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Abstract

We construct a generalization of the cyclic λ-deformed models of [10] by relaxing the requirement that 
all the WZW models should have the same level k. Our theories are integrable and flow from a single UV 
point to different IR fixed points depending on the different orderings of the WZW levels ki . First we cal-
culate the Zamolodchikov’s C-function for these models as exact functions of the deformation parameters. 
Subsequently, we fully characterize each of the IR conformal field theories. Although the corresponding left 
and right sectors have different symmetries, realized as products of current and coset-type symmetries, the 
associated central charges are precisely equal, in agreement with the values obtained from the C-function.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

It is an extremely important and interesting endeavour to obtain exact results for quantum field 
theories (QFTs) living in any number of dimensions. The importance lies on the fact that based 
on this achievement one gains access to the non-perturbative regime of the theory, on one hand, 
and may uncover hidden symmetries that are not at all apparent from the Lagrangian formulation 
of the theory, on the other. Recently, this goal was achieved for a class of two-dimensional QFTs. 
These theories can be formulated as current-current perturbations of conformal field theories 
(CFTs) of the WZW type.

The systematic construction of a large class of integrable two-dimensional field theories based 
on group spaces G and having an explicit Lagrangian formulation was performed in [1–6]. 
The quantum properties of these theories were further studied in [7–12]. These models are 
parametrized by several couplings, for small values of which the models take the form of one 
or more WZW models [13] perturbed by current bilinears. In the context of these models a large 
class of observables, including β-functions [14,15,11,16,17], anomalous dimensions of currents 
and primary operators [7–9,18,19], three-point correlators of currents and/or primary fields [7,19]
were computed. In addition, Zamolodchikov’s C-function [20] in these models were calculated 
as exact functions of the deformation parameters [21,22].1 This goal was achieved by using a va-
riety of complementary methods. One way [8,7] was to use low order perturbation theory around 
the conformal point in conjunction with certain non-perturbative symmetries [25] in the space of 
couplings which these theories generically exhibit. A second method is based on the geometry in 
the space of couplings assisted by the knowledge of the all-loop effective action of these models. 
This method allows in principle the calculation of the anomalous dimensions of composite oper-
ators built from an arbitrary number of currents was developed in [18]. More recently, yet another 
method for calculating exact results in this class of models was initiated in [19]. This method was 
very recently applied to deformed coset CFTs in [26]. In this method one ends up performing 
calculations around the free field point and not around the conformal one, which is much easier 
and in addition all deformation effects are captured by the couplings in the interaction vertices.

1 These results are exact in the deformation parameters but leading in the 1/k-expansion. Recently, the subleading 
terms in this expansion were obtained in [23,24] for the β-functions, the C-function and the anomalous dimensions of 
the operators perturbing the CFT in the cases of group and coset spaces.
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The virtue of the models constructed in [3–5] for deformations based on current algebras and 
in [27] for deformations cases of coset CFTs, as compared to the prototype λ-deformed model [1]
(for SU(2) the λ-deformed model was found earlier in [28]) is that they possess a rich structure 
in their RG flow consisting of several fixed points with a different CFT sitting at each fixed point. 
It remains an open problem to fully classify these CFTs by determining their symmetry groups. 
In this work we make a major advancement towards this direction. In particular, we will firstly 
construct a generalization of the cyclic model presented in [10] by relaxing the requirement 
that all the WZW models employed in the construction have the same level k. In this way, we 
will obtain a class of models which under the renormalization group (RG) flow from the single 
ultraviolet (UV) point to different infrared (IR) fixed points depending on the different orderings 
of the WZW levels ki . This was not the case in the original model of [10] which did not have any 
IR fixed points due to the equality of the levels. Subsequently, we will calculate the C-functions 
of these models as exact functions of the deformation parameters. This will be the first step in 
the complete characterization of each of the conformal field theories that live at each of the IR 
fixed points.

Our result consists of the remarkable fact that although the left and right sectors of the cor-
responding IR CFTs have different symmetries, which are products of current and coset-type 
symmetries (see Tables 2 and 4), the central charge of the left and right sectors are precisely 
equal, in agreement with the expressions for the C-functions which do not distinguish the left 
from the right sector. We note that left-right asymmetric coset CFTs with equal left-right central 
charges were realized before in [29] as CFTs corresponding to the left-right asymmetric gauged 
actions of [30,31]. Finally, let us mention that the models presented in this work are integrable 
but we do not make any direct use of this fact in our considerations.

The paper is organized as follows: In section 2, we will firstly review the model of [10] and 
then we will present a certain generalization of it suited for our purposes. In section 3.1, we will 
calculate the, exact in the deformation parameters λi , C-function of the aforementioned theory 
from which we will read off the central charge of the IR CFTs. Its form will give us a strong 
indication for the type of symmetries of the IR CFTs. The emerging symmetries at the IR will 
be products of chiral current and coset-type symmetries. In section 3.2, we will present a method 
for identifying the chiral symmetries in the case of two group elements, n = 2. This will be 
based on the identification of the chiral currents generating the left-right group transformations 
and the calculation of the Poisson brackets (PBs) for them using the canonical formalism. This 
method for identifying the chiral symmetries is easily generalized to the case of arbitrary n. In 
section 3.3, we will investigate the type of the IR fixed point CFTs at the IR in all detail by 
developing a formalism which will give us access, also to the coset-type part of the conformal 
symmetry. We will present it in detail for n = 2, 3 and n = 4. This formalism will render us 
capable of identifying the type of the CFTs in the IR regime for arbitrary n. We present our 
conclusions in section 4. Finally, in appendix A we prove that our models are integrable by 
finding the appropriate Lax pairs, and in appendix B we collect some formulae regarding the 
Hamiltonian formulation of our n = 2 model.

2. Constructing closed chain models

In this section, we first briefly review the models constructed in [10] which will serve as a 
basis in subsequent developments in this paper. These models represent the effective action of 
coupled WZW models all at the same level k with the characteristic that when the deviation 
from the conformal point is small they interact via current bilinears forming a closed chain. Then 
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we will generalize this construction to the case of arbitrary levels for the corresponding WZW 
models. As we will see having different levels warranties that there will be an IR fixed point 
under the RG flow, as well as the avoidance of the strong coupling regime.

The basic idea [2,10] was to start with the sum of n WZW models all at level k, based on 
the same semi-simple group G to which one adds n PCM models with non-isotropic, in general, 
coupling matrices. Next, one gauges their common global symmetry

gi → h−1
i gihi+1 , g̃i → hig̃i , i = 1,2, . . . , n , (2.1)

where gi ∈ G refers to each of the WZW, g̃i ∈ G refers to the PCM models and hi ∈ G denotes 
the local symmetry transformation. This kind of gauging resembles the one used for gauged 
WZW in [30,31]. The index i is defined modulo n. Fixing the gauge by choosing g̃i = 1 , ∀ i
gives the action [10]

S =
n∑

i=1

Sk(gi) + k

π

∫
d2σ

n∑
i=1

Tr
(
A

(i)
− ∂+gig

−1
i − A

(i+1)
+ g−1

i ∂−gi+

+ A
(i)
− giA

(i+1)
+ g−1

i − A
(i)
+ λ−1

i A
(i)
−

)
,

(2.2)

where λi denote arbitrary matrices while Sk(gi) represents the WZW action for the field gi , at 
level k. Finally, the gauge fields A(i)

± belong in the algebra L(G) of G. We emphasize that the 
whole gauging procedure is such that the resulting action is free of gauge anomalies [10].

The effective action that is obtained after we integrate out in (2.2) the gauge fields A(i)
± takes, 

for small values of the matrices λi , the form of n distinct WZW models interacting by mutual 
current bilinears

S =
n∑

i=1

Sk(gi) + k

π

∫
d2σ

n∑
i=1

Tr
(
J

(i+1)
+ λi+1J

(i)
− +O(λ2)

)
, (2.3)

where

J
(i)
+ = −i∂+gig

−1
i , J

(i)
− = −ig−1

i ∂−gi , i = 1,2, . . . , n . (2.4)

We see that when the strength of the interactions, controlled by the magnitude of the elements 
of the matrices λi , is small, the interactions are bilinear in the current of the nearest neighbors 
and in such a way that a closed chain is formed. This property, together with the fact that all the 
WZW models have the same level, warrants an anomaly free gauging procedure. The exact in 
λi effective action can be found in [10] and will not be needed for our purposes. In addition, a 
Hamiltonian analysis of the action (2.2) revealed that the model at hand is canonically equivalent 
to n independent single λ-deformed WZW-models each with a coupling λi . Thus the RG flow 
equations of each of the coupling matrices λi should be the same as that of a single λ-deformed 
model [10]. This fact may also be seen from the form of the interaction terms (2.3) and conformal 
perturbation theory arguments, as discussed in [10] as well.

We will study a generalization of (2.2) in which the levels ki of the WZW models will be 
different for adjacent sites. Then, the analog of the action (2.2) is

S =
n∑

i=1

Ski
(gi) + 1

π

∫
d2σ

n∑
i=1

kiTr
(
A

(i)
− ∂+gig

−1
i − A

(i+1)
+ g−1

i ∂−gi

+ A
(i)

g A
(i+1)

g−1) − k(i)Tr
(
A

(i)
λ−1A

(i))
.

(2.5)
− i + i + i −
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Solving the equations of motion of A(i)
± we find that

A
(1)
+ = i(1− D̂1 . . . D̂n)

−1
n∑

i=1

D̂1 . . . D̂i−1(λ
(i)
0 )−1λT

i J
(i)
+ . (2.6)

In the above equations the various parameters are defined as

k(i) = √
kiki−1 , λ

(i)
0 =

√
ki−1

ki

, i = 1,2, . . . , n . (2.7)

Note that, not all λ0’s are independent since they obey the identity 
∏n

i=1 λ
(i)
0 = 1. In addition

D̂i = (λ
(i)
0 )−1λT

i Di , (Di)ab = Tr(tagi tbg
−1
i ) , i = 1,2, . . . , n , (2.8)

for a set of representation matrices ta , a = 1, 2, . . . , dimG, normalized to unity and obeying the 
corresponding Lie algebra. The rest of the fields are obtained by cyclic permutations.2 Note that, 
the sequence of the D̂i operators that appears in the sum should be strictly increasing, otherwise 
it should be replaced by the identity matrix.

The action (2.5) is permutation invariant in the index i, as well as invariant under the general-
ized parity transformation

σ+ ↔ σ− , gi → g−1
n+2−i , ki → kn+2−i , λi → λT

n+3−i , A
(i)
± → A

(n+3−i)
∓ . (2.10)

Using this and (2.6) we may find the on-shell values of the gauge fields A(i)
− as well.

Plugging the gauge fields into (2.5) we find the σ -model action3

S = k1

12π

∫
tr(g−1

1 dg1)
3 + k1

π

∫
d2σTr

(
1

2
J

(1)
+ D1

1+ D̂T
1 D̂T

n . . . D̂T
2

1− D̂T
1 D̂T

n . . . D̂T
2

J
(1)
− (2.12)

+
n∑

i=2

J
(i)
+ (λ

(i)
0 )−1λiD̂

T
i−1 . . . D̂T

2 (1− D̂T
1 D̂T

n . . . D̂T
2 )−1J

(1)
−

)
+ (cyclic in 1,2, . . . , n) .

This action is of course invariant under the generalized parity transformation (2.10). In addition, 
for small values of the coupling matrices λi we have that

S =
n∑

i=1

Ski
(gi) +

n∑
i=1

k(i+1)

∫
d2σTr(J (i+1)

+ λi+1J
(i)
− ) +O(λ2) . (2.13)

For diagonal matrices λi the above σ -model action (2.12) is integrable and this is explicitly 
demonstrated Appendix A. The Hamiltonian analysis for two-coupled models was performed in 
[3] for the equal level case. The extension of this for unequal levels can be found in Appendix B.

2 For example

A
(2)
+ = i(1− D̂2 . . . D̂nD̂1)−1

n+1∑
i=2

D̂2 . . . D̂i−1(λ
(i)
0 )−1λT

i J i+ . (2.9)

.
3 Cyclic in the indices 1, 2, . . . , n below means that the next term is

Tr

(
1

2
J

(2)
+ D2

1+ D̂T
2 D̂T

1 . . . D̂T
3

1− D̂T
2 D̂T

1 . . . D̂T
3

J
(2)
− +

n+1∑
i=3

J
(i)
+ (λ

(i)
0 )−1λiD̂

T
i−1 . . . D̂T

3 (1− D̂T
2 D̂T

1 . . . D̂T
3 )−1J

(2)
−

)
. (2.11)
.
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As in the case of equal levels, the RG flow equations for the matrices λi are decoupled. This 
is apparent from the form of the interactions in (2.13) since different terms have trivial OPE’s 
among themselves.4 For the purposes of the present paper we consider the isotropic case in which 
(λi)ab = λiδab . Then, the β-function for each of the couplings λi reads

dλi

d lnμ2 = − cG

2k(i)

λ2
i (λi − λ

(i)
0 )(λi − (λ

(i)
0 )−1)

(1 − λ2
i )

2
, i = 1,2, . . . , n , (2.14)

where μ is the renormalization energy scale. As we can see the running of each of the defor-
mation parameters does not depend on the other couplings but only on the levels of the adjacent 
WZW models. In fact, each of the β-functions (2.14) are identical to the β-function of the model 
constructed in [3]. Note also that the symmetry transformation (2.10) induces the transformation

k(i) → k(n+3−i) , λ
(i)
0 → (

λ
(n+3−i)
0

)−1
, i = 1,2, . . . , n . (2.15)

Therefore, the RG flow equations (2.14) are consistent with the transformation of λi in (2.10).
Clearly the CFT defined at the UV at λi = 0 is the current algebra product Gk1 × Gk2 × · · · ×

Gkn . The RG flow is between this point and the IR fixed point. The IR CFT is reached when 
each of the deformation parameters λi takes a particular value, namely λi = λ

(i)
0 if ki > ki−1

or λi = (λ
(i)
0 )−1 if ki < ki−1. The details of the IR fixed point are, of course, sensitive to the 

ordering of the levels. For example, for the case of n = 2 it was shown in [3] that for k1 < k2

(which is an ordering we may always do with no loss of generality) we obtain the following flow 
of CFTs from the UV point (λ1, λ2) = (0, 0) towards the IR (λ1, λ2) = (λ0, λ0).

Gk1 × Gk2 =⇒ Gk1 × Gk2−k1

Gk2

× Gk2−k1 . (2.16)

The main goal of the present work is to be able to identify the nature of the CFTs in the IR 
regime. We will see that there is an increasing number of inequivalent IR CFTs as the number n
of coupled WZW models increases. The nature of each of these CFTs crucially depends on the 
ordering of the levels or equivalently on the values that each coupling λi takes at the IR fixed 
point. The reader might think that changing the order of the levels corresponds to the same RG 
flows, up to an appropriate renaming of the labels i. However, this is not the case since as we 
see from (2.13), only adjacent currents J i± are coupled. We will discover the very novel feature 
that for more than two coupled models the symmetries of the left and the right sectors of the 
IR CFTs are not the same. Hence, the IR CFT for n = 2 depicted in (2.16) is a special case in 
which both sectors have the same symmetry. Note that for k1 = k2 the IR CFT in (2.16) seizes 
to have a meaning since the theory is driven to a strong coupling regime in which it makes sense 
to consider the non-Abelian limit as in section 2 of [10]. Finally let us mention that (2.5) is a 
particular case of the most general multiparameter deformation of a Gk1 × · · · × Gkn CFT. The 
action was constructed in [5] and reads

4 For general matrices the RG flow equations can be found for the equal level case in [16] and for unequal levels in 
[32].



G. Georgiou et al. / Nuclear Physics B 958 (2020) 115138 7
S =
n∑

i=1

Ski
(gi) +

n∑
i=1

(ki

π

∫
d2σTr(A(i)

− ∂+gig
−1
i − A

(i)
+ g−1

i ∂−gi+

+ A
(i)
− giA

(i)
+ g−1

i )
)

−
n∑

i,j=1

1

π

∫
d2σ

√
kikj Tr(A(i)

+ λ−1
ij A

(j)
− )

)
,

(2.17)

where the inverses refer to the suppressed group indices and not in the space of couplings with 
indices i and j . Choosing the entries of λ−1

ij as

λ−1
n1 = λ−1

1 , λ−1
ij = λ−1

j δi,j−1 (2.18)

and redefining A(n)
+ → A

(1)
+ and A(i−1)

+ → A
(i)
+ this action becomes the one in (2.5). Integrability 

of (2.17) is ensured for a specific form of the matrix λ−1
ij taken to be isotropic in group space and 

given by [5]

(λij )ab = δabλij ,

λ−1
i1 	= 0 , i = 1,2, . . . , n−1 , λ−1

nj 	= 0 , j = 2,3, . . . , n ,

λ−1
ij = 0 for all other entries .

(2.19)

The σ -model action (2.5), is proven to be integrable in Appendix A for diagonal matrices, i.e. 
(λi)ab = λiδab . Combining with (2.18) we conclude that the case at hand is a new integrable case 
compared to the one found in [5].

3. CFTs in the IR

In this section we will investigate the fixed point of the RG flow reached in the IR.

3.1. The exact C-function and the central charge at the IR point

A strong indication of the nature of the IR CFT may come from it’s central charge. This 
is the value of Zamolodchikov C-function [20] at the IR fixed point of the RG flow. The way 
to calculate C-functions as non-trivial functions of the deformation parameters in the context 
of models obtained as deformations of CFTs was put forward in [21], where the C-function 
calculated for the basic isotropic examples. Generalizations for generic deformation parameters 
cab be found in [22].

The C-function was explicitly derived in [21] for the n = 2 case, so here we will just state 
the result as, the generalization for arbitrary n is straightforward, the reason being that the defor-
mation parameters λi are decoupled. The C-function to O(1/ki) in the large k-expansion reads 
[21]

C(λ1, . . . , λn;λ(1)
0 , . . . , λ

(n)
0 ) = ndimG − cG dimG

2

n∑
i=1

F(ki, λi) , (3.1)

where cG is the eigenvalue of the quadratic Casimir in the adjoint representation, i.e. facdfbcd =
cGδab and

F(ki, λi) = 1

k
+ λ3

i

4 − λi(3 − λ2
i )(λ

(i)
0 + (λ

(i)
0 )−1)

k(i)(1 − λ2)3
, i = 1,2, . . . , n . (3.2)
i i
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When (3.1) is evaluated at a fixed point it will give the large k(i) expansion of the central charge 
of the CFT defined at this point. For example, at the UV point where all the couplings are zero, 
we get

cUV = ndimG − cG dimG

2

n∑
i=1

1

ki

, (3.3)

which is indeed the large ki expansion of the central charge of a Gk1 × · · · × Gkn CFT.
Before we proceed to compute the central charge of the CFTs at the IR regime for the cases 

n = 2, 3, 4, which are the cases we will present in full detail in the rest of the paper, we would like 
to make a few remarks. The parameters λi run independently under the RG flow (2.14) and the 
UV fixed point is reached when all deformation parameters equal zero. In the IR fixed point each 
λi reaches the smaller of λ(i)

0 or its inverse, (λ(i)
0 )−1, depending on the ordering of the levels. Due 

to the specific form of λ(i)
0 it turns out that different orderings of the levels ki may correspond to 

the same IR fixed point. For example, for the case of n = 4 the orderings k1 < k3 < k2 < k4 and 
k1 < k3 < k4 < k2 correspond to the same IR fixed point and in fact to the same RG flow5

UV : (0,0,0,0) =⇒ IR : ((λ(1)
0 )−1, λ

(2)
0 , (λ

(3)
0 )−1, λ

(4)
0 ) . (3.5)

Thus we classify every CFT at the IR in terms of the different combinations of the values of the 
deformation parameters (that is whether λi is equal to λ(i)

0 or (λ(i)
0 )−1) and not in terms of the 

orderings of the levels. We assume without generality loss, that k1 is the smallest level among 

them all. Then, in the IR fixed point we necessarily have that λ1 = (λ
(1)
0 )−1 =

√
k1
kn

and that λ2 =
λ

(2)
0 =

√
k1
k2

. For a given n we have (n − 1)! different orderings of the levels ki , i = 2, 3, . . . , n

which correspond to 2n−2 different IR fixed points, thus CFTs. This is the case because for a 
general number n of WZW models (3.5) will have n − 2 independent entries to each of which 
one can assign a λ0 or a λ−1

0 . In the following sections we will see that the independent IR CFTs 
are further reduced in number, due to interrelations using the parity transformation (2.10), (2.15).

We will organize the notation of the IR fixed points by assigning to every λ(i)
0 an arrow point-

ing upwards and to its inverse an arrow pointing downwards. We disregard the ones with i = 1 , 2, 
since their direction is fixed for every ordering, the first one is always pointing downwards and 
the second one always upwards. For example, in the n = 3 case we have two possible CFTs de-
fined at the IR fixed points ((λ(1)

0 )−1, λ(2)
0 , λ(3)

0 ) = (↑) and ((λ(1)
0 )−1, λ(2)

0 , (λ(3)
0 )−1) = (↓). For 

n = 4 there are six different orderings of the levels which correspond to four different IR fixed 
points

5 It is easy to see this at the linearized level. Indeed, note that the operator driving the CFT away from the UV point, 
up to first order in λi , from (2.13) is

Lint = k(2)λ2Tr(J (2)
+ J

(1)
− ) + k(3)λ3Tr(J (3)

+ J
(2)
− ) + k(4)λ4Tr(J (4)

4+ J
(3)
− ) + k(1)λ1Tr(J (1)

+ J
(4)
− ) . (3.4)

Under the transformation (2.10) for n = 4 we have that σ+ ↔ σ− , g2 ↔ g−1
4 , k2 ↔ k4, λ1 ↔ λ2 and λ3 ↔ λ4, then 

(3.4) remains invariant.
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Table 1
Large ki expansion of the central charge of the IR CFTs for n = 2, 3, 4.

n IR
∑n

i=1 F(ki , λi )
∣∣
IR

2 (0)
1

k1
+ 1

k2 − k1
− 1

k2
+ 1

k2 − k1

3 (↑)
1

k1
+ 1

k3 − k1
− 1

k3
+ 1

k2 − k1
+ 1

k3 − k2

(↓)
1

k1
+ 1

k2 − k1
− 1

k2
+ 1

k3 − k1
+ 1

k2 − k3

4 (↑,↑)
1

k1
+ 1

k4 − k1
− 1

k4
+ 1

k2 − k1
+ 1

k3 − k2
+ 1

k4 − k3

(↓,↑)
1

k1
+ 1

k4 − k1
− 1

k4
+ 1

k3
+ 1

k2 − k3
− 1

k2
+ 1

k2 − k1
+ 1

k4 − k3

(↑,↓)
1

k1
+ 1

k4 − k1
+ 1

k3 − k4
− 1

k3
+ 1

k2 − k1
+ 1

k3 − k2

(↓,↓)
1

k1
+ 1

k2 − k1
− 1

k2
+ 1

k4 − k1
+ 1

k3 − k4
+ 1

k2 − k3

(↑,↑) = ((λ
(1)
0 )−1, λ

(2)
0 , λ

(3)
0 , λ

(4)
0 ) ,

(↓,↑) = ((λ
(1)
0 )−1, λ

(2)
0 , (λ

(3)
0 )−1, λ

(4)
0 ) ,

(↑,↓) = ((λ
(1)
0 )−1, λ

(2)
0 , λ

(3)
0 , (λ

(4)
0 )−1) ,

(↓,↓) = ((λ
(1)
0 )−1, λ

(2)
0 , (λ

(3)
0 )−1, (λ

(4)
0 )−1) .

(3.6)

In our notation for n = 2, the IR fixed point (λ1, λ2) = (λ0, λ0) will be denoted by (0).
In order to recognize the IR fixed point CFT we will utilize the information contained in the 

large level expansion of the C-function (3.1) when this is evaluated at the end of the flow in the 
IR. For the cases with n = 2, 3, 4 we present the result in Table 1.

We will assume that the CFTs we are after, are of the current algebra type or of the coset type, 
an assumption that will be further supported later in the paper. Under this assumption, we may 
assign the various 1/k-factors according to the rule

1

ki

−term =⇒ Gki
−chiral current symmetry ,(

1

ki

+ 1

kj

− 1

ki + kj

)
−term =⇒ Gki

× Gkj

Gki+kj

−chiral coset symmetry .

(3.7)

Then, we may easily deduce that for n = 2 the symmetry of the CFT at (0) is that in (2.16), as 
shown in [3]. However, this reasoning alone does not uniquely fix the symmetry of the IR CFT 
for higher values of n.

For example, the CFT, even at the IR fixed point (↑), can be equally well described with both 
types of conformal symmetries

Gk1 × Gk3−k1

Gk3

× Gk2−k1 × Gk3−k2 or
Gk1 × Gk2−k1 × Gk3−k2

Gk3

× Gk3−k1 . (3.8)

These CFTs are clearly different but nevertheless have the same central charge. We will see in 
the following, that both contribute to the underlying conformal symmetry of the IR theory, one 
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to the left and the other to the right sector. The next sections will be dedicated to the explicit 
derivation of the conformal symmetry of the IR CFTs presented in Table 1.

3.2. Identifying the left-right current chiral symmetries of the IR CFTs

As a warm up we start with the easiest case having two deformation parameters. The chiral 
symmetries of the CFT defined at the IR point (0), are clearly exhibited if we set (λ1, λ2) =
(λ0, λ0) in (2.5). In this case the action takes the form (after relabeling the gauge fields A(1)

± and 
A

(2)
± by A± and B±, respectively)

S = Sk1(g1) + Sk2(g2) + k1

π

∫
d2σ Tr(A−∂+g1g

−1
1 − B+g−1

1 ∂−g1 + A−g1B+g−1
1 )

+ k2

π

∫
d2σTr(B−∂+g2g

−1
2 − A+g−1

2 ∂−g2 + B−g2A+g−1
2 − A+A− − B+B−) .

(3.9)

We next parametrize A± and B± in terms of a± and b±, taking values in G, as

A± = ∂±a±a−1± , B± = ∂±b±b−1± . (3.10)

Then, using the Polyakov-Weigmann (PW) identity we can rewrite (3.9) as6

S = Sk1(a
−1− g1b+) + Sk2(b

−1− g2a+) − Sk2(a
−1− a+) − Sk2(b

−1− b+)

+ Sk2−k1(a
−1− ) + Sk2−k1(b+) .

(3.12)

Since we can rewrite (3.9) as a sum of WZW actions of independent fields the conformal invari-
ance of the model is preserved at the quantum level.

In order to clarify the type of chiral symmetry of this CFT we make two observations:
• The first one is that under the transformation

(g1, g2) → (h−1
1 g1h2, h

−1
2 g2h1) ,

(a±, b±) → (h−1
1 a±, h−1

2 b±) ,
(3.13)

with h1, h2 ∈ G, the infinitesimal variation of the action is

δS = k2 − k1

π

∫
d2 σTr(A−∂+ε1 + B+∂−ε2) , (3.14)

where ε1, ε2 ∈ L(G). This result indicates that the action (3.12) possesses two chiral symmetries, 
i.e. ε1 = ε1(σ−), ε2 = ε2(σ+), with associated chiral and antichiral currents B+ and A− at level 
(k2 − k1). In further support of this, the equations of motion of the fields A−, B+, as it is shown 
in (A.6) of Appendix A, in the case of arbitrary λ1, λ2 are given by

∂+A− = 1 − λ−1
0 λ1

1 − λ2
1

[
A+,A−

]
, ∂−B+ = −1 − λ−1

0 λ2

1 − λ2
2

[
B+,B−

]
. (3.15)

Hence, at the IR fixed point (λ1, λ2) = (λ0, λ0) the fields indeed become chiral and antichiral.

6 In our conventions the PW identity is

Sk(g2g1) = Sk(g1) + Sk(g2) + k

π

∫
d2σ Tr(J1+J2−) . (3.11)
.
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• The second observation is that, as it is shown in Appendix B, in the IR fixed point (0) the equal 
time Poisson brackets of the two fields A−, B+ reduce to two independents Kac–Moody algebras 
with central extension (k2 − k1) (copied for convenience from (B.12) and (B.13)){

Aa−(σ ),Ab−(σ ′)
}

= i

k2 − k1
f abcAc−δσσ ′ + 1

k2 − k1
δabδ′

σσ ′ ,{
Ba+(σ ),Bb+(σ ′)

}
= i

k2 − k1
f abcBc+δσσ ′ − 1

k2 − k1
δabδ′

σσ ′ .
(3.16)

From the above we deduce that the chiral symmetry of the action (3.9) is

(
Gk2−k1

)
L

× (
Gk2−k1

)
R

. (3.17)

3.2.1. Current chiral symmetries of the IR CFTs for arbitrary n
This analysis is easily generalized to arbitrary n. Suppose the ordering of the levels is k1 <

k2 < · · · < kn. Then the IR conformal point is reached for

(λ1, λ2, . . . , λn) = ((λ
(1)
0 )−1, λ

(2)
0 , . . . , λ

(n)
0 ) . (3.18)

Furthermore, the action (2.5) becomes

S =
n∑

i=1

Ski
((a

(i)
− )−1gia

(i+1)
+ ) − Skn((a

(1)
− )−1a

(1)
+ ) −

n∑
i=2

Ski
((a

(i)
− )−1a

(i)
+ )+

+ Skn−k1((a
(1)
− )−1) +

n∑
i=2

Ski−ki−1(a
(i)
+ ) ,

(3.19)

where we used again the Polyakov–Weigman identity (3.11) and we have parametrized each of 
the fields A(i)

± ∈ L(G) in terms of a(i)
± ∈ G similarly to (3.10). As before under the transformation 

gi → h−1
i gihi+1, a(i)

± → h−1
i a

(i)
± , the infinitesimal variation of (3.19) reads

δS = kn − k1

π

∫
d2σ TrA(1)

− ∂+ε1 +
n∑

i=2

ki − ki−1

π

∫
d2σ TrA(i)

+ ∂−εi . (3.20)

It is a lengthy, albeit straightforward calculation in the canonical formalism, to show that the 
fields A(1)

+ and A(i)
+ with i = 2, 3, . . . , n obey n independent Kac–Moody algebras with central 

extensions kn − k1 and ki − ki−1, respectively. Thus the chiral symmetry of (3.19) is based on 
the following products

(
Gk2−k1 × · · · × Gkn−kn−1

)
L

× (
Gkn−k1

)
R

. (3.21)

If we now make a small modification in the ordering of the levels, for example if we pick 
ki < ki−1 the IR conformal point is reached for

(λ1, λ2, . . . , λi, . . . , λn) = ((λ
(1)
0 )−1, λ

(2)
0 , . . . , (λ

(i)
0 )−1, . . . , λ

(n)
0 ) . (3.22)

Under the same transformation as before the infinitesimal variation of the action at the IR point 
(3.22) is
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Table 2
Chiral symmetries of the CFTs defined at the IR points for 
n = 2, 3, 4.

IR point Chiral symmetries

(0)
(
Gk2−k1

)
L

× (
Gk2−k1

)
R

(↑)
(
Gk2−k1 × Gk3−k2

)
L

× (
Gk3−k1

)
R

(↓)
(
Gk2−k1

)
L

× (
Gk3−k1 × Gk2−k3

)
R

(↑,↑)
(
Gk2−k1 × Gk3−k2 × Gk4−k3

)
L

× (
Gk4−k1

)
R

(↓,↑)
(
Gk2−k1 × Gk4−k3

)
L

× (
Gk4−k1 × Gk2−k3

)
R

(↑,↓)
(
Gk2−k1 × Gk3−k2

)
L

× (
Gk4−k1 × Gk3−k4

)
R

(↓,↓)
(
Gk2−k1

)
L

× (
Gk2−k3 × Gk3−k4 × Gk4−k1

)
R

δS = kn − k1

π

∫
d2σ TrA(1)

− ∂+ε1 + ki−1 − ki

π

∫
d2σ TrA(i)

− ∂+εi+

+
n∑

j=2,
j 	=i

(kj − kj−1)

∫
d2σ TrA(i)

+ ∂−εi .
(3.23)

Similar reasoning as before indicates that the chiral symmetry of the CFT is

(
Gk2−k1 × · · · × Ĝki−ki−1 × · · · × Gkn−kn−1

)
L

× (
Gkn−k1 × Gki−1−ki

)
R

, (3.24)

where the hat above Gki−ki−1 indicates that this term is missing from the sequence. In fact it 
appears in the right sector with the opposite sign for the level which is now positive.

It is now straightforward to identify the chiral symmetries of the conformal field theories 
at the fixed points for n = 2, 3, 4, which we present in Table 2. The above symmetries are in 
agreement, as far as the chiral symmetries are concerned, with the central charges presented in 
Table 1. Notice also that, the case of n = 2 is a special case, since the left and right chiral algebras 
coincide. This will become clearer in the following.

3.3. The full conformal symmetry

In order to set the grounds for our arguments we will develop our formalism for the case of 
n = 2 and then we will extend it to larger values of n. Our strategy will be to determine an action 
which after a gauge fixing will give the action of the IR CFT obtained after integrating out a 
subset of the gauge fields A(i)

± . The symmetries of the IR CFT can then be easily read from the 
former action.

3.3.1. The conformal symmetry for n = 2
The starting point will be the action (3.9) or equivalently (3.12). Since the action is quadratic 

in the fields we can perform the integration over them. Integrating out B± we find (this produces 
a trivial determinant, i.e. a trivial dilaton field)

S = Sk1(g,A) + Sk2−k1(g2) − k2 − k1

π

∫
d2σ Tr(A+g−1

2 ∂−g2 − A+A−) , (3.25)
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where Sk1(g, A) stands for the standard diagonal vector gauged WZW model and we used the 
invariance of the path integral measure to replace the integral over the group variables g1 and g2
by one over g = g1g2 and g2. Using the parametrization (3.10) and the PW formula we find that 
(3.25) can be rewritten as

S = Sk1(a
−1− ga+) + Sk2−k1(g2a+) + Sk2−k1(a

−1− ) − Sk2(a
−1− a+) . (3.26)

We would like to identify (3.26) as the gauge fixed version of an action which realizes the chiral 
symmetries and central charge presented in the previous sections for the case of the IR point (0). 
Suppose that we define the following action

S = Sk1(g1) + Sk2−k1(g2) + Sk2−k1(g3) , (3.27)

which is the WZW model defined on the product group G = Gk1 × Gk2−k1 × Gk2−k1 . This 
model clearly has a global GL × GR symmetry. We now gauge the anomaly free subgroup H ⊂
GL × GR , defined as

H : (g1, g2, g3) → (h−1g1h,g2h,h−1g3) , (3.28)

with h some constant element in G. The gauged action then takes the form

SG/H = Sk1(a
−1− g1a+) + Sk2−k1(g2a+) + Sk2−k1(a

−1− g3) − Sk2(a
−1− a+) , (3.29)

where in order to find it we have introduced the gauge fields A± = ∂±a±a−1± with a± ∈ G. The 
gauge symmetry of (3.29) is given by (3.28), but with a local element h(σ+, σ−) ∈ G and the 
additional transformation a± → h−1a±. In addition, there are the chiral symmetries given by

(g2, g3) → (
	−1

L (σ+)g2, g3	R(σ−)
)
, 	L(σ+),	R(σ−) ∈ G. (3.30)

From the above we deduce that conformal symmetry of (3.29) is

Gk1 × Gk2−k1

Gk2

× Gk2−k1

∣∣∣∣
L

,
Gk1 × Gk2−k1

Gk2

× Gk2−k1

∣∣∣∣
R

. (3.31)

The two coset type symmetries in the left and right sector appearing in (3.31) correspond to the 
transformation in (3.28) while the remaining two chiral symmetries at level k2 − k1 to (3.30). 
This is in agreement with the previous section in which we saw that the two chiral symmetries 
are generated by the fields B+, A− which satisfy two independent Kac-Moody algebras at level 
k2 − k1. Since the action (3.29) is gauge invariant we may fix the gauge. Choosing to fix the 
gauge by setting g3 = 1, the action (3.29) becomes precisely (3.26). Choosing instead to fix the 
gauge by setting g2 = 1, the resulting action would be the same as the one obtained from (3.9)
but with the A±’s integrated out instead of the B±. Note that, we could not choose g1 = 1 as the 
gauge group acts vectorially on g1.

Thus, since the procedure of integrating out does not affect the conformal symmetry of a 
theory, we conclude that the conformal symmetry of the CFT defined at the IR point (0) and 
which is described by the action (3.9) is the one given in (3.31) or equivalently in (2.16).

3.3.2. The conformal symmetry for n = 3
In this case we have three levels k1, k2, k3. Since k1 is the smallest one fixed, we have two 

different IR fixed points, (↑) and (↓) which correspond to k2 < k3 and k3 < k2, respectively.
• The CFT defined at (↑) is found from (2.5) evaluated at the IR fixed point at which 
(λ1, λ2, λ3) = ((λ

(1)
0 )−1, λ(2)

0 , λ(3)
0 ). After a relabeling of the gauge fields A(1)

± , A(2)
± , A(3)

± by 
A±, B±, C± and the use of the PW identity it is described by the action
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S =Sk1(a
−1− g1b+) + Sk2(b

−1− g2c+) + Sk3(c
−1− g3a+) + Sk3−k1(a

−1− ) + Sk2−k1(b+)

+ Sk3−k2(c+) − Sk2(b
−1− b+) − Sk3(c

−1− c+) − Sk3(a
−1− a+) ,

(3.32)

where we have used (3.10) and the group elements c± correspond to the third gauge field C±. 
Performing the integration over the fields (b±, c±) (equivalently (B±, C±)) we find

S = Sk1(f ) + Sk2−k1(g) + Sk3−k2(g3) + k1

π

∫
d2σ Tr

(
A−∂+ff −1 − A+f −1∂−f

+ A−f A+f −1) − k2 − k1

π

∫
d2σ Tr

(
A+g−1∂−g

)
− k3 − k2

π

∫
d2σ Tr

(
A+g−1

3 ∂−g3
) − k3

π

∫
d2σ Tr(A+A−)

= Sk1(a
−1− f a+) + Sk2−k1(ga+) + Sk3−k2(g3a+) − Sk3(a

−1− a+) + Sk3−k1(a
−1− ) ,

(3.33)

where we replaced the group elements g1 and g2 with the group elements f = g1g2g3, g = g2g3. 
Using a similar reasoning as before for the n = 2 case, we find that (3.33) is the gauge fixed 
version, with g4 = 1, of the gauged WZW action

SG/H = Sk1(g1) + Sk2−k1(g2) + Sk3−k2(g3) + Sk3−k1(g4)

+ k1

π

∫
d2σ Tr

(
A−∂+g1g

−1
1 − A+g−1

1 ∂−g1 + A−g1A+g−1
1

)
− k2 − k1

π

∫
d2σ Tr

(
A+g−1

2 ∂−g2
) − k3 − k2

π

∫
d2σ Tr

(
A+g−1

3 ∂−g3
)

+ k3 − k1

π

∫
d2σ Tr

(
A−∂+g4g

−1
4

) − k3

π

∫
d2σ Tr

(
A+A−

)
= Sk1(a

−1− g1a+) + Sk2−k1(g2a+) + Sk3−k2(g3a+)

+ Sk3−k1(a
−1− g4) − Sk3(a

−1− a+) ,

(3.34)

where H acts as

H : (g1, g2, g3, g4) → (h−1g1h,g2h,g3h,h−1g4) , h ∈ G. (3.35)

Notice again that we can fix the gauge in (3.34) by choosing g3 = 1. If we do so, the resulting 
action can be obtained from (3.32), if we integrate out the fields (a±, b±). Indeed, if we perform 
such an integration in (3.32) we find again (3.33) with some field relabeling.

Turning our attention to the symmetries of (3.34), the gauge symmetry is given by (3.35) with 
a local element h(σ+, σ−) ∈ G and in addition with a± → h−1a±. The chiral symmetries are

(g2, g3, g4) → (
	−1

L (σ+)g2, 	̃
−1
L (σ+)g3, g4	R(σ−)

)
. (3.36)

Thus we conclude that the conformal symmetry of the CFT defined at the IR fixed point (↑) is 
given by

Gk1 × Gk3−k1

Gk3

× Gk2−k1 × Gk3−k2

∣∣∣∣
L

,
Gk1 × Gk2−k1 × Gk3−k2

Gk3

× Gk3−k1

∣∣∣∣
R

.

(3.37)

Notice the asymmetry between the left and right sectors. Despite this asymmetry the left and 
right moving Virassoro algebra possess the same central charge, which agrees with the central 
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Table 3
The conformal field theories at the IR fixed points for n = 3.

IR Left sector Right sector

(↑)
Gk1 × Gk3−k1

Gk3

× Gk2−k1 × Gk3−k2

Gk1 × Gk2−k1 × Gk3−k2

Gk3

× Gk3−k1

(↓)
Gk1 × Gk3−k1 × Gk2−k3

Gk2

× Gk2−k1

Gk1 × Gk2−k1

Gk2

× Gk3−k1 × Gk2−k3

charge presented in section 3.1. The result (3.37) is also in agreement with the chiral symmetries 
that we derived previously.

The attentive reader might wonder what would happen if in (3.32) we integrate out the fields 
(a±, c±) (equivalently (A±, C±)) which is the only other possibility, presumably and in principle 
equivalent to the ones considered leading to the same conclusion. We found terms assigned with 

ratios of levels, i.e. 
k1k2

k3
g−1

2 ∂−g2D3∂+g1g
−1
1 . Such terms cannot be factorized using the PW 

identity so the resulting action can not be easily associated with a CFT.
• We now turn to the other fixed point, denoted by (↓). The action of the corresponding CFT is 
given by

S =Sk1(a
−1− g1b+) + Sk2(b

−1− g2c+) + Sk3(c
−1− g3a+) + Sk3−k1(a

−1− ) + Sk2−k1(b+)

+ Sk2−k3(c
−1− ) − Sk2(b

−1− b+) − Sk2(c
−1− c+) − Sk3(a

−1− a+) ,
(3.38)

after substituting in (2.5) the values (λ1, λ2, λ3) = ((λ
(1)
0 )−1, λ(2)

0 , (λ(3)
0 )−1). The procedure is 

identical to that before so that we will skip most of the details. If we integrate out either (a±, b±)

or (a±, c±) and identify the resulting action as a gauge fixed version of a gauge invariant one, 
depending on an additional group element, we conclude that the conformal symmetry of the CFT 
defined at the IR point (↓) is given by

Gk1 × Gk3−k1 × Gk2−k3

Gk2

× Gk2−k1

∣∣∣∣
L

,
Gk1 × Gk2−k1

Gk2

× Gk2−k3 × Gk3−k1

∣∣∣∣
R

.

(3.39)

Again the left and right moving Virassoro algebra possess the same central charges. It is needless 
to say that result (3.39) agrees with the central charge and the chiral symmetries presented in 
Tables 1 and 2. For the convenience of the reader the IR CFTs for n = 3 are listed in Table 3.

Note that, the two IR CFTs we found for n = 3 are not independent. They are instead, related 
under the renaming k2 ↔ k3 and the parity transformation in order interchange the left with the 
right sector.

3.3.3. The conformal symmetry for n = 4
For n = 4 we have four different IR fixed points. They correspond to different CFTs and in 

Table 4, we present the associated symmetries for each one of them. Needless to say that the 
central charges agree, in the large level limit, with the ones calculated in section 3.1. We will 
perform a detailed derivation of the conformal symmetry of the field theories defined at (↓, ↑)

and (↑, ↓) with the other two being straightforward generalizations of the n = 3 cases.
• CFT at (↓,↑)
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Table 4
The conformal field theories at the IR fixed points for n = 4.

IR Left sector Right sector

(↑,↑)
Gk1 × Gk4−k1

Gk4
× Gk2−k1 × Gk3−k2 × Gk4−k3

Gk1 × Gk2−k1 × Gk3−k2 × Gk4−k3
Gk4

× Gk4−k1

(↓,↑)
Gk1 × Gk4−k1

Gk4
× Gk3 × Gk2−k3

Gk2
× Gk2−k1 × Gk4−k3

Gk1 × Gk2−k1
Gk2

× Gk3 × Gk4−k3
Gk4

× Gk4−k1 × Gk2−k3

(↑,↓)
Gk1 × Gk4−k1 × Gk3−k4

Gk3
× Gk2−k1 × Gk3−k2

Gk1 × Gk2−k1 × Gk3−k2
Gk3

× Gk4−k1 × Gk3−k4

(↓,↓)
Gk1 × Gk4−k1 × Gk3−k4 × Gk2−k3

Gk2
× Gk2−k1

Gk1 × Gk2−k1
Gk2

× Gk4−k1 × Gk3−k4 × Gk2−k3

In this case we have four gauge fields and IR fixed point is described by the action

S =Sk1(a
−1− g1b+) + Sk2(b

−1− g2c+) + Sk3(c
−1− g3d+) + Sk4(d

−1− g4a+)

− Sk4(a
−1− a+) − Sk2(b

−1− b+) − Sk2(c
−1− c+) − Sk4(d

−1− d+)

+ Sk4−k1(a
−1− ) + Sk2−k1(b+) + Sk2−k3(c

−1− ) + Sk4−k3(d+) .

(3.40)

This expression is found from (2.5) evaluated at the IR fixed point using the corresponding values 
in (3.6), the relabeling A(1)

± , . . . , A(4)
± by A±, . . . , D± and a parametrization of the latter like 

(3.10). Integrating out the fields (b±, d±), we find the following action

S =Sk1(a
−1− f c+) + Sk2−k1(g2c+) + Sk3(c

−1− ha+) + Sk4−k3(g4a+)

+ Sk4−k1(a
−1− ) + Sk2−k3(c

−1− ) − Sk4(a
−1− a+) − Sk2(c

−1− c+) ,
(3.41)

where f = g1g2 and h = g3g4. As before, the statement is that, (3.41) is the gauged fixed version 
of the action

SG/H =Sk1(a
−1− g1c+) + Sk3(c

−1− g2a+) + Sk2−k1(g3c+) + Sk2−k3(c
−1− g4)

+ Sk4−k3(g5a+) + Sk4−k1(a
−1− g6) − Sk4(a

−1− a+) − Sk2(c
−1− c+) ,

(3.42)

with the gauge choice g4 = g6 = 1. The gauge symmetries of (3.42) are clearly

(g1, g2, g3, g4, g5, g6) → (h−1
1 g1h2, h

−1
2 g2h1, g3h2, h

−1
2 g4, g5h1, h

−1
1 g6) ,

(a±, c±) → (h−1
1 a±, h−1

2 c±) ,
(3.43)

where h1(σ+, σ−), h2(σ+, σ−) ∈ G, while the chiral ones are given by

(g3, g4, g5, g6) → (	−1
L (σ+)g3, g4	R(σ−), 	̃−1

L (σ+)g5, g6	̃R(σ−)) . (3.44)

The symmetries in (3.43), (3.44) exactly correspond to the symmetries presented in the second 
row of Table 4.
• CFT at (↑,↓)

The corresponding CFT is described by the action

S = Sk1(a
−1− g1b+) + Sk2(b

−1− g2c+) + Sk3(c
−1− g3d+) + Sk4(d

−1− g4a+)

− Sk4(a
−1− a+) − Sk2(b

−1− b+) − Sk3(c
−1− c+) − Sk3(d

−1− d+)

+ S (a−1) + S (b ) + S (c ) + S (d−1) ,

(3.45)
k4−k1 − k2−k1 + k3−k2 + k3−k4 −
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which is found from (2.5) evaluated at the IR fixed point using (3.6). Integrating over the fields 
(a±, b±, c±) we find that the action becomes

S =Sk1(d
−1− f d+) + Sk2−k1(hd+) + Sk3−k2(g3d+)+

+ Sk4−k1(d
−1− g4) + Sk3−k4(d

−1− ) − Sk3(d
−1− d+) ,

(3.46)

where f = g4g1g2g3 and h = g2g3. The above action can be viewed as the gauged fixed version, 
g5 = 1, of the following gauged action

SG/H =Sk1(d
−1− f d+) + Sk2−k1(hd+) + Sk3−k2(g3d+)+

+ Sk4−k1(d
−1− g4) + Sk3−k4(d

−1− g5) − Sk3(d
−1− d+) .

(3.47)

Identifying the gauge and chiral symmetries of (3.47), we see that they correspond exactly to the 
ones presented in the third row of Table 4. Indeed, the gauge symmetry of (3.47) is

H : (g1, g2, g3, g4, g5) → (h−1g1h,g2h,g3h,h−1g4, h
−1g5), d± → h−1d± , (3.48)

where h(σ+, σ−) ∈ G, whereas the chiral algebra symmetry is

(g2, g3, g4, g5) → (	−1
L (σ+)g2, 	̃

−1
L g3, g3	

−1
R (σ−), g4	̃

−1
R (σ−)) . (3.49)

Notice that, the CFTs at the IR fixed points (↓, ↑), (↑, ↓) are selfdual under the generalized 
parity transformation and the renaming k2 ↔ k4, in the sense that the symmetry of the left sector 
is mapped to the symmetry of the right sector and vice versa (see Table 4). In contrast, the 
CFTs at the IR fixed points (↑, ↑), (↓, ↓) are mapped to each other under the generalized parity 
transformation and the same renaming as before k2 ↔ k4.

3.3.4. Remarks on the conformal symmetry for arbitrary n
We conclude this subsection with some remarks for the general case of n coupled models. We 

will not present the intermediate details which are a more complicated version of the low n cases 
we have already analyzed.

Consider the basic ordering of levels k1 < k2 < · · · < kn. The current algebra part of the CFT 
for both sectors is (3.21), whereas the full conformal symmetry is

Gk1 × Gkn−k1

Gkn

× Gk2−k1 × · · · × Gkn−1−kn−2 × Gkn−kn−1

∣∣∣∣
L

,

Gk1 × Gk2−k1 × · · · × Gkn−1−kn−2 × Gkn−kn−1

Gkn

× Gkn−k1

∣∣∣∣
R

.

(3.50)

A slightly changed ordering of the levels, for example that with ki < ki−1 for i = 2, 3, . . . , n − 1
led to the current algebra part of the CFT found in (3.24). The full conformal symmetry in that 
case is

Gk1 × Gkn−k1

Gkn

× Gki
× Gki−1−ki

Gki−1

× Gk2−k1 × · · · × Ĝki−ki−1 × · · · × Gkn−kn−1

∣∣∣∣
L

, (3.51)

Gk1 × Gk2−k1 × · · · × Gki−1−ki−2

Gki−1

×
Gki

× Gki+1−ki
× · · · × Gkn−kn−1 × Gki−1−ki

× Gkn−k1

∣∣∣∣ ,

Gkn R
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where we note that the hat in G in the line corresponding to the left sector implies that this term 
is missing and instead it appears in second coset with reverse sign for the level which makes 
it positive. Note also that the case with i = 1 cannot be realized since k1 is chosen to be the 
smallest level. The case with i = n is also special and there is a modification in (3.51) above 
given by

Gk1 × Gkn−k1 × Gkn−1−kn

Gkn−1

× Gk2−k1 × · · · × Gkn−2−kn−3 × Gkn−1−kn−2

∣∣∣∣
L

,

Gk1 × Gk2−k1 × · · · × Gkn−2−kn−3 × Gkn−1−kn−2

Gkn−1

× Gkn−1−kn × Gkn−k1

∣∣∣∣
R

.

(3.52)

We next present the general rule for identifying the IR fixed point CFTs. It turns out that it 
is more convenient to discuss this in terms of the λ(i)

0 ’s instead of the ordering of the levels as 
we did in the previous two examples. Let us begin with a fixed but otherwise arbitrary IR fixed 
point which in our notation is an array of arrows pointing upwards or downwards. In that array, 
for each λ(i)

0 term, corresponding to a pointing upwards arrow ↑i , we write down a chiral algebra 
symmetry in the left sector and a coset type symmetry in the right sector. In contrast, for each 
(λ

(i)
0 )−1 term, corresponding to a pointing downwards arrow ↓i , a coset type in the left sector 

and a chiral algebra symmetry in the right sector is written. Thus, in detail we have that

↑i =⇒ Gki−ki−1

∣∣∣∣
L

× Gki−1 × Gki−ki−1

Gki

∣∣∣∣
R

,

↓i =⇒ Gki
× Gki−1−ki

Gki−1

∣∣∣∣
L

× Gki−1−ki

∣∣∣∣
R

.

(3.53)

The above rule applies solely when no two adjacent arrows in the array point in the same direc-
tion. A refinement of this rule is needed if this is not the case. We present it first for the case 
when two adjacent arrows are pointing in the same direction either upwards or downwards

↑i ,↑i+1 =⇒ Gki−ki−1 × Gki+1−ki

∣∣∣∣
L

× Gki−1 × Gki−ki−1 × Gki+1−ki

Gki+1

∣∣∣∣
R

,

↓i ,↓i+1 =⇒ Gki+1 × Gki−ki+1 × Gki−1−ki

Gki−1

∣∣∣∣
L

× Gki−1−ki
× Gki−ki+1

∣∣∣∣
R

.

(3.54)

Obviously, this rule is extentable for more adjacent arrows pointing in the same direction. Also, 
we should keep in mind that the array of arrows forms a closed chain, implying that the 1st and 
the nth should be considered as adjacent ones.

For the reader’s convenience we present an explicit example corresponding to the n = 6 case 
with array

(↓1,↑2,↓3,↑4,↓5,↓6) . (3.55)

Using the above rules we have that

Gk1 × Gk6−k1 × Gk5−k6 × Gk4−k5

Gk4

× Gk3 × Gk2−k3

Gk2

× Gk2−k1 × Gk4−k3

∣∣∣∣
L

,

Gk1 × Gk2−k1 × Gk3 × Gk4−k3 × Gk2−k3 × Gk6−k1 × Gk5−k6 × Gk4−k5

∣∣∣∣ .

(3.56)
Gk2 Gk4 R
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Fig. 1. The vertices of the right triangle represent the three last terms of (3.58), where for simplicity we did not include the 
k(i) terms and we assigned the λi value instead of its inverse. Every side of the triangle, which connects the appropriate 
fields, is denoted with the appropriate level ki which appears as the prefactor of the corresponding propagating term 
from the first and second line of (3.58). One can check that R3 transforms the fields of (3.58) as J (1)

+ ↔ −J
(1)
− , J (2)

± ↔
−J

(3)
∓ , A± ↔ B∓ , C± → C∓ the deformation parameters as λ1 ↔ λ2, λ3 → λ3 and the levels as k1 → k1 and k2 ↔ k3. 

Thus in the framework of polygons R3 transforms the left triangle to the right one. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Notice that in (3.55), due to the cyclicity of our models, there are three consecutive arrows point-
ing downwards, those at positions 5, 6 and 1. This is the origin of the first coset in the first line of 
(3.56). Finally, the fact that the levels in all coset-type symmetries sum up to zero is very helpful 
when applying the aforementioned rules.

3.4. Independent IR CFTs

As already mentioned, for every n the transformation (2.10) involving the renaming of the 
index i and the parity transformation leaves the action (2.5) invariant. In the weak coupling limit, 
it is a transformation that does not change the interaction of the nearest neighbors in (2.13). We 
rewrite here the part of this symmetry transformation needed for our purposes below

Rn : A
(i)
± → A

(n+3−i)
∓ , ki → kn+2−i , k(i) → k(n+3−i) , λ

(i)
0 → (

λ
(n+3−i)
0

)−1
. (3.57)

In (3.57) we have also included (2.15) which will be useful when studying the CFTs at the IR 
fixed points. Our aim here is to discover which of the previously identified 2n−2 IR fixed point 
CFTs are in fact the independent ones. Towards that, an elegant way to realize this symmetry 
pictorially with the aid of a polygon will be most useful. We assign to the ith vertex of an n-
polygon the ith interaction term of the fields A(i)

± , and to every side connecting the edges i and 
i + 1 the level ki , which is the prefactor of the ith propagating term in (2.5) connecting the 
fields A(i)

− and A(i+1)
+ . Doing so, the transformation Rn is realized as the reflection about the 

perpendicular bisector through the side k1, denoted with the blue line in the figures. In Fig. 1 we 
give an example for the case of n = 3 where the action (2.5) is represented as a triangle. For the 
reader’s convenience we give also the Lagrangian, not including for the sake of simplicity the 
WZW terms

L=k1Tr(A−J
(1)
+ − B+J

(1)
− + A−g1B+g−1

1 ) + k2Tr(B−J
(2)
+ − C+J

(2)
− + B−g2C+g−1

2 )

+ k3Tr(C−J
(3)
+ − A+J

(3)
− + C−g3A+g−1

3 ) − k(1)λ−1
1 Tr(A+A−) − k(2)λ−1

2 Tr(B+B−)

− k(3)λ−1
3 Tr(C+C−) . (3.58)

Next we would like to understand the action of the symmetry (3.57) at the IR fixed point CFTs. 
In order to do this we replace each λi at the edges of the polygon with the corresponding arrow, 
↑i or ↓i . Under Rn, each arrow will be reversed, if the reflected arrows with respect to the 
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Fig. 2. The left triangle represents the CFT defined at the IR point (↑) and the right triangle the CFT at the IR point (↓).

bisector are pointing to the same direction (both are up or down) and it will remain the same if 
they are opposite. This rule originates from the transformation of the λ(i)

0 in (3.57). Seemingly 
different fixed points related with the above transformation describe equivalent CFTs.

When n is odd, the independent CFTs are 2n−2

2 , that is

For n odd : 2n−3 , (3.59)

since every fixed point has a dual corresponding to a different array of arrows as the perpendicular 
bisector always passes from a vertex of the polygon. Thus according to (3.57) the arrow of this 
vertex will be reversed under Rn.

For the case of n even things are a bit more involved as in this case there exist IR fixed points 
which are self dual. Self dual IR points, are the points, in which the arrows of the edges that are 
mirror images of each other with respect to the perpendicular bisector have opposite directions. 

We find that the independent CFTs are 2n−2−2
n−2

2

2 + 2
n−2

2 , that is

For n even : 2n−3 + 2
n
2 −2 . (3.60)

Notice that, for n odd there are no self dual fixed points.
We now turn our attention to the cases presented in the previous sections, namely those with 

n = 3, 4 and then we also consider the n = 5, 6 cases where the pictorial method we developed 
is particularly very useful.

Consider first the case with n = 3. The transformation R3, in the framework of polygons, is

R3 : 1 ↔ 2 , k2 ↔ k3 , λ
(1)
0 ↔ (λ

(2)
0 )−1 , (3.61)

where for simplicity we replaced the pair of gauge fields A(i)
± at every vertex with the label i of the 

vertex, a notation we will use subsequently. In addition, we omit writing indices and quantities 
that remain invariant under the symmetry transformation. The right triangle in Fig. 2 corresponds 
to the CFT defined at the IR point denoted as (↑). Since points 1 and 2 are mirror images of each 
other with respect to the blue line and the corresponding arrows have opposite directions, they 
do not change under R3, while the arrow at point 3 is reversed. The resulting set up is the right 
triangle in Fig. 2 which corresponds to the CFT at the IR point denoted as (↓). We conclude that 
the symmetry (3.61) relates the two CFTs in Table 3 and that there is only one independent CFT.

For the case of n = 4, the symmetry operation R4 acts as

R4 : 1 ↔ 2 , 3 ↔ 4 , k2 ↔ k4 , λ
(1)
0 ↔ (λ

(2)
0 )−1 , λ

(3)
0 ↔ (λ

(4)
0 )−1 . (3.62)

In Fig. 3 we present the relation between the CFTs at the IR points (↑, ↑), (↓, ↓) and the self 
duality of the fixed point (↓, ↑) under (3.62). We did not include the self duality of the IR point 
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Fig. 3. The first line corresponds to the dual CFTs defined at the IR points (↑, ↑), (↓, ↓) and the second line to the 
selfdual CFT at (↓, ↑).

Fig. 4. The first and second line correspond to the dual CFTs at the IR points (↑, ↑, ↑), (↓, ↓, ↓) and (↓, ↑, ↑), (↓, ↓, ↑), 
respectively.

(↑, ↓) as it is straightforward in this framework. Hence, among the CFTs presented in Table 4
there are three independent ones.

In the case with n = 5 there are eight different IR fixed points CFTs which are presented in 
Table 5. The symmetry acts as

R5 : 1 ↔ 2 , 3 ↔ 5 , k2 ↔ k5 , k3 ↔ k4 ,

λ
(1)
0 ↔ (λ

(2)
0 )−1 , λ

(3)
0 ↔ (λ

(5)
0 )−1 .

(3.63)

In Fig. 4 we present the related CFTs at the IR points (↑, ↑, ↑), (↓, ↓, ↓) and (↑, ↓, ↑), (↓, ↑, ↓)

as polygons.
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Table 5
Left and right sector of the CFTs for n = 5.

IR Left sector

(↑,↑,↑)
Gk1 × Gk5−k1

Gk5

× Gk2−k1 × Gk3−k2 × Gk4−k3 × Gk5−k4

(↓,↑,↑)
Gk1 × Gk5−k1

Gk5

× Gk3 × Gk2−k3

Gk2

× Gk2−k1 × Gk4−k3 × Gk5−k4

(↑,↓,↑)
Gk1 × Gk5−k1

Gk5

× Gk4 × Gk3−k4

Gk3

× Gk2−k1 × Gk3−k2 × Gk5−k4

(↑,↑,↓)
Gk1 × Gk5−k1 × Gk4−k5

Gk4

× Gk2−k1 × Gk3−k2 × Gk4−k3

(↓,↓,↑)
Gk1 × Gk5−k1

Gk5

× Gk4 × Gk3−k4 × Gk2−k3

Gk2

× Gk2−k1 × Gk5−k4

(↓,↑,↓)
Gk3 × Gk2−k3

Gk2

× Gk1 × Gk5−k1 × Gk4−k5

Gk4

× Gk2−k1 × Gk4−k3

(↑,↓,↓)
Gk1 × Gk5−k1 × Gk4−k5 × Gk3−k4

Gk3

× Gk2−k1 × Gk3−k2

(↓,↓,↓)
Gk1 × Gk5−k1 × Gk4−k5 × Gk3−k4 × Gk2−k3

Gk2

× Gk2−k1

IR Right sector

(↑,↑,↑)
Gk1 × Gk2−k1 × Gk3−k2 × Gk4−k3 × Gk5−k4

Gk5

× Gk5−k1

(↓,↑,↑)
Gk1 × Gk2−k1

Gk2

× Gk3 × Gk4−k3 × Gk5−k4

Gk5

× Gk5−k1 × Gk2−k3

(↑,↓,↑)
Gk4 × Gk5−k4

Gk5

× Gk1 × Gk2−k1 × Gk3−k2

Gk3

× Gk5−k1 × Gk3−k4

(↑,↑,↓)
Gk1 × Gk2−k1 × Gk3−k2 × Gk4−k3

Gk4

× Gk5−k1 × Gk4−k5

(↓,↓,↑)
Gk1 × Gk2−k1

Gk2

× Gk4 × Gk5−k4

Gk5

× Gk5−k1 × Gk3−k4 × Gk2−k3

(↓,↑,↓)
Gk1 × Gk2−k1

Gk2

× Gk3 × Gk4−k3

Gk4

× Gk5−k1 × Gk4−k5 × Gk2−k3

(↑,↓,↓)
Gk1 × Gk2−k1 × Gk3−k2

Gk3

× Gk5−k1 × Gk4−k5 × Gk3−k4

(↓,↓,↓)
Gk1 × Gk2−k1

Gk2

× Gk5−k1 × Gk4−k5 × Gk3−k4 × Gk2−k3

A more direct but equivalent way towards finding the equivalent IR points under R5 is the 
following. In a given array of arrows denoting the IR fixed point CFT, we compare the first one 
with the last one, the second with the next to the last and so on and so forth. If they are pointing 
in the same direction we reverse their direction, whereas if they point in opposite directions we 
keep these the same. For the middle one, for odd values of n as in this example, we reverse its 
direction.

Thus we have the equivalent IR fixed point CFTs

(↑,↑,↑) ∼ (↓,↓,↓) , (↓,↑,↑) ∼ (↓,↓,↑) ,

(↑,↓,↑) ∼ (↓,↑,↓) , (↑,↑,↓) ∼ (↑,↓,↓) .
(3.64)
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Thus for n = 5 there are four independent CFTs among the entries of Table 5.
Finally in the n = 6 case there are sixteen different IR fixed CFT points. According to our 

analysis, only ten of them define independent ones. The equivalent ones related by R6 are

(↑,↑,↑,↑) ∼ (↓,↓,↓,↓) , (↓,↑,↑,↓) ∼ (↑,↓,↓,↑) ,

(↑,↑,↑,↓) ∼ (↑,↓,↓,↓) , (↓,↓,↑,↓) ∼ (↑,↓,↑,↑) ,

(↓,↓,↓,↑) ∼ (↓,↑,↑,↑) , (↓,↑,↓,↓) ∼ (↑,↑,↓,↑) ,

(3.65)

whereas the selfdual ones are (↓, ↓, ↑, ↑), (↓, ↑, ↓, ↑), (↑, ↓, ↑, ↓), (↑, ↑, ↓, ↓).

4. Concluding remarks

We have constructed a large class of integrable multiparametric deformations of n WZW σ -
models each at a different level ki . The theories considered can be rewritten as a special case of 
the most general λ-deformed models of [5] but they were not explicitly considered in that work. 
Our models flow from a CFT which at the UV point has the symmetry group Gk1 × Gk2 × · · · ×
Gkn to different IR fixed points depending on the number n and on the different orderings of 
the levels ki . This happens because in our construction the WZW models are cyclically coupled, 
similarly to [10,3,2]. The goal of this paper was to classify the resulting IR CFTs.

In order to determine the conformal symmetry of each IR CFT, we constructed gauge invariant 
actions which, after fixing the gauge, describe the corresponding IR CFTs. The subgroup gauged 
at each case, is a different, anomaly free, subgroup of the global GL × GR symmetry of the n
WZW models. This procedure lead to the conclusion that the left and right sector of each of the 
IR CFTs is based on different products of coset and affine type conformal symmetries. Despite 
this asymmetry between sectors, the left and right central charge are the same and in agreement 
with the central charge read from the exact in the deformation parameters C-function which we 
also have derived. Furthermore, we have shown that there are CFTs defined at different fixed 
points which are related by a transformation, the parity transformation (3.57). That allowed for 
the final classification of the inequivalent IR fixed point CFTs.

An interesting future direction is to apply the formalism developed in this work in order to 
characterize and determine the symmetries of the IR fixed points to which the models constructed 
in [4] and [5] flow. These models have an explicit Lagrangian realization and their RG flow 
equations have a much richer structure that the theories considered here. In that respect it would 
be important to see what modifications, if any, will be needed in achieving the characterization 
of their IR fixed points. Furthermore, it would be also interesting to study the RG flow equations 
and their fixed points of the integrable models of [33] (see also [34]). It would also be important 
to examine if the integrable models presented in this work, as well as the ones in [10,4,5], belong 
to a class of the E -models of [35]. This may enable one to identify the corresponding integrable 
η-deformed models introduced in [36–38] for the case of group spaces. Finally, it would be 
interesting to determine the integrability preserving D-branes all the way along the RG flow 
(2.14) of our models. Our theories posses non-trivial IR fixed points, in contradistinction to the 
work of [39] which considered this problem for the prototype deformed models of [1] which 
possess no such points. This renders the embedding of D-branes in the target space a more 
involved problem.
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Appendix A. Integrability

In this appendix we will show classical integrability of the σ -model action (2.5), for the 
isotropic case, by determining the Lax pairs explicitly. Varying the action with respect to the 
gauge fields we get the following constraints

λ−1
i λ

(i)
0 Ai+ = ∂+gig

−1
i + giA

(i+1)
+ g−1

i ,

λ−1
i (λ

(i)
0 )−1Ai− = −g−1

i−1∂−gi−1 + g−1
i−1A

(i−1)
− gi−1 .

(A.1)

Defining the covariant derivative

D±gi = ∂±gi − Ai±gi + giA
(i+1)
± , (A.2)

the equation (A.1) can be rewritten as

D+gig
−1
i =

(
λ−1

i λ
(i)
0 − 1

)
A

(i)
+ ,

g−1
i−1D+gi−1 = −

(
λ−1

i (λ
(i)
0 )−1 − 1

)
A

(i)
− .

(A.3)

Varying again the action (2.5) with respect to gi and using the definition (A.2) we obtain that

D−(D+gig
−1
i ) = F

(i)
+− ,

D+(g−1
i D−gi) = F

(i+1)
+− ,

(A.4)

which are in fact equivalent and where F (i)
+− = ∂+A

(i)
− − ∂−A

(i)
+ − [

A
(i)
+ , A(i)

−
]
.

Substituting the constraints (A.3) into the equations of motion (A.4) we find that

∂+A
(i)
− − λ−1

i λ
(i)
0 ∂−A

(i)
+ = λ−1

i λ
(i)
0

[
A

(i)
+ ,A

(i)
−

]
,

λ−1(λ
(i)

)−1∂ A
(i) − ∂ A

(i) = λ−1(λ
(i)

)−1[A(i)
,A

(i)]
.

(A.5)

i 0 + − − + i 0 + −
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After some algebra one can solve for the derivatives of the gauge fields to get

∂−A
(i)
+ = −1 − (λ

(i)
0 )−1λi

1 − λ2
i

[
A

(i)
+ ,A

(i)
−

]
,

∂+A
(i)
− = 1 − λ

(i)
0 λi

1 − λ2
i

[
A

(i)
+ ,A

(i)
−

]
.

(A.6)

In general, the Lax pair satisfies the Lax equation

∂+L−(z) − ∂−L+(z) = [
L+(z),L−(z)

]
, ∀z ∈C . (A.7)

It is quite straightforward to see that in our case equations (A.6) are equivalent to (A.7) for

L(i)
± = 2z

z ∓ 1
Ã

(i)
± , Ã

(i)
+ = 1 − λ

(i)
0 λi

1 − λ2
i

A
(i)
+ , A

(i)
− = 1 − (λ

(i)
0 )−1λi

1 − λ2
i

A
(i)
− , (A.8)

where z ∈ C is the spectral parameter.

Appendix B. Hamiltonian formulation

In this appendix we will present the Hamiltonian formulation of (2.5) for n = 2, but it can 
be easily generalized to arbitrary n, with the goal to show that the Poisson Brackets of the two 
fields B+, A− evaluated at the fixed point (0) reduce to two independent equal time Kac-Moody 
algebras with central extension k2 − k1. Let us remind to the reader that at the fixed point (0) the 
two fields generate the chiral algebra symmetry of the corresponding CFT.

Choosing a set of coordinates to parametrize the group valued fields gi we find that the action 
(2.5) for n = 2 in our conventions reads7

S = k1

4π

∫
d2σ

(1

2
Ra

1μRa
1ν(ẋ1

μẋ1
ν − x

′μ
1 x′ν

1 ) + λ(1)
μν ẋ1

μx′ν
1

)
+

+ k2

4π

∫
d2σ

(1

2
Ra

2μRa
2ν(ẋ2

μẋ2
ν − x

′μ
2 x′ν

2 ) + λ(2)
μν ẋ2

μx′ν
2

)
+

+ k1

4π

∫
d2σ

(
2iAa−Ra

1μ(ẋ1
μ + x

′μ
1 ) − 2iBa+La

1μ(ẋ1
μ − x

′μ
1 ) + 4Ba+Dba

1 Ab−
)

+ k2

4π

∫
d2σ

(
2iBa−Ra

2μ(ẋ2
μ + x

′μ
2 ) − 2iAa+La

2μ(ẋ2
μ − x

′μ
2 ) + 4Aa+Dba

1 Bb−
)

−
√

k1k2

π

∫
d2σTr{Ba+(λ−1

2 )abBb− + Aa+(λ−1
1 )abAb−} .

(B.2)

The momenta canonically conjugate to the variables (x1, x2, A±, B±) are

7 In our conventions

σ± = τ ± σ , dσ+ ∧ dσ− = −2d2σ , d2σ = dτ ∧ dσ ,

∂+gg−1 = i

2
Ra

μ(ẋμ + x′μ)ta, g−1∂−g = i

2
La

μ(ẋμ − x′μ)ta.
(B.1)
.
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π(1)
μ = k1

4π
(Ra

1μRa
1ν ẋ

ν + λ(1)
μνx

′ν + 2iAa−Ra
1μ − 2iBa+La

1μ) ,

π(2)
μ = k1

4π
(Ra

2μRa
2ν ẋ

ν + λ(2)
μνx

′ν + 2iBa−Ra
1μ − 2iAa+La

1μ) ,

P± = δL
δȦ±

= 0, Q± = δL
δḂ±

= 0 .

(B.3)

Following [40] and [41] we define two sets of currents J1±, J2± that obey two commuting Kac-
Moody algebras at levels k1, k2 respectively

{
J a

i±, J b
i±

}
= ±2π

ki

f abcJ c
i±δσσ ′ ± 1

ki

δabδσσ ′ , (B.4)

and are given in terms of the initial variables as

J a
1+ = 1

2
Ra

1μ(ẋ
μ
1 + x

′μ
1 ) + iAa− − iDab

1 Bb+ ,

J a
1− = 1

2
La

1μ(ẋ
μ
1 − x

′μ
1 ) − iBa+ + iDba

1 Ab−
(B.5)

and

J a
2+ = 1

2
Ra

2μ(ẋ
μ
2 + x

′μ
2 ) + iBa− − iDab

2 Ab+ ,

J a
2− = 1

2
La

2μ(ẋ
μ
1 − x

′μ
1 ) − iAa+ + iDba

2 Bb− .

(B.6)

We can show that the Hamiltonian can be rewritten in terms of (J (1)
± , J (2)

± , A±, B±) as

H = k1

4π
(J a

1+J a
1+ + J a

1−J a
1− − 4iAa−J a

1+ + 4iBa+J a
1− − 2Ba+Ba+ − 2Aa−Aa−)

+ k2

4π
(J a

2+J a
2+ + J a

2−J a
2− − 4iBa−J a

2+ + 4iAa+J a
2− − 2Aa+Aa+ − 2Ba−Ba−)+

+
√

k1k2

π
(Ba+(λ−1

2 )abBb− + Aa+(λ−1
1 )abAb−) .

(B.7)

Thanks to Dirac we know that the primary constraints, i.e. in our case P(Q)± = 0, can in prin-
ciple generate secondary constraints from the demand that their time evolution on the constraint 
surface should vanish. In our case we obtain the following set of constraints{

P a+,H
}

= 0 ⇒ iJ a
2− − Aa+ + λ0(λ

−1
1 )abAb− = 0 ,{

P a−,H
}

= 0 ⇒ iJ a
1+ + Aa− − λ−1

0 (λ−1
1 )baAb+ = 0 ,{

Qa+,H
}

= 0 ⇒ iJ a
1− − Ba+ + λ−1

0 (λ−1
2 )abBb− = 0 ,{

Qa−,H
}

= 0 ⇒ iJ a
2+ + Ba− − λ0(λ

−1
2 )baBb+ = 0 .

(B.8)

The set of all constraints, primary and secondary, are all second class which means that we can 
impose them strongly. Thus making use of (B.8) the Hamiltonian takes the form
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H = 1

4π

(
k2(λ

2
1 − 1)

λ2
1

TrA+A+ + k1(λ
2
1 − 1)

λ2
1

TrA−A−

+ k1(λ
2
2 − 1)

λ2
2

TrB+B+ + k2(λ
2
2 − 1)

λ2
2

TrB−B−
)

,

(B.9)

while the PBs of the fields A±, B± are given by8

{
Aa+(σ ),Ab+(σ ′)

}
=−2πi

k2
f abc

(
f (λ1, λ0)A

c− + g(λ1, λ0)A
c+
)
δσσ ′ + h(λ1)

k2
δabδ′

σσ ′,

{
Aa−(σ ),Ab−(σ ′)

}
=−2πi

k1
f abc

(
g(λ1, λ

−1
0 )Ac− + f (λ1, λ

−1
0 )Ac+

)
δσσ ′ − h(λ1)

k1
δabδ′

σσ ′,

{
Aa+(σ ),Ab−(σ ′)

}
=− 2πi

k1k2
f abc

(
a(λ1, λ0)A

c+ + b(λ1, λ0)A
c−
)
δσσ ′, (B.10)

and {
Ba+(σ ),Bb+(σ ′)

}
= −2πi

k1

(
f (λ2, λ

−1
0 )Bc− + g(λ2, λ

−1
0 )Bc+

)
δσσ ′ + h(λ2)

k1
δabδ′

σσ ′ ,

{
Ba−(σ ),Bb−(σ ′)

}
= −2πi

k2

(
g(λ2, λ0)B

c− + f (λ2, λ0)B
c+
)
δσσ ′ − h(λ2)

k2
δabδ′

σσ ′ ,

{
Ba+(σ ),Bb−(σ ′)

}
= − 2πi

k1k2
f abc

(
b(λ2, λ0)B

c+ + a(λ2, λ0)B
c−
)
δσσ ′ , (B.11)

where we have made the following definitions

f (λi, λ0) = h(λi)

λ2
i − 1

(1 − λ0λi) , g(λi, λ0) = h(λi)

λi(λ
2
i − 1)

(λ3
i − λ−1

0 ) ,

a(λi, λ0) = h(λi)

λ2
i − 1

(−k2 + k1λiλ
−1
0 ) , b(λi, λ0) = h(λi)

λ2
i − 1

(−k1 + k2λiλ0) ,

h(λi) = λ2
i

λ2
i − 1

.

Notice that in the case of equal levels, i.e. λ0 = 1, the above PBs reduce to two copies of the 
λ-deformed algebra with two different deformation parameters. It is immediate to see that at the 
fixed point (λ1, λ2) = (λ0, λ0) the above Poisson brackets simplify to

{Aa+(σ ),Ab+(σ ′)} = 2πi

k2 − k1
f abc

(
(1 + λ2

0)A
c+ − λ2

0A
c−)δσσ ′ + 2πλ2

0

k1 − k2
δabδ′

σσ ′ ,

{Aa−(σ ),Ab−(σ ′)} = 2πi

k2 − k1
f abcAc−δσσ ′ + 2π

k2 − k1
δabδ′

σσ ′ ,

{Aa+(σ ),Ab−(σ ′)} = 2πi

k2 − k1
f abcAc+δσσ ′

(B.12)

and

8 In what follows, we have calculated the Poisson brackets of the fields A± and B± . Notice that for this particular 
choice of fields the Dirac and Poisson brackets are the same due to the protection mechanism discussed in [41].
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{Ba+(σ ),Bb+(σ ′)} = 2πi

k2 − k1
f abcBc+δσσ ′ − 2π

k2 − k1
δabδ′

σσ ′ ,

{Ba−(σ ),Bb−(σ ′)} = 2πi

k2 − k1
f abc

(
(1 + λ2

0)B
c− − λ2

0B
c+
)
δσσ ′ − 2πλ2

0

k1 − k2
δabδ′

σσ ′ ,

{Ba+(σ ),Bb−(σ ′)} = 2πi

k2 − k1
f abcBc−δσσ ′ .

(B.13)

Notice that the fields A−, B+ form two commuting Kac-Moody algebras with central extension 
k2 − k1.
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