ⊗ [−1.5, 1.5] with bin size 0.1 × 0.1. The energy deposit of each pixel is

standardized thereafter.

The vanilla CNN of this paper consists of six convolutional layers with a filter size

3 × 3. The standardized image zimage of ximage is fed into a chain of convolutional layers

as follows.

h
(1)
CNN = CONV(zimage), size: 30×30×16, filter size: 3×3, activation: ELU,

h
(2)
CNN = CONV(h

(1)
CNN), size: 30×30×16, filter size: 3×3, activation: ELU,

h
(3)
CNN = CONV(h

(2)
CNN), size: 30×30×16, filter size: 3×3, activation: ELU,

h
(3,POOL)
CNN = POOL(h

(3)
CNN), size: 15×15×16, pool size: 2×2,

h
(4)
CNN = CONV(h

(3,POOL)
CNN ), size: 15×15×8, filter size: 3×3, activation: ELU,

h
(5)
CNN = CONV(h

(4)
CNN), size: 15×15×8, filter size: 3×3, activation: ELU,

h
(6)
CNN = CONV(h

(5)
CNN), size: 15×15×8, filter size: 3×3, activation: ELU,

h
(6,POOL)
CNN = POOL(h

(6)
CNN), size: 7×7×8, pool size: 2×2,

h
(7)
CNN = FC(h

(6,POOL)
CNN ), size: 200, activation: ELU,

hCNN = FC(h
(7)
CNN), size: 100, activation: linear, (C.5)

where CONV is a two-dimensional convolutional layer with a given filter size and activation

function, and POOL is a max-pooling layer with a given pool size. The output size consists

of three numbers: the first two numbers represent output image width and height, and the

third number is the number of filters. We simply put hCNN to MLPlogit by replacing

eq. (C.3) to the following.

h
(1)
logit = FC(hCNN, zkin), size: 200, activation: ELU (C.6)

The ResNet in section 4.4 consists of convolutional layers h
(i+1,res)
ResNet with skip connection

h
(i+1,shortcut)
ResNet . We define a ResNet module of input image h

(i)
ResNet as follows.

h
(i+1,res)
ResNet = CONV ◦ ELU ◦ CONV(h

(i)
ResNet),

h
(i+1,shortcut)
ResNet =

{
h

(i)
ResNet if h

(i)
ResNet and h

(i+1)
ResNet has the same size,

CONV1×1(h
(i)
ResNet) otherwise,

h
(i+1)
ResNet = ResNet(h

(i)
ResNet) = ELU(h

(i+1,res)
ResNet + h

(i+1,shortcut)
ResNet ) (C.7)

where CONV1×1 is a convolutional layer with filter size 1 × 1. The hyperparameters of

other CONV will be specified later. All the convolutional operations above do not have any

activation function. If input image size and output image size are different, we use strided

convolution on CONV(h
(i)
ResNet). We build a ResNet by replacing the chain of convolutional
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layers in eq. (C.5) to the following chain of six ResNet modules.

h
(1)
ResNet = ResNet(zimage), size: 30× 30× 16, filter size: 3× 3,

h
(2)
ResNet = ResNet(h

(1)
ResNet), size: 30× 30× 16, filter size: 3× 3,

h
(3)
ResNet = ResNet(h

(2)
ResNet), size: 15× 15× 8, filter size: 3× 3, stride: 2,

h
(4)
ResNet = ResNet(h

(3)
ResNet), size: 15× 15× 8, filter size: 3× 3,

h
(5)
ResNet = ResNet(h

(4)
ResNet), size: 8× 8× 8, filter size: 3× 3, stride: 2,

h
(6)
ResNet = ResNet(h

(5)
ResNet), size: 8× 8× 8, filter size: 3× 3,

h
(1)
logit = FC(h

(6)
ResNet, zkin), size: 200, activation: ELU. (C.8)

The ResNeXt in section 4.4 uses multiple chains of convolutional layers for the residual

learning parts h
(i+1,res)
ResNet in the ResNet. The ResNeXt module with four parallel chains of

convolutional layers is defined as follows.

h
(i+1,j)
ResNeXt = ELU ◦ CONV ◦ ELU ◦ CONV1×1(h

(i)
ResNeXt),

h
(i+1,res)
ResNeXt = CONV1×1

 4⊕
j=1

h
(i+1,j)
ResNeXt

 ,

h
(i+1,shortcut)
ResNeXt = CONV1×1(h

(i)
ResNeXt),

h
(i+1)
ResNet = ResNeXt(h

(i)
ResNeXt) = ELU

(
h

(i+1,res)
ResNeXt + h

(i+1,shortcut)
ResNeXt

)
, (C.9)

where the direct sum of the images represents a stacked image along the filter dimension.

Since we use many convolutional layers already, we use three of those modules for the image

analyzer.

h
(1)
ResNeXt = ResNeXt(zimage), size: 30× 30× 16, filter size: 3× 3,

h
(2)
ResNeXt = ResNeXt(h

(1)
ResNeXt), size: 30× 30× 16, filter size: 3× 3,

h
(3)
ResNeXt = ResNeXt(h

(2)
ResNeXt), size: 15× 15× 8, filter size: 3× 3, stride: 2,

h
(1)
logit = FC(h

(3)
ResNeXt, zkin), size: 200, activation: ELU

D Updating trainable parameters with moving averages

The moving average of a network parameter in section 4.1 is evaluated as follows. An

updated parameter θ(t) at an epoch t is accumulated into a moving average θ̄(t),

θ̄(t) =

{
0 t < t0

αθ̄(t−1) + (1− α)θ(t) t ≥ t0
(D.1)

where α = 0.9. We accumulate only the updated parameters at the epochs after t0 = 50.

The solution to the recurrence relation is as follows,

θ̄(t) =

t∑
u=t0

αt−u(1− α)θ(u). (D.2)
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Figure 24. (N (0), N (0)(4 GeV)) distribution for (a) the weighted HW7 samples to reproduce PY8

distribution and (b) the weighted PY8 samples to reproduce HW7 distribution.

As a side effect of the epoch selection, the sum of the weights in the average is not 1. As

θ(u) approaches its optimum θ0, θ̄(t) approaches to (1−αt−t0+1)θ0. The factor 1−αt−t0+1

should be corrected to make the moving average also converging to θ0. We use the following

unbiased moving average θ̂(t) of the sequence of θ(t) for the validation and testing,

θ̂(t) =
1

1− αt−t0+1
θ̄(t) for t ≥ t0. (D.3)

E Evaluation of the reweighting factor

In section 5, we reweight the HW7 generated events to PY8 generated events by using

(N (0), N (0)(4 GeV)) distribution. Since the two numbers are correlated as shown in fig-

ure 17, we transform the data first and calculate the reweighting factor using normalized

histograms in order to ensure the efficiency of the reweighting. The transformation of

(N (0), N (0)(4 GeV)) is defined as follows.

(x, y)→ (x′, y′) = (x, c1 − c2y/x+ c3x), (E.1)

where c1 = 3/2, c2 = 2, and c3 = −1/60. For each event, the reweighting factor in eq. (5.1)

is calculated by the ratio of the corresponding bin values, ρPY8/ρHW7, where ρA is the bin

value of (x′, y′) histogram with events generated by A. The reweighting factor for PY8

generated events to obtain distributions of HW7 generated events can be obtained by a

similar procedure. The reweighted (N (0), N (0)(4 GeV)) distribution and (N (0), N (1)/N (0))

distribution are shown in figure 24 and figure 25, respectively.
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Figure 25. Npixel vs N1/Npixel for (a) the weigthed HW7 sample to reproduce PY8 distribution and

(b) the weighted PY8 sample. to reproduce HW7 distribution.
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