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Performing a fully non-perturbative analysis using the tools of numerical general relativity, we 
demonstrate that a period of slow contraction is a “supersmoothing” cosmological phase that homo-
genizes, isotropizes and flattens the universe both classically and quantum mechanically and can do so 
far more robustly and rapidly than had been realized in earlier studies.
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1. Introduction

The degree of homogeneity, isotropy and flatness observed in 
the universe on large scales is generally viewed as so striking that 
it calls for some kind of cosmological phase to explain it. Typically, 
this very same phase is also supposed to be the source of a nearly 
scale-invariant spectrum of quantum fluctuations spanning length 
scales much larger than the Hubble radius that, through one means 
or another, lead to a spectrum of density perturbations.

To achieve these objectives, the phase must be a supersmoother, 
meaning it must be a

(i) classical smoother (the relative contribution of small inhomo-
geneities and anisotropies to the total energy density must 
shrink according to classical cosmological evolution equa-
tions);

(ii) quantum smoother (homogenizes and isotropizes even when 
all quantum fluctuations are included);

(iii) robust smoother (insensitive to initial conditions even when 
they correspond to large, non-perturbative deviations from a 
homogeneous and isotropic spacetime); and,

(iv) rapid smoother (sufficient smoothing is achieved well before 
the phase ends).
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The goal of this paper is to show that a slow contraction phase 
[1] (also known as an ekpyrotic contraction phase [2–4]) satisfies 
these four conditions. In fact, it is the only currently known exam-
ple of a supersmoothing cosmological phase.

Slow contraction is the mechanism commonly invoked in 
bouncing and cyclic cosmologies [1,5]. A standard example, and 
one that will be used here, is described by a canonical scalar field 
φ minimally-coupled to Einstein gravity with a negative exponen-
tial potential

V (φ) = −V 0 e−√
2εφ ≡ −V 0 e−φ/M , (1)

where V 0 > 0 and M−1 = √
2ε > 1. (Here and throughout units in 

which the reduced Planck mass is set equal to one are used.)
Slow contraction is an attractor scaling solution in which the 

scalar field homogeneously evolves down the potential as φ(t) =√
2/ε ln |t| and the scale factor decreases as a(t) ∝ |t|1/ε [6]. In 

this limit, the parameter ε characterizes the equation of state; 
more exactly, ε = (3/2)(1 + p/�) where p is the pressure and �
is the energy density associated with the scalar field. (The contri-
butions of matter, radiation, gradient energy, and all other forms 
of energy are negligible during the attractor phase.) The slow con-
traction phase is followed by a classical (non-singular) bounce and 
reheating (e.g., decay of the scalar field energy) to a hot expanding 
phase with all the large-scale properties of the universe already set 
as needed to explain cosmological observations.
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Appealing features of bouncing cosmologies of this type are 
that they are geodesically complete; resolve the cosmic singularity 
problem; avoid quantum runaway effects that lead to a multiverse 
of outcomes; and can generate a nearly scale-invariant spectrum 
of nearly gaussian density perturbations without producing a cor-
responding spectrum of primary tensor perturbations (in accord 
with current observations) [1]. In addition, recently proposed self-
similar cyclic versions [5] avoid the Tolman entropy problem of 
earlier cyclic cosmologies; enable information to pass smoothly 
across each bounce; predict the instability of the current vacuum; 
and assign dark energy a new role as the critical component shap-
ing the overall cyclic history of the universe. However, all of these 
features rely on slow contraction being a supersmoothing phase.

We begin by reviewing the already-established case that slow 
contraction is (i) a classical and (ii) a quantum smoother. These 
conditions can be verified using perturbative analyses around ho-
mogeneous spacetimes. We then turn to new results based on 
fully non-perturbative calculations utilizing the tools of numeri-
cal general relativity that establish (iii) the robust insensitivity to 
initial conditions and (iv) the rapidity with which slow contraction 
smooths the universe.

This investigation builds on early work by Garfinkle et al. [7]
that adapted numerical relativity methods to study the robust-
ness of slow contraction as a classical smoother beginning from 
highly non-linear, non-perturbative deviations from homogeneity 
and isotropy. Based on case studies, the Garfinkle et al. results sug-
gested that, generically, smoothing never completes. Rather, slow 
contraction suffices to make most of the volume homogeneous and 
isotropic, but there always remains a small regime that is inhomo-
geneous and anisotropic.

Here we demonstrate that the case studies of Ref. [7] were 
anomalous in that they inadvertently began with cosmologically 
implausible initial conditions and limited values of ε. In our study 
using still highly non-perturbative but now physically plausible ini-
tial conditions, we find that slow contraction for sufficiently large 
ε generically results in an entirely smoothed universe and no rem-
nants of inhomogeneity and anisotropy. We further show that, for 
somewhat larger values of ε, the smoothing completes rapidly af-
ter only a tiny amount of contraction, as required to generate a 
sufficiently broadband spectrum of nearly scale-invariant density 
perturbations to explain the temperature variations in the cosmic 
microwave background. In other words, slow contraction is a sig-
nificantly more effective and robust smoothing mechanism than 
suggested by the earlier study.

2. Classical smoother

We define a phase as a ‘classical smoother’ if the dynamical 
attractor solution is a flat, homogeneous, and isotropic universe 
presuming initial conditions that can be described as small per-
turbations about a Friedmann-Robertson-Walker (FRW) spacetime 
and the generalized Friedmann equation,

H2 = 1

3

(
ρ0

m

a3
+ ρ0

r

a4
+ ρ0

φ

a2ε

)
− k

a2
+ σ 2

a6
, (2)

where H ≡ ȧ/a is the Hubble parameter; dot denotes differentia-
tion with respect to the physical time coordinate t; the scale factor 
a(t) is normalized so that a(t0) = 1 at t = t0; ρ0

i represents the en-
ergy density for component i at t = t0; and i ∈ {m, r, φ} refers to 
the densities of matter, radiation and the scalar field (kinetic plus 
potential energy density), respectively. The last two terms corre-
spond to the spatial curvature and anisotropy. Note that the scalar 
field gradient energy density in this perturbative limit scales as 
1/a2, the same way as the spatial curvature.
Slow contraction with ε > 3 is a classical smoother because the 
scalar field energy density ρ0

φ/a2ε increases faster than all other 
terms as a(t) decreases. Analogously, inflationary expansion [8–10]
with ε < 1 passes this test because the scalar field energy density 
for this equation of state decreases slower than all other terms as 
a(t) increases.

A reasonable objection to this test is that it assumes near ho-
mogeneity as an initial condition, the same condition that slow 
contraction (or inflation) is supposed to explain. The test further 
assumes that quantum fluctuations have a negligible effect on the 
background evolution, which is inconsistent with the fact that in-
flation is generally eternal [11,12] due to large quantum backreac-
tion effects. That is why the next conditions must also be satis-
fied for a cosmological phase to be considered as supersmoother 
mechanism capable of explaining the large-scale properties of the 
universe.

3. Quantum smoother

A litmus test for a ‘quantum smoother’ is that an initially ho-
mogeneous, flat, and anisotropic universe should be stable to quan-
tum fluctuations generated during the smoothing phase.

A classical smoother is not necessarily a quantum smoother. In 
an inflationary phase, for example, quantum fluctuations of the in-
flaton generate growing mode curvature fluctuations that drive the 
universe away from homogeneity. (That there are growing modes 
traces back in the Mukhanov-Sasaki perturbation equation [13–15]
to the fact that a′′/a > 0 for an expanding phase with ε < 1, where 
prime represents d/dτ and τ is the conformal time.)

The standard approach in inflationary model-building is to 
suppress the unstable growth for a range of inflaton field val-
ues (corresponding to the last 60 e-folds of inflation, say) by 
setting the inflaton self-interaction strength to be exponentially 
small [16,17] and setting the initial field strength and kinetic 
energy density to lie within a specific restricted range. This is 
the source of the “fine-tuning” and “initial condition” problems 
of inflation. However, there is generally no physical mechanism 
that can restrain a quantum field like the inflaton from ex-
ploring values and kinetic energy densities that lie far outside 
the chosen restricted range, including a range of values some-
times called the ‘self-reproduction’ regime. In regions of space 
where the field lies in this regime, the quantum-induced per-
turbations dominate over classical evolution [11,12,18] and excite 
growing mode curvature perturbations [19]. The result is a quan-
tum runaway effect in which quantum fluctuations superimposed 
on quantum fluctuations transform a universe – even if it is per-
fectly homogeneous and isotropic universe initially – into a spacetime 
with arbitrary and unpredictable deviations from homogeneity 
and isotropy. By definition, this means that inflation fails the lit-
mus test for a quantum smoother, even though it is a classical 
smoother.

Failing this test is critical. It means that, in a fundamental sense, 
inflation cannot explain the homogeneity (isotropy or spatial flat-
ness) of the universe. While it is possible that some regions of 
spacetime are smooth, they are not generic.

In contrast, the curvature modes decay during slow contrac-
tion; e.g., the sign of a′′/a in the Mukhanov-Sasaki equation [13–
15] is negative during a contracting phase with ε > 2. Conse-
quently, homogeneity, isotropy and spatial flatness are preserved 
even when quantum fluctuations are included. Slow contraction 
therefore passes the litmus test, meaning that it can actually 
explain the observed large-scale properties of the universe. At 
present, slow contraction is the only known example of a cos-
mological phase that is both a quantum smoother and a classical 
smoother.
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4. Robust smoother

A cosmological phase that classically smooths only for small 
perturbations away from FRW does not explain the observed ho-
mogeneity and isotropy because it fails to smooth for generic initial 
conditions. Hence, a third condition for supersmoothing is that the 
phase be a ‘robust’ smoother: homogeneity and isotropy should 
emerge even if the initial conditions are non-perturbatively far 
away from FRW. The wider the range of initial conditions that can 
be smoothed, the more robust is the smoothing phase. As we shall 
see, this imposes a somewhat more stringent constraint on the 
equation of state ε during a contracting phase than required to 
be a classical smoother (ε > 3) or quantum smoother (ε > 2).

To analyze the robustness of slow contraction to a wide range 
of initial conditions with non-perturbative deviations from FRW, 
we solve the full 3+1 dimensional Einstein-scalar field equations 
numerically beginning from large initial inhomogeneous spatial 
curvature, matter density and shear and track their evolution for 
long times (i.e., up to several hundreds of e-folds). As in Ref. [7], 
we restrict ourselves to deviations from homogeneity along a sin-
gle spatial direction so that the spacetimes have two Killing fields, 
although with sufficiently general initial data that the behavior ap-
proaching the singularity is the same as with no restriction. The 
scheme is fully detailed in Ref. [20]. (We have extended our nu-
merical simulations to cases where the inhomogeneities are along 
two dimensions that will be presented elsewhere [21], but we have 
not observed any qualitative differences in the result.)

We note that, at present, there is no analogous test of robust-
ness for an expanding case, including inflation. Recent work has 
used full numerical relativity simulations to explore smoothing 
of large initial inhomogeneities in inflation [22,23], though these 
early studies have only considered initial data with rather special 
initial conditions that favor inflation and is arguably far from what 
might be expected as a generic pre-inflationary state.

A key feature of our scheme is to use scale-invariant (Hubble-
normalized) variables (denoted by bar). For example, we define the 
scalar field time derivative

W̄ = N−1∂tφ (3)

where N = N/	 is the scale-invariant generalization of the lapse 
N , and the time coordinate t is given through

et = 1
3 	, (4)

with 	 = |H−1|, so that surfaces of constant time are constant 
mean curvature hypersurfaces. (Here we explicitly consider a uni-
verse that is contracting everywhere initially. A different scheme, 
the subject of ongoing work, is needed if the initial hypersur-
face contains a mixture of locally expanding and contracting pock-
ets.)

Note that, in the homogeneous limit, the variables of our nu-
merical scheme reduce to the well-known dimensionless Fried-
mann variables, 
i for component i, representing the fractional 
contribution of component i (matter density, curvature or aniso-
tropy) to H2 in the Friedmann equation, see e.g. [4]. Note also that 
the matter contribution (
m), which includes the sum of positive 
kinetic energy density and negative potential energy density, and 
the curvature contribution (
k) can be positive or negative.

We set the initial conditions by first picking a particular time 
t0. Then, for the geometry we must provide the spatial metric as 
well as the extrinsic curvature of the t0-hypersurface. Not all com-
ponents of these tensors are freely specifiable, but must satisfy 
the constraint equations of general relativity. (Notably, the evo-
lution equations propagate the constraints, i.e., ensure that the 
constraints are satisfied at later times.) To this end, we adapt the 
York method [24] commonly used in numerical relativity compu-
tations: We freely specify a conformally flat initial metric and the 
vacuum contribution to the conformally rescaled trace-free extrin-
sic curvature. This method enables us to freely choose the initial 
field φ(x, t0) and velocity distributions

W̄ (x, t0) ≡ ψ−6(x, t0)Q (x, t0), (5)

as well as the divergence-free part of the initial shear contribution, 
which is the trace-free part of the extrinsic curvature

�̄ab(x, t0) ≡ ψ−6(x, t0)Zab(x, t0). (6)

The set of initial data is completed by solving the constraint equa-
tions for the conformal factor ψ(x, t0) and the rest of Zab(x, t0).

Periodic boundary conditions with 0 ≤ x ≤ 2π with 0 and 2π
identified are used; hence, functions x can be expressed as sums 
of Fourier modes. We use the same divergence-free and trace-free 
ansatz for Zab as in Ref. [7].

A critical difference from Ref. [7] is the inclusion of a homoge-
neous term, Q 0, in the initial conditions for Q ,

Q (x, t0) = 	( f1 cos(m1x + d1) + Q 0), (7)

where Q 0, f1, m1 and d1 are constants. The test for robustness en-
tails highly non-linear initial conditions such that � f = f1/Q attr

and �Q = |Q 0 − Q attr |/Q attr are O(1), where Q (x, t) = Q attr(t) is 
the homogeneous attractor solution.

Q 0 represents the average value of Q over the periodic box. 
Including only the cosine perturbation term proportional to f1, as 
was done in Ref. [7], means that, for a portion of the space, the 
initial scalar field velocity is aimed up the steep potential rather 
than down. Revisiting the analysis in Ref. [7], we find that precisely 
the regions with the maximal “wrong-way” initial velocity end up 
being trapped in inhomogeneous regions (see Fig. 1a) where the 
scalar field changes on very small spatial scales and behaves like a 
fluid with w = 1 (that is, as if there were no potential) and where 
the dynamical behavior is similar to chaotic mixmaster vacuum 
solutions. (Note that our sign convention is that positive Q cor-
responds to rolling the right way, i.e., downhill, and negative Q
corresponds to the wrong-way.)

In the context of bouncing cosmology, though, the conditions 
in which the scalar field is initially rolling rapidly up a steeply 
downward potential at the beginning of the contracting phase are 
quite extreme and, in some contexts, physically nonsensical. For 
example, in a cyclic cosmology, the transition from a slowly accel-
erated expansion phase (like the current dark energy dominated 
phase) to a slowly contracting phase occurs only if the scalar field 
first rolls down the potential (right-way) sufficiently far such that 
the potential energy density changes from slightly positive to suffi-
ciently negative. In other words, rolling down the steep potential is 
a prerequisite for contraction to begin and, therefore, the right-way 
condition is automatically satisfied. The study in Ref. [7] did not 
consider this physical requirement, and, as illustrated by Fig. 1b, 
this is the only reason why the inhomogeneous region formed dur-
ing slow contraction (as shown in Fig. 1a). For the case illustrated 
in Fig. 1b, Q 0 has been set to a sufficiently positive value that the 
initial scalar field velocity is not rapidly uphill (negative) for any 
x, as expected physically, and the evolution converges to a smooth 
solution despite the fact that the initial conditions are highly non-
perturbative in the sense that � f and �Q = O(1), the same as in 
Ref. [7].

Fig. 2 shows the state space orbits associated with Figs. 1a 
and 1b evaluated at the same value of x = 3π/2 projected onto 
the (�̄+, �̄−) plane, where

�̄+ = 1
2

(
�̄11 + �̄22

)
, �̄− = 1√

(
�̄11 − �̄22

)
. (8)
2 3
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Fig. 1. Four t = const. snapshots of the normalized energy density in matter 
m (blue, solid line), curvature 
k (red, hashed line) and shear 
s (green, dotted line) for 
0 ≤ x ≤ 2π at several times during the evolution for two cases: (a) initial conditions as in Ref. [7] with Q 0 = 0 and f1 sufficiently large that the initial scalar field velocity 
in half the space is wrong-way – headed very rapidly up the steeply downward potential (Q < 0); and (b) the same case but with Q 0 = 1.5, sufficiently large that the initial 
scalar field velocity is headed right-way (downwards) or very slowly wrong-way for all x. NH is the number of e-folds of contraction in the Hubble radius, |H|−1. Notably, 
smoothing is incomplete in case (a) even after NH = 150 e-folds of contraction as there remains an inhomogeneous region (near x = 3π/2 in this example) where the scalar 
field velocity was initially headed rapidly in the wrong direction; but smoothing completes everywhere if the initial scalar field velocity is nowhere headed rapidly in the 
wrong direction, even though the initial conditions are highly perturbed with respect to the attractor slow contraction FRW solution, as illustrated in case (b). As in Ref. [7], 
both examples use a physically plausible value of M = 0.1 (in reduced Planck units), corresponding to ε = 50.
Fig. 2. The state space orbit for a worldline at x = 3π/2, a point in the inhomo-
geneous region for the case with Q 0 = 0, as shown in Fig. 1a (blue, dotted); and 
then superposed the space orbit for the same point the case with Q 0 > 0 shown 
in Fig. 1b (red, solid). The center of the circle corresponds to an isotropic FRW 
universe. The first orbit (blue, dotted) corresponding to an inhomogeneous region 
never reaches the center, whereas the second example (red, solid) corresponding to 
a smoothed region does reach the center.

The point x = 3π/2 lies in the inhomogeneous region of Fig. 1a. 
The orbits begin near the outer (Kasner) circle and travel inward. 
They show that, for the case in Fig. 1a, the orbit never converges to 
the center (corresponding to FRW), signifying that the mixmaster-
like reflections in the inhomogeneous region never isotropize. This 
is to be contrasted with the orbit shown for the case in Fig. 2b 
tracking the same point x = 3π/2 which isotropizes and converges 
to the center of the plot.

The critical value of Q 0 required to have “complete smooth-
ing” (smoothing for all x) depends on ε and � f = f1/Q attr . The 
curves in Fig. 3 show the critical Q 0 as a function of ε for three 
different values of � f for cases in which the initial Zab distribu-
tion is homogeneous. Depending on � f , complete smoothing and 
convergence to the attractor solution Q (x, t) = Q attr(t) occurs for 
any value of Q 0 on or above the corresponding curve. Note that 
there is a significant gap between these curves and the curve cor-
responding to the attractor solution, Q (x, t) = Q attr(t), indicating 
that the initial velocity may be quite far from the eventual smooth 
solution; this is a sign of robustness.
Fig. 3. The three solid curves show the minimal value of Q 0 required for complete 
smoothing and convergence to the attractor solution Q (x, t) = Q attr (bold dashed 
curve) as a function of ε, where � f = f1/Q attr measures the spatial inhomogeneity 
of the initial velocity distribution. (The initial distribution of Zab is homogeneous.) 
The solid curve marked � f = 0 corresponds to a strictly homogeneous initial con-
dition and the upper solid curves correspond to increasingly inhomogeneous initial 
velocity distributions.

The larger the value of ε is, the greater the robustness is. For 
example, for the case of a homogeneous initial velocity distribution 
(the curve marked � f = 0), complete smoothing and convergence 
to the attractor solution occurs for ε � 13 (or M−1 > 5.1) even if 
the scalar field begins at rest for all x (Q 0 = 0). For cases with 
non-uniform initial velocity (� f 	= 0), it suffices if Q 0 is posi-
tive enough that the initial scalar field velocity is downhill for all 
x. As noted above, rolling downhill is typically a prerequisite for 
contraction to begin (and absolutely necessary for cyclic models) 
and so, in these scenarios, this condition is automatically satis-
fied.
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5. Rapid smoother

A measure of smoothing power is how rapidly a cosmologi-
cal phase can transform a highly inhomogeneous and anisotropic 
patch into a nearly FRW universe like the one we observe. The ra-
pidity is critically important in cases like bouncing cosmology or 
inflation where the same phase is supposed to generate a nearly 
scale-invariant spectrum of fluctuations on scales larger than the 
Hubble radius during the smoothing period [4]. In these cases, the 
smoothing phase must last long enough to first homogenize the 
background beginning from highly non-perturbative initial condi-
tions and, in addition, last long enough to generate the requisite 
band of quantum fluctuations on the smoothed background as 
needed to explain the cosmic microwave background and galaxy 
formation.

The case of cyclic bouncing cosmology [5] is the most re-
strictive because the slow contraction phase is limited to a fi-
nite period beginning when the Hubble radius is roughly the 
current value |Hbeg |−1 = O(1028 cm) and ending when the Hub-
ble radius shrinks to a microscopic size |Hend|−1 = O(10−25 cm). 
There follows a classical (non-singular) bounce to an expanding 
phase accompanied by reheating. Note that |Hend|−1 is much larger 
than the Planck length where quantum gravity effects are non-
negligible. This value of |Hend|−1 corresponds to a reheat temper-
ature of T ∼ 1015 GeV. In total, the change in the Hubble radius 
during the slow contraction phase is a factor of about 120 e-
folds.

This range of 120 e-folds determines the maximum range of 
wavelengths (Fourier modes) that exit the Hubble radius during 
the slow contraction phase. During slow contraction, fluctuations 
exit the Hubble radius because the Hubble radius shrinks rapidly 
while the scale factor a(t) changes negligibly (see below). Each 
mode can be labeled by wavenumber k/a = Hexit , that depends 
on the value of the Hubble radius when the mode exits the Hub-
ble radius. Consequently, quantum fluctuations with wavelengths 
spanning the roughly 120 e-folds between k/a = |Hbeg |−1 and 
k/a = |Hend|−1 exit the Hubble radius by the time the bounce is 
reached.

After the bounce, |H |−1 expands in proportion to a2 during 
the radiation-dominated phase and as a3/2 during the matter-
dominated phase. The scale factor a(t) grows by about 60 e-folds 
over this period. Hence, modes with comoving wavenumbers be-
tween k/a = |Hend|−1 and k/a = e60|Hend|−1 lie within the Hubble 
radius today. These are probed by observations of galaxy forma-
tion and the temperature fluctuations of the cosmic microwave 
background radiation. In order to agree with observations, these 
fluctuations should be the only deviations from homogeneity and 
isotropy; that is, the initial highly-nonlinear deviations from FRW 
at the beginning of slow contraction must be smoothed well be-
fore these last 60 e-folds of quantum fluctuations exit the Hubble 
radius. (The first 60 e-folds to exit the Hubble radius lie beyond 
the current Hubble radius and are unconstrained by observations.) 
The rapidity constraint, therefore, is that smooth contraction must 
be rapid enough to smooth the universe well within the first 60 
e-folds of the contraction of |H |−1.

The rapidity depends on the rate of slow contraction which, in 
turn, depends on the equation of state ε. We have seen that the 
minimal value required for a classical and quantum smoother is 
ε = 3. We have shown in Figs. 2 and 3 that, for M−1 � 5.1 or ε �
13, the smoothing is robust: the universe is completely smoothed 
for the entire range of physically plausible initial conditions.

Now we want to consider how long the smoothing takes. For 
4 � M−1 � 10, the smoothing is complete within the first 60 e-
folds or less, depending on how nonlinear the initial conditions 
are. This barely meets the minimum criterion for rapidity. For 
modestly greater values, M−1 � 10 or ε � 50, corresponding to our 
example in Fig. 1b above, the smoothing is complete in less than 
10 e-folds, easily satisfying the rapid smoother condition.

6. Discussion

Explaining the observed large-scale properties of the universe 
requires a mechanism that causes these properties to emerge even 
from initial conditions that are very different from the desired out-
come. We have argued that supersmoothing, as defined by the four 
criteria described above, is required to achieve this goal. Then, us-
ing the tools of numerical relativity, we have shown that a slow 
contraction phase with ε ≥ O(10) satisfies these criteria, the only 
example of a supersmoother phase currently known.

An additional notable property of the slow contraction phase 
is that the scale factor a(t) hardly shrinks at all (by only Na =
ln a/abeg ≈ NH/ε e-folds) compared to the Hubble radius (which 
shrinks by NH e-folds) [5]. For example, in the case shown in 
Fig. 1b, a(t) shrinks by Na = 2.2 e-folds during the same period 
that the Hubble radius shrinks by NH ≈ 150 e-folds. In a cyclic 
bouncing model, this means that the distance between black holes 
(or galaxies) existing at the end of an expanding phase decreases 
by a negligible amount over the entire contraction phase!

Consequently, there is no crunch of pre-existing black holes, 
galaxies or other macroscopic objects as the bounce approaches. 
There is also no large increase in the density of ordinary mat-
ter and radiation. Space remains classical and spread out. What 
changes exponentially is the size of the Hubble radius and the 
energy density stored in the scalar field driving slow contraction. 
This is a fundamental difference between cyclic models based on 
slow contraction and classical non-singular bounces versus all pre-
vious cyclic models dating back to Friedmann and Tolman or early 
conceptions envisioned before the introduction of general relativ-
ity [5]. The entropy problem that plagued earlier renditions is not 
relevant here because nearly all entropy from the previous cycles 
lies outside the Hubble radius at the bounce and does not re-enter 
after the bounce.
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