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of the equations.
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1 Introduction

During the last decades our knowledge of gravity has extremely been improved with general

relativity (GR) remaining our best classical theory to describe it. Some inconsistencies or

debates in the cosmology community rise from time to time, such as the Hubble constant

tension nowadays, but they are in no way a direct test of GR. All direct tests are consistent

with the theory, see e.g. [1]. On the other hand, GR is a classical theory and therefore

partial. It is for example geodesically incomplete for most of its solutions [2] like black

holes which contain spacetime singularity. Also, some theoretical arguments challenge

our knowledge in cosmology and the existence of the cosmological constant. Recently, a

lot of attention has focused on the String Swampland [3, 4] which rejects any de Sitter

solution [5] and therefore the existence of the cosmological constant. The origin of the

recent acceleration of the universe could be due to a scalar field. This would be a very

interesting promotion of the relevance of scalar fields in the dynamics of the universe. At

the same time, many studies try to see if scalar fields could be locally observed, and what

are their effects around black holes. For example, we can ask if we could observe any

deviation from Kerr black hole by measurement of quasi-normal modes [6]. Even if the

answer is, at present time, negative, quintessence and their extensions with non-standard

kinetic terms, attracted considerable interest. It is rather common for effective field theories

to have scalar fields and non-linear terms, such as e.g. the ones originated from D-branes

models [7–9].

The first non-linear model of this type has been proposed in 1934 by Born and In-

feld [10] with a non-linear electromagnetic field to avoid the infinite self-energy of the
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electron in classical electrodynamics. For our concern in this paper, the models originated

in cosmology in the context of inflation [11] and later adapted to dark energy [12]. These

models can also be used to describe dark matter [9, 13]. This last approach permits us

to approximate dark matter by a non-linear quintessence field and therefore identify the

possible effects of dark matter on gravitational collapse.

The numerical study of spherical gravitational collapse has a long history which began

with the work of the collapse of ideal fluid spheres with an equation of state P = 2ρ/3 [15].

They found that collapse could lead to the formation of a black hole or a bounce according

to initial conditions. Many new codes have been later developed with a focus on applica-

tions to realistic stellar collapse. But there has also been considerable interest into more

theoretical problems such as critical phenomena. Choptuik [14] has shown that if p is a

parameter describing some aspect of the initial distribution of scalar field energy, there

exists a critical value p? which denotes the threshold of black hole formation. For p < p?,

the scalar field disperses to infinity while for p > p? black hole forms. In the supercritical

regime, meaning for p > p? but very close to the threshold, a universal behavior appears

(i.e. independent of the initial data) relating the mass M of black holes to a universal

scaling behavior

M ∝ (p− p?)γ , γ ' 0.37 (1.1)

This solution has been repeatedly verified, also by using a fully 3D code [16]. But as

in critical phenomena, there exist classes of universality. Adding a mass term to the

theory [17], which introduces a length scale, produces also a universal behavior but with

a different scaling parameter γ. See also studies with a massive complex scalar field [18],

with radiation fluid [19] or with extra dimensions [20].

In this paper, we study a natural extension of the work performed by Choptuik, by

studying models known as K-essence. We will consider the generic theory and summarize

the various conditions for the viability of these models at classical as well as quantum

level. We will derive the characteristics for these models and therefore their hyperbolic-

ity. In section 3, using a spherically symmetric spacetime we will obtain the constraints

and evolution equations. For numerical purposes, we will assume a particular K-essence

model which will be studied in the weak as well as the strong gravitational regime before

conclusions.

2 K-essence

Let us consider the following action

S =

∫
d4x
√−g

[
R

2
+K(φ,X)

]
(2.1)

where φ is a scalar field representing the matter sector, X = −1
2∂µφ∂

µφ is the canonical

kinetic term and K is a generic function of the scalar field and the kinetic term.1 Con-

sidering only the sub-class of scalar-tensor models of gravity, more generalized extensions

1Note that our metric signature is (−,+,+,+).
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have been constructed, from Galileons [21], to Horndeski [22–24] to beyond Horndeski [25–

27]. Even if these models seem to have been finely constructed, they appear to have a

well-posed Cauchy problem only in high symmetrical backgrounds such as Friedmann or

spherically symmetric spacetimes. But generically, they suffer from a major problem [28].

The equations of motion are not strongly hyperbolic for most Horndeski models except

K-essence which arise as the most legitimate sub-class of scalar-tensor theories.

In this paper, we will consider models where the action is a function of X only, it

inherits an additional shift symmetry i.e. an invariance under constant translation in field

space, φ → φ + c, for any constant c. It is important to notice that demanding the

existence of stationary configurations requires shift symmetry [29], sometimes after a field

redefinition. This restriction makes the model equivalent to a perfect fluid with no vorticity.

In fact, the variation of the action in shift symmetry models gives2 Gµν = 8πTµν , where

the energy-momentum tensor is defined as

Tµν = K,X∂µφ∂νφ+ gµνK (2.2)

It is well known that this stress-energy tensor can be put in a hydrodynamical language,

Tµν = (ρ+ P )uµuν + Pgµν (2.3)

where we define an effective four-velocity uµ = ∂µφ/
√

2X, density ρ = 2XK,X − K and

pressure P = K. We see also that the pressure is a function of the energy density only, P =

P (ρ). Therefore, choosing an action is equivalent to specifying an equation of state (EoS)

for the equivalent hydrodynamical model. For example, considering K = (αX1/2β − A)β ,

the EoS is P = Aρ(β−1)/β , a polytropic law similar to various models describing neutron

stars (without the anisotropic stress tensor). Notice also that K(X) models can be related

to canonical complex scalar field theories [30] where the potential of the complex scalar field

is defined by K(X). More than an equivalence between these theories, it is an extension or

UV completion. In fact, the complex scalar field can be seen as a theory with 2 real scalar

fields with an O(2) symmetry. It’s only when one of these fields is frozen, that the model

reduces to K-essence.

For shift-symmetric K-essence models, the speed of sound for small perturbations

around a given background coincide with the usual definition of the sound speed for the

perfect fluid [31],

c2s =
K,X

K,X + 2XK,XX
≡ ∂P

∂ρ
(2.4)

The variation of the action w.r.t. the scalar field gives

∇µ(K,X∇µφ) = g̃µν∇µνφ = 0 (2.5)

where the effective metric is defined as

g̃µν = gµνK,X −K,XX∂
µφ∂νφ (2.6)

2We consider G = c = 1.
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or the inverse metric

g̃µν =
1

K,X
gµν + c2s

K,XX

K2
,X

∂µφ∂νφ (2.7)

A theorem due to Leray [32] proves that the generalized Klein-Gordon equation has a well

posed Cauchy problem if the metric is Lorentzian which has been proved to be equivalent

to c2s > 0 [13]. This condition is often referred to as the classical condition. On the other

hand, a stronger condition related to the Hamiltonian of field perturbations to be positive

definite (in cosmological context) implies K,X > 0 and K,X + 2XK,XX > 0 [33], this

condition is often dubbed in the literature as the quantum stability condition, because if

other sectors such as gravity or standard model particles couple to scalar field described by

an unbounded Hamiltonian from below, it would create states of atoms which never decay if

excited, a situation never observed in nature (a more careful discussion is proposed in [34]).

K-essence models are considered as an effective low energy description of some more

fundamental theory. Therefore, we should impose it to be consistent with basic require-

ments of quantum field theory, such as Lorentz invariance, unitarity, analyticity. . . [35, 36].

Considering the tree-level scattering amplitude, between two massive particles on a flat

background, these restrictions impose K,XX > 0 [37]. All these conditions imply non-

superluminal propagation (c2s < 1).

In summary, we consider models of gravity defined by a shift-symmetric K-essence

action with conditions K,X > 0 and K,XX > 0. Notice that gravitational collapse for

such models have been previously considered [38] but with models violating one of these

conditions. For there models, a sonic horizon (g̃rr = 0) could be defined inside the luminal

apparent horizon (grr = 0) during gravitational collapse because the model allow super-

luminal propagation. As it has been shown for the first time in [39], perturbations of the

scalar field could escape from the inside of the black hole defined by the luminal apparent

horizon without violating causality, because they emerge outside of the sonic horizon. By

imposing our conditions, we exclude these situations. The sonic horizon will be always

larger than the luminal apparent horizon and might merge together in the future.

Notice that these conditions imply that null energy conditions will not be violated,

which turned out to be central in singularity theorems. The weak energy condition plays

an important role, it implies that matter has always a non diverging effect on congruences of

null geodesics. It has been very influential, e.g. the area theorem proved by Hawking [2, 40]

states that if matter satisfies the null convergence condition or equivalently in general

relativity the null energy condition,3 the area of the black hole event horizon can never

decrease, statement very similar to the second law of thermodynamics [41].

3 Model and equations

In polar-areal coordinates [14], the metric takes the form

ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + r2(dθ2 + sin2 θdφ2). (3.1)

3For every null vector nµ, the null convergence condition is defined as Rµνn
µnν ≥ 0 while Tµνn

µnν ≥ 0

defines the null energy condition.
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If simpler, this choice is not the most appropriate because it is valid until it forms a trapped

surface. Unfortunately, as we will see a trapped surface associated with the effective metric

might form before the normal trapped surface, which will break the numerical evolution

before the formation of the black hole. The sonic horizon forms when g̃rr = 0 which

always forms before the apparent horizon defined by grr = 0, which can be seen easily from

eq. (2.6) if we assume the conditions K,X > 0 and K,XX > 0. Also, in general, to solve the

gravitational collapse we foliate the spacetime with spacelike hypersurfaces, a breakdown

of the evolution occurs when the hypersurface of constant time becomes null, i.e.

gµν∇µt∇νt = 0 || g̃µν∇µt∇νt = 0 (3.2)

which implies g00 = 0 or g̃00 = 0. Using eq. (2.6), it is also trivial to see that following

our conditions, if g00 = 0 occurs, it will always happen before g̃00 vanishes. Therefore, we

conclude that our numerical evolution will fail if g00 = 0 or g̃rr = 0. Even if this coordinate

system is not the most appropriate, we will be able to deduce some interesting results.

In order to reduce the K-essence field equation of motion to a system of first-order

PDEs, we define two auxiliary fields [14]

Φ(t, r) ≡ ∂rφ(t, r) (3.3)

Π(t, r) ≡ a(t, r)

α(t, r)
∂tφ(t, r) (3.4)

The tt- and rr-components of Einstein equation gives

a′

a
+
a2 − 1

2r
= 4πr

(
K,XΠ2 − a2K

)
(3.5)

α′

α
− a2 − 1

2r
= 4πr

(
K,XΦ2 + a2K

)
(3.6)

with X =
1

2a2

(
Π2 − Φ2

)
(3.7)

These equations contain no time derivatives, so they are constraints, they must be satis-

fied at each time. These are the same equations than the Hamiltonian and Momentum

constraints obtained after a 3 + 1 decomposition of Einstein equations. The dynamics of

the system is given by the definition of the auxiliary fields which imply

Φ̇ = ∂r

(α
a

Π
)

(3.8)

The second evolution equation is given by the generalized Klein-Gordon equation (2.5) and

the tr-component of the Einstein equation(
K,X +K,XX

Π2

a2

)
Π̇ =

1

r2
∂r

(
r2
α

a
ΦK,X

)
+ 8πr

α

a
ΦΠ2XK,XK,XX +K,XX

ΦΠ

a2
∂r

(α
a

Π
)

(3.9)

For numerical purposes, we need to define a particular model. We choose the simplest

extension of quintessence, which fulfill the previous conditions

K(X) = X + βX2 (3.10)
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The constant β could take any value but as mentioned previously, we need to impose the

condition K,XX > 0 which suggests β > 0. This condition which implies a standard UV

completion of the theory, turns out to be also related to hyperbolicity of the equations

and therefore causality. Maybe a deep relation could be obtained between hyperbolicity of

classical equations and standard Wilsonian field theory description of the quantum version.

To integrate our system of equations, we define an initial profile of the field φ(t =

0, r) implying Φ(0, r) to which we add a second initial condition Π(0, r) = 0. These

two functions are sufficient to integrate the constraint equations (3.5), (3.6) by assuming

boundary conditions. Regularity of the system imposes a(t, r = 0) = 1, and without loss

of generality we choose α(t, r = 0) = 1 which corresponds to choosing the time coordinate

at r = 0 to be the proper time. A change in this value corresponds to a trivial rescaling of

the time coordinate and would have no physical consequences. Fourth order Runge-Kutta

(RK4) method is used to integrate these constraint equations. These values of (α, a) are

then entered into the evolution equations (3.8), (3.9) to find (Φ,Π) at the next time step

with RK4. This process is repeated until the scalar field disperses to infinity and forms

flat spacetime or until forms an apparent horizon. The two families of initial data that we

adopt are

Family A: φ(0, r) = φ0r
3e
−
(
r−r0
d

)q
(3.11)

Family B: φ(0, r) = φ0 tanh
r − r0
d

(3.12)

where (φ0, r0, d, q) are constants. For each family of initial conditions, we keep only φ0
as a free parameter, the others are fixed to (r0 = 20, q = 2, d = 3). The system is

evolved between r = 10−50 and r = 50 from t = 0 until it forms an apparent horizon

(rH) featuring fixed mesh refinement. The r-spacing ∆r varies from the finest value near

the origin to larger values of r in 5 different sectors. Near the origin and until rH (which

is approximately determined in a first run) the resolution is ∆r = 10−4, this r-spacing is

progressively increased 4 times until it reaches 10−2 at larger r. The time resolution is

also fixed but satisfies the Courant-Friedrichs-Lewy condition ∆t = ∆r/5 where ∆r takes

5 different values as defined by each sector (from ∆r = 10−4 to ∆r = 10−2). All results are

verified by modifying the resolution in space and time and for most of them we checked

with a fixed mesh of ∆r = 10−4 in all space. All results presented in the paper are stable

under these tests.

We should emphasize that the energy-momentum tensor defined in eq. (2.3) describe

an observer with four-velocity uµ = ∂µφ/
√

2X and therefore in general case with a radial

velocity. For that observer, the energy density could be negative. In fact, even for the

simplest case where K = X, we would have ρ = X, which from eq. (3.7) and the initial

condition Π = 0 gives ρ = −Φ2/2a2 which is at initial time, negative. In order to define

the energy density measured by a static observer at position r, we would need a new

four-velocity nµ = (1/α, 0, 0, 0) and therefore for this observer an energy density

ρ̄ = Tµνn
µnν = 2XK,X +

Φ2

Π2 − Φ2
(K + 2XK,X) (3.13)

which at t = 0 gives ρ̄ = −K = −X > 0 for K = X.
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4 Characteristics

Following standard textbooks [42], we compute the characteristic structure of our system

(see also [43]). It is sufficient to analyze the evolution equations of (Φ,Π) defined in

eqs. (3.8), (3.9) in which we need to replace (α′, a′) from the constraint equations to reach a

system of 2 equations of the following form E(i)[α, a, w(j), ∂rw
(j), ∂tw

(j)] = 0 where w(1) = Φ

and w(2) = Π. We introduce the principal symbol

P ij (ξa) ≡
δE(i)

δ(∂aw(j))
ξa (4.1)

where (ξt, ξr) define the characteristic covector. By solving the characteristic equation

defined by det[P ij (ξa)] = 0, we deduce the characteristic speed as c = −ξt/ξr.

c± =
−K,XXaαΠΦ± a3α

√
K,X(K,X + 2XK,XX)

K,Xa4 +K,XXa2Π2
(4.2)

In the case of a canonical scalar field, K = X, we obtain c± = ±α/a which reduce to the

characteristic speeds of GR and the equation is always hyperbolic. In the generic case, the

sign of K,X(K,X+2XK,XX) defines the character of the system. If positive, it is hyperbolic,

when negative it is elliptic and if K,X(K,X + 2XK,XX) = 0 it is parabolic. Notice that,

this condition is similar to det g̃ = 0 or equivalently to the sign of the eigenvalues of the

effective metric g̃. Even if we impose the condition β > 0, the hyperbolicity of the equations

can be lost after some time of evolution. In fact, the condition K,X(K,X + 2XK,XX) ≡
(1 + 2βX)(1 + 6βX) > 0 can be violated if −1 < 2βX < −1/3 (for any sign of β). Because

we imposed β > 0, this condition is violated if X is sufficiently negative which translates

into a model developing large enough space-like gradients (Φ > Π from eq. (3.7)).4 This

behavior was already predicted in [13, 44]. But remained to know if for generic initial

conditions, large space-like gradients of the solution could form. This was recently proved

numerically to happen in [45]. But β > 0 remains a better option which allows some initial

conditions to develop without any loss of hyperbolicity, contrary to β < 0 case.

5 Numerical results

5.1 Weak field regime

In the weak field regime, when φ0 � 1, the scalar field bounces at the origin (r = 0) and

then disperses to infinity. We see in figure 1 this behavior for 3 different time5 and for

3 different values of β = {0, 5, 10} for the 2 families of initial conditions. For t = 4000

for family A and t = 1000 for family B, the field is yet collapsing. Around t = 9500 for

Gaussian initial conditions and t = 10000 for the second family of initial conditions the

field bounces at r = 0 and finally at a later time, the field disperses to infinity. We see

that the parameter gives a small variation to the dynamics of the scalar field because of

4We thank the anonymous referee for suggesting this possibility.
5Time is the iteration step and not proper time at r = 0.
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Figure 1. Scalar field profile φ in the weak field regime, for β = 0.0 (solid line), β = 5.0 (dashed

line) and β = 10.0 (dash-dotted line). Upper panel is for Gaussian family type of initial conditions

(Family A) while the bottom panel represents family B.

the weak regime studied in this section. Even if we can notice that for larger values of

β, the field takes more time to bounce and therefore reaches infinity a bit later compared

to β = 0. Notice that taking larger values of the constant β increases the mass of the

spacetime and therefore we get closer to the threshold of black hole formation.

5.2 Strong field regime

We know that when the initial mass of the scalar field added in the spacetime is large, the

collapse of that field produces a black hole. In this paper, we run simulations varying the

amplitude of the K-essence scalar field φ0 from a value in the weak limit regime to a value

where the final result of the evolution is the creation of an event horizon (collapse of the

metric) or a sonic horizon (collapse of the effective metric). As we described previously,

since our metric is not horizon penetrating, we cannot evolve the spacetime beyond the

formation of any horizon. We found 4 different regimes. For β = 5, we found situations

described in figure 2 but which are generic for any value of β 6= 0. We found

• For an amplitude of the scalar field small, φ0 = 3.7 10−6 for β = 5, we observe the

formation of a sonic horizon without being able to continue the simulation to know if

a black hole forms. But it is interesting to notice that during a very short period of

time, the simulation continues and this regime shows a loss of hyperbolicity related

to the condition K,X + 2XK,XX = 0. This result is similar to [45].
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Figure 2. Last time evolution before formation of a horizon. The event horizon forms when grr = 0

and the sonic horizon when g̃rr = 0. For φ0 = 3.7 10−6 and φ0 = 6 10−6 forms a sonic horizon

while the event horizon is not yet formed, while for φ0 = 5 10−6 and φ0 = 8 10−6 both horizons

form at the same time within our numerical precision.

• Increasing the amplitude of the initial field, the sonic horizon is present, but now the

metric tends to collapse forming an event horizon with the same radius than the sonic

horizon (within the accuracy of our simulation). This behavior is observed when β

parameter is not too strong. We do not observe any loss of hyperbolicity.

• Increasing the amplitude of the scalar field, the evolution ends because of the forma-

tion of a sonic horizon, as in the first situation, but this time the dynamics of the

metric seems clearly to indicate that black hole would form in the future and it seems

that hyperbolicity will not be lost, the function K,X +2XK,XX is far from vanishing.

• For strong values of φ0 both metrics collapse at the same radius (within the accuracy

of the numerical evolution). This behavior was observed for all values of β. The

larger the value of β, the larger the value of φ0 producing this behavior. In this case,

a BH forms and hyperbolicity is maintained until the end of the simulation.

In general, the formation of a sonic horizon indicates the formation of an event horizon

in the future except in the first regime described earlier where the hyperbolicity is lost and

therefore the BH never forms.

As shown in figure 2 depending on the initial value of the amplitude of the scalar

field, we have either the formation of sonic horizon without the existence yet of an event

horizon or both horizons (sonic and luminal) form and are indistinguishable. To illustrate

these behaviors in a better way, in figure 3 we show the variation of the apparent radius

defined either by the sonic horizon or by both horizons when formed simultaneously. We

see e.g. for β = 5 and for the Family A of initial conditions that we have 4 different regimes

corresponding to the cases described in figure 2. The first and the third regime (in orange)

corresponds to the formation of the sonic horizon while the second and the last (in blue)

corresponds to the simultaneous formation of both horizons. Notice that for larger values

of β some regimes disappear. In case of the Family A and β = 5, the blue lines seem to
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Figure 3. Radius of the first horizon formed as a function of the amplitude of the initial scalar

field, φ0, for various values of β. Blue-branch represents formation of both horizons at the same

time while orange-branch describes formation of sonic horizon only. Results are shown for Gaussian

family (first two columns) and the Family B initial conditions (last two columns).

form only 1 line if extended. In fact, we expect, in this case, the third regime where only

a sonic horizon forms to evolve in time with an increasing sonic horizon until it forms the

link between the second regime and the last. This behavior can be observed in all cases

like e.g. β = 1 for Family B, where the 2 blue lines seem clearly to be extended to each

other.

Therefore, we expect the sonic horizon to be dynamical and evolve in time until the

formation of the event horizon if hyperbolicity is not lost. Because in all our simulations,

the spacetime seems to converge to the Schwarzschild solution, we expect both horizons to

join in the future (see appendix A). Therefore we presume that for larger time evolution,

the radius of the black hole formed should describe a continuous function of the initial

condition φ0 except if hyperbolicity is lost as shown in the first branch. Surprisingly, the

first branch which does not represent a BH because hyperbolicity is lost, and therefore an

event horizon will never form, shows a universal behavior as if it represents the threshold

of black hole formation.

We can see from figure 4 the evolution of the characteristic line defined from eq. (4.2)

in (t, r) coordinates. In the first case, a sonic horizon is formed but we do not expect a

black hole to form as explained previously, while in the second case, an event horizon forms

at normalized radius r = 1. Recently, it was shown that in flat spacetime, these models

could produce caustics [52]. But as it can be seen from figure 4, the characteristic lines

do not intersect. We haven’t found any formation of caustics in our simulations. In the

second case, where the event horizon forms, indicated by the lines converging to r = rs of

the characteristic lines, the BH is Schwarzschild.

In fact, every time a black hole forms, the exterior solution is Schwarzschild as we can

see in figure 5. Considering e.g. the Family A of initial conditions and for various values of
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hole forms.
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Figure 5. Curvature scalar R and Ricci tensor squared RµνR
µν as a function of the radial radius

r at last time t before formation of the event horizon for β = 10 and φ0 corresponding to the last

branch. The vertical line represents the position of the event horizon for each initial condition φ0.

φ0 which all correspond to the fourth branch where the event horizon forms at the same

time than the sonic horizon (blue-branch in figure 3), we have represented the curvature

scalar R and the Ricci tensor squared RµνR
µν during the last moment of evolution before

black hole formation. We see that for all values of φ0 the curvature scalar and the Ricci

tensor squared vanish for r larger than the event horizon indicating the formation of the

Schwarzschild solution which has also been checked directly from the metric. This behavior

has been observed for both families of initial conditions and for all values of β. The end

state of the evolution when the event horizon is formed is the Schwarzschild spacetime.

Notice also that the event horizon increases with increasing φ0 as expected.

On the other hand, when the sonic horizon forms first, the metric is not Schwarzschild

as seen in figure 6. In this case, we expect the system to continue to evolve until the
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Figure 6. Curvature scalar R and Ricci tensor squared RµνR
µν as a function of the radial radius r

at last moment t before formation of the sonic horizon for various values of β and φ0 corresponding

to the first branch. The vertical line represents the position of the sonic horizon.

formation of the Schwarzschild spacetime or a loss of hyperbolicity. This behavior should

be checked with coordinates such as Gullstrand-Painlevé. For a given family of initial

conditions and for a given β, values of φ0 lower than the first branch produce dispersion

and therefore flat spacetime while values taken within this branch produce a sonic horizon

and later a loss of hyperbolicity. It is interesting to see from the curvature in figure 6 that

we are still far from the Schwarzschild solution and therefore the formation of the event

horizon, but very surprisingly, considering the sonic horizon we found a universal behavior.

For any family of initial conditions and for any β, there exist a critical value of φ0 named

φi in figure 7 around which the radius of the sonic horizon follows a universal behavior

given by

r = r0 + (φ0 − φi)γ , γ ' 0.51 (5.1)

Because of the existence of an additional scale in our system (β), we have a non vanishing

minimum radius of the black hole corresponding therefore to Type I critical phenomena [46].

6 Conclusions

In this paper, we have studied gravitational collapse in K-essence models with additional

shift symmetry. We have presented the various constraints for a well-defined problem

at classical level and for its quantum completion which reduces to K,X > 0, K,XX > 0

and K,X + 2XK,XX > 0. For these theories, we generically have the formation of two

horizons, an event horizon and a sonic horizon which define a limit for the propagation of

the perturbations of the scalar field. For numerical purposes, we focused on a particular

model defined by K = X + βX2. We found that in the weak field regime, the scalar

field disperses and spacetime is flat while in the strong field regime, we have the formation

of a horizon. Two situations occur, either only a sonic horizon forms or both horizons

form at the same time. In this last case, the exterior solution is always Schwarzschild
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and we never observed formation of caustics. In the cases where the sonic horizon formed

first, we could have either a dynamics of the field showing the possible formation of a

BH in the future or a loss of hyperbolicity of the equations. Very surprisingly, the lowest

regime, corresponding to a situation were the field does not disperse to infinity, and which

corresponds to the formation of a sonic horizon, reveals a universal behavior even if the

hyperbolicity is rapidly lost after the formation of the sonic horizon. We found that in the

critical limit of the formation of the sonic horizon rS , a universal power-law scaling of rS
appears with a critical exponent of order 0.51 for any parameter β 6= 0. This result seems

to indicate that the universal behavior is also encoded in the sonic horizon.

A Stealth scalar field in K-essence6

In this appendix, we show that a non-trivial scalar field could live over a Schwarzschild

background, which therefore could produce a sonic horizon at a location different from the

event horizon. This type of dressing a black hole is known as stealth scalar field [47]. Since

the original paper, various solutions have been discovered, see e.g. [48–50] for a study in

other theories.

6We thank again the anonymous referee which suggested to look to this problem.
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When the light horizon forms and the spacetime solution is Schwarzschild, the Einstein

tensor vanishes which implies a vanishing of the energy-momentum tensor. The right-hand

side of equations (3.5), (3.6) is zero, from which we obtain the conditions of existence of

this solution

K = 0 (A.1)

K,X = 0 || Φ = Π = 0 (A.2)

Because, Φ = Π = 0 would provide a trivial scalar field, we conclude that a necessary

condition of existence of a dressed Schwarzschild black hole is K = 0 and K,X = 0.

In our case, we studied the model K = X + βX2 which can’t comply with these

conditions at the same time. Therefore, we conclude that every time the background is

Schwarzschild, the scalar field is trivial, which implies that the effective metric is g̃µν = gµν ,

and therefore the sonic horizon coincides with the event horizon.

But for more generic models, we could have non-trivial solutions. Considering these 2

necessary conditions, K = K,X = 0, a solution would be of the form X = X0 constant.

In order to study also the regularity of the field across the event horizon, we introduce

the ingoing Eddington-Finkelstein coordinate, v = t+ r∗, where the tortoise coordinate is

defined as r∗ = r + rs ln
(
r
rs
− 1
)

. In these coordinates, the equation X = X0 reads as

−φ,vφ,r −
α2

2
φ2,r = X0 , α2 = 1− rs

r
(A.3)

whose solution is

φ = qv + F (r) (A.4)

where

F ′(r) =
−q ±

√
q2 − 2X0α2

α2
(A.5)

We see that for the square root to be always real, we need to impose X0 ≥ 0 and q2−2X0 >

0, while for X0 < 0 there will be always a range of r, near the singularity, where the function

is not defined. Also in order to impose a regularity of the F ′(r) at the event horizon, we

choose the solution

F ′(r) =
−q +

√
q2 − 2X0α2

α2
(A.6)

which near the horizon behaves as −X0/q (we chose q > 0). Integrating the equation, we

find the final solution

φ(v, r) = q(v − r) + ψ(r)− qrs ln
[
q2r + (rs − r)X0 + qψ(r)

]
+
rs(q

2 −X0)√
q2 − 2X0

ln
[
r(q2 −X0) +X0(rs − r) + ψ(r)

√
q2 − 2X0

]
(A.7)
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with ψ(r) = r
√
q2 − 2X0 + 2X0rs/r. The scalar field is regular at the horizon but diverges

at infinity even if its space derivative is finite.

Notice that for flat spacetime, rs = 0, we find from (A.7)

φ(t, r) = qt+ r
√
q2 − 2X0 (A.8)

which corresponds to a wave of velocity v =
√

1− 2X0/q2, as found in [51]. We see also

that X0 = 0, reduces the field to φ = qv.

Considering this solution, (A.7), which dresses the Schwarzschild spacetime, we can

obtain the effective metric

g̃11 = −KXX(X0)

[
q2 − 2X0 + 2X0

rs
r

]
(A.9)

Following the regularity conditions we imposed, X0 > 0, q2 − 2X0 > 0, the solution will

not form a sonic horizon. The only sonic horizon which can be formed are for solutions

which are not defined until r = 0 (X0 < 0). In this case, the sonic horizon is located at

r =
−2X0rs
q2 − 2X0

(A.10)

which corresponds to ψ(r) = 0.

Notice that the effective metric is singular because g̃22 = g̃33 = 0. To regularize this

solution, we would need an angular dependence of the scalar field. But in all cases, it

was claimed in [53] that the solution would be infinitely strongly coupled and therefore

could not be trusted within the regime of validity of this effective field theory. It would be

interesting to see if the recent extension [30] of these theories suffer from the same problem.
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