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1 Introduction

A highly active area of focused research in string theory aims at a formulation of the

microscopic degeneracy of states of black holes to arrive at a statistical description of black

hole thermodynamics. This is a critical first step in gleaning insights into the organization

of the degrees of freedom in any purported theory of quantum gravity. A series of steady

definitive advancements has been accomplished in the last decades in this field, specifically

w.r.t. the exact counting of microstates of 1
4 BPS and 1

8 BPS black holes in four-dimensional

N = 4 and N = 8 string theories, respectively [1–19]. In this paper, we address the problem

of black hole microstate counting for 1
2 BPS asymptotically flat black hole backgrounds. We

do this in a specific four-dimensional N = 2 string theory model, namely the STU model

of Sen and Vafa (example D in [20]), for which the holomorphic function F , which encodes

(part of) the Wilsonian effective action, has been determined recently [21]. The function F

encodes an infinite set of gravitational coupling functions ω(n) (n ≥ 1). A proposal for the

counting of microstates in this model has been made in [22], by only taking into account

the gravitational coupling function ω(1). In this work, by using the detailed knowledge

about F given in [21], we arrive at a different proposal. While doing so, we will work in a

certain region of moduli space, as we will explain below.

In four-dimensional N = 2 string models, extremal black hole backgrounds are char-

acterized by electric and magnetic charges (qI , p
I) w.r.t. the various U(1) gauge fields in

these models. These backgrounds, which at weak string coupling correspond to BPS states,

possess a near-horizon AdS2 geometry [23]. This geometry is an exact solution of the equa-

tions of motions that is decoupled from the asymptotics of the background. The decoupling

ensures that the values of scalar fields {φ} in the near-horizon black hole background as

well as all relevant length scales, such as the AdS2 radius, are solely fixed in terms of the

charges and are independent of the asymptotic data. The near-horizon geometry, in effect,

acts as an attractor [24–26] for the scalar fields {φ} in the black hole background: the

attractor values of these scalars determine the near-horizon length scale, and hence the

black hole entropy SBH. This, in turn, implies that the quantum gravity partition func-

tion ZAdS2(φ, p) in this attractor background, evaluated in a canonical ensemble defined

at fixed magnetic charges, is the generator of the dimension of the black hole microstate

Hilbert space, i.e. of the black hole microstate degeneracy dBH(q, p), graded by electric and

magnetic charges. Hence, formally, one has

ZAdS2(φ, p) =
∑
q

dBH(q, p)eπq·φ . (1.1)

The SL(2,R)-isometries of AdS2 indicate that the generator of degeneracies has modular

properties, an expectation that has been extensively borne out in all cases where the exact

microscopic degeneracy is known, such as in four-dimensional N = 4 and N = 8 string

theories. Here the microstate degeneracy dBH(q, p) is related to the macroscopic entropy

of the black hole by the Boltzmann relation

SBH = ln dBH(q, p) . (1.2)
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The macroscopic entropy SBH has an expansion in terms of the dimensionless black

hole area ABH as1

SBH =
ABH

4
+ c1 lnABH +

c2

ABH
+ . . . . (1.3)

For extremal black holes with a near-horizon AdS2 geometry, a proposal for their exact

macroscopic entropy was put forward in [28, 29]. This proposal is called the quantum

entropy function, and is defined in terms of a regulated path integral over AdS2 space-

times with an insertion of a Wilson line corresponding to electric charges. This in turn

provides an operational definition for (1.1).

For BPS black holes in four-dimensional N = 2 string theories, the quantum entropy

function W (q, p) can be expressed as [30] (when strictly restricted to smooth configurations)

W (q, p) =

ˆ
C
dφµ(φ)Z1−loop(φ) eπ[4 ImF (φ+ip)−q·φ] . (1.4)

The various ingredients that go into this formula will be reviewed in section 2. Here we note

that the holomorphic function F appearing in the exponent is the holomorphic function

mentioned above that encodes (part of) the Wilsonian effective action. The function F

can be decomposed as F = F (0) + 2iΩ, where F (0) denotes the prepotential of the model,

whereas Ω encodes all the gravitational coupling functions ω(n), as a series expansion in

powers of Υ/(Y 0)2. Here, (Υ, Y 0) denote rescaled supergravity fields (A,X0), where A

denotes the lowest component of the square of a chiral superfield that describes the Weyl

multiplet, and where X0 denotes a complex scalar field belonging to one of the off-shell

vector multiplets in the associated supergravity theory.

The STU model of Sen and Vafa (example D in [20]) is based on four off-shell vector

multiplets, and Ω will therefore depend on four complex scalar fields Y I that reside in

these multiplets. Introducing projective coordinates S = −iY 1/Y 0, T = −iY 2/Y 0, U =

−iY 3/Y 0, Ω has the series expansion

Ω(Y,Υ) = Υ

∞∑
n=0

(
Υ

(Y 0)2

)n
ω(n+1)(S, T, U) . (1.5)

This STU model possesses duality symmetries, namely [Γ0(2)]3 symmetry and triality

symmetry. The former refers to the duality symmetry Γ0(2)S×Γ0(2)T ×Γ0(2)U , associated

with each of the moduli S, T, U . Here, Γ0(2) denotes a certain congruence subgroup of

SL(2,Z). In addition, the model possesses triality symmetry, i.e. invariance under the

exchange of S, T and U . Using all these symmetries, it was demonstrated in [21] that

the gravitational coupling functions ω(n+1)(S, T, U) are expressed in terms of one single

function ω, and derivatives thereof with respect to S, T, U . The duality symmetries were

implemented by adding to Ω in (1.5) a term proportional to Υ ln Y 0. However, such a term

is, strictly speaking, not part of the Wilsonian effective action. Since we will take Ω as an

input in (1.4), we will refrain from adding this term to Ω. This term will be effectively

generated from Z1−loop in (1.4), as already noted in [31].

1Additionally, a constant contribution may be present. We will neglect such a contribution when com-

puting the quantum entropy function. For a recent development in this regard see [27].
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The explicit expressions for the ω(n+1)(S, T, U) in the STU model are complicated.

However, in [21] it was observed that they dramatically simplify in the limit where the real

part of two of the three moduli S, T, U are taken to be large. This is the limit in which we

will work in this paper. We will thus fix two of the moduli, say T and U , to large values,

which we will denote by T0, U0. In this limit, Ω becomes effectively replaced by

Ω̂(Y 0, S,Υ) = Υ

(
ω(S) +

Υ

(Y 0)2

α

γ

∂ω(S)

∂S
+ Ξ(Y 0, S,Υ)

)
, (1.6)

where α, γ denotes constants, and where Ξ encodes the higher gravitational couplings

ω(n+1) with n ≥ 2. The latter are expressed in terms of modular forms In(S) and products

thereof. The In are themselves products of Eisenstein series for Γ0(2), see (B.38). We are

thus led to an expansion of Ξ in terms of In as

Ξ(Y 0, S,Υ) =

∞∑
n=2

(
Υ

(Y 0)2

)n
ω(n+1)(S) (1.7)

=
∞∑
n=2

αn

(
Υ

(Y 0)2

)n
In(S) +

∞∑
m,n=2

αm,n

(
Υ

(Y 0)2

)m+n

Im(S) In(S) + . . . .

Here, the right hand side is organised in powers of In. We call the first sector (which is

linear in In) the monomial sector, the second sector (which is quadratic in In) the binomial

sector, and so on. In [21], explicit expressions were only given for the coefficients of the

first two sectors: the αn were determined fully, and partial expressions for the αm,n were

given. Notwithstanding this limited knowledge about the expansion coefficients, there are

several lessons that one can draw from the power series expansion (1.6), (1.7). Firstly, under

Γ0(2)-transformations, Ω̂ transforms in the same manner as the logarithm of ϑ8
2(τ, z), where

ϑ8
2(τ, z) denotes one of the Jacobi theta functions, and where τ = iS, z = 1/Y 0. Moreover,

the series expansion (1.6), (1.7) is reminiscent of the Taylor series expansion around z = 0 of

lnϑ8
2(τ, z), see (D.21). In this expansion, the coefficients αn in the monomial sector behave

as 1/(2n)!, whereas in (1.7) they behave as 1/n!. Secondly, each of the In-sectors in the

expansion of lnϑ8
2(τ, z) defines a function that is given as a series expansion in z, and the

sum over all these functions gives rise to ln ϑ8
2(τ, z), which is naturally expressed in terms of

variables q = exp(2πiτ) and y = exp(2πiz). It is tempting to conclude that a similar story

may apply to Ω̂(Y 0, S,Υ). Thirdly, lnϑ8
2(τ, z) is a solution to a non-linear PDE derived

from the heat equation. So we may similarly ask whether Ξ given in (1.7) arises as solution

to a non-linear PDE. The answer is affirmative, and we give a PDE whose solution yields

the monomial and binomial sectors displayed in (1.7) for the expressions of the coefficients

given in [21] ([21] obtained exact expressions for αn and partial expressions for αm,n). The

higher sectors in (1.7), whose expansion coefficients have not been determined in [21], will

lead to modifications of this PDE, and we give a candidate for the modified PDE. Note that

Ξ has weight 0 under Γ0(2)-transformations. Finally, we note that the monomial sector

exhibits a connection with the two-particle rational Calogero model [32–34], as well as a

relation with Serre-Rankin-Cohen brackets which is suggestive of formal deformation [35].

In this paper we will compute the quantum entropy function (1.4) for large single-

center BPS black holes in the STU model. We follow [36, 37] and add a boundary term to
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the quantum entropy function, so as to bring it into a manifestly duality invariant form.

This modified form is what we thenceforth call the quantum entropy function. It requires

specifying an integration contour C, which we take to be the one constructed in [38] in the

context of microstate counting for N = 4 BPS black holes. The quantum entropy function

will depend on the three ingredients displayed in (1.6), namely ω(S), I1(S) ≡ ∂ω/∂S and

Ξ(Y 0, S). Since Ω̂(Y 0, S,Υ) depends on Y 0, so will the quantum entropy function. The

dependence on Y 0 brings in an explicit dependence on the magnetic charges (p0, p1), as we

will see. A microstate counting formula that reproduces the quantum entropy function will

have to take this dependence on Y 0 into account. Microstate counting formulae for BPS

black holes in four-dimensional N = 4, 8 string theories [1, 3, 5, 9] are based on modular

objects. In the N = 4 context, these are Siegel modular forms, and [22, 39] indicates that

they should also play a role in N = 2 theories. However, in the latter case, microstate

counting formulae cannot be solely based on Siegel modular forms due to the dependence

of the quantum entropy function on the additional modulus Y 0.

Let us briefly describe our microstate proposal. We find that ω(S), which is propor-

tional to lnϑ8
2(S), together with subleading corrections in the quantum entropy function,

point to a dependence of the microstate counting formula on a Siegel modular form Φ2

of weight 2. This Siegel modular form can be constructed by applying a Hecke lift [5] to

a specific Jacobi form constructed from the seed ϑ8
2, and it differs from the Siegel modu-

lar form proposed in [22], which did not take into account the subleading corrections just

mentioned. Due to the dependence on Y 0, this needs to be supplemented by a modular

object that depends on Y 0. By focusing attention onto the leading divisor of the Siegel

modular form Φ2, we give an expression for this modular object: one of the ingredients

that goes into it is Ξ, which we view as a solution to the aforementioned non-linear PDE.

We then verify that on the leading divisor, the proposed microstate counting formula is

invariant under the subgroup H ⊂ Sp(4,Z) that acts on the Siegel upper half plane and

implements the Γ0(2)S-symmetry of the STU model. We stress that the various approxi-

mations that we have implemented (such as working in a certain region of moduli space,

or focussing attention on the leading divisor of Φ2), render the microstate proposal to be

only an approximate one.

The paper is structured as follows. In section 2, we give a brief review of the quantum

entropy function for BPS black holes in N = 2 supergravity theories in four dimensions.

In section 3 we evaluate the quantum entropy function for large single-center BPS black

holes in the STU model. While doing so, we work in a certain region of moduli space in

which the function F = F (0) +2iΩ that encodes the Wilsonian effective action simplifies: Ω

becomes effectively replaced by (1.6). The modular invariant function Ξ in (1.6) arises as a

solution to a non-linear PDE, and exhibits a relation with the two-particle rational Calogero

model, as well as with Serre-Rankin-Cohen brackets and formal deformation. We discuss

our integration contour C, which we take to be the one constructed in [38]. The result for the

quantum entropy function is based on several assumptions and approximations which we

explain. In section 4, we propose a microstate counting formula that reproduces this result

for the quantum entropy function. It is based on the Siegel modular form Φ2 as well as

on another modular object that captures the dependence on the complex scalar Y 0. Given
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the various approximations that went into computing the quantum entropy function, the

proposed counting function will be an approximation to the (as yet unkown) exact counting

function. In section 5, we conclude with a brief summary and a few observations, and we

suggest a string web picture of our counting proposal. In appendices A–G, we collect

results about modular forms for SL(2,Z) and Γ0(2), Jacobi forms, Siegel modular forms,

Rankin-Cohen brackets and Hecke lifts.

2 Quantum entropy function for BPS black holes in N = 2 supergravity

theories

2.1 Generic structure

The equations of motion of N = 2 supergravity coupled to nV Abelian vector multiplets in

four dimensions admit dyonic single-center BPS black hole solutions [24]. These are static,

extremal black hole solutions that carry electric/magnetic charges (qI , p
I), where the index

I = 0, . . . , nV labels the Maxwell fields in the theory. The near-horizon geometry of these

solutions contains an AdS2 factor. These BPS black holes are supported by complex scalar

fields Y I that reside in the vector multiplets. At the horizon, these scalar fields are fixed

in terms of specific values that are entirely specified by the charges carried by the black

hole.

In the presence of higher-derivative terms proportional to the square of the Weyl tensor,

the associated N = 2 Wilsonian effective action is encoded in a holomorphic function

F (Y,Υ) [40], where the complex field Υ is related to the lowest component of the square

of the Weyl superfield. At the horizon of a BPS black hole, the field Υ takes the real value

Υ = −64, and Wald’s entropy of the BPS black hole [41] can be written as [42]

SBH(q, p) = π
[
4 ImF (Y,Υ)− qI(Y I + Ȳ I)

]
, (2.1)

where

Y I =
1

2

(
φI + ipI

)
, Υ = −64 (2.2)

are evaluated at the horizon. The horizon value of φI is determined by extremizing the

right hand side of (2.1) with respect to φI ,

4
∂

∂φI
ImF (φ+ ip,−64) = qI . (2.3)

Wald’s entropy (2.1) constitutes the semi-classical approximation to the exact macro-

scopic entropy of a BPS black hole. For extremal black holes whose near-horizon geometry

contains an AdS2 factor, a proposal for the exact macroscopic entropy of extremal black

holes has been put forward in [28, 29]. This proposal is called the quantum entropy func-

tion, and it is a regulated partition function for quantum gravity in a near-horizon AdS2

space-time.

The quantum entropy function is a functional integral, which for the subclass of BPS

black holes can be defined by means of equivariant localization techniques [30, 36, 37, 43–

46] that reduce the infinite dimensional functional integral to a finite dimensional integral

– 5 –
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over a bosonic localization manifold. When restricting to smooth field configurations in

near-horizon AdS2 backgrounds, the resulting expression for the quantum entropy function

W (q, p) for BPS black holes takes the form

W (q, p) =

ˆ
C
dφµ(φ)Z1−loop(φ) eπ[4 ImF (φ+ip)−q·φ] , (2.4)

where q · φ = qI φ
I , with I = 0, . . . , nV . The localization manifold is labelled by nV + 1

parameters {φI}. Note that the integral in (2.4) requires specifying a contour C. The

measure µ(φ) arises as a result of the localization procedure implemented on the field

configuration space. The term Z1−loop(φ) describes the semi-classical correction, giving

rise to a super determinant, that arises when performing the Gaussian integration over

terms quadratic in quantum fluctuations around the localization manifold. The function

F entering in (2.4) is the holomorphic function that defines the N = 2 Wilsonian effective

action (with Υ = −64).

Let us describe the quantities that enter in (2.4) in more detail. The Wilsonian function

F can be decomposed into

F (Y,Υ) = F (0)(Y ) + 2iΩ(Y,Υ) , (2.5)

where the dependence on the field Υ is solely contained in Ω. The first term F (0)(Y ) is the

so-called prepotential of the N = 2 model. Local supersymmetry requires both F (0) and

Ω to be homogeneous of degree 2 under complex rescalings [47],

F (0)(λY ) = λ2 F (0)(Y ) ,

Ω(λY, λ2Υ) = λ2 Ω(Y,Υ) , λ ∈ C\{0} , (2.6)

and hence they satisfy the homogeneity relations

2F (0) = Y I F
(0)
I ,

2Ω = Y I ΩI + 2Υ ΩΥ . (2.7)

Here, we have introduced the notation FI = ∂F/∂Y I , ΩΥ = ∂Ω/∂Υ.

The Wilsonian effective action is based on a function F where Ω(Y,Υ) is given in terms

of a power series expansion in Υ. Choosing λ = 1/Y 0 in the homogeneity relation (2.7)

implies that Ω(Y,Υ) takes the form

Ω(Y 0, zA,Υ) = Υ
∞∑
n=0

(
Υ

(Y 0)2

)n
ω(n+1)(zA) . (2.8)

Here, the gravitational coupling functions ω(n+1) only depend on the projective coordinates

zA = Y A/Y 0 (A = 1, . . . , nV ). In a generic N = 2 model, this perturbative series in

Υ/(Y 0)2 may not be convergent.

Next, let us discuss the measure factor µ. While this measure factor has not yet been

worked out from first principles,2 an approximate expression for it can be obtained by de-

manding consistency under electric-magnetic duality transformations as well as consistency

with semi-classical results for BPS entropy, as follows.

2A formalism for carrying out localization calculations in the presence of a supersymmetric background

has recently been given in [45, 46].
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Electric-magnetic duality is a characteristic feature of systems with N = 2 Abelian

vector multiplets in four dimensions, also in the presence of a chiral background field [40].

Duality transformations act as symplectic transformations on the Abelian field strengths,

and hence, on the associated charge vector (pI , qI), as well as on the vector (Y I , FI) [47].

The semi-classical entropy (2.1) of a BPS black hole transforms as a function under sym-

plectic transformations, that is, under changes of the duality frame, and this should also

be the case for the exact macroscopic entropy W (q, p) of the BPS black hole. To ensure

that (2.4) transforms as a function under symplectic transformations, the measure factor

has to be proportional to [43, 48] √
det ImFKL , (2.9)

as we will review in the next subsection. Here, FKL denotes the second derivative of the

Wilsonian function F (2.5) with respect to the Y I .

In addition, the measure factor µ should also include non-holomorphic terms, which

we will denote by Σ, that have their origin in the holomorphic anomaly equations for

the free energies of perturbative topological string theory, and are needed for consistency

with semi-classical results [49]. Keeping only non-holomorphic terms associated with the

topological free energy F (1), Σ takes the form

Σ = −1

2
ln | det ImF

(0)
IJ |+

( χ
24
− 1
)

ln

(
e−K

(0)

|Y 0|2

)
, (2.10)

where χ = 2(nV −nH +1), which is determined in terms of the number of vector and hyper

multiplets of the N = 2 model (nV and nH , respectively), denotes the Euler number of the

Calabi-Yau threefold underlying the model, and

e−K
(0)

= i
(
Ȳ I F

(0)
I − Y I F̄

(0)
I

)
. (2.11)

We are thus led to consider a measure factor of the form

µ =
√

det ImFKL e
Σ , (2.12)

which, when approximating F by F (0) takes the form (cf. eq. (4.21) in [49])

µ ≈

(
e−K

(0)

|Y 0|2

)χ/24−1

. (2.13)

The expressions (2.12) and (2.13) are evaluated at (2.2). We stress that the measure

factor given in (2.13) is an approximate measure factor that will receive further corrections

stemming from Ω in (2.5). We will, in due course, make use of this observation. Note that

in this approximation, µ only depends on the projective coordinates zA, z̄A.

Now let us turn to the 1-loop determinant Z1−loop, which reads [43, 44, 46]

Z1−loop = e−(2−χ/24)K . (2.14)

Here, the quantity

e−K = i
(
Ȳ IFI − Y I F̄I

)
(2.15)
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is computed from the Wilsonian function F (Y,Υ), and not just from the prepotential

F (0)(Y ). The factor 2 in the exponent of (2.14) denotes the contribution from fluctuations

of the Weyl multiplet. Note that the expression for Z1−loop depends on Y 0 and zA (and

their complex conjugates), and that it is a symplectic function. Z1−loop is again evaluated

at (2.2).

The quantum entropy function (2.4) requires a choice of integration contour C, which

we will specify in subsection 3.5 for the specific N = 2 model under consideration.

Let us close this subsection by mentioning three checks that one can perform on the

proposed approximate measure factor µ and on Z1−loop. Firstly, when replacing K by K(0)

in Z1−loop, one infers [43, 44] that the macroscopic entropy SBH(q, p) = lnW (q, p) receives

a logarithmic correction given by

∆SBH = lnZ1−loop|∗ = (2− χ/24) ln e−K
(0) |∗ . (2.16)

Here, ∗ indicates that the expression is evaluated at the attractor values (2.3). For a large

supersymmetric black hole, π e−K
(0) |∗ equals the area ABH of the event horizon at the

two-derivative level [50], and hence

∆SBH = (2− χ/24) lnABH , (2.17)

which reproduces the logarithmic area correction to the BPS entropy of a large black hole

computed in [31].

Secondly, approximating K by K(0) in (2.14) results in [31]

µZ1−loop = |Y 0|(2−χ/12) e−K
(0)
, (2.18)

which is the combination that plays the role of a measure factor in the study [51] of the

OSV conjecture [42].

Thirdly, as mentioned above, the measure factor µ is required to ensure that the

quantum entropy function is a symplectic function. To verify this, we will now compute

W (q, p) in saddle-point approximation.

2.2 Saddle-point approximation

Let us denote the exponent in (2.4) by

H(φ, p, q) = 4 ImF (φ+ ip)− q · φ . (2.19)

Then, equations (2.3) follow by extremizing H(φ, p, q),

∂H(φ, p, q)

∂φI
= 0 . (2.20)

Let us assume that for a given set of black hole charges (qI , p
I) there exists only one non-

inflective critical point φ∗, corresponding to BPS attractor values such that H(φ∗, p, q) > 0.

Expanding H(φ, p, q) around the critical point φ∗, we obtain

H(φ, p, q) = H(φ∗, p, q) +
1

2

∂2H

∂φI∂φJ
|φ∗ δφI δφJ +O((δφ)3) ,

= H(φ∗, p, q) +
1

2

∂2(4 ImF )

∂φI∂φJ
|φ∗ δφI δφJ +O((δφ)3) . (2.21)
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Using (2.2), this equals

H(φ, p, q) = H(φ∗, p, q) +
1

2
ImFIJ |φ∗ δφI δφJ +O((δφ)3) . (2.22)

Next, we evaluate (2.4) in saddle point approximation by taking µZ1−loop at the attractor

point,

µZ1−loop|φ∗ , (2.23)

and by integrating over the fluctuations δφI ∈ C in Gaussian approximation,

W (q, p) ≈
(

µ Z1−loop√
det ImFKL

)
|φ∗ eπH(φ∗,p,q)

=
(
eΣ Z1−loop

)
|φ∗ eπH(φ∗,p,q) . (2.24)

We note that the factor
√

det ImFKL has cancelled out against the corresponding factor

in (2.12).

In the absence of non-holomorphic corrections (Σ = 0), H is a symplectic function [48],

and hence, the result (2.24) is a symplectic function. This justifies the presence of the

factor
√

det ImFKL in (2.12). In the presence of non-holomorphic corrections (Σ 6= 0), the

discussion of symplectic covariance is more involved [48, 49, 52], but it can be shown that

the combination Σ + πH in (2.24) is a symplectic function.

In this paper, we will focus on a specific N = 2 model, namely the STU model of Sen

and Vafa (example D in [20]). This is a model for which the duality symmetries are known

exactly. We will analyze the expression (2.24) for this model in subsection 3.4.1, and verify

that it is consistent with the duality invariance of the model.

Finally, we recall that the attractor equations (2.20) take the form

FI − F̄I = iqI , I = 0, . . . , nV , (2.25)

with Y I = 1
2(φI + ipI). The attractor value H(φ∗, p, q) can be expressed as [48]

H(φ∗, p, q) =
[
i
(
Ȳ IFI − Y I F̄I

)
− 2i

(
ΥFΥ − Ῡ F̄Υ

)]
|
Y=

1
2 (φ∗+ip)

(2.26)

by means of homogeneity relations (2.7).

3 Quantum entropy function for the N = 2 STU model of Sen and Vafa

Next, we specialize to the N = 2 STU model of Sen and Vafa (example D in [20]). This

is a model with duality symmetries which are so restrictive that they have recently led to

the determination [21] of Ω in (2.5). We will consider large BPS black holes in this model,

and we will evaluate the quantum entropy function (2.4) for these black holes. In doing so,

we will work in a certain region of moduli space of the STU model in which the function

F simplifies. We begin by reviewing the form of F for this model.
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3.1 The N = 2 STU model with χ = 0

The N = 2 STU model of [20] (example D), obtained by a Z2×Z2 orbifold compactification

of type II string theory, is a model with nV = 3 vector multiplets and nH = 4 hyper

multiplets, and hence vanishing Euler number χ = 2(nV − nH + 1). The complex scalar

fields residing in the three vector multiplets are denoted by S, T and U ,

S = −iz1 = −iY
1

Y 0
, T = −iz2 = −iY

2

Y 0
, U = −iz3 = −iY

3

Y 0
. (3.1)

The prepotential F (0)(Y ) is exact and given by

F (0)(Y ) = −Y
1Y 2Y 3

Y 0
. (3.2)

The model possesses symmetries, in particular a duality symmetry Γ0(2)S×Γ0(2)T×Γ0(2)U ,

where Γ0(2) denotes a congruence subgroup of the group SL(2,Z),

Γ0(2) =

{(
a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod 2)

}
, (3.3)

where ∗ can take any value in Z.

Duality transformations act as symplectic transformations on the vector (Y I , FI). Un-

der Γ0(2)S transformations, the complex scalars S and Y 0 transform as

S → aS − ib
icS + d

, Y 0 → (icS + d)Y 0 , (3.4)

while the scalars T, U transform as [49]

T → T +
2ic

(icS + d)(Y 0)2

∂Ω

∂U
,

U → U +
2ic

(icS + d)(Y 0)2

∂Ω

∂T
, (3.5)

and hence are not inert in the presence of Ω. Similar transformation rules apply under

Γ0(2)T,U transformations.

The symmetries of the model, namely Γ0(2)S×Γ0(2)T ×Γ0(2)U and triality symmetry

under exchange of S, T and U , are very restrictive, and have recently been used [21] to

determine the coupling functions ω(n+1)(zA) in Ω, cf. (2.8). This was achieved by adding

to Ω the term 2Υ γ lnY 0, with the constant γ given by (3.7). This term, which is not of

Wilsonian type, since it is not of the power law type, was crucial to implement the duality

symmetries of the STU model while maintaining holomorphy. It was found that the higher

gravitational coupling functions ω(n+1)(zA) (with n ≥ 1) are determined in terms of the

first gravitational coupling function ω(1)(zA). The latter takes the form [53]

ω(1)(S, T, U) = ω(S) + ω(T ) + ω(U) , (3.6)

where

ω(S) = −1

2
γ lnϑ8

2(S) , γ = − 1

256π
, (3.7)
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with ϑ2(S) = 2η2(2S)/η(S), and likewise for ω(T ) and ω(U). Here, ϑ8
2(S) denotes a

modular form of weight 4 under Γ0(2)S (with trivial multiplier system [54]),

ϑ8
2

(
aS − ib
icS + d

)
= ∆4(S)ϑ8

2(S) , (3.8)

where

∆(S) = icS + d . (3.9)

We refer to appendices A and B for a brief review of modular forms. We pick a single-valued

analytic branch of lnϑ8
2(S) such that under Γ0(2)S , ω(S) transforms into

ω(S) −→ ω(S)− 2γ ln ∆(S) . (3.10)

Now let us describe the region in moduli space in which we will work. It was observed

in [21] that the coupling functions ω(n+1)(zA) in Ω simplify dramatically when working in

a regime where two of the three moduli S, T, U (say T and U) are taken to be large, i.e.

ReT, ReU � 1. In this limit,

ω(T ) ∝ T , ω(U) ∝ U , (3.11)

that is,
∂ω(T )

∂T
= − 1

256
,

∂ω(U)

∂U
= − 1

256
. (3.12)

We introduce the combination

α ≡ ∂ω(T )

∂T

∂ω(U)

∂U
=

1

(256)2
, (3.13)

which is constant in this limit. In this region of moduli space, the coupling functions

ω(n+1) with n ≥ 1 in (2.8) are functions of S only, and are moreover expressed in terms of

derivatives of ω(S), as we now describe.

In this limit, the coupling function ω(2) is given by

ω(2)(S) =
α

γ

∂ω(S)

∂S
, (3.14)

and the Wilsonian function Ω(Y,Υ) in (2.8) takes the form3

Ω(Y 0, S, T, U,Υ) = Υ (ω(T ) + ω(U)) + Ω̂(Y 0, S,Υ) ,

Ω̂(Y 0, S,Υ) = Υ

[
ω(S) +

Υ

(Y 0)2

α

γ

∂ω(S)

∂S
+ Ξ(Y 0, S,Υ)

]
, (3.15)

where we used (3.6). Here, Ξ contains the coupling functions ω(n+1)(S) with n ≥ 2, and it

denotes a function that is invariant under Γ0(2)S transformations. This can be established

as follows.

3Note that the Wilsonian function Ω used here differs from the function Ω used in [21] by a term

Υ γ ln[(Y 0)2/Υ].
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Instead of working with variables S, Y 0, we find it convenient to work with variables

S, z, where4

z ≡ 1/Y 0 . (3.16)

Under Γ0(2)S transformations, these variables transform according to (3.4), and hence,

z 7→ z/∆. The derivatives of Ω̂(Y 0, S,Υ) are required [21] to transform according to(
∂Ω̂

∂S

)′
−∆2 ∂Ω̂

∂S
=
∂∆

∂S

[
∆ z

(
∂Ω̂

∂z
− 2Υ γ

z

)
− 2 Υ2 α z2 ∂∆

∂S

]
,(

∂Ω̂

∂z
− 2Υ γ

z

)′
= ∆

(
∂Ω̂

∂z
− 2Υ γ

z

)
− 4 Υ2 α z

∂∆

∂S
, (3.17)

where ′ denotes the transformed quantity. Inserting the expression for Ω̂ given in (3.15)

into (3.17) results in (
∂Ξ

∂S

)′
= ∆2 ∂Ξ

∂S
+ ic∆ z

∂Ξ

∂z
,(

∂Ξ

∂z

)′
= ∆

∂Ξ

∂z
, (3.18)

where we used (3.10). Note that (3.18) is linear in Ξ. Expanding Ξ in powers of Υ z2 [21],

Ξ(z, S,Υ) =

∞∑
n=2

Υn z2n ω(n+1)(S) , (3.19)

we find5 that (3.19) solves (3.18), provided the coupling functions ω(n+1)(S) in (3.19)

are modular forms of weight 2n. The solution (3.19) is therefore invariant under Γ0(2)S
transformations. The coupling functions ω(n+1)(S) are expressed in terms of modular forms

In introduced in [21], as follows.

Consider the combinations

I1(S) =
∂ω(S)

∂S
,

I2(S) = ∂SI1 +
1

2γ
I2

1 =
∂2ω(S)

∂S2
+

1

2γ

(∂ω(S)

∂S

)2
. (3.20)

I2(S) transforms as a modular form under Γ0(2)S transformations, whereas I1(S) does not

in view of (3.10). Therefore, and for latter use, we introduce the combination

Î1(S, S̄) =
∂ω

∂S
− 2γ

(S + S̄)
, (3.21)

which transforms covariantly (with weight 2) under Γ0(2)S transformations by virtue of

1

S + S̄
−→ ∆2(S)

S + S̄
− ic∆(S) . (3.22)

4The variable z ≡ 1/Y 0 should not be confused with the projective coordinates zA defined in (3.1).
5Here we assume that we may differentiate (3.19) term by term, with respect to both z and S.
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Next, define higher In(S) by

In+1(S) = DSIn(S) , n ≥ 2 . (3.23)

Here, DS denotes a holomorphic covariant derivative [55], an analogue of Serre derivative,

which acts as follows on Γ0(2)S modular forms fn(S) of weight 2n,

DS fn(S) =
( ∂

∂S
+
n

γ

∂ω(S)

∂S

)
fn(S) , n ≥ 2 . (3.24)

Under Γ0(2)S transformations, the In (with n ≥ 2) transform as modular forms of weight

2n, i.e. In(S) → ∆2n In(S). We refer to appendix B for further properties of the In, in

particular their relation with Eisenstein series of Γ0(2) [55].

The explicit form of Ξ(z, S,Υ), which was determined in [21], is in terms of a power

series in In(S) with n ≥ 2,

Ξ(z, S,Υ) =

∞∑
n=2

αn Υn z2n In(S) +

∞∑
m,n=2

αm,n Υm+n z2(m+n) Im(S) In(S) + . . . . (3.25)

In this expansion, each summand is invariant under Γ0(2)S transformations. This expansion

contains an infinite number of different sectors, characterized by different powers of In.

The expansion coefficients in (3.25) can, in principle, be determined by following the rather

laborious procedure described in [21], which consists in working at a generic point in moduli

space, solving the associated conditions on Ω imposed by duality, and only then taking T

and U to be large. In [21], only expressions for the coefficients αn and αm,n of the two first

sectors were given: the αn were determined fully, and partial expressions for the αm,n were

given. Below we write down explicit expressions for these coefficients (with m,n ≥ 2):

αn =
1

n!

(
α

γ

)n
, (3.26)

αm,n = βm,n

(
α

γ

)m+n

,

βm,n = − 1

2γ

1

(m− 1)! (n− 1)!

[
1

m(m+ 1)
+

1

n(n+ 1)
− (m+ n− 2)!

(m+ n)!
+

1

2

]
.

The coefficients βm,n satisfy the following recursion relation (with m,n ≥ 2),

(m+ n)βm,n = βm,n−1 + βm−1,n −
1

2γ

1

(m− 1)! (n− 1)!

− 1

2γ

1

(m− 1)!
δn,2 −

1

2γ

1

(n− 1)!
δm,2 , (3.27)

with β1,n = βm,1 ≡ 0. Note that the terms in the bracket of βm,n are related to triangular

numbers.

In this paper we will focus on the two first sectors displayed in (3.25), with the coef-

ficients given by (3.26). Both series are convergent, as we will show in appendix D. The

quantity Ξ(z, S,Υ) will play a role in the microstate counting proposal for large BPS black

holes in section 4.

The expansion (3.25) in powers of In may look unfamiliar. In appendix D, we discuss

another example of such an expansion, namely the expansion of ln ϑ8
2(S, z).
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3.2 Properties of Ξ(z, S,Υ)

The expansion (3.25) with coefficients (3.26) satisfies various interesting relations, which

we now describe. First, we present a non-linear PDE that is satisfied by Ξ in (3.25). We

also display a candidate for a non-linear PDE governing the all-order completion of (3.25).

Next, we relate the monomial sector in (3.25) to (Serre-) Rankin-Cohen brackets at level 1

and comment on its relation with formal deformation. And finally, we deduce a Hamilton-

Jacobi equation for Ω̂ in (3.15), whose Hamiltonian describes a time-dependent deformation

of a rational Calogero model.

3.2.1 Non-linear PDE

Let S = −iτ , with τ taking values in the complex upper half plane H, and z ∈ C. Consider

the following non-linear PDE for a complex function Ξ depending on S and z2,

ν DSΞ =
∂Ξ

∂u
+

1

2γ
u

(
∂Ξ

∂u

)2

+
ν2

γ
I2 u

2 ∂Ξ

∂u
− ν2 I2 u , (3.28)

where we set u ≡ z2 for ease of notation in this subsection, and where ν = αΥ/γ. Here we

defined

DSΞ ≡ ∂SΞ +
1

γ
I1 u ∂uΞ . (3.29)

I1 and I2 denote the combinations given in (3.20).

Proposition: the non-linear PDE (3.28), subject to Ξ|u=0 = 0 and (∂uΞ)|u=0 = 0, admits

a Γ0(2)S invariant solution that is analytic in u in an open neighbourhood of u = 0. This

solution is given by the series (3.25) with coefficients (3.26), up to terms that involve

products of three In or higher.

Proof. We begin by showing that if a solution Ξ to (3.28) exists that satisfies Ξ|u=0 = 0

and (∂uΞ)|u=0 = 0, and that is analytic in u in an open neighbourhood of u = 0, then

it is unique. Such a solution will be given by the series Ξ(u, S) =
∑∞

n=2 u
n hn(S), with

h2(S) = ν2

2 I2(S). The latter follows immediately by inserting this series into (3.28) and

assuming that one can differentiate it on a term by term basis. Now suppose that there are

two such solutions, namely Ξ1(u, S) =
∑∞

n=2 u
n hn(S) and Ξ2(u, S) =

∑∞
n=2 u

n gn(S), such

that h2(S) = g2(S). Then, if the n-th coefficient functions are the same, i.e. hn(S) = gn(S),

also the (n + 1)-st coefficient functions will agree, i.e. hn+1(S) = gn+1(S). This follows

by direct inspection of the differential equation (3.28), which shows that the (n + 1)-st

coefficient function is determined in terms of the lower coefficient functions. This also

shows that the coefficient functions hn(S) are modular forms of weight 2n under Γ0(2)S
transformations, and hence Ξ(u, S) is a Γ0(2)S invariant solution.

Next, let us construct this Γ0(2)S invariant solution Ξ(u, S) =
∑∞

n=2 u
n hn(S). This

solution will be given in terms of an expansion in powers of In(S) (with n ≥ 2). To

distinguish between these various powers, we rescale Ξ and I2 in (3.28) by a real parameter

λ ∈ R\{0}, to obtain

ν DSΞ =
∂Ξ

∂u
+

λ

2γ
u

(
∂Ξ

∂u

)2

+ λ
ν2

γ
I2 u

2 ∂Ξ

∂u
− ν2 I2 u . (3.30)
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We then construct a solution to (3.30) order by order in λ. Since λ is a dummy variable,

we set λ = 1 at the end, thereby arriving at a Γ0(2)S invariant solution Ξ(u, S) that is

organized in powers of In(S), as in (3.25).

To lowest order in λ, (3.30) reduces to

ν DSΞ =
∂Ξ

∂u
− ν2 I2 u . (3.31)

We seek a solution to this differential equation of the form

Ξ(u, S) =

∞∑
n=2

un fn(S) . (3.32)

Inserting (3.32) into (3.31), and assuming that we can differentiate (3.32) term by term6,

one immediately infers that fn(S) = νn

n! In(S) for n ≥ 2 by virtue of (3.24). This reproduces

the first (monomial) sector in the expansion (3.25).

At the next order in λ, we return to (3.30) and substitute (3.32) into the term (∂Ξ/∂u)2.

At this order, (3.30) is solved by the second (binomial) sector in the series (3.25), with the

coefficients satisfying the recursion relation (3.27), thus reproducing the result (3.26).

Setting λ = 1 we conclude that (3.25) solves the non-linear PDE (3.28), up to terms

that involve products of three In or higher.

The expansion Ξ in (3.25) receives corrections that are of higher order (higher than

two) in the In. These will in turn lead to a modification of the PDE (3.28). The coefficients

of these higher order terms were not determined in [21]. Inspection of (3.28) suggests the

following all-order completion of (3.25) (under the assumption that the expressions for the

coefficients αm,n displayed in (3.26) are actually the exact expressions).

Conjecture: the non-linear PDE governing the all-order completion of (3.25) is given by

ν DS (Ξ/γ) =
1

u

(
eu∂(Ξ/γ)/∂u − 1− ν2 u2 I2/γ

1 + u ∂(Ξ/γ)
∂u

)
. (3.33)

However, at this stage, we cannot verify this, since we do not have at our disposal the

coefficients of the higher-order terms.

Note that DS acts as follows on a given summand of Ξ in (3.25). Consider the summand

αn1,n2,...,nk z
2(n1+n2+...nk) In1 In2 . . . Ink , (3.34)

with αn1,n2,...,nk constant coefficients. Then,

DS

(
αn1,n2,...,nk z

2(n1+n2+...nk) In1 In2 . . . Ink

)
=αn1,n2,...,nk z

2(n1+n2+...nk)DS (In1 In2 . . . Ink) ,

(3.35)

where DS denotes the covariant derivative introduced in (3.24).

6This will be shown to be the case in appendix D, at least so long as ReS is taken to be large.
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3.2.2 In and Rankin-Cohen brackets

Second, let us focus on the terms linear in In in the expansion (3.25),

Ξ1(z, S,Υ) =
∞∑
n=2

νn

n!
z2n In(S) . (3.36)

Note that the coefficients have a 1/n!-suppression. This series is convergent, at least so

long as ReS and |Y 0| are taken to be large, as we show in appendix D.

Using the property In+1(S) = DSIn(S) for n ≥ 2, together with I2(S) = 1
2πγDS Ẽ2(S),

where Ẽ2(S) denotes the basis vector of the vector space M2(Γ0(2)), see (B.37), we obtain

Ξ1(z, S,Υ)=
1

2
πγ

∞∑
n=1

1

(n+ 1)!
νn+1z2(n+1)DnS Ẽ2(S)=

1

2
πγ

(
eνz

2DS − 1− νz2DS
DS

)
Ẽ2(S),

(3.37)

where the operator on the right hand side is defined by the power series.

Next, let us add to Ξ1(z, S,Υ) the term proportional to I1(S) = ∂ω(S)/∂S that appears

in Ω̂ given in (3.15), so that now we consider

Ξ̂1(z, S,Υ) =

∞∑
n=1

νn

n!
z2n In(S) . (3.38)

As we review in appendix C, the In, with n ≥ 3, can be expressed in terms of 1st Rankin-

Cohen brackets for modular forms, while I2 can be expressed in terms of the quasi-modular

form I1 by making use of 1st Rankin-Cohen brackets for quasi-modular forms of depth

1 [56],

I2 = − 1

4g
[I1, g]1 , (3.39)

where g(S) = ϑ8
2(S) has weight 4. We thus have the following proposition.

Proposition: let g(S) = ϑ8
2(S). Then, Ξ̂1(z, S,Υ) can be expressed as

Ξ̂1(z, S,Υ) = ν z2
∞∑
n=0

(−1)n

(n+ 1)!

(
ν z2

4

)n (
1

g
[·, g]1

)n
I1(S) , (3.40)

where (
1

g
[·, g]1

)n
I1 ≡

1

g
[
1

g
[. . . [

1

g
[I1, g]1, . . . , g]1, g]1 , (3.41)

with the understanding that this equals I1 when n = 0. In the last step, the bracket [·, ·]1
denotes the 1st Rankin-Cohen bracket for quasi-modular forms of depth 1.

Proof. This follows immediately, using the results of appendix C.

The expression (3.40) exhibits a formal similarity with the differential (C.14) of the

exponential map exp : g→ G from the Lie algebra g into the linear group G.
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Now consider the nth Serre-Rankin-Cohen bracket (C.16) for Γ0(2),

1

g
SRCn(I2, g)(S) = (−1)n

(
n+ 3

n

)
In+2(S) , (3.42)

where we used (B.34). Thus, we can write Ξ̂1(z, S,Υ) as

Ξ̂1(z, S,Υ) = ν z2 I1(S) +
∞∑
n=0

1

(n+ 2)!
νn+2 z2(n+2) In+2(S) (3.43)

= ν z2 I1(S) + 6
ν2z4

g

∞∑
n=0

(−1)n n!

(n+ 2)! (n+ 3)!

(
νz2
)n

SRCn(I2, g)(S) .

We relate this to the formal deformation Eholzer product (C.17) by means of the generalized

hypergeometric function

2F2(a, b, c, d;x) =
∞∑
n=0

(a)n (b)n
(c)n (d)n

xn

n!
, (3.44)

where (a)n = a(a+ 1) . . . (a+ n− 1). Using

2F2(1, 1, 3, 4;x) = 12

∞∑
n=0

n!

(n+ 2)! (n+ 3)!
xn , (3.45)

we obtain the formal expression

Ξ̂1(z, S,Υ) = ν z2 I1(S) +
ν2z4

4πig

‰
d~
~ 2F2(1, 1, 3, 4;−νz

2

~
) I2#g , (3.46)

where I2#g is given as in (C.17), with ~ ∈ C a deformation parameter, and the integra-

tion contour encloses the origin. It would be interesting to further study the relation of

Ξ̂1(z, S,Υ) with formal deformation.

3.2.3 Deformed Calogero model

We return to (3.17) and deduce a Hamilton-Jacobi equation from it, as follows.

Taking the square of the second equation in (3.17), and suitably combining it with the

first equation in (3.17), we obtain[
8 Υ2 α

∂Ω̂

∂S
+

(
∂Ω̂

∂z
− 2Υ γ

z

)2 ]′
= ∆2

8 Υ2 α
∂Ω̂

∂S
+

(
∂Ω̂

∂z
− 2Υ γ

z

)2
 . (3.47)

This implies that the combination
[
8 Υ2 α∂Ω̂/∂S + (∂Ω̂/∂z − 2Υ γ/z)2

]
transforms as a

modular form of weight 2 (with a trivial multiplier system) under Γ0(2)S transformations.

We denote this combination by V (S, z)/z2, where V (S, z) denotes a modular invariant

function,

8 Υ2 α
∂Ω̂

∂S
= −

(∂Ω̂

∂z
− 2Υ γ

z

)2

− V (S, z)

z2

 . (3.48)
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Then, inserting the expression (3.15) for Ω̂ into (3.48) gives

ν

(
∂Ξ

∂S
+

1

2γ
I1(S) z

∂Ξ

∂z

)
= − 1

8γ

(
∂Ξ

∂z

)2

+
1

2z

∂Ξ

∂z
− ν2 I2(S) z2

−
(

4 (γΥ)2 − V (S, z)

8γΥ2 z2

)
, (3.49)

where ν = αΥ/γ, as before. By comparing this equation with (3.28), we infer

V (S, z) = 4 (γΥ)2 + 2 Υ2 z2

((
∂Ξ

∂z

)2

+ 2ν2 I2(S) z3 ∂Ξ

∂z

)
. (3.50)

Proposition: the partial differential equation (3.48) is a Hamilton-Jacobi equation with

Hamilton’s principal function S(t, z) given by

S(t, z) = Ω̂(t, z)− 2Υ γ ln z (3.51)

with t = S/(4Υ2 α). While S is not invariant under Γ0(2) transformations,

S(t, z)→ S(t, z)− z2

2∆

∂∆

∂t
, (3.52)

the combination S − S1, with S1(t, z) = 1
2
z2

t+t̄ , is invariant.

Proof. Setting t = S/(4Υ2 α) we write (3.48) as

∂(Ω̂− 2Υ γ ln z)

∂t
= −1

2

(∂(Ω̂− 2Υ γ ln z)

∂z

)2

− V (t, z)

z2

 . (3.53)

Using (3.51), we obtain

− ∂S
∂t

= H
(
∂S
∂z
, z, t

)
(3.54)

with

H(p, z, t) =
1

2

(
p2 − V (t, z)

z2

)
. (3.55)

Next, using (3.10) and (3.15), we infer the transformation behaviour (3.52). We can com-

pensate for the term proportional to ∂∆/∂t on the right hand side of (3.52) by considering

the Γ0(2) invariant combination S − S1, where

S1 =
1

2

z2

t+ t̄
, (3.56)

which satisfies

− ∂S1

∂t
=

1

2

(
∂S1

∂z

)2

. (3.57)

When t and z are real, S1 describes Hamilton’s principal function for a free particle.
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Using (3.15), we note that the combination S − S1, when expressed in terms of S and

z, takes the form

S(S, z)− S1(S, z) = Υ
[
ω(S)− 2γ ln z + ν z2 Î1(S, S̄) + Ξ(z, S,Υ)

]
, (3.58)

with Î1 given in (3.21).

When truncating V (S, z) in (3.50) to the constant term, V (S, z) = 4 (γΥ)2, the Hamil-

tonian (3.55) becomes H(p, z) = 1
2(p2 − g2/z2), with g2 = 4(Υ γ)2 > 0. For real z, H(p, z)

is the conformal mechanics Hamiltonian of [57] (with negative coupling constant, though),

also related to the two-particle rational Calogero model [32]. When V (S, z) = 4 (γΥ)2,

the PDE (3.49), subject to Ξ|z=0 = 0 and (∂z2Ξ)|z=0 = 0, is solved by (3.36) in the

approximation that we drop the term quadratic in ∂Ξ/∂z.

On the other hand, the full V (S, z) in (3.50) results in a time-dependent Hamilto-

nian (3.55), which can be viewed as a time-dependent deformation of the rational Calogero

Hamiltonian by an infinite set of terms involving powers of In(S), starting with terms

quadratic in In(S).

3.3 Charge bilinears in the STU model

In the STU model, BPS black holes may carry electric/magnetic charges (qI , p
I), with

I = 0, 1, 2, 3. Under Γ0(2)S they transform as follows [49],

p0→ d p0 + c p1 ,

p1→ a p1 + b p0 ,

p2→ d p2 − c q3 ,

p3→ d p3 − c q2 ,

q0→ a q0 − b q1 ,

q1→ d q1 − c q0 ,

q2→ a q2 − b p3 ,

q3→ a q3 − b p2 .

(3.59)

These charges can be assembled into three charge bilinears,

n = −q0p
1 + q2q3 ,

m = p0q1 + p2p3 ,

l = q0p
0 − q1p

1 + q2p
2 + q3p

3 . (3.60)

These bilinears transform as a triplet under Γ0(2)S [49],n

m

l

→
 a2 b2 −ab

c2 d2 −cd
−2ac −2bd ad+ bc


n

m

l

 , (3.61)

and the Γ0(2) invariant norm of this vector is 4nm− l2.

3.4 Large single-center BPS black holes

Now we turn to the computation of the quantum entropy function (2.4) for large single-

center BPS black holes in the STU model.
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Definition: a large single-center BPS black hole is a dyonic spherically symmetric BPS

black hole carrying electric/magnetic charges (qI , p
I) such that the charge bilinears m, n

and the charge combination 4nm − l2 are positive, which ensures that the black hole has

a non-vanishing horizon area, proportional to
√

4nm− l2, at the two-derivative level.

At the two-derivative level, the horizon area ABH equals ABH = 4π(S + S̄)m [50],

where S denotes the value at the horizon. Hence S + S̄ > 0 for a large BPS black hole,

which implies that p0 and p1 cannot be simultaneously zero.7

The semi-classical macroscopic entropy SBH of a BPS black hole equals

SBH = πH(φ∗, p, q), with H(φ∗, p, q) given by (2.26). The quantum entropy function

computes corrections to the semi-classical entropy.

To compute the quantum entropy function, we will work in a regime where T and U

are large, so as to be able to use (3.15). We will expand H(φ, p, q) given in (2.19) around

large values ReT0,ReU0 defined below in (3.67). These values, which depend on Y 0 and

on S, are invariant under Γ0(2)S transformations. When evaluated at the horizon of the

BPS black hole, T0 and U0 become entirely expressed in terms of the charges carried by

the black hole, and this implies that we will have to choose the charges of the black hole

in such a way as to ensure that the horizon values of Re T0 and ReU0 are large.

We will now evaluate H(φ, p, q) on the attractor values φ2
∗, φ

3
∗ that satisfy

Fa − F̄a = iqa , a = 2, 3 . (3.62)

We will denote the resulting expression by H(τ1, τ2, p, q), which we subsequently expand

around large values ReT0,ReU0. In doing so, we will keep all the charges, including p0.

3.4.1 H(τ1, τ2, p, q)

We set Y 2 = 1
2(φ2 + ip2) and Y 3 = 1

2(φ3 + ip3), and we solve the attractor equations (3.62).

We obtain

φ2
∗ =

2

S + S̄

(
−q3 −

i

2
(S − S̄) p2 − 2i∆U

)
,

φ3
∗ =

2

S + S̄

(
−q2 −

i

2
(S − S̄) p3 − 2i∆T

)
, (3.63)

where

∆T =
1

Y 0

∂Ω

∂T
− c.c ,

∆U =
1

Y 0

∂Ω

∂U
− c.c , (3.64)

and we note that ∆T and ∆U depend on Y 0, S (and on their complex conjugates) as well

as on φ2
∗, φ

3
∗. This yields

T = −iY
2
∗
Y 0

= −i(φ
2
∗ + ip2)

2Y 0
= T0 + t , U = −iY

3
∗
Y 0

= −i(φ
3
∗ + ip3)

2Y 0
= U0 + u , (3.65)

7Imposing the magnetic attractor equation (2.2) gives ReS = (p1 φ0 − p0 φ1)/|φ0 + ip0|2.
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where

T0 = − i

Y 0(S + S̄)

(
−q3 + iS̄ p2

)
,

U0 = − i

Y 0(S + S̄)

(
−q2 + iS̄ p3

)
,

t = − 2

Y 0(S + S̄)
∆U ,

u = − 2

Y 0(S + S̄)
∆T . (3.66)

We infer

T0 + T̄0 =
p1p2 + p0q3

|Y 0|2(S + S̄)
,

U0 + Ū0 =
p1p3 + p0q2

|Y 0|2(S + S̄)
. (3.67)

Note that T0 and U0 are inert under Γ0(2)S transformations, as can be checked by using

the transformation rules (3.59) and (3.4); t and u, on the other hand, are not inert under

Γ0(2)S transformations.

Next, we evaluate H(φ, p, q) given in (2.19) at the values T, U in (3.65). To this end,

we use the parametrization [48]

Y 0 =
p1 + iS̄p0

S + S̄
, Y 1 =

iSp1 − |S|2p0

S + S̄
. (3.68)

We will also set

τ = iS = τ1 + iτ2 , τ̄ = −iS̄ = τ1 − iτ2 (3.69)

in the following. Then, H(φ, p, q) becomes

H(τ1, τ2, p, q) =
n+ lτ1 +mτ2

1 +mτ2
2

τ2
+ 4

(
Ω + Ω̄

)
+ 4

∆T∆U

τ2
, (3.70)

where we made use of the charge bilinears (3.60). This yields

H(τ1, τ2, p, q) =
n+ lτ1 +mτ2

1 +mτ2
2

τ2
+ 4

(
Ω + Ω̄

)
+

4

τ2 (Y 0)2

∂Ω

∂T

∂Ω

∂U
+

4

τ2 (Ȳ 0)2

∂Ω̄

∂T̄

∂Ω̄

∂Ū

− 4

τ2 |Y 0|2

(
∂Ω

∂T

∂Ω̄

∂Ū
+
∂Ω̄

∂T̄

∂Ω

∂U

)
. (3.71)

The terms on the right hand side are evaluated at φ2
∗, φ

3
∗. The first term in this expression

is invariant under Γ0(2)S . When extremized with respect to τ1 and τ2 (cf. (3.92)), it yields

the entropy of a large BPS black hole at the two-derivative level. The terms proportional to

1/|Y 0|2 are also invariant under Γ0(2)S , since both ∂Ω/∂T and ∂Ω/∂U are invariant [49].
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Now we expand H(τ1, τ2, p, q) around large values of Re T0,ReU0. First, we expand

ω(T ) = ω(T0)− 2

Y 0(S + S̄)
∆U

∂ω

∂T
|T0 + . . . ,

ω(U) = ω(U0)− 2

Y 0(S + S̄)
∆T

∂ω

∂U
|U0 + . . . , (3.72)

and drop terms that involve higher order derivatives of ω with respect to T and U in view

of (3.11). Inserting this in the combination

Ω +
2

(S + S̄) (Y 0)2

∂Ω

∂T

∂Ω

∂U
(3.73)

that appears in (3.71), we obtain, using (3.15),

Ω +
2

(S + S̄) (Y 0)2

∂Ω

∂T

∂Ω

∂U
= Υ (ω(S) + ω(T0) + ω(U0)) (3.74)

+
Υ2

(Y 0)2

α

γ
Î1(S, S̄) + Υ Ξ(Y 0, S,Υ)

+
2ΥῩ

(S + S̄) |Y 0|2

(
∂ω

∂T

∂ω̄

∂Ū
+
∂ω̄

∂T̄

∂ω

∂U

)
|T0,U0 ,

where Î1(S, S̄) is given in (3.21).

Inserting the above into (3.71) gives

H(τ1, τ2, p, q) =
n+ lτ1 +mτ2

1 +mτ2
2

τ2
+ 4
(

Υ (ω(T0) + ω(U0)) + c.c.
)

+4
(

Υω(τ) + c.c.
)

+4

(
Υ2

(Y 0)2

α

γ
Î1(τ, τ̄) + Υ Ξ(Y 0, τ,Υ) + c.c.

)
+

8αΥῩ

τ2 |Y 0|2
, (3.75)

with Y 0 expressed in terms of τ = iS and charges (p0, p1) as in (3.68), and where in the

last line we replaced
(
∂ω
∂T

∂ω̄
∂Ū

+ ∂ω̄
∂T̄

∂ω
∂U

)
|T0,U0 by 2α in view of (3.13).

Summarizing, (3.75) gives the value of H(φ, p, q) evaluated at φ2
∗ and φ3

∗, in the approx-

imation where the real part of T0, U0 is taken to be large, so that terms involving higher

derivatives of ω with respect to T and U can be dropped.

In this approximation, all the terms in (3.75) are invariant under Γ0(2)S transforma-

tions, except for the term in the second line, whose duality invariance can be repaired by
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adding a term proportional to ln Y 0 and its complex conjugate to H(τ1, τ2, p, q),

H(τ1, τ2, p, q) + 8γ
(

Υ lnY 0 + c.c.
)

=
n+ lτ1 +mτ2

1 +mτ2
2

τ2
(3.76)

+4
(

Υ (ω(T0) + ω(U0)) + c.c.
)

+4
(

Υ (ω(τ) + 2γ lnY 0) + c.c.
)

+4

(
Υ2

(Y 0)2

α

γ
Î1(τ, τ̄) + Υ Ξ(Y 0, τ,Υ) + c.c.

)
+

8αΥῩ

τ2 |Y 0|2
.

We recall that for BPS black holes the horizon value of Υ is real and given by Υ = −64,

and that

4πΥ γ = 1 . (3.77)

The combination on the left hand side of (3.76) is thus H(τ1, τ2, p, q) + (4/π) ln |Y 0|. This

combination will play a role in the quantum entropy function below, cf. (3.100).

3.4.2 Evaluating W (q, p) beyond saddle point approximation

In (2.24) we displayed the value of the quantum entropy function W (q, p) in a saddle point

approximation. Now, we proceed with the evaluation of W (q, p) beyond the saddle point

approximation. In doing so, we will impose approximations that we will clearly delineate

in what follows.

We decompose

Y 0 =
1

2

(
φ0 + ip0

)
, Y 1 =

1

2

(
φ1 + ip1

)
. (3.78)

Using (3.68) and (3.69) we infer

φ0 =
p1 − τ1 p

0

τ2
, φ1 = −p0 τ2 +

τ1

τ2

(
p1 − τ1 p

0
)
, (3.79)

to obtain

dφ0 ∧ dφ1 =

(
(φ0)2 + (p0)2

)
τ2

dτ1 ∧ dτ2 =
4|Y 0|2

τ2
dτ1 ∧ dτ2 . (3.80)

Then, the quantum entropy function reads (using the approximate measure factor (2.18)

with χ = 0 )

W (q, p) = 4

ˆ
dτ1 dτ2

τ2
dφa eπ[4 ImF (φ+ip)−q·φ] |Y 0|4 e−K

(0)

, a = 2, 3 . (3.81)

Next, we integrate out φ2 and φ3, by expanding the exponent 4 ImF (φ+ip)−q·φ around the

attractor values φ2
∗ and φ3

∗ computed in (3.63), and retaining only quadratic fluctuations in

φ2 and φ3. The associated quadratic form takes the form given in (2.21), with the indices

I, J restricted to I, J = 2, 3. We approximate the resulting fluctuation determinant by
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replacing F by F (0), in which case it takes the value τ2
2 . Thus, in this approximation, the

Gaussian integration8 over fluctuations in φ2, φ3 yields a factor

1/τ2 , (3.82)

and we obtain the following approximate expression for the quantum entropy function,

W (q, p) = 4

ˆ
dτ1 dτ2

τ2
2

eπH(τ1,τ2,p,q) |Y 0|4 e−K
(0)

, (3.83)

with H(τ1, τ2, p, q) given by (3.71). Here, e−K
(0)

is evaluated at the values T, U given

in (3.65).

To proceed, we perform three more approximations. First, we approximate e−K
(0)

in (3.83) by replacing the values T, U by the values T0, U0 given in (3.67),

e−K
(0)(τ1,τ2,T0,U0) =

(p1p2 + p0q3)(p1p3 + p0q2)

2|Y 0|2τ2
. (3.84)

Using

(p1p2 + p0q3)(p1p3 + p0q2) = (p1)2m+ p0p1 l + (p0)2 n , (3.85)

where m, l, n denote the charge bilinears introduced in (3.60), we obtain

|Y 0|4 e−K(0)(τ1,τ2,T0,U0) = |p1 − τp0|2 [(p1)2m+ p0p1 l + (p0)2 n]

8τ3
2

, (3.86)

and hence,

W (q, p) =
1

2

ˆ
dτ1 dτ2

τ5
2

eπH(τ1,τ2,p,q) |p1 − τp0|2
(

(p1)2m+ p0p1 l + (p0)2 n

)
. (3.87)

Using

(p1)2m = |p1 − τp0|2m+ 2τ1 p
0p1m− (p0)2(τ2

1 + τ2
2 )m, (3.88)

we obtain

(p1)2m+p0p1 l+(p0)2 n = |p1−τp0|2m+p0p1 (l + 2τ1m)+(p0)2
(
n−m(τ2

1 + τ2
2 )
)
. (3.89)

Hence we write (3.87) as

W (q, p) =
1

2

ˆ
dτ1 dτ2

τ5
2

eπH(τ1,τ2,p,q) |p1 − τp0|2[
|p1 − τp0|2m+ p0p1 (l + 2τ1m) + (p0)2

(
n−m(τ2

1 + τ2
2 )
) ]
. (3.90)

Now we note that the two combinations

l + 2τ1m, n−m(τ2
1 + τ2

2 ) (3.91)

8In doing so, we view (φ2, φ3) as local coordinates on C2, and we choose an appropriate path of integration

to obtain a well defined Gaussian integral.
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vanish at the extremum of the combination (n + lτ1 + mτ2
1 + mτ2

2 )/τ2 that appears in

the exponential of H(τ1, τ2, p, q) in (3.90). This yields the attractor value for τ at the

two-derivative level,

τ∗1 = − l

2m
, τ∗2 =

√
4nm− l2

4m2
> 0 . (3.92)

Therefore, imposing the vanishing of (3.91) in (3.90) leads to the approximate result

W (q, p) =
1

2

ˆ
dτ1 dτ2

τ5
2

eπH(τ1,τ2,p,q)|p1 − τp0|4m. (3.93)

The third approximation consists in replacing H(τ1, τ2, p, q) in (3.71) by (3.75). This is

achieved by taking Re T0,ReU0 to be large. Since T0, U0 depend on τ , cf. (3.66), we replace

τ by the saddle point values (3.92) in the expression for T0, U0. Thus, from now on, T0, U0

will refer to the attractor values of T, U at the two-derivative level, which are entirely

expressed in terms of the charges of the BPS black hole. Then, requiring the real part of

T0, U0 to be large, translates into a condition on the values of the charges.

Summarising, under these approximations, (3.93) becomes

W (q, p) =
1

2
e4π[Υ(ω(T0)+ω(U0))+c.c.]

ˆ
dτ1 dτ2

τ5
2

e
π
τ2

(n+lτ1+mτ21 +mτ22 )+πΛ |p1 − τp0|4m,

(3.94)

where we introduced

Λ = 4

(
Υω(τ) +

Υ2

(Y 0)2

α

γ
Î1(τ, τ̄) + Υ Ξ(Y 0, τ,Υ) + c.c.

)
+

8αΥῩ

τ2 |Y 0|2
, (3.95)

and where we recall that Y 0 is expressed in terms of p0, p1 and τ through (3.68).

In what follows, we will use the approximate result (3.94) as a starting point for various

considerations. One should keep in mind that there are subleading corrections to (3.94)

that will not be considered in this paper.

The integrand in (3.94) is not invariant under Γ0(2)-transformations of (τ1, τ2). To

obtain an integrand that is invariant under Γ0(2)-transformations, we perform a rewriting

of (3.94) following an approach given in [36, 37]. This requires a certain assumption, as

follows. We recall that the measure (2.18) that we used in (3.81) is an approximate measure.

Following [36, 37], let us assume that there are subleading corrections to the measure such

that m in (3.94) gets replaced by the combination
(
m+ 1

2
dΛ
dτ2

+ 1
2π

d ln |p1−τp0|4
dτ2

)
, in which

case (3.94) becomes

W (q, p) =
1

2
e4π[Υ(ω(T0)+ω(U0))+c.c.]

ˆ
dτ1 dτ2

τ5
2

e
π
τ2

(n+lτ1+mτ21 +mτ22 )+πΛ |p1 − τp0|4(
m+

1

2

dΛ

dτ2
+

1

2π

d ln |p1 − τp0|4

dτ2

)
. (3.96)
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Now, consider the integrand of (3.96) and compute

d

dτ2

(
1

τ5
2

e
π
τ2

(n+lτ1+mτ21 +mτ22 )+πΛ |p1 − τp0|4
)

(3.97)

=
π

τ5
2

(
2m+

dΛ

dτ2
+

1

π

d ln |p1 − τp0|4

dτ2

)
e
π
τ2

(n+lτ1+mτ21 +mτ22 )+πΛ |p1 − τp0|4

− 1

τ6
2

(
5 +

π

τ2
(n+ lτ1 +mτ2

1 +mτ2
2 )

)
e
π
τ2

(n+lτ1+mτ21 +mτ22 )+πΛ |p1 − τp0|4 .

Then, dropping an overall constant, we obtain for (3.96),

W (q, p) = e4π[Υ(ω(T0)+ω(U0))+c.c.] (3.98)ˆ
dτ1 dτ2

τ6
2

(
5 +

π

τ2
(n+ lτ1 +mτ2

1 +mτ2
2 )

)
e
π
τ2

(n+lτ1+mτ21 +mτ22 )+πΛ|p1 − τp0|4 ,

where we discarded the total derivative term in (3.97). We write (3.98) as

W (q, p) =

ˆ
dτ1 dτ2

τ2
2

eΨ(τ1,τ2,p,q) , (3.99)

where

eΨ(τ1,τ2,p,q) =

(
5 +

π

τ2
(n+ lτ1 +mτ2

1 +mτ2
2 )

)
eπH(τ1,τ2,p,q)+4 ln |Y 0(τ1,τ2,p0,p1)| , (3.100)

with the combination πH(τ1, τ2, p, q) + 4 ln |Y 0(τ1, τ2, p
0, p1)| given in (3.76) (recall that

4πΥγ = 1). Note that Ψ is invariant under Γ0(2)S transformations.

The purpose of the various manipulations described above was to bring W (q, p) into

the form (3.99), which is invariant under Γ0(2)S transformations. This was achieved by

subtracting a total derivative term from (3.96). The form of W (q, p) given in (3.99) will

provide the link with the microstate counting proposal that we will discuss in the next

section. Thenceforth, we will refer to (3.99) as the quantum entropy function.

To fully specify W (q, p), we also need to choose an integration contour C that passes

through (τ∗1 , τ
∗
2 ) given in (3.92). This requires extending (τ1, τ2) ∈ R2 to (τ1, τ2) ∈ C2. The

contour C will be discussed in subsection 3.5, using a construction given in [38]. We thus

have the following proposition.

Proposition: for large black holes, and for large attractor values T0, U0, the quantum

entropy function W (q, p) of the STU model is approximately given by

W (q, p) =

ˆ
C

dτ1dτ2

τ2
2

eΨ(τ1,τ2,p,q) . (3.101)

Finally, we note the following behaviour of the quantum entropy function (3.101):

Proposition: the quantum entropy function (3.101) is encoded in the function

F̂ (Y,Υ) = F (Y,Υ) + 4i Υγ lnY 0 , (3.102)
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where F (Y,Υ) denotes the Wilsonian function

F (Y,Υ) = F (0)(Y ) + 2iΩ(Y,Υ) (3.103)

= −Y
1Y 2Y 3

Y 0
+ 2iΥ

[
ω(S) + ω(T ) + ω(U) +

Υ

(Y 0)2

α

γ
I1(S) + Ξ(Y 0, S,Υ)

]
.

The function F̂ is the one that was obtained recently in [21] using the duality symmetries

of the model, in the limit of large T, U , see above (3.6).

Proof. It is straightforward to verify that for large values of T0, U0, the quantum entropy

function (3.101) takes the form

W (q, p) =

ˆ
C

dτ1 dτ2

τ2
2

(
5 +

π

τ2
(n+ lτ1 +mτ2

1 +mτ2
2 )

)
eπ[4ImF̂ (φ+ip)−q·φ]|φ2∗,φ3∗ , (3.104)

where φ2
∗, φ

3
∗, given in (3.63), are evaluated at large attractor values of T0, U0 (cf. the

discussion below (3.93)), and where Y 0 is given by (3.78) and (3.79).

3.5 Choice of contour

The quantum entropy function (3.101) has a form that is suggestive of a Siegel modular

form. Namely, following [58], we perform the change of variables

ρ ≡ τ1 + iτ2 , σ ≡ −τ1 + iτ2 , (3.105)

in which case

τ1 =
1

2
(ρ− σ) , τ2 = − i

2
(ρ+ σ) , (3.106)

and
π

τ2

(
n+ lτ1 +mτ2

1 +mτ2
2

)
= − 2πi

ρ+ σ

(
−n− 1

2
l(ρ− σ) +mρσ

)
. (3.107)

Next, introducing k = 2, and using Υ = −64 as well as Υα/γ = π/4, we write W (q, p)

in (3.101) as

W (q, p) eln |ϑ2(T0)|8 ln |ϑ2(U0)|8 =

ˆ
C

dρ dσ

(ρ+ σ)2

(
k + 3− 2πi

[
ρσ

ρ+ σ
m− 1

ρ+ σ
n− 1

2

ρ− σ
ρ+ σ

l

])
exp

{
−2πi

[
ρσ

ρ+ σ
m− 1

ρ+ σ
n− 1

2

ρ− σ
ρ+ σ

l

]
− (k + 2) ln(ρ+ σ) + π Λ̃

}
,

(3.108)

up to an overall constant, where

π Λ̃ = −1

2
lnϑ8

2(ρ)− 1

2
lnϑ8

2(σ) + 2 ln(p1 − ρ p0) + 2 ln(p1 + σ p0) +D(ρ, σ) ,

D(ρ, σ) = −256π

(
π

4 (Y 0)2
Î1(ρ, σ) +

π

4 (Ỹ 0)2
Î1(σ, ρ) + Ξ(Y 0, ρ) + Ξ(Ỹ 0, σ)

)
+

iπ

(ρ+ σ)Y 0(ρ, σ) Ỹ 0(ρ, σ)
. (3.109)
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Here, Ξ(Y 0, ρ) is given by (3.25) and (3.26), and

Y 0(ρ, σ) = i
p1 + σ p0

ρ+ σ
,

Ỹ 0(ρ, σ) = i
p1 − ρ p0

ρ+ σ
= Y 0(ρ, σ)− ip0 ,

Î1(ρ, σ) = i

(
∂ω

∂ρ
− 2γ

ρ+ σ

)
. (3.110)

The integrand in (3.108) exhibits a dependence on the parameter k = 2 (both in the

exponent and in the measure) that is characteristic of a microstate counting formula based

on a Siegel modular form Φ2 of weight k = 2 [8], see (4.6) and (4.14) below. Thus, we expect

the microstate counting formula for large BPS black holes to involve Φ2. Therefore, we

choose a contour C in (3.101) that captures the information about the locus of the second-

order zero of the Siegel modular form which yields the leading microstate degeneracy. This

contour was constructed in [38]. It is given by the image of a surface B′ in the complex

(τ1, τ2)-plane, as follows.

Consider Siegel’s upper half plane H2 with local coordinates ρ̃ = ρ̃1 + iρ̃2, σ̃ = σ̃1 +

iσ̃2, ṽ = ṽ1 + iṽ2, where ρ̃2 > 0, σ̃2 > 0, ρ̃2 σ̃2 − ṽ2
2 > 0, cf. (E.2). The surface B′ ⊂ H2

is obtained by intersecting ρ̃2 = η1(λ), σ̃2 = η2(λ), ṽ2 = η3(λ), with ρ̃σ̃ − ṽ2 + ṽ = 0.

The latter describes the locus of the second-order zero of the Siegel modular form that

is relevant for the microstate proposal. The intersection yields a family of curves given

by [38],

ρ̃2 = η1(λ) , σ̃2 = η2(λ) , ṽ2 = η3(λ) ,

ρ̃1 = −
(
η1(λ) σ̃1 − η3(λ) (2ṽ1 − 1)

η2(λ)

)
, (3.111)

η1(λ)

η2(λ)
(σ̃1)2 +

(
ṽ1 −

1

2

)2

− 2
η3(λ)

η2(λ)
σ̃1

(
ṽ1 −

1

2

)
=

1

4
−
(
η1(λ)η2(λ)− η2

3(λ)
)
.

The last equation describes an ellipse in the (σ̃1, ṽ1)-plane so long as 0 ≤ η1(λ)η2(λ) −
η2

3(λ) ≤ 1/4,(
η1(λ)η2(λ)− η2

3(λ)
)

η2
2(λ)

(σ̃1)2 +

(
ṽ1 −

1

2
− η3(λ)

η2(λ)
σ̃1

)2

=
1

4
−
(
η1(λ)η2(λ)− η2

3(λ)
)
. (3.112)

The surface B′ is obtained by picking

η1(λ) = λ
n√

4mn− l2
, η2(λ) = λ

m√
4mn− l2

, η3(λ) = λ
l

2
√

4mn− l2
, (3.113)

and restricting λ to lie in the range 0 < ε ≤ λ ≤ 1, so that 0 < η1(λ)η2(λ) − η2
3(λ) =

λ2/4 ≤ 1/4. The requirement ε > 0 ensures the Siegel upper half plane conditions ρ̃2 >

0, σ̃2 > 0, ρ̃2 σ̃2 − ṽ2
2 > 0. At λ = 1, the surface B′ shrinks to a point,

σ̃1 = 0 , ṽ1 =
1

2
, ρ̃1 = 0 ,

σ̃2 =
m√

4mn− l2
, ṽ2 =

l

2
√

4mn− l2
, ρ̃2 =

n√
4mn− l2

, (3.114)

while at λ = ε > 0 the ellipse has maximal radii.
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Next, introducing variables (ρ, σ, v) as [5]

ρ =
ρ̃ σ̃ − ṽ2

σ̃
, σ =

ρ̃ σ̃ − (ṽ − 1)2

σ̃
, v =

ρ̃σ̃ − ṽ2 + ṽ

σ̃
, (3.115)

it follows that on the locus ρ̃σ̃ − ṽ2 + ṽ = 0,

ρ = − ṽ
σ̃
, σ =

ṽ − 1

σ̃
, v = 0 . (3.116)

Then, using (3.106), we express (τ1, τ2) in terms of (σ̃, ṽ) on the locus v = 0,

τ1 =
1

2
(ρ− σ) = −

(ṽ − 1
2)

σ̃
, τ2 = − i

2
(ρ+ σ) =

i

2 σ̃
. (3.117)

We parametrize the ellipse (3.112) in terms of an angle 0 ≤ θ < 2π,

σ̃1 =

√
1− λ2 cos θ

2τ∗2
, ṽ1 −

1

2
− l

2m
σ̃1 =

√
1− λ2 sin θ

2
, (3.118)

where τ∗2 denotes the attractor value given in (3.92). Then, using (3.117), we obtain

τ1 =
1

λ2 + (1− λ2) cos2 θ

[
τ∗1 λ

2 + τ∗1 (1− λ2) cos2 θ − τ∗2 (1− λ2) sin θ cos θ
]

+i
λ
√

1− λ2

λ2 + (1− λ2) cos2 θ
τ∗2 sin θ ,

τ2 =
τ∗2

λ2 + (1− λ2) cos2 θ

[
λ+ i

√
1− λ2 cos θ

]
. (3.119)

Since at λ = 1 (τ1, τ2) equals (τ∗1 , τ
∗
2 ), the image of the surface B′ in the complex (τ1, τ2)-

plane is a surface that passes through the attractor point (3.92).

Next, for (ρ, σ) given in (3.116), we verify that Im ρ > 0, Imσ > 0. The condition

Im ρ > 0 gives

− 1

2
< ṽ1 −

1

2
− η3(λ)

η2(λ)
σ̃1 , (3.120)

while the condition Im σ > 0 results in

ṽ1 −
1

2
− η3(λ)

η2(λ)
σ̃1 <

1

2
. (3.121)

Inspection of (3.112) shows that both conditions are satisfied, for if |ṽ1 − 1
2 −

η3(λ)
η2(λ) σ̃1| ≥

1/2, (3.112) does not have a solution for 0 < η1(λ)η2(λ) − η2
3(λ) ≤ 1/4. Then, defining

q = exp[2πi ρ] and q̃ = exp[2πi σ], we obtain |q| < 1, |q̃| < 1, which is a necessary condition

for defining the modular forms ϑ8
2(ρ), ϑ8

2(σ), cf. (4.1). This gives another justification for

having to require ε > 0.

Let us return to the integrand in (3.108) and analyse the behaviour of the real part

of the exponent. The three terms proportional to the charge bilinears, when evaluated

on (3.116), yield the contribution πλ[m(τ∗1 )2 +m(τ∗2 )2 +n+ lτ∗1 ]/τ∗2 [38], which is finite for

0 < ε ≤ λ ≤ 1. Now, consider the term

2 ln |Y 0 Ỹ 0| = 2 ln

∣∣∣∣p1

τ2
− p0 τ1

τ2
+ ip0

∣∣∣∣+ 2 ln

∣∣∣∣p1

τ2
− p0 τ1

τ2
− ip0

∣∣∣∣ (3.122)
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contained in Λ̃. In the parametrization (3.119), this expression ceases to be defined when

λ2 + (1 − λ2) cos2 θ = 0, which occurs when cos θ = 0 and λ → 0. In this limit, τ1/τ2

remains finite, while |τ2| → ∞, and hence 2 ln |Y 0 Ỹ 0| → −∞, which yields an exponentially

damped contribution. Next, let us consider the contribution D(ρ, σ) in (3.109), which

was determined in the context of the Wilsonian effective action as power series in inverse

powers of (Y 0)2. This requires taking |Y 0| to be large. To ensure that |Y 0| remains large

on the integration contour C, we impose a charge dependent lower bound on ε, as follows.

Computing ReY 0(ρ, σ) = Re Ỹ 0(ρ, σ) on C, we obtain

ReY 0(ρ, σ) = σ̃2 p
1 + ṽ2 p

0 . (3.123)

At λ = ε, we infer from (3.123) that ReY 0 = ε
(
mp1 + 1

2 l p
0
)
/
√

4mn− l2. By taking

Q ≡ |mp1+ 1
2 l p

0|/
√

4mn− l2 � 1 and choosing ε = 1/
√
Q we can ensure that |ReY 0| � 1.

Demanding Q � 1 imposes a condition on the charges carried by the BPS black hole.

Presumably, were we to have at our disposal the exact expression for the function H,

there would be no need for such a charge dependent lower bound on ε. Noting that

|ρ + σ| = 2|τ2| = 2τ∗2 /
√
λ2 + (1− λ2) cos2 θ ≥ 2τ∗2 � 1, we see that the first two terms

and the last term in the expression for D(ρ, σ) are well-behaved on C. Ξ(Y 0, ρ), on the

other hand, is given by (3.25). As shown in appendix D, the series converges in an open

neighbourhood of (q, z) = (0, 0), where q = exp[2πi ρ] and z = 1/Y 0. To ensure that we

work in this neighbourhood, we impose a further condition on the charges, as follows. In

the parametrization (3.119), we obtain

|q| = e−2π(Im τ1+Re τ2) = e−2πτ∗2 λ(
√

1−λ2 sin θ+1)/(λ2+(1−λ2) cos2 θ) . (3.124)

To ensure that |q| � 1 when λ = ε, we demand τ∗2 ε� 1, which results in (τ∗2 )2 � Q� 1,

which constitutes a further condition on the charges carried by the BPS black hole. In

this way, we conclude that the real part of the exponent of the integrand in (3.108) is

well-behaved in the range ε = 1/
√
Q ≤ λ ≤ 1.

Under Γ0(2)-transformations, the critical point (τ∗1 , τ
∗
2 ) gets mapped to a new critical

point (τ̃∗1 , τ̃
∗
2 ), given in terms of transformed charge bilinears m̃, ñ, l̃. The transformed

contour C̃ will pass through (τ̃∗1 , τ̃
∗
2 ).

4 Microstate proposal

The quantum entropy function computes the macroscopic entropy of a BPS black hole.

Ideally, we would like to reproduce it by state counting. Microstate counting formulae for

BPS black holes in N = 4, 8 superstring theories [1, 3, 5, 9] suggest that the state counting

will be based on modular objects. In the N = 4 context, these are Siegel modular forms,

whose Fourier expansion yields integer coefficients that count microstates of 1
4 BPS black

holes. Encoding microstate degeneracies of BPS black holes in terms of modular forms is

a powerful principle that we will also use in the context of the N = 2 STU model. This

gives a microstate proposal that can be tested by a state counting process as and when it

is divised.
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As already mentioned in the previous subsection, the approximate result for the quan-

tum entropy function W (q, p) in (3.108) exhibits a dependence on the parameter k = 2

that is characteristic of a microstate counting formula based on a Siegel modular form Φ2

of weight k = 2 [8]. Thus, we expect the microstate counting formula for large BPS black

holes to involve Φ2. On the other hand, the integrand in (3.108) also depends on Y 0, on Ỹ 0

as well as on ln(p1−ρ p0) and ln(p1 +σ p0), which means that the counting formula cannot

solely be given in terms of Siegel modular form Φ2. The microstate counting formula will,

in particular, have to depend on the charges (p0, p1), which transform as a doublet under

Γ0(2)S , cf. (3.59).

Let us first focus on the Siegel modular form Φ2. For a given weight k with respect to

a subgroup of the full modular group Sp(4,Z), there may exist one or more Siegel modular

forms. We propose that the Siegel modular form Φ2(ρ, σ, v) relevant for the microstate

counting formula of large BPS black holes in the STU model is the Siegel modular form of

weight k = 2 briefly discussed in [9] in the context of N = 4 BPS black holes, which in the

limit v → 0 behaves as

Φ2(ρ, σ, v) = 4π2 2−16 v2 ϑ8
2(ρ)ϑ8

2(σ) +O(v4) . (4.1)

We note that Φ2 is related to the Siegel modular forms Φ6 arising in the heterotic Z2 CHL

orbifold model and Φ10 arising in the heterotic string theory on T 6 by Φ2 = Φ2
6/Φ10, up to

a normalization constant. This Siegel modular form can be constructed as follows [5].

Proposition: there exists a Siegel modular form Φ2(ρ, σ, v) of weight k = 2, symmetric

in ρ and σ, with the property

Φ2(ρ, σ, v) = 4πv2 2−16 ϑ8
2(ρ)ϑ8

2(σ) +O(v4) (4.2)

as v → 0, that can be constructed by applying a Hecke lift to the Jacobi form

φ2,1(ρ, z) =
ϑ2

1(ρ, z)

η6(ρ)
2−8 ϑ8

2(ρ) (4.3)

of weight k = 2 and index m = 1.

Proof. We refer to appendix G for the proof, which is based on the construction given

in [5]. Our proof of the property (4.2) relies on the relation (G.22), which we prove by

considering Hecke eigenforms.

Note that under Γ0(2) transformations, ϑ2
1(ρ, z)/η6(ρ) transforms as a modular form

of weight −2, while ϑ8
2(ρ) transforms with weight 4, so that the total weight is k = 2. Also

note that none of these two factors has a non-trivial multiplier system.

As mentioned above, the microstate counting formula for large BPS black holes cannot

be solely based on the Siegel modular form Φ2. It should be encoded in various modular

objects, one of them being Φ2. In the following, we make a proposal for reproducing

W (q, p) eln |ϑ2(T0)|8+ln |ϑ2(U0)|8 in terms of modular objects.
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Proposition: the approximate expression for the quantum entropy function given

in (3.108) is captured by the following integral in Siegel’s upper half plane H2,

ˆ
C′

dρdσdv

(2v − ρ− σ)5
exp

{
−2πi

[
v2 − ρσ

2v − ρ− σ
m+

1

2v − ρ− σ
n+

1

2

ρ− σ
2v − ρ− σ

l

]}
G(ρ, Y 0(σ, ρ))G(σ, Ỹ 0(ρ, σ)) exp [ iπ

(ρ+σ)Y 0(ρ,σ) Ỹ 0(ρ,σ)
]

Φ2(ρ, σ, v)
, (4.4)

where

G(ρ, Y 0) = exp

[[
1

2
lnϑ8

2(ρ) + 2 ln(p1 − ρ p0)

]
− 64π2

(Y 0)2
Î1(ρ, σ)− 256π Ξ(Y 0, ρ)

]
,

G(σ, Ỹ 0) = exp

[[
1

2
lnϑ8

2(σ) + 2 ln(p1 + σ p0)

]
− 64π2

(Ỹ 0)2
Î1(σ, ρ)− 256π Ξ(Ỹ 0, σ)

]
.

(4.5)

Here, Y 0, Ỹ 0 and Î1 are given by (3.110), and Ξ is a solution to the non-linear PDE (3.28).

The contour C′ denotes a contour that encircles v = 0, and that in the (τ1, τ2)-plane is

identified with the contour C discussed in subsection 3.5. Note that G is given in terms of

three distinct building blocks.

Proof. Let us begin by considering the integral

ˆ
C′

dρdσdv

(2v − ρ− σ)5
exp

{
−2πi

[
v2 − ρσ

2v − ρ− σ
m+

1

2v − ρ− σ
n+

1

2

ρ− σ
2v − ρ− σ

l

]}
1

Φ2(ρ, σ, v)
.

(4.6)

As shown in [5], the exponent in (4.6) as well as

dρdσdv

(2v − ρ− σ)5 Φ2(ρ, σ, v)
(4.7)

are invariant under symplectic transformations acting on Siegel’s upper half plane that

belong to the subgroup H ⊂ Sp(4,Z), which consists of elements h ∈ H given by

h = g1(a, b, c, d) g2 g1(a,−b,−c, d) (g2)−1 =

(
A B

C D

)
=


a 0 b 0

0 a 0 −b
c 0 d 0

0 −c 0 d

 ,

(
a b

c d

)
∈ Γ0(2) ,

(4.8)

with g1 and g2 given in (E.6) and (E.10), respectively. Indeed, using (E.4), one finds that
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under H-transformations,

ρ → ρ+ ac(−ρσ + v2) + bc(ρ− σ) + bd

∆
,

σ → σ + bc(σ − ρ)− bd+ ac(ρσ − v2)

∆
,

v → v

∆
,

2v − ρ− σ → 2v − ρ− σ
∆

,

Φ2(ρ, σ, v) → ∆2 Φ2(ρ, σ, v) ,

∆ = c2(−ρσ + v2) + cd(ρ− σ) + d2 . (4.9)

The charge bilinears (m,n, l) transform as in (3.61). Using these transformation rules, one

establishes that the exponent in (4.6) as well as (4.7) are invariant under H-transformations.

The integral (4.6) depends on a contour C′, which transforms as follows under H.

Under H, v gets mapped to v/∆, see (4.9). Thus, a small contour around v = 0 gets

mapped to a small contour around v = 0. On the other hand, ρ and σ get mapped to ρ′

and σ′ according to (4.9). As mentioned in subsection 3.5, this means that in the limit

v = 0, the contour C passing through the attractor point (τ∗1 , τ
∗
2 ) gets transformed into a

new contour that passes through the transformed attractor point.

In the limit v = 0, the transformation rules (4.9) result in (using ad− bc = 1)

∆ = (d+ cρ)(d− cσ) (4.10)

and

ρ → aρ+ b

cρ+ d
,

σ → aσ − b
−cσ + d

,

ρ+ σ → ρ+ σ

∆
. (4.11)

Supplementing this by (cf. (3.59))

p1 → a p1 + b p0 ,

p0 → d p0 + c p1 , (4.12)

we infer

p1 − p0ρ → p1 − p0ρ

cρ+ d
,

p1 + p0σ → p1 + p0σ

−cσ + d
,

Y 0(ρ, σ) → (cρ+ d)Y 0(ρ, σ) ,

Ỹ 0(ρ, σ) → (−cσ + d) Ỹ 0(ρ, σ) . (4.13)
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It follows that each of the three building blocks that make up G(ρ, Y 0(σ, ρ)) and

G(σ, Ỹ 0(ρ, σ)) in (4.5) is invariant under H in the limit v = 0, and hence the whole

integrand in (4.4) is invariant under H in this limit.

Why is the subgroup H ⊂ Sp(4,Z) of relevance? For once, it implements the Γ0(2)S-

symmetry of the STU model, cf. (4.8). This is similar to the role played by H in the

CHL Z2-orbifold counting formula discussed in [5]. In addition, in the limit v = 0, H-

transformations result in a simultaneous transformation of ρ, σ, Y 0, Ỹ 0 that is consistent

with the attractor point identification ρ = iS, σ = iS̄, Y 0 = (p1 + iS̄p0)/(S + S̄), Ỹ 0 =

(p1 − iSp0)/(S + S̄).

Performing the contour integration over v in (4.6) using (4.2) results in (with k = 2)

ˆ
C

dρ dσ

(ρ+ σ)2

(
k + 3− 2πi

[
ρσ

ρ+ σ
m− 1

ρ+ σ
n− 1

2

ρ− σ
ρ+ σ

l

])
(4.14)

exp

{
−2πi

[
ρσ

ρ+ σ
m− 1

ρ+ σ
n− 1

2

ρ− σ
ρ+ σ

l

]
− lnϑ8

2(ρ)− lnϑ8
2(σ)− (k + 2) ln(ρ+ σ)

}
.

Similarly, performing the contour integration over v in (4.4) yields the quantum entropy

function integral W (q, p) eln |ϑ2(T0)|8+ln |ϑ2(U0)|8 given in (3.108).

Thus, our proposal for a microstate counting formula for large BPS black holes which

reproduces the corresponding approximate quantum entropy function (3.108) is

d(p0,p1)(m,n, l) = e− ln |ϑ2(T0)|8−ln |ϑ2(U0)|8
ˆ
C′

dρdσdv

(2v − ρ− σ)5

exp

{
−2πi

[
v2 − ρσ

2v − ρ− σ
m+

1

2v − ρ− σ
n+

1

2

ρ− σ
2v − ρ− σ

l

]}
G(ρ, Y 0(σ, ρ))G(σ, Ỹ 0(ρ, σ)) exp

[
iπ

(ρ+σ)Y 0(ρ,σ) Ỹ 0(ρ,σ)

]
Φ2(ρ, σ, v)

. (4.15)

Being approximate, this formula, which is based on modular objects, gives a non-integer

value of d(p0,p1)(m,n, l). Note that we have attached the label (p0, p1) to the degeneracy

d(p0,p1)(m,n, l), to indicate that it also depends on the Γ0(2)S doublet (p0, p1).

5 Conclusions

We conclude with a brief summary and a few observations.

We computed the quantum entropy function (3.81) for large BPS black holes in the

N = 2 model of Sen and Vafa, by integrating out the moduli φ2 and φ3 in Gaussian

approximation, to arrive at the intermediate result (3.94), which we then converted into

the integral (3.101) by adding a total derivative term (3.97). In doing so, we resorted to

various approximations. The integrand in (3.101) is invariant under Γ0(2) transformations

of (τ1, τ2). However, it also depends on T0, U0, and is not invariant under Γ0(2) transfor-

mations of T0, U0. This is due to the fact that when evaluating (3.81), we expanded around
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background values T0 and U0 which we took to be large. There will then be subleading

corrections in T0, U0 that will restore the invariance under Γ0(2) transformations of T0, U0.

Proceeding in the manner described above, namely integrating out the moduli

{φa}a=2,3 and retaining the dependence on φ0, φ1, one obtains an integral which resem-

bles, in part, the expression obtained by integrating the inverse of a Siegel modular form

Φ2(ρ, σ, v) of weight 2 along a closed contour surrounding v = 0, as in (4.6). However,

the result of the quantum entropy function calculation also depends on the Γ0(2)S doublet

(p0, p1) through the dependence on Y 0, and hence, a microstate counting formula cannot

solely be based on the inverse of a Siegel modular forms, since the evaluation of the lat-

ter gives a result that depends only on the three charge bilinears m,n, l, but not on the

individual charges (p0, p1). Thus, the proposal for a microstate counting formula has to

depend on an additional modular object G(ρ, Y 0(σ, ρ)), cf. (4.5).

We can generalize the above discussion to a certain class of N = 2 models with nV
vector multiplets, as follows. We take these models to have a holomorphic Wilsonian

function F (Y,Υ) = F (0)(Y ) + 2iΩ(Y,Υ) with a heterotic type prepotential of the form

F (0)(Y ) = −Y
1Y aηabY

b

Y 0
+ . . . , a = 2, . . . , nV . (5.1)

The ellipsis in (5.1) stands for one-loop corrections that involve Y 0, Y a, but not Y 1, since

Y 1/Y 0 serves as the loop-counting parameter in heterotic string theory. Moreover, intro-

ducing τ = Y 1/Y 0, we assume that the τ -dependence of the first gravitational coupling

function ω(1) in Ω is encoded in a modular form of a certain weight under (a subgroup

of) SL(2,Z). Suppressing the dependence on the other moduli, we set 4πΥω(1)(τ) = g(τ).

This modular form will then be related to the seed of an associated Siegel modular form,

as we will discuss momentarily.

Setting Y I = 1
2(φI + ipI), and using the approximate measure factor (2.18), the quan-

tum entropy function for large BPS black holes in these models becomes

W (q, p) =

ˆ
dτ1 dτ2

τ2
dφa eπ[4 ImF (φ+ip)−q·φ] |Y 0|4−χ/12 e−K

(0)

, (5.2)

with e−K
(0)

given by (2.11), and with χ = 2(nV − nH + 1) determined in terms of the

number of vector and hyper multiplets of the N = 2 model (nV and nH , respectively).

Following the steps in subsection 3.4.2 and integrating out the (nV − 1) moduli φa in

Gaussian approximation gives the approximate result

W (q, p) =

ˆ
dτ1 dτ2

τ
(nV +1)/2
2

eπH(τ1,τ2,p,q) |Y 0|4−χ/12 e−K
(0)

, (5.3)

with

|Y 0|4−χ/12 e−K
(0)

=
|p1 − τp0|2−χ/12

τ
3−χ/12
2

(
(p1)2m+ p0p1 l + (p0)2 n

)
, (5.4)

up to an overall constant. Here, H(τ1, τ2, p, q) takes a form similar to (3.75),

πH(τ1, τ2, p, q) = π
n+ lτ1 +mτ2

1 +mτ2
2

τ2
+
(
g(τ) + c.c.

)
+ h(Y 0, Ȳ 0, τ1, τ2) , (5.5)

– 35 –



J
H
E
P
0
8
(
2
0
2
0
)
0
5
7

where h encodes the dependence on Y 0(τ1, τ2) due to presence of the higher gravitational

coupling functions, and where we have suppressed the dependence on the other moduli.

Then, the analogue of the intermediate result (3.93) is

W (q, p) =
1

2

ˆ
dτ1 dτ2

τ
(nV +7)/2−χ/12
2

eπH(τ1,τ2,p,q)|p1 − τp0|4−χ/12m. (5.6)

By adding an appropriate total derivative term to (5.6), the latter can be brought into a

form analogous to (3.98),

W (q, p) =

ˆ
dτ1 dτ2

τ
(nV +9)/2−χ/12
2

(
nV + 7

2
− χ

12
+
π

τ2
(n+ lτ1 +mτ2

1 +mτ2
2 )

)
eπH(τ1,τ2,p,q)

|p1 − τp0|4−χ/12 . (5.7)

Introducing

k =
nV + 1

2
− χ

12
=

2(nV + 1) + nH
6

> 0 , (5.8)

we write (5.7) as

W (q, p) =

ˆ
C

dτ1 dτ2

τ2
2

(
k + 3 +

π

τ2
(n+ lτ1 +mτ2

1 +mτ2
2 )

)
eπH(τ1,τ2,p,q)+(2−χ/24) ln |p1−τp0|2−(k+2) ln τ2 , (5.9)

with an appropriately chosen contour C. Note the dependence of the measure on k + 3,

which suggests a microstate counting formula based on a Siegel modular form Φ(ρ, σ, v) of

weight k, with the property that as v → 0,

Φk(ρ, σ, v) ∼ v2 fk+2(ρ) fk+2(σ) , (5.10)

where fk+2 is a modular form of weight k + 2 under (a subgroup of) SL(2,Z). Requiring

k to be integer valued imposes a restriction on the allowed values of (nV , nH). We assume

that this Siegel modular form can be constructed by applying a Hecke lift to a Jacobi form

φk,1(τ, z) of weight k and index 1 (cf. (G.2)),

φk,1(τ, z) =
ϑ2

1(τ, z)

η6(τ)
fk+2(τ) . (5.11)

fk+2(τ) should be related to the modular form g(τ) that appears in the first gravitational

coupling function ω(1), as mentioned below (5.1), but need not coincide with it.

Evaluating the analogue of (4.6),
ˆ
C′

dρdσdv

(2v − ρ− σ)k+3
exp

{
−2πi

[
v2 − ρσ

2v − ρ− σ
m+

1

2v − ρ− σ
n+

1

2

ρ− σ
2v − ρ− σ

l

]}
1

Φk(ρ, σ, v)
(5.12)

by performing a contour integration over v around v = 0 gives [8]
ˆ
C

dρ dσ

(ρ+ σ)k+4

(
k + 3− 2πi

[
ρσ

ρ+ σ
m− 1

ρ+ σ
n− 1

2

ρ− σ
ρ+ σ

l

])
(5.13)

exp

{
−2πi

[
ρσ

ρ+ σ
m− 1

ρ+ σ
n− 1

2

ρ− σ
ρ+ σ

l

]
− ln fk+2(ρ)− ln fk+2(σ)

}
.
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Figure 1. String web picture.

Using (3.105) this reproduces part of (5.9). This then needs to be further supplemented

by modular objects that depend on (p0, p1) through Y 0(ρ, σ), as in (4.15).

An example of a model in this class is the FHSV model, which has nV = 11, χ = 0,

k = 6 and modular subgroup Γ0(2). For this model, g(τ) = −1
2 ln η24(2τ), which we

write as

g(τ) = − ln(ϑ8
2(τ)E4(τ)) +

1

2
ln E4(τ) , (5.14)

up to a constant (here we used the relation given below (B.29)). This suggests to use

as seed (5.11) for the Hecke lift the cusp form fk+2(τ) = ϑ8
2(τ)E4(τ), which has weight

k + 2 = 8, has trivial multiplier system and equals [η(τ)η(2τ)]8, up to a normalization

constant (see below (G.2)). Since the vector space of cusp forms of weight 8 has dimension

one, fk+2(τ) is a Hecke eigenform, and hence one deduces the property (5.10) in a manner

similar to the one given below (G.15). Using g(τ) = − ln fk+2(τ) + 1
2 ln E4(τ), we note

that the transformation of the second term on the right hand side of g(τ) under Γ0(2)-

transformations is precisely compensated by the term 2 ln(p1 − τp0) in (5.9), and hence,

the combination (g(τ) + c.c.) + 2 ln |p1− τp0|2− 8 ln τ2 in the exponent of (5.9) is invariant

under Γ0(2)-transformations. We note that our proposal differs from the one made in [22].

We conclude by suggesting a string web picture of our counting proposal. We have

proposed an approximate degeneracy formula for 1
2 BPS states that gravitate to form a

large black hole at strong ’t Hooft coupling in terms of a contour integral of the inverse

of a Siegel modular form and of additional subleading contributions expressed as a series

in 1/(Y 0)2. A physical picture of this mathematical structure is suggested by the N = 4

picture discussed in [4, 11, 13], whereby a dyonic BPS black hole is viewed as a string web

wrapping a two-torus in type IIB string theory. In this picture, a dyonic black hole in
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type IIB is described in terms of a web of effective strings. Viewing the six-dimensional

compact manifold as a fibration over a two-torus, these effective strings wrap either one

of the two cycles of the two-torus. Electric states correspond to wrappings on one of

these cycles, while magnetic states correspond to wrappings on the other cycle. This

effective description is valid at points in moduli space where the volume of the fibre is

small compared to the volume of the two-torus. The electric-magnetic duality group Γ0(2)

is viewed as a subgroup of the large diffeomorphism group of the two-torus. A computation

of the Euclidean partition function of this string network requires time to be compactified,

so that the arms of the torus are tube-like and the resultant partition function of the string

web is a genus two partition function of an effective string theory that encodes BPS states

of the original type II theory. In the present N = 2 case, topological string theory is a

candidate for this effective string theory, since amplitude calculations in topological string

theory result in corrections to the free energy of the type II BPS partition function. In this

picture, the world sheet path integral will encode contributions from worldsheet instantons

corresponding to higher genera string webs. These contributions should correspond to the

series in 1/(Y 0)2 which appears in the proposed degeneracy formula, and which is absent

in the N = 4 case as a result of the larger supersymmetry in the system.
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A Modular forms for SL(2,Z)

We review basic properties of modular forms for SL(2,Z), following [59].

Let H = {τ ∈ C : Im τ > 0} denote the complex upper half plane, and let H∗ =

H ∪ {∞}.

Definition: let k ∈ Z. A meromorphic function f : H → C is weakly modular of weight

k if, ∀τ ∈ H ,

f(γ(τ)) = (cτ + d)k f(τ) , (A.1)

where

γ(τ) =
aτ + b

cτ + d
, (A.2)

with (
a b

c d

)
∈ SL(2,Z) , (A.3)
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where

SL(2,Z) =

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
. (A.4)

Remark: SL(2,Z) is generated by two elements,(
1 1

0 1

)
: τ 7→ τ + 1 ,

(
0 −1

1 0

)
: τ 7→ −1

τ
. (A.5)

Remark: consider an open subset F ⊂ H such that no two distinct points of F are equiv-

alent under the action of SL(2,Z), and every τ ∈ H is equivalent to a point in the closure

D ≡ F . Then, D is called a fundamental domain for SL(2,Z),

D = {τ ∈ H| − 1

2
≤ Re τ ≤ 1

2
and |τ | ≥ 1} . (A.6)

Remark: f is weakly modular of weight k if f(τ + 1) = f(τ), f(−1/τ) = τk f(τ).

Definition: modular forms are weakly modular functions that are also holomorphic on

H and at ∞, i.e. on H∗.
Remark: to show that a weakly modular function f is holomorphic at ∞, it suffices to

show that f(τ) is bounded at Im τ → ∞, i.e. there exists C ∈ R such that |f(τ)| ≤ C ∀τ
with Im τ � 1.

Let D = {q ∈ C : |q| < 1} denote the open complex unit disc, and D′ the punctured

disc D′ = D − {0}. Consider the map

τ 7→ e2πiτ = q , (A.7)

which takes H∗ to D. A modular form f is Z-periodic, since f(τ + 1) = f(τ). Then, f has

the Fourier expansion

f(τ) =
∞∑
n=0

an q
n , q = e2πiτ . (A.8)

Definition: the set of modular forms of weight k ∈ Z is denoted by Mk(SL(2,Z)).

Remark: Mk(SL(2,Z)) forms a finite-dimensional vector space over C, and the direct sum

M(SL(2,Z)) =
⊕
k∈Z
Mk(SL(2,Z)) (A.9)

forms a graded ring.

Definition: a cusp form of weight k ∈ Z is a modular form of weight k whose Fourier

expansion has a coefficient a0 = 0, i.e.

f(τ) =
∞∑
n=1

an q
n , q = e2πiτ . (A.10)

The limit point ∞ represents the cusp of SL(2,Z). The modular images of ∞ are the

rational numbers γ(∞) = a/c ∈ Q.

– 39 –



J
H
E
P
0
8
(
2
0
2
0
)
0
5
7

Definition: the set of cusp forms of weight k ∈ Z is denoted by Sk(SL(2,Z)).

Example: the discriminant function ∆(τ) = η24(τ) is a cusp form with ∆∈S12(SL(2,Z)).

It has a simple zero at q = 0.

Example: let k ∈ N with k ≥ 2. The Eisenstein series, defined by

G2k(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ n τ)2k
, τ ∈ H , (A.11)

is a modular form of weight 2k. It has the following Fourier expansion,

G2k(τ) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n) qn , q = e2πiτ , (A.12)

where the sum σp(n) =
∑

d|n d
p is over positive divisors of n, and ζ(z) is Riemann’s zeta

function.

Setting k = 1 in (A.12) yields G2, a quasi-modular form of weight 2 and depth s = 1,

i.e. a holomorphic function G2 : H∗ → C that, compared to (A.1), transforms with an

additional shift proportional to c/(cτ + d) under (A.2),

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− 2πi c (cτ + d) . (A.13)

More generally, a quasi-modular function of weight k and depth s is defined as follows [56]:

Definition: let k ∈ Z and s ∈ N. A holomorphic function f : H∗ → C is a quasi-modular

form of weight k and depth s if there exist holomorphic functions Q1(f), . . . , Qs(f) on H
such that

(cτ + d)−k f

(
aτ + b

cτ + d

)
= f(τ) +

s∑
i=1

Qi(f)(τ)

(
c

cτ + d

)i
(A.14)

for all a, b, c, d ∈ Z with ad− bc = 1, and such that Qs(f) is not identically zero.

The normalized Eisenstein series are E2k = G2k/(2ζ(2k)). For k ≥ 2, the normalized

Eisenstein functions can also be defined by [60]

E2k(τ) =
1

2

∑
(m,n)∈Z2−{(0,0)}, gcd(m,n)=1

1

(m+ n τ)2k
=

∑
n>0,m∈Z, gcd(m,n)=1

1

(m+ n τ)2k
.

(A.15)

Definition: a weakly holomorphic modular form of weight k [61] is a weakly modular

function f : H → C that is holomorphic on H, with a pole at q = 0. Its Fourier expansion

is given by

f(τ) =

∞∑
n=−N

an q
n , q = e2πiτ , (A.16)

with N ∈ N. Thus, f(τ) grow as q−N at ∞.
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Example: Z(τ) = 1/∆(τ) is a weakly holomorphic modular form of weight −12 with a

simple pole at q = 0. Hence

Z(τ) =
∞∑

n=−1

an q
n , q = e2πiτ . (A.17)

For large n, the Fourier coefficients an grow as

an ∼ e4π
√
n . (A.18)

Thus, they exhibit exponential growth, as required for the microstate degeneracy of small

BPS black holes in N = 4 string theories [62].

Depending on the nature of the modular form, the growth property of its Fourier

coefficients can be markedly different [61, 63]:

Growth conditions:

1. f ∈ Sk(SL(2,Z)): an = O(nk/2) as n→∞;

2. f ∈Mk(SL(2,Z)), f /∈ Sk(SL(2,Z)): an = O(nk−1) as n→∞;

3. f weakly holomorphic modular form of weight k: an = O(eC
√
n) as n→∞ for some

C > 0.

B Congruence subgroups of SL(2,Z)

We review basic properties of modular forms for congruence subgroups of SL(2,Z), follow-

ing [59].

Definition: let N be a positive integer. The principal congruence subgroup of SL(2,Z)

of level N is

Γ(N) =

{(
a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
mod N

}
. (B.1)

In particular, Γ(1) = SL(2,Z).

Definition: a subgroup Γ of SL(2,Z) is a congruence subgroup if Γ(N) ⊂ Γ for some

N ∈ Z+. The least such N is called the level of Γ.

Example: let N be a positive integer. Let

Γ0(N) =

{(
a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}
, (B.2)

Γ1(N) =

{(
a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡

(
1 ∗
0 1

)
mod N

}
, (B.3)

where ∗ can take any value in Z. Hence, Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL(2,Z).
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In particular, Γ(2) ⊂ Γ1(2) = Γ0(2), since a, d = 1 mod 2. This is the case of interest

for this paper, Γ = Γ0(2).

Remark: Γ0(2) is generated by two elements,(
1 0

2 1

)
= S2

(
S T−2 S

)
, T =

(
1 1

0 1

)
, (B.4)

where

S =

(
0 −1

1 0

)
. (B.5)

Remark: each congruence subgroup Γ of SL(2,Z) contains a translation matrix of the form(
1 h

0 1

)
: τ 7→ τ + h (B.6)

for some minimal h ∈ Z+. Hence, every function f : H → C that is weakly modular

with respect to Γ is hZ-periodic, and has a corresponding function g : D′ → C with

f(τ) = g(qh), where qh = e2πiτ/h. Then, f is defined to be holomorphic at ∞ if g extends

holomorphically to q = 0, in which case

f(τ) =

∞∑
n=0

an q
n
h , qh = e2πiτ/h . (B.7)

To define modular forms for a congruence subgroup Γ, one adjoins not only∞ toH, but also

the rational numbers Q. Then, one identifies all elements in {∞}∪Q that are Γ-equivalent.

When Γ = SL(2,Z), all rational numbers are Γ-equivalent to ∞, i.e. γ(−d/c) =∞, where

c, d ∈ Z with c 6= 0. When Γ ⊂ SL(2,Z) is a proper subgroup, fewer points are Γ-equivalent.

Definition: a Γ-equivalence class of points in {∞} ∪Q is called a cusp of Γ.

Example: for Γ = Γ0(2) there are two cusps, 0 and ∞ [63]. The orbit of ∞ consists of

the set of rational numbers of the form a/c with a 6= 0, c = 0 mod 2 and gcd(a, c) = 1.

The orbit of 0 consists of the set of rational numbers of the form b/d with gcd(b, d) = 1.

Thus, every element of {∞} ∪ Q is in exactly one of the two orbits. Since there is no

element in Γ0(2) that maps 0 to ∞, there are two cusps.

Proposition (fundamental domain): let Γ be a congruence subgroup of SL(2,Z),

and let R be a set of coset representatives for the quotient Γ\SL(2,Z). Then, the set

DΓ = ∪γ̃∈R γ̃D is a fundamental domain for Γ [63]. Here, D denotes a fundamental

domain for SL(2,Z).

Example: let Γ = Γ0(2). A system of coset representatives for Γ\SL(2,Z) is [63]

R =

{(
1 0

0 1

)
,

(
0 −1

1 0

)
,

(
0 −1

1 1

)}
= {I, S, ST} , (B.8)

i.e. if α ∈ SL(2,Z), then α = γ γ̃ with γ ∈ Γ and γ̃ ∈ R. A fundamental domain for Γ0(2)

is thus given by DΓ0(2) = D∪S(D)∪ST (D) [63, 64], see figure 2. Note that the two cusps,

0 and ∞, are in the closure of DΓ0(2) in the Riemann sphere, but not in H [63].
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Figure 2. A fundamental domain for Γ0(2).

Definition: let Γ be a congruence subgroup of SL(2,Z), and let k ∈ Z. A modular form

of weight k for the subgroup Γ is a holomorphic function f : H → C that is weakly modular

of weight k for Γ and holomorphic at all cusps of Γ.

Definition: let Γ be a congruence subgroup of SL(2,Z), and let k ∈ Z. Writing any

element s ∈ {∞} ∪Q as s = γ(∞) for some γ ∈ SL(2,Z), holomorphy of f at s is defined

in terms of holomorphy of f [γ]k at ∞ for all γ ∈ SL(2,Z). Here, f [γ]k : H → C is defined

by (f [γ]k)(τ) = (cτ + d)−k f(γ(τ)). If a0 = 0 in the Fourier expansion of f [γ]k for all

γ ∈ SL(2,Z), then f is called a cusp form of weight k with respect to Γ.

Remark: for Γ, the finite-dimensional vector space over C of modular forms of weight k is

denoted byMk(Γ), and the vector subspace of cusp forms of weight k is denoted by Sk(Γ).

The direct sums

M(Γ) =
⊕
k∈Z
Mk(Γ) , S(Γ) =

⊕
k∈Z
Sk(Γ) (B.9)

form a graded ring.

Example: an example of a modular form of weight 2 for Γ0(N) with N ≥ 2 is NG2(Nτ)−
G2(τ), where G2(τ) denotes the Eisenstein series of weight 2 for SL(2,Z) introduced be-

low (A.12).

Proposition: let Γ = Γ0(2). Let k ∈ N, k ≥ 2. Then, dimMk(Γ) =
[
k
4

]
+ 1 and

dimSk(Γ) =
[
k
4

]
− 1 for k even, while dimMk(Γ) = dimSk(Γ) = 0 for k odd [59]. Here,

[n] denotes the integer part of n.

Example: let Γ = Γ0(2). Then, dimM2(Γ) = 1, dimM4(Γ) = 2 and dimS4(Γ) = 0.

The vector space M2(Γ) is generated by [55, 65]

Ẽ2(τ) =
1

2
(3 E2(τ)− E2(τ)) = 2E2(2τ)− E2(τ) . (B.10)

Here, E2(τ) = G2(τ)/(2ζ(2)) denotes the normalized quasi-modular form of weight 2 for

SL(2,Z), while E2(τ) denotes one of the normalized Eisenstein series on Γ0(2), see (B.23).
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Definition: let k ≥ 2. For Γ0(2), define an Eisenstein series by [66]

G2k,N=2(τ) =
∑

(m,n)∈Z2,(m,n)=(1,0) mod 2

1

(m+ n τ)2k
,

=
∑

(m,n)∈Z2−{(0,0)}

χ2(m)

(m+ 2n τ)2k
, (B.11)

where

χN (m) =

{
1, if gcd(m,N) = 1

0, if gcd(m,N) > 1 .
(B.12)

χN (m) is called the principal character mod N .

Define the normalized Eisenstein series E2k(τ) by G2k,N=2 = 2ζ2(2k) E2k, where

ζN (2k) =
∞∑
r=1

χN (r) r−2k . (B.13)

Remark: for N = 1, ζ1(2k) = ζ(2k), while for N = 2, ζ2(2k) = (1− 2−2k) ζ(2k).

Proposition: let k ≥ 2. Then, G2k,N=2(τ) are modular forms of weight 2k for Γ0(2) [66].

Proposition: let k ≥ 2. The normalized Eisenstein functions E2k(τ) are given by [67]

E2k(τ) =
∑

n>0,m∈Z, gcd(m,2n)=1

1

(m+ 2n τ)2k
. (B.14)

Proof. Write [67]

G2k,N=2(τ) =

∞∑
r=1

∑
(m,n)∈Z2−{(0,0)}, gcd(m,n)=r

χ2(r) χ2(m/r)

r2k (m/r + 2 (n/r) τ)2k

= ζ2(2k)
∑

(c,d)∈Z2−{(0,0)}, gcd(c,d)=1

χ2(d)

(d+ 2 c τ)2k

= ζ2(2k)
∑

(c,d)∈Z2−{(0,0)}, gcd(2c,d)=1

1

(d+ 2 c τ)2k
. (B.15)

Proposition: let k ≥ 2. Then, E2k has the following expansion around the cusp ∞ [65],

E2k(τ) = 1 +
4k

(1− 22k)B2k

∞∑
n=1

(−1)n n2k−1 qn

1− qn
, q = e2πiτ , (B.16)

with Bk the k-th Bernoulli number. E2k(τ) can also be written as

E2k(τ) = 1 +
4k

(1− 22k)B2k

∞∑
n=1

σ̃2k−1(n) qn , q = e2πiτ , (B.17)
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where the sum

σ̃2k−1(n) =
∑
d|n

(−1)d d2k−1 (B.18)

is over positive divisors of n.

Proof. Using absolute convergence, we write

G2k,N=2(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ 2n τ)2k
−

∑
(m,n)∈Z2−{(0,0)}

1

(2m+ 2n τ)2k

= G2k(2τ)− 2−2kG2k(τ) , (B.19)

where G2k denote Eisenstein functions for SL(2,Z). Using (A.12) in the form

G2k(τ) = 2ζ(2k) +
2(−1)k(2π)2k

(2k − 1)!

∞∑
m=1

∞∑
d=1

d2k−1 qdm , q = e2πiτ , (B.20)

we obtain, using absolute convergence,

G2k,N=2(τ) = 2ζ2(2k) + 2−2k 2(−1)k(2π)2k

(2k − 1)!

[
2
∞∑
m=1

∞∑
d=1

(2d)2k−1 q2dm −
∞∑
m=1

∞∑
d=1

d2k−1 qdm

]

= 2ζ2(2k) + 2−2k 2(−1)k(2π)2k

(2k − 1)!

∞∑
m=1

∞∑
d=1

(−1)d d2k−1 qdm

= 2ζ2(2k) + 2−2k 2(−1)k(2π)2k

(2k − 1)!

∞∑
d=1

(−1)d d2k−1 qd

1− qd

= 2ζ2(2k)

[
1 +

4k

(1− 22k)B2k

∞∑
d=1

(−1)d d2k−1 qd

1− qd

]
. (B.21)

Expanding in a geometric series,

G2k,N=2(τ) = 2ζ2(2k)

[
1 +

4k

(1− 22k)B2k

∞∑
d=1

∞∑
m=1

(−1)d d2k−1 qdm

]
, (B.22)

and interchanging the order of summations yields (B.17).

Definition: setting k = 1 in (B.16) defines the second Eisenstein series E2 [55, 65],

E2(τ) = 1− 8
∞∑
n=1

(−1)n n qn

1− qn
, q = e2πiτ . (B.23)

Proposition: E2 can be expressed as [55]

E2 = q
d

dq
lnϑ8

2 , (B.24)

– 45 –



J
H
E
P
0
8
(
2
0
2
0
)
0
5
7

where the theta function ϑ2 has the product representation

ϑ2(τ) = 2 q1/8
∞∏
n=1

(1− qn)(1 + qn)2 , q = e2πiτ , (B.25)

valid in the open complex unit disc D = {q ∈ C : |q| < 1}. Thus, E2 is a quasi-modular

form for Γ0(2),

E2(τ) =
1

πγ

∂ω(S)

∂S
=

1

πγ
I1(S) , S = −iτ . (B.26)

Proof. Using (B.25) and (B.23) as well as absolute convergence, we compute

q
d

dq
lnϑ8

2 − E2 = 16

( ∞∑
n=1

n
qn

1 + qn
−
∞∑
n=1

(2n− 1)
q2n−1

1− q2n−1

)
. (B.27)

Using the relation
x

1 + x
=

x

1− x
− 2x2

1− x2
, (B.28)

it follows that the right hand side of (B.27) vanishes. Since I1 is quasi-modular, so is E2.

Remark: the vector space M4(Γ), which has dimM4(Γ) = 2, is generated by [65] Ẽ2
2 and

E4. Therefore, ϑ8
2(τ), which has weight 4, is given by a linear combination of Ẽ2

2 and E4,

namely [65]

2−8 ϑ8
2(τ) =

1

64

(
Ẽ2

2 (τ)− E4(τ)
)

=
1

240
(E4(τ)− E4(2τ)) . (B.29)

Note that ϑ8
2(τ) is not a cusp form of Γ0(2), and that E4(τ) = 16 η12(τ)/ϑ4

2(τ).

Remark: Ẽ2(τ) has the following q-expansion,

Ẽ2(τ) = 1 + 24

∞∑
n=1

 ∑
d|n, d odd

d

 qn , q = e2πiτ . (B.30)

Proposition: the series E2, Ẽ2, E4 satisfy the differential equations [65]

q
dE2

dq
=

1

4

(
(E2)2 − E4

)
,

q
dẼ2

dq
=

1

2

(
Ẽ2 E2 − E4

)
,

q
dE4

dq
= E2 E4 − Ẽ2 E4 . (B.31)

Definition: given a modular form f(S) of Γ0(2) of weight 2k, the operator [65]

f → DSf = ∂Sf +
k

γ

∂ω(S)

∂S
f (B.32)

maps M2k(Γ0(2)) to M2k+2(Γ0(2)). This operator can be written as

− 1

2π
f →

(
q
d

dq
− k

2
E2

)
f . (B.33)
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Using the above relations, one readily verifies that [55]

DSϑ8
2(S) = 0 , (B.34)

as well as

I2(S) =
1

2
π2 γ E4 ,

I3(S) = π3 γ Ẽ2 E4 ,

I4(S) = π4 γ
(
E2

4 + 2(Ẽ2)2 E4

)
. (B.35)

Acting with the operator (B.33) on Ẽ2 gives

− 1

2π
DS Ẽ2 = −1

2
E4 , (B.36)

and hence we infer

I2 =
1

2
π γDS Ẽ2 . (B.37)

Proposition: for k ≥ 2, the Ik(S) are given by

Ik(S) = γ
∑

m+2n=k,m≥0,n≥1

am,n (Ẽ2)m (E4)n , (B.38)

where am,n are real, positive constants.

Proof. The proof is by induction. The claim holds for k = 2. Assume that it holds for a

k0 with k0 > 2. Then, consider operating with (B.33) on a summand (Ẽ2)m (E4)n of weight

2k0 = 2m+ 4n. Using the relations (B.31), one infers(
q
d

dq
− k

2
E2

)
(Ẽ2)m (E4)n = −1

2
m (Ẽ2)m−1 (E4)n+1 − n(Ẽ2)m+1 (E4)n . (B.39)

Note that the terms on the right hand side have weight 2k0 + 2, and that they have the

same structure as in (B.38). Thus, when operating with (B.33) on Ik0 , the resulting sum

is of the form (B.38) with m,n satisfying the relations m ≥ 0, n ≥ 1 and m+ 2n = k0 + 1.

Multiplying (B.39) with (−2π), so as to obtain DS on the left hand side, we infer that the

coefficients am,n of Ik0+1 are real and positive.

Next, we discuss the growth properties of the Fourier coefficients of modular forms for

Γ0(2).

Proposition: let f ∈ Sk(Γ0(2)), with k ∈ N,

f(τ) =

∞∑
n=1

an q
n , q = e2πiτ . (B.40)

Then |an| ≤ C nk/2 ∀n ∈ N for some C ∈ R with C > 0 [59].
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Proposition: let Γ = Γ0(2). Consider the Eisenstein series (B.17) with k ≥ 2,

E2k(τ) =
∞∑
n=0

an q
n , q = e2πiτ . (B.41)

Then [60]

|an| ≤ C n2k−1 ∀n ∈ N (B.42)

for some C ∈ R with C > 0.

Proof. For k ≥ 2, using [60]

|σ̃2k−1(n)| ≤
∑
d|n

d2k−1 ≤ n2k−1 ζ(2k − 1) , (B.43)

we infer

|E2k(τ)| ≤ 1 + C
∞∑
n=1

n2k−1 |q|n , (B.44)

with C = |4k ζ(2k − 1)/(1− 22k)B2k|. Hence |an| ≤ C n2k−1 for n ∈ N.

Proposition: consider the modular form Ẽ2 of weight 2 given in (B.30),

Ẽ2(τ) =

∞∑
n=0

an q
n , q = e2πiτ . (B.45)

Then

|an| ≤ C n ∀n ∈ N (B.46)

for some C ∈ R with C > 0.

Proof. We consider Ẽ2
2 and use (B.29),

Ẽ2
2 (τ) = E4(τ) +

8

30
(E4(τ)− E4(2τ)) . (B.47)

The right hand side is a linear combination of modular forms of weight 4. Each of them

has q-expansion coefficients an that exhibit the property |an| ≤ C n3, cf. (B.42). Hence,

if we denote the q-expansion of Ẽ2
2 by Ẽ2

2 =
∑

N≥0 cNq
N , the coefficients cN will also

satisfy |cN | ≤ DN3, for some constant D > 0. Now consider (B.45), and let us assume

that its coefficients an satisfy the bound |an| ≤ Anp, with p ∈ N, A > 0. Then |Ẽ2|2 ≤(
1 +A

∑
m≥1m

p|q|m
)(

1 +A
∑

n≥1 n
p|q|n

)
. Using absolute convergence, we obtain, for

N > 0, |cN | ≤
(

2ANp +A2
∑

m+n=N, m,n≥1 mp np
)

. We now place an upper bound on

the sum, for a given N , as follows. Extremizing mp np = (N − n)p np with respect to n

gives n∗ = N/2, in which case mp
∗ n

p
∗ = N2p/22p. Using that the number of partitions of

N into two positive integers m and n with m + n = N is N − 1, we obtain the bound∑
m+n=N, m,n≥1 mp np ≤ mp

∗ n
p
∗ (N − 1) ≤ BN2p+1, for some constant B > 0. Hence,

|cN | ≤ DN2p+1, for some constant D > 0. On the other hand, we had already concluded

that |cN | ≤ DN3, so that p = 1.
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Proposition: let Γ = Γ0(2). Consider the modular form Ik of weight 2k given in (B.38),

with k ≥ 2. We express its q-expansion as

Ik(τ) =

∞∑
n=0

an q
n , q = e2πiτ . (B.48)

Then

|an| ≤ C n2k−1 ∀n ∈ N (B.49)

for some C ∈ R with C > 0.

Proof. The claim holds for k = 2, since I2 ∝ E4. Let us consider the case k > 2.

We begin by considering a summand E2
4 of weight 8 in (B.38). Then, using (B.42),

we obtain |E2
4 | ≤

(
1 + a

∑
m≥1m

3|q|m
)(

1 + a
∑

n≥1 n
3|q|n

)
for some constant a > 0.

Denoting the q-expansion of E2
4 by E2

4 =
∑

N≥0 cNq
N , and following the same steps as in

the proof given above, we obtain the bound |cN | ≤ DN8−1, for some constant D > 0.

Next, consider a summand Ep4 of weight 4p in (B.38). We proceed by induction. De-

noting the q-expansion of Ep4 by Ep4 =
∑

n≥0 b(n)qn, and assuming |b(n)| ≤ b n4p−1, for

some constant b > 0, we proceed to show that the expansion coefficients of Ep+1
4 ex-

hibit the growth property |cN | ≤ DN4(p+1)−1. Namely, proceeding as before, we obtain

|E4 Ep4 | ≤
(

1 + a
∑

m≥1m
3|q|m

)(
1 + b

∑
n≥1 n

4p−1|q|n
)

for some constants a, b > 0. Ex-

tremizing (N − n)3 n4p−1 with respect to n gives n∗ = N(4p − 1)/(4p + 2), in which

case (N − n)3
∗ n

4p−1
∗ = N4p+2 33(4p − 1)4p−1/(4p + 2)4p+2. Hence, we obtain the bound∑

m+n=N, m,n≥1 m3 n4p−1 ≤ m3
∗ n

4p−1
∗ (N − 1) ≤ BN4p+3 for some constant B > 0. Thus,

the expansion coefficients of Ep+1
4 exhibit the growth property |cN | ≤ DN4(p+1)−1, as we

wanted to show. Note that this growth goes as N2k−1 with 2k = 4(p+ 1).

Proceeding in a similar manner, one finds that the expansion coefficients of Ẽ2 Ep4 exhibit

the growth property |cN | ≤ DN4p+1. By induction, one then shows that the expansion

coefficients of Ẽ l2 E
p
4 exhibit the growth property |cN | ≤ DN4p+2l−1. This growth goes as

N2k−1 with 2k = 4p+ 2l.

Hence we conclude that expansion coefficients of Ik in (B.38), with k ≥ 2, exhibit the

growth property (B.49).

C Rankin-Cohen brackets

Definition: let n ∈ N0. The nth Rankin-Cohen bracket is a bilinear, differential operator

that acts on modular forms f, g of SL(2,Z), of weight k ∈ N and l ∈ N, respectively, by [68]

[f, g]n(τ) =
1

(2πi)n

n∑
r=0

(−)r

(
k + n− 1

n− r

) (
l + n− 1

r

)
f (r)(τ) g(n−r)(τ) , (C.1)

where f (r)(τ) denotes the rth derivative of f with respect to τ , and similarly for g(n−r)(τ).

In the following, we drop the normalization factor 1
(2πi)n .
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Proposition: the nth Rankin-Cohen bracket [f, g]n is a modular form for SL(2,Z), of

weight k + l + 2n [68].

Example: let f(S) be a modular form for SL(2,Z) of weight k, and let g(S) = ϑ8
2(S),

which has weight l = 4. Then,
1

g
[f, g]1 = −4DSf , (C.2)

where (cf. (B.32))

DSf =

(
∂S −

k

4
∂S ln g

)
f . (C.3)

In particular, consider the case f(S) = I2(S), which we recall is proportional to the

Eisenstein series E4 of weight 4, cf. (B.35). Then,

1

g
[I2, g]1 = −4I3 ,

1

g
[I2, g]2 = 10

(
I4 −

4

γ
I2

2

)
,

1

g
[I2, g]3 = −20

(
I5 −

16

γ
I2 I3

)
. (C.4)

For n > 2 we obtain

In = − 1

4g
[In−1, g]1 =

(
−1

4

)2 1

g
[
1

g
[In−2, g]1, g]1 =

(
−1

4

)n−2 1

g
[
1

g
[. . . [

1

g
[I2, g]1, . . . , g]1, g]1 .

(C.5)

The above definition can be extended to include quasi-modular forms as well [56]. Here

we focus on quasi-modular forms of weight k and depth s = 1 of SL(2,Z). An example

thereof is provided by (A.13).

Definition: let f be a quasi-modular form of weight k and depth s = 1, and let g be a

modular form of weight l, respectively, for SL(2,Z). Then, their nth Rankin-Cohen bracket

is given by

[f, g]n(τ) =
1

(2πi)n

n∑
r=0

(−)r

(
k − s+ n− 1

n− r

) (
l + n− 1

r

)
f (r)(τ) g(n−r)(τ) , (C.6)

where f (r)(τ) denotes the rth derivative of f with respect to τ , and similarly for g(n−r)(τ).

In the following, we drop the normalization factor 1
(2πi)n .

Proposition: the nth Rankin-Cohen bracket [f, g]n is a quasi-modular form for SL(2,Z),

of weight k + l + 2n and depth ≤ s = 1 [56].

Example: as an application, set

f(S) = I1(S) =
∂ω

∂S
, g(S) = ϑ8

2(S) , (C.7)
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with weights k = 2 and l = 4, respectively. The depth of f is s = 1. Then

1

g
[f, g]1 = −4

(
∂2ω

∂S2
+

1

2γ

(
∂ω

∂S

)2
)

= −4I2(S) , (C.8)

which yields a modular form of weight 4 and depth s = 0.

Remark: the Rankin-Cohen bracket (C.1) endows the graded vector space M∗ of modular

forms of SL(2,Z), M∗ ≡ ⊕k≥0Mk(SL(2,Z)), with an infinite set of bilinear operators [68],

[·, ·]n : M∗ ×M∗ →M∗+∗+2n . (C.9)

The 0th bracket makes (M∗, [·, ·]0) into a commutative and associative algebra. The 1st

bracket, on the other hand, makes (M∗, [·, ·]1) into a graded Lie algebra, since the 1st

bracket, given by

[f, g]1 = −[g, f ]1 = k f g′ − l f ′ g , (C.10)

satisfies the Jacobi identity

[[f, g]1, h]1 + [[g, h]1, f ]1 + [[h, f ]1, g]1 = 0 , ∀f, g, h ∈M∗ . (C.11)

The space (M∗, [·, ·]0, [·, ·]1) is a Poisson algebra in view of the Leibnitz rule relation

[[f, g]0, h]1 = [[f, h]1, g]0 + [[g, h]1, f ]0 , ∀f, g, h ∈M∗ . (C.12)

We note the formal analogy between Rankin-Cohen brackets [·, ·]1 and the adjoint

representation of the Lie algebra g of a linear group G. To this end, let us recall the

differential of the exponential map exp : g→ G [69]. Define a curve a(t) = exp(Z(t)) ⊂ G
with Z(t) = X + t Y (X,Y ∈ g). Then

exp(−X)

(
d

dt
a(t)

)
|t=0

= exp(−X)

(
d

dt
exp(X + t Y )

)
|t=0

=
1− exp (−ad(X))

ad(X)
Y

(C.13)

where
1− exp (−ad(X))

ad(X)
≡
∞∑
k=0

(−1)k

(k + 1)!
(ad(X))k , (C.14)

and

ad(X) : g → g ,

Y 7→ [X,Y ] . (C.15)

Now consider replacing the derivatives with respect to τ in (C.1) by the covariant

derivative Dτ given in (B.32), to obtain the nth Serre-Rankin-Cohen bracket [35] for Γ0(2)

(we drop the normalization factor 1
(2πi)n ),

SRCn(f, g)(τ) =
n∑
r=0

(−)r

(
k + n− 1

n− r

) (
l + n− 1

r

)
Drτf(τ)Dn−rτ g(τ) . (C.16)
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Then, the sequence (SRCn)n∈Z≥0 of bilinear maps defines a formal deformation [35] of

M∗ ≡ ⊕k≥0Mk(Γ0(2)) through the non-commutative Eholzer product #,

f#g =
∑
n≥0

SRCn(f, g) ~n , (C.17)

which is associative [68], i.e. given any modular forms f, g, p (of weight k, l, h ∈ N, respec-

tively),

n∑
r=0

SRCn−r (SRCr(f, g), p) =
n∑
r=0

SRCn−r (f, SRCr(g, p)) , ∀n ∈ N0 . (C.18)

Note that the Eholzer product (C.17) is suggestive of a deformation quantization of the

Poisson algebra (C.12).

D Jacobi forms

In this section, we follow [61, 70].

Let H denote the complex upper half plane. Let τ ∈ H and z ∈ C.

Definition: a Jacobi form of SL(2,Z) is a holomorphic function φk,m : H× C→ C that

transforms as follows under the modular group SL(2,Z),

φk,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k e2πimcz

2

cτ+d φk,m(τ, z) , ∀

(
a b

c d

)
∈ SL(2,Z) , (D.1)

and under translations of z by Zτ + Z as

φk,m(τ, z + λτ + µ) = e−2πim(λ2τ+2λz) φk,m(τ, z) , ∀ λ, µ ∈ Z . (D.2)

Here, k ∈ Z is called the weight, and m ∈ N is called the index of the Jacobi form.

Remark: τ is called modular parameter, while z is called elliptic parameter.

Due to the periodicities φk,m(τ + 1, z) = φk,m(τ, z) and φk,m(τ, z + 1) = φk,m(τ, z),

φk,m possesses a Fourier expansion,

φk,m(τ, z) =
∑
n,r∈Z

c(n, r) qn yr , q = e2πi τ , y = e2πi z . (D.3)

The transformation behaviour under elliptic transformations (D.2) implies that

c(n, r) = C(∆, r) , ∆ ≡ 4nm− r2, (D.4)

where C(∆, r) depends only on r mod 2m.

Definition: φk,m is called a holomorphic Jacobi form of weight k and index m if

c(n, r) = 0 , for ∆ < 0 , (D.5)

i.e.

φk,m(τ, z) =
∑

n≥0, r∈Z, 4nm≥r2
c(n, r) qn yr . (D.6)
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Definition: φk,m is called a cuspidal holomorphic Jacobi form if

c(n, r) = 0 , for ∆ ≤ 0 , (D.7)

i.e.

φk,m(τ, z) =
∑

n≥1, r∈Z, 4nm>r2

c(n, r) qn yr . (D.8)

Definition: φk,m is called a weak holomorphic Jacobi form if

c(n, r) = 0 , for n < 0 , (D.9)

i.e. if

φk,m(τ, z) =
∑

n≥0, r∈Z
c(n, r) qn yr . (D.10)

Definition: φk,m is called a weakly holomorphic Jacobi form if

c(n, r) = 0 , for n < −n0, , n0 ∈ N , (D.11)

i.e. if

φk,m(τ, z) =
∑

n≥−n0, r∈Z
c(n, r) qn yr . (D.12)

Depending on the nature of the Jacobi form, the coefficients c(n, r) will have a certain

growth property [61].

Remark: the above generalizes to Jacobi forms of subgroups Γ ⊂ SL(2,Z) [70].

Example: consider ϑ8
2(τ, z), where ϑ2(τ, z) denotes the Jacobi theta function defined by

ϑ2(τ, z) = q1/8
∑
n∈Z

q
1
2n(n+1) eiπ(2n+1)z , (D.13)

which has the following product representation, valid for |q| < 1,

ϑ2(τ, z) = 2 q1/8 cos (πz)

∞∏
n=1

(1− qn)(1 + qn y) (1 + qn y−1) . (D.14)

For fixed z, ϑ2(τ, z) has one branch point inside the unit circle of the complex q-plane, at

q = 0, and a branch cut along the interval (−1, 0) on the real axis. ϑ2(τ, z) has zeroes at

z = 1
2(2m+ 1) + n τ with (m,n) ∈ Z2.

ϑ8
2(τ, z), on the other hand, is analytic in both τ ∈ H and z ∈ C, and is an example

of a modular form of weight k = 4 and index m = 4 with trivial multiplyer system under

Γ0(2)-transformations.

Remark: ϑ2 is even with respect to z,

ϑ2(τ,−z) = ϑ2(τ, z) , (D.15)

and it solves the heat equation

∂

∂S
ϑ2(S, z) =

1

4π

∂2

∂z2
ϑ2(S, z) , (D.16)

with periodic boundary conditions (z → z + 1) imposed in the z direction. Here τ = iS.
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Also observe that when taking an odd number of derivatives with respect to z, we have

∂n

∂zn
ϑ2(S, z)

∣∣∣∣
z=0

= 0 ∀n ∈ 2N + 1 (D.17)

due to (D.15).

Remark: consider f(S, z) = lnϑ8
2(S, z). We fix S, and we view ϑ8

2(S, z) as a function of

z, which is non-vanishing in a small open neighbourhood of z = 0. It is then possible to

define a single-valued analytic branch of ln ϑ8
2(S, z) in that neighbourhood. We then Taylor

expand around z = 0, retaining only the first few terms for illustrative purposes,

f(S, z) = lnϑ8
2(S) +

z2

2!
∂2
zf |z=0 +

z4

4!
∂4
zf |z=0 +

z6

6!
∂6
zf |z=0 +

z8

8!
∂8
zf |z=0 +O(z10) . (D.18)

Using (D.15) and (D.17) to convert an even number of derivatives with respect to z into

derivatives with respect to S, we obtain

f(S, z) = −2

γ

(
ω(S) + 4π

z2

2!
I1(S) + (4π)2 z

4

4!
I2(S) + (4π)3 z

6

6!
I3(S)

+(4π)4 z
8

8!

(
I4(S) +

5

γ
I2

2 (S)

)
+O(z8)

)
, (D.19)

where

ω(S) = −γ
2

lnϑ8
2(S) , γ = − 1

256π
, (D.20)

and where the In are defined in (3.20) and in (3.23).

Thus, the expansion (D.19) is indicative of an expansion in powers of In(S), as follows:

Proposition:

f(S, z) = −2

γ

[
ω(S) + 4π

z2

2!
I1(S) +

∞∑
n=2

(4π)n
z2n

(2n)!
In(S)

+
∑
m,n≥2

(4π)m+n fm,n z
2(m+n) Im(S) In(S) + . . .

 , (D.21)

where the dots stand for higher powers of In.

Proof. Let us first focus on the sector involving single powers of In only, and let us verify the

expression for the monomials in In given in (D.21). Let us work in an open neighbourhood of

z = 0. First, observe that under Γ0(2)-transformations (3.10), the first two terms in (D.21),

ω(S) + 4π z2

2! I1(S), transform precisely as f(S, z). Therefore, the Taylor series in (D.18)

starting with the term z4 has to be invariant under Γ0(2)-transformations. Since each power

of z transforms as z 7→ z/[∆(S)] under Γ0(2), it follows that each summand in (D.18)

starting with the term z4 must be separately invariant under Γ0(2), i. e. ∂2n
z f |z=0 7→

[∆(S)]2n ∂2n
z f |z=0 for n ≥ 2. Using

∂2n
z f |z=0 = 8

∂2n
z ϑ2(S, z)

ϑ2(S, z)
|z=0 + . . . , (D.22)
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where the dots stand for products of terms involving a lower number of z-derivatives of

ϑ2(S, z), we infer, using (D.16),

∂2n
z f |z=0 = 8 (4π)n

∂nSϑ2(S)

ϑ2(S)
+· · · = (4π)n ∂nS lnϑ8

2(S)+· · · = −2(4π)n

γ
In(S)+. . . . (D.23)

Covariance under Γ0(2)-transformations dictates that the terms involving a lower number

of z-derivatives of ϑ2(S, z) have to organize themselves into products of Ik(S), so that the

dots in (D.23) stand for higher powers of Ik(S), such that under Γ0(2)-transformations,

∂2n
z f |z=0 7→ [∆(S)]2n ∂2n

z f |z=0. Thus we establish (D.21).

Another way of obtaining the same result is as follows. We note that f(S, z) =

lnϑ8
2(S, z), satisfies the non-linear PDE

32π
∂

∂S
f(S, z) = 8

∂2

∂z2
f(S, z) +

(
∂

∂z
f(S, z)

)2

, (D.24)

as a consequence of (D.16), with boundary conditions f(S, 0) = lnϑ8
2(S), ∂zf |z=0 =

0, ∂2
zf |z=0 = −8π I1(S)/γ. Let us verify that (D.21) solves (D.24) when restricting to

the monomial sector in (D.21). To distinguish between the various sectors, we rescale ω

and each power of In in (D.21) by a real constant λ ∈ R, in which case (D.21) becomes

f(S, z, λ) = −2

γ

[
λω(S) + λ 4π

z2

2!
I1(S) + λ

∞∑
n=2

(4π)n
z2n

(2n)!
In(S) +O(λ2)

]
. (D.25)

Inserting (D.25) into (D.24) (we verify below that we may differentiate the series (D.25)

term by term) and working to first order in λ, we establish that (D.25) solves (D.24) at

this order. Then, setting λ = 1 yields the expression for the monomials given in (D.21).

The uniqueness of solutions of the form (D.25) can be established as follows. Suppose

that the differential equation (D.24) admits a solution f(S, z) that is expressed as a power

series expansions in z2,

f(S, z) =
∑
n≥0

fn(S)z2n , (D.26)

satisfies the boundary conditions given above, and that can be differentiated term by term.

Then, inspection of (D.24) shows that f2(S) = −4π2I2(S)/(3γ), f3(S) = 2πDSf2(S)/15,

and that the functions fn+1(S) with n ≥ 3 are determined recursively by

(2n+ 2)(2n+ 1) fn+1(S) = c1DSfn(S) + c2

∑
k+l=n+1; k,l>1

k l fk(S)fl(S) , (D.27)

where c1, c2 are numerical constants. Hence, a solution of the form (D.26) satisfying the

conditions mentioned above is uniquely specified.
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Thus, we have the following corollary:

Corollary: let

g(S, z) ≡
∞∑
n=2

(4π)n
z2n

(2n)!
In(S) . (D.28)

g(S, z) is the unique Γ0(2)-invariant solution, that is given by a Taylor series in even powers

of z, to the PDE

4π
∂

∂S
g(S, z) =

∂2

∂z2
g(S, z)− 2π

γ
I1(S) z

∂

∂z
g(S, z)− (4π)2

2
z2 I2(S) , (D.29)

with boundary conditions g|z=0 = ∂zg|z=0 = ∂2
zg|z=0 = ∂3

zg|z=0 = 0.

Proof. Let

g(S, z) ≡
∞∑
n=2

(4π)n
z2n

(2n)!
pn(S) . (D.30)

Imposing Γ0(2) invariance shows that pn(S) are modular forms for Γ0(2) of weight 2n.

Inserting (D.30) into (D.29) and differentiating term by term, which will be justified below,

one infers p2(S) = I2(S) and pn+1(S) = DSpn(S) for n ≥ 2. Hence, pn = In.

In the main part of the paper, we encountered a closely related series, namely (cf. (3.25))

H(S, z) ≡
∞∑
n=2

cn
z2n

n!
In(S) , (D.31)

with c ∈ C a constant. Note that the suppression factor is now 1/n!, instead of 1/(2n)!

in (D.28). The PDE which H(S, z) satisfies will thus be different from (D.29), cf. (3.28).

For fixed S, this series is a power series in z, and hence both absolutely convergent in a

open neighbourhood D(0, R) of z = 0 as well as uniformly convergent on any compact

subset contained in D(0, R). The radius of convergence R will depend on S. We can infer

a lower bound on R, as follows. First, using (B.25), we infer that for large ReS ( i.e.

|q| → 0), ω(S) behaves as ln q ∼ S, and hence, ∂ω/∂S is constant, up to exponentially

suppressed corrections. Thus, at q = 0, Ik (with k ≥ 2) is given by

Ik(q = 0) =
(k − 1)!

2γk−1

(
∂ω

∂S

)k
|q=0 . (D.32)

On the other hand, evaluating (B.38) at q = 0, we infer

∑
m+2n=k,m≥0,n≥1

am,n =
(k − 1)!

2γk

(
∂ω

∂S

)k
|q=0 =

(k − 1)!

2
πk > 0 . (D.33)
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Using (B.30) and (B.44), we obtain (with |q| < 1)

|Ẽ2| ≤ 1 + C2

∞∑
n=1

n2 |q|n = 1 + C2

(
|q| d
d|q|

)2 |q|
1− |q|

≡ f2(|q|) , C2 = 24 ,

|E4| ≤ 1 + C4

∞∑
n=1

n3 |q|n = 1 + C4

(
|q| d
d|q|

)3 |q|
1− |q|

≡ f4(|q|) , C4 = 80 ζ(3) ,

(D.34)

and hence, using (B.38),

|Ik(S)| ≤ |γ|
∣∣∣fk2 (|q|)

∣∣∣ ∑
m+2n=k,m≥0,n≥1

am,n |hn(|q|)| , (D.35)

where we recall that am,n are positive, and where

h(|q|) ≡ f4(|q|)
f2

2 (|q|)
. (D.36)

If, for a fixed q, |h(|q|)| ≤ 1, we may approximate (D.35) by

|Ik(S)| ≤ |γ|
∣∣∣fk2 (|q|)

∣∣∣ (k − 1)!

2
πk , (D.37)

whereas if |h(|q|)| > 1, we have the bound |hn(|q|)| ≤ |h(|q|)|[k/2], and hence we approxi-

mate (D.35) by

|Ik(S)| ≤ |γ|
∣∣∣fk2 (|q|)

∣∣∣ |h(|q|)|[k/2] (k − 1)!

2
πk . (D.38)

Therefore, we obtain the following lower bound for the radius of convergence R,

1

R
= lim

k→∞
(|c|k |Ik(S)|/k!)1/k ≤ π |c| |f2(q)|

{
1, |h(|q|)| ≤ 1√
|h(|q|)|, |h(|q|)| > 1 .

(D.39)

The functions f2(|q|) and f4(|q|) are monotonically increasing in the interval 0 ≤ |q| < 1,

and they blow up at |q| = 1. The function h(|q|) is bounded, 0 ≤ h(|q|) < 1.5. Thus, so

long as |q| ≤ r < 1, we have R > 0.

Next, let us consider fixing z in (D.31). Then, using (D.35), we infer

|H(S, z)| ≤ 1

2
|γ|

∞∑
k=2

|π c z2 f2(|q|)|k

k

{
1, |h(|q|)| ≤ 1

|h(|q|)|[k/2], |h(|q|)| > 1 .
(D.40)

The right hand side is a convergent series for |q| < 1, provided that |π c z2 f2(|q|)| < 1

and |π c z2 f2(|q|)|
√
|h(|q|)| < 1. Consider |q| ≤ r < 1. Then, since f2(|q|) and f4(|q|)

are monotonically increasing functions, we infer |π c z2 f2(|q|)| ≤ |π c z2 f2(r)| < 1 and

|π c z2 f2(|q|)|
√
|h(|q|)| ≤ |π c z2 f2(r)|

√
|h(r)| < 1. Thus, by the Weierstrass M test, the

function H(S, z) converges both absolutely and uniformly for all |q| ≤ r < 1, provided
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(a) Function f2(|q|), with 0 ≤ |q| < 1.
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(b) Function h(|q|), with 0 ≤ |q| < 1.

Figure 3. Behaviour of the functions f2(|q|) and h(|q|).

|π c z2| < 1/M , with M = max{f2(r), f2(r)
√
|h(r)|}. In particular, it converges absolutely

and uniformly in an open neighbourhood of (q, z) = (0, 0).

Next, let us consider the series of S-derivatives,

∞∑
n=2

cn
z2n

n!
∂SIn(S) . (D.41)

Proceeding as above we obtain the bound

|∂SIk(S)| ≤ πk+1|γ| k! v(|q|) |f2(|q|)|k
{

1, |h(|q|)| ≤ 1

|h(|q|)|[k/2], |h(|q|)| > 1 ,
(D.42)

where the function v(|q|) is given by

v(|q|) = 24f−1
2 (|q|)

(
|q| d
d|q|

)3 |q|
1− |q|

+
1

2
C4f

−1
4 (|q|)

(
|q| d
d|q|

)4 |q|
1− |q|

. (D.43)

The function v(|q|) is monotonically increasing in the interval 0 ≤ |q| < 1 and blows up at

|q| = 1. Hence we obtain the estimate

∞∑
k=2

|ck z
2k

k!
∂SIk(S)| ≤ π|γ| v(|q|)

∞∑
k=2

|πc z2 f2(|q|)|k
{

1, |h(|q|)| ≤ 1

|h(|q|)|[k/2], |h(|q|)| > 1 .
(D.44)

Thus, at fixed z, this series converges both absolutely and uniformly for all |q| ≤ r < 1,

provided |π c z2| < 1/M , with M = max{f2(r), f2(r)
√
|h(r)|}, as above. In particular, it

converges absolutely and uniformly in an open neighbourhood of (q, z) = (0, 0).

Thus, at fixed z satisfying |π c z2| < 1/M , both (D.31) and (D.41) converge absolutely

and uniformly for all |q| ≤ r < 1, and hence the S-derivative of (D.31) equals (D.41).

In the main part of the paper, we also encountered the series (cf. (3.25))∑
m,n≥2

cm+n βm,n z
2(m+n) Im(S) In(S) , (D.45)

with c ∈ C a constant. For large m,n, the coefficients behave as βm,n ∝ 1/[(m−1)! (n−1)!],

and the series (D.45) becomes (
z2∂z2H(S, z)

)2
, (D.46)
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Figure 4. Function v(|q|), with 0 ≤ |q| < 1.

with H(S, z) given by (D.31). Thus, the series (D.45) has the same convergence properties

as H(S, z).

E Siegel modular forms

In this section, we follow [60, 70] as well as appendix A of [71].

Definition: siegel’s upper half plane H2 is defined by

H2 =
{

Ω ∈ Mat(2× 2,C) : ΩT = Ω, Im Ω > 0
}
, (E.1)

where Im Ω > 0 means that Im Ω is a positive definite matrix, i.e. H2 consists of complex

symmetric matrices

Ω =

(
ρ v

v σ

)
(E.2)

with ρ2 > 0, σ2 > 0 and det(ImΩ) > 0, i.e. ρ2 σ2 − v2
2 > 0, where ρ = ρ1 + iρ2, σ =

σ1 + iσ2, v = v1 + iv2.

The Siegel modular group Sp(4,Z) acts on H2 as follows. An element M ∈ Sp(4,Z),

M =

(
A B

C D

)
, (E.3)

can be written in terms of four real two-by-two blocks A, B, C, and D satisfying ATD −
CTB = DAT − C BT = I2, ATC = CTA, BTD = DTB. Then, M ∈ Sp(4,Z) acts on

H2 by

Ω 7→ Ω′ = (AΩ +B) (C Ω +D)−1 . (E.4)

One then obtains Ω− Ω̄ 7→ (ΩCT +DT )−1(Ω− Ω̄) (C Ω̄ +D)−1, which shows that (Im Ω)′

is positive definite.

A standard fundamental domain for the action of Sp(4,Z) on H2 is the set defined

by [72]

− 1

2
≤ ρ1, σ1, v1 ≤

1

2
, 0 < 2v2 ≤ ρ2 ≤ σ2, | det(CΩ +D)| ≥ 1 . (E.5)

The condition | det(CΩ +D)| ≥ 1 applies to all Sp(4,Z) transformations of Ω.
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Next, we discuss the action of various subgroups of Sp(4,Z) on H2:

1. SL(2,Z)ρ (which leaves σ2 − (v2)2/ρ2 invariant):

g1(a, b, c, d) =

(
A B

C D

)
=


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 , (ρ, v, σ) 7→
(
aρ+ b

cρ+ d
,

v

cρ+ d
, σ − cv2

cρ+ d

)
,

(E.6)

where a, b, c, d ∈ Z, ad− bc = 1.

2. SL(2,Z)σ (which leaves ρ2 − (v2)2/σ2 invariant):

(
A B

C D

)
=


1 0 0 0

0 a 0 b

0 0 1 0

0 c 0 d

 , (ρ, v, σ) 7→
(
ρ− cv2

cσ + d
,

v

cσ + d
,
aσ + b

cσ + d

)
, (E.7)

where a, b, c, d ∈ Z, ad− bc = 1.

3. Heisρ (which leaves Ω− Ω̄ invariant)

(
A B

C D

)
=


1 0 0 µ

λ 1 µ κ

0 0 1 −λ
0 0 0 1

 , (ρ, v, σ) 7→ (ρ, v+λ ρ+µ, σ+2λ v+λ2 ρ+λµ+κ) , (E.8)

where λ, µ, κ ∈ Z.

4. Heisσ (which leaves Ω− Ω̄ invariant)

(
A B

C D

)
=


1 λ κ µ

0 1 µ 0

0 0 1 0

0 0 −λ 1

 , (ρ, v, σ) 7→ (ρ+2λ v+λ2 σ+λµ+κ, v+λσ+µ, σ) , (E.9)

where λ, µ, κ ∈ Z.

5. ρ↔ σ, v → −v:

g2 =

(
A B

C D

)
=


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , (ρ, v, σ) 7→ (σ,−v, ρ) . (E.10)

In the main part of the paper, we are interested in the subgroup H ⊂ Sp(4,Z) consisting

of elements h ∈ H with h = g1(a, b, c, d) g2 g1(a,−b,−c, d) (g2)−1 with the restriction c = 0
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mod 2, a, d = 1 mod 2,

h = g1(a, b, c, d) g2 g1(a,−b,−c, d) (g2)−1 =

(
A B

C D

)
=


a 0 b 0

0 a 0 −b
c 0 d 0

0 −c 0 d

 ,

(
a b

c d

)
∈ Γ0(2) .

(E.11)

Definition: a Siegel modular form Φk of weight k ∈ N with respect to the full Siegel

modular group Sp(4,Z) is a holomorphic function Φk : H2 → C that satisfies

Φk((AΩ +B) (C Ω +D)−1) = (det(C Ω +D))k Φk(Ω) , ∀M ∈ Sp(4,Z) . (E.12)

Remark (Köcher’s principle): a Siegel modular form Φk is bounded on any subset of H2 of

the form {Ω ∈ H2|Im(Ω) ≥ Im(Ω0)}, for any Im(Ω0) > 0.

Theorem: let Φk be a Siegel modular form of weight k ∈ N. It has the Fourier develop-

ment [70]

Φk(ρ, σ, v) =
∑
m≥0

ψk,m(ρ, v) e2πimσ . (E.13)

For m > 0, the function ψk,m is a holomorphic Jacobi form of weight k ∈ N and index m.

For m = 0, the function ψk,0 transforms as a Jacobi form with m = 0. If the first coefficient

ψk,0 is identically zero, the Siegel form is called Siegel cusp form.

Remark: the Fourier expansion of Φk is

Φk(ρ, σ, v) =
∑

n,m,r∈Z;n,m,4mn−r2≥0

A(n,m, r) e2πi(nρ+mσ+rv) . (E.14)

It is well defined on H2.

Theorem: let ψk,1 be a holomorphic Jacobi form of weight k and index 1. Then the

functions Tmψk,1, with m ≥ 1, defined in terms of the Hecke lift below, are the Fourier

coefficients of a Siegel modular form of weight k [70].

Remark: these theorems also hold if Sp(4,Z) is replaced by a congruence subgroup Γ ⊂
Sp(4,Z). We shall be interested in the congruence subgroup Γ = Γ2,0(2) of Sp(4,Z), where

one restricts to C = 0 mod 2. In particular, we shall be interested in the subgroup H

given by (E.11). Then, the functions ψk,m in the Fourier development are Jacobi forms for

Γ0(2) ⊂ SL(2,Z).
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F Hecke operators for SL(2,Z)

We follow [60]. Let f ∈ Mk(SL(2,Z)) with Fourier expansion f(τ) =
∑

n≥0 anq
n. Let m

be an integer with m ≥ 1.

Definition: the m-th Hecke operator is a linear operator Tm that acts on modular forms

of weight k by

Tm :Mk(SL(2,Z)) → Mk(SL(2,Z))

f(τ) 7→ Tmf(τ) = mk−1
∑

αδ=m, α,δ>0

δ−k
∑

0≤β<δ
f

(
ατ + β

δ

)
, (F.1)

with α, β, δ ∈ Z.

Proposition: [60]

Tmf(τ) =
∑
n≥0

 ∑
r|(m,n), r>0

rk−1 amn/r2

 qn . (F.2)

Proof. Using
∑

0≤β<δ e
2πiβn/δ = δ if δ|n, and 0 otherwise, we get

Tmf(τ) = mk−1
∑
n≥0

∑
αδ=m, α,δ>0

δ1−k an q
αn/δ . (F.3)

Since δ|n, setting n′ = αn/δ ∈ Z and using n′ = αn/δ = α2n/m ≥ 0, yields

Tmf(τ) =
∑
n′≥0

 ∑
α|(m,n′)

αk−1 amn′/α2

 qn
′
, (F.4)

where we used m/α = δ, hence α|m, and n = mn′/α2 = (m/α)(n′/α), and hence α|n′.

Note that Tmf(τ) is holomorphic at ∞.
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Now consider the case when a0 = 0 and a1 = 1. Suppose also that f(τ) is an eigen-

function of all the Hecke operators, i.e. Tmf = λm f , with eigenvalues λm. f is then called

a Hecke eigenform. The first term of λm f is λm a1 = λm, whereas the first term of Tmf

(cf. (F.4)) is the term with n′ = 1 given by am. Hence, λm = am. On the other hand,

Tmf = λm f implies ∑
α|(m,n′)

αk−1 amn′/α2 = λm an′ , (F.5)

and hence [60] ∑
α|(m,n′)

αk−1 amn′/α2 = am an′ , m, n′ ≥ 1 . (F.6)

Below we will encounter a similar relation when discussing the Hecke lift of a Jacobi form.

G Arithmetic lift of a particular Jacobi form for Γ0(2)

In the following, we focus on a particular cuspidal holomorphic Jacobi form for Γ0(2) of

weight k = 2 and index m = 1, and we discuss its arithmetic lift to a Siegel modular form

Φ2 of weight 2. The lift of this particular Jacobi form was briefly discussed in the context of

black holes in [9], following the analysis given in [5]. Here, we first review this construction,

and then we use the technique of Hecke eigenforms of the previous subsection to prove the

decomposition (G.15) in the limit v = 0.

Jacobi forms φ2,1 of weight 2 and index m = 1 transform as follows under modular

and elliptic transformations (cf. (D.1)),

φ2,1

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)2 e2πi cz

2

cτ+d φ2,1(τ, z) ,

φ2,1(τ, z + λτ + µ) = e−2πi(λ2τ+2λz)φ2,1(τ, z) ∀ λ, µ ∈ Z . (G.1)

Here, we restrict to Γ0(2) transformations, i.e. c = 0 mod 2, a, d = 1 mod 2.

We will consider the following Jacobi form of Γ0(2) of weight k = 2 and index m = 1

(with trivial multiplyer system) as a seed for the arithmetic lift,

φ2,1(τ, z) =
ϑ2

1(τ, z)

η6(τ)
f(τ) , f(τ) = 2−8 ϑ8

2(τ) , (G.2)

with ϑ1(τ, z) one of the Jacobi theta functions. Note that f(τ), which has weight 4, is not

a cusp form of Γ0(2) (the first cusp form of Γ0(2) arises at weight 8; since dimSk(Γ0(2)) =

[k4 ] − 1, the vector space of cusp forms of weight 8 has dimension one, and is spanned

by ϑ8
2(τ) E4(τ) [65], which equals [η(τ)η(2τ)]8, up to a normalization constant, as can be

verified by using the relation given below (B.29) and ϑ4
2(τ) = 16η8(2τ)/η4(τ). The form

[η(τ)η(2τ)]8 is the standard cusp form of Γ0(2)).

φ2,1 has a Fourier expansion in both τ and z given by

φ2,1(τ, z) =
∑

l,r∈Z, l≥1, 4l>r2

c(4l − r2) e2πilτ e2πirz , (G.3)
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with [5, 9]

c(∆) = (−1)∆
∑

s,n∈Z, n≥1

fn δ4n+s2−1,∆ , (G.4)

where fn denote the Fourier coefficients of

f(τ)

η6(τ)
=
∑
n≥1

fn e
2πiτ(n− 1

4
) . (G.5)

Note the relations 4n + s2 − 1 > 0, ∆ = 4l − r2 > 0, and hence c(∆) = 0 for ∆ ≤ 0.

Hence, φ2,1 is a cuspidal holomorphic Jacobi form of Γ0(2). Note that the coefficients fn
are integers, and so are the coefficients c(∆).

For latter use, we note that in the limit z → 0 we have ϑ1(τ, z) = 2π η3(τ) z +O(z3),

and hence, we infer

φ2,1(τ, z) = 4π2 f(τ) z2 +O(z4) . (G.6)

Next, we construct Jacobi forms φ2,m of Γ0(2) of weight k = 2 and index m ∈ N by

means of the Hecke operator Tm, which maps φ2,1 in (G.3) to φ2,m. The action of the

Hecke operator Tm on a Jacobi form φk,1 is defined in a manner similar to (F.1) [70],

φ2,m(τ, z) = Tmφ2,1(τ, z) = m
∑

αδ=m, α,δ>0, α=1 mod 2

δ−2
∑

0≤β<δ
φ2,1

(
ατ + β

δ
,
mz

δ

)
. (G.7)

One then verifies [5] that φ2,m(τ, z) transforms as a Jacobi form of weight k = 2 and index

m under modular and elliptic transformations (D.1) and (D.2). φ2,m(τ, z) can be brought

to the form

φ2,m(τ, z) =
∑

n,r∈Z, n≥1, 4mn>r2

a(n,m, r) e2πinτ e2πirz , (G.8)

with Fourier expansion coefficients [5, 9]

a(n,m, r) =
∑

α∈Z, α>0, α=1 mod 2, α|(n,m,r)

α c

(
4mn− r2

α2

)
. (G.9)

Note that a(n,m, r) = 0 for 4mn− r2 ≤ 0. The expression (G.9) is obtained in a manner

analogous to (F.2). The Fourier coefficients a(n,m, r) are integer valued.

Next, define the Siegel cusp form Φ2(ρ, σ, v) by [9]

Φ2(ρ, σ, v) =
∑
m≥1

φ2,m(ρ, v) e2πimσ =
∑

n,m,r∈Z, n,m≥1, 4mn−r2>0

a(n,m, r) e2πi(nρ+mσ+rv) ,

(G.10)

where we have relabelled τ → ρ, z → v. By construction, Φ2(ρ, σ, v) is invariant under the

exchange ρ↔ σ, since the coefficients a(n,m, r) are invariant under the exchange n↔ m.

Φ2(ρ, σ, v) transforms as a modular form under a certain subgroup G of Sp(4,Z) [9]. Here,

we will focus on the following subgroup H of G that consists of elements h ∈ H given

by (E.11). Under H ⊂ Sp(4,Z), Φ2 transforms as [5]

Φ2((AΩ +B)(CΩ +D)−1) = det(CΩ +D)2 Φ2(Ω) , (G.11)
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with Ω given in (E.2). Introducing d3Ω = dρ dσ dv, we note that

d3Ω

(2v − ρ− σ)5 Φ2
(G.12)

is invariant under H-transformations. The combination (G.12) is one of the building

blocks of the microstate proposal. Since Φ2(ρ, σ, v) has integer valued Fourier coefficients

(cf. (G.10)), so does 1/Φ2(ρ, σ, v) when expanded in powers of e2πi(nρ+mσ+rv).

Finally, as v → 0, we obtain from (G.10), using (G.7) and (G.6),

Φ2(ρ, σ, v) = v2 F2(ρ, σ) +O(v4) . (G.13)

with

F2(ρ, σ) = 4π2
∑
m≥1

m3 e2πimσ
∑

αδ=m, α,δ>0, α=1 mod 2

δ−4
∑

0≤β<δ
f

(
αρ+ β

δ

)
. (G.14)

Although not apparent, F2(ρ, σ) is symmetric under the exchange ρ↔ σ, and given by:

Proposition:

F2(ρ, σ) = 4π2 f(ρ) f(σ) . (G.15)

Proof. Using the Fourier expansion of f(ρ),

f(ρ) =
∑
n≥1

an e
2πinρ , (G.16)

and similarly to (F.2), we rewrite (G.14) into

F2(ρ, σ) = 4π2
∑

m≥1,n′≥1

e2πimσ e2πin′ρ
∑

α∈Z, α>0, α=1mod 2, α|(m,n′)

α3 an′m/α2 . (G.17)

Now we use that f(ρ) can be expressed as in (B.29),

f(ρ) = 2−8 ϑ8
2(ρ) =

1

240
(E4(ρ)− E4(2ρ)) . (G.18)

Inspection of (F.1), (G.14) and (G.17) shows that

Tmf(ρ) =
∑
n′≥1

e2πin′ρ
∑

α∈Z, α>0, α=1 mod2, α|(m,n′)

α3 an′m/α2 . (G.19)

Now we use that Tmf(ρ) is a modular form for Γ0(2) of weight 4. The vector space

M4(Γ0(2)) is two-dimensional and spanned by Ẽ2
2 and E4 [65]. Since (by inspection

of (G.19)) Tmf(ρ) does not have a constant term in its Fourier expansion, Tmf must

be proportional to the combination Ẽ2
2 − E4, i.e.

Tmf(ρ) = λm (E4(ρ)− E4(2ρ)) , (G.20)

and hence f is a Hecke eigenform,

Tmf(ρ) = 240λmf(ρ) , ∀ m ≥ 1 . (G.21)
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Using a1 = 1 and repeating the argument that led to (F.6), we obtain

am an′ =
∑

α∈Z, α>0, α=1 mod 2, α|(m,n′)

α3 an′m/α2 , (G.22)

which ensures (G.15).

We perform numerical checks on the validity of (G.22). We take f(ρ) =
(

1
2

)8
ϑ8

2(ρ),

and obtain for the first coefficients of the Fourier expansion,

f(ρ) = q + 8q2 + 28q3 + 64q4 + 126q5 + 224q6 + 344q7 + 512q8 + 757q9 + . . . (G.23)

We then test (G.22) by taking m = n′ = 1 (α = 1 → a2
1 = a1), m = 1, n′ = 2 (α = 1 →

a1a2 = a2), m = n′ = 2 (α = 1 → a2
2 = a4), m = n′ = 3 (α = 1, 3 → a2

3 = a9 + 27a1), to

find perfect agreement.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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