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Fermi condensation is usually a phenomena of strongly correlated system. In this paper, we point out a
novel mechanism for condensation of Dirac fermions due to the Weyl anomaly. The condensation has its
physical origin in the nontrivial response of the fermion vacuum to changes in the background spacetime
(either boundary location or the background metric), and can be felt when a background scalar field is
turned on. The scalar field can be, for example, the Higgs field in a fundamental theory or the phonon in
condensed matter system. For a spacetime with boundaries, the induced Fermi condensate is inversely
proportional to the proper distance from the boundary. For a conformally flat spacetime without
boundaries, Fermi condensation depends on the conformal factor and its derivatives. We also generalize
the Banks-Casher relation which relates the Fermi condensate to the zero mode density of the Dirac
operator to a local form. Due to its universal nature, this anomaly induced Fermi condensate can be
expected to have a wide range of applications in physics.

DOI: 10.1103/PhysRevD.102.046011

I. INTRODUCTION

Fermi condensation hψ̄ψi ≠ 0 is an interesting quantum
phenomena and has a wide range of applications. The
Cooper pair in BCS theory of superconductivity is a famous
example of Fermi condensation. It is the bound state of a pair
of electrons in a metal with opposite spins. The chiral
condensate of massless fermions is another example of
Fermi condensation. In QCD the chiral condensate is an
order parameter of transitions between different phases of
quark matter in massless limit. The condensation of fer-
mionic atoms has been observed in experiment [1]. The
condensation of fermion is usually attributed to the effects of
strongly coupled dynamics and hence it can be used as an
order parameter characterizing the phases of the theory.
A motivation of this work is to investigate if there is any
novel and universal mechanism other than strongly coupled
dynamics that can give rises to Fermi condensation.
Recently a novel phenomena of induced current was

predicted in the quantum field theory of Dirac fermions
coupled to external electromagnetic field

S ¼
Z
M

ffiffiffiffiffiffi
−g

p ðψ̄iγμ∇μψ þ ψ̄γμAμψÞ: ð1Þ

It was found that an applied magnetic field will give rise to
a nonuniform magnetization density of the vacuum and
induces a magnetization current

hJμi ¼ −2βFμνnν
x

þ � � � ; x ∼ 0 ð2Þ

in the vicinity of the boundary of the vacuum system [2,3].
Here β is the beta function, x is the proper distance to the
boundary, nμ is the inner normal vector and … denote
higher order terms in OðxÞ. Note that the universal results
(2) works for general quantum field theory and not just
conformal field theory. In a conformally flat spacetime
ds2 ¼ e2σημνdxμdxν without boundaries, the anomalous
current is given by [4,5]

hJμi ¼ −2βFμν∂νσ þOðσ2Þ; ð3Þ

to the leading order of small σ. Generalization of the result
(2) to higher dimensions and the result (3) for arbitrary
finite σ can be found in [6–8] respectively. We remark that
these anomalous currents do not rely on the presence of a
material system, but is a pure vacuum phenomena. This is
completely different from the other well-known transport
phenomena [9–16] that is due to chiral anomaly and a finite
chemical potential is needed. In fact, the anomalous current
(2) can be regarded as a kind of magnetic Casimir effect
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since it arises from the nontrivial electromagnetic response
of the vacuum to the change of boundary (location). This is
very similar to the Casimir effect which originated from the
mechanical response of the vacuum to the change of the
boundary (location). As for (3), it arises from the fact that
the vacuum of the theory is different for different σ and a
nonvanishing vev for the current operator is resulted due to
nontrivial Bogoliubov transformation. This is similar to the
process of particle creation during cosmological expansion
or the Hawking radiation [17].
Motivated by these results for the anomalous current, it is

natural to consider other couplings of the fermion to
external field, and one can expect similar induced phenom-
ena to occur. In this paper, we show that, in addition to
currents, Weyl anomaly can give rises to Fermi condensa-
tion if a background scalar field is turned on. The resulting
Fermi condensate is a nontrivial function of space. In the
standard situation of a Dirac operator coupled to external
vector field in a flat spacetime, the Fermi condensate is
translational invariant and it is well known to be related to
the density of zero modes of the Dirac operator by the
Bank-Casher relation [18]. For more general Dirac oper-
ator, we show that the Fermi condensate obeys an elegant
generalized form of the Bank-Casher relation, see (24) and
(25) below.

II. WEYL ANOMALY AND FERMI CONDENSATE

Let us start with the action of Dirac fermion ψ coupled to
a scalar field ϕ in a curved spacetime with metric gμν:

S ¼
Z
M

ffiffiffiffiffiffi
−g

p ðiψ̄γμ∇μψ þ ϕψ̄ψÞ: ð4Þ

In this paper, we use the signature ð1;−1;−1;−1Þ for the
metric and the scalar field will be taken as a background
and so whether there is a Lagrangian for the scalar field is
irrelevant to us. In this theory, the renormalized expectation
value of the Fermi condensate hψ̄ψi can be derived by the
variation of effective action with respect to the background
scalar field

hψ̄ψi ¼ 1ffiffiffiffiffiffi−gp δIeff
δϕ

: ð5Þ

The action (4) is classically Weyl invariant under the
local scaling transformation: ψ → e−σψ , gμν → e2σgμν
and ϕ → e−σϕ. However, quantum mechanically there is
an anomaly. Imposing the bag boundary conditions [19,20]
ð1� γ5γnÞΨj∂M ¼ 0 and applying the heat kernel expan-
sion [21], we obtain the Weyl anomaly Aðgμν;ϕÞ at one
loop as

A ¼ 1

8π2

�Z
M

ffiffiffiffiffiffi
−g

p �
−ð∇ϕÞ2 þ Rϕ2

6
þ ϕ4

�

þ
Z
∂M

ffiffiffiffiffiffi
−h

p kϕ2

3

�
: ð6Þ

Here R is Ricci scalar in the bulk M, hij is the induced
metric on the boundary ∂M, kij is the extrinsic curvature
and k is its trace. Note that we have ignored the gravita-
tional contribution to Weyl anomaly, i.e.,

R
M OðR2Þ þR

∂M OðRkÞ, since they are independent of ϕ and hence
are irrelevant for the Fermi condensation. In the following,
we show that the knowledge of the Weyl anomaly (6)
allows one to determine the Fermi condensate in closed
analytic form without performing any perturbative
QFT calculation. This is one of the main results of this
paper.

III. FERMI CONDENSATION I:
BOUNDARY THEORY

Let us first study the Fermi condensation in 4-dimensional
spacetime with a boundary, say, at x ¼ 0 of a certain
coordinate system. We follow the methods of [2,22], where
we have studied the expectation value of current and stress
tensor in boundary quantum field theories [23]. As the mass
dimension of ψ is 3=2, the Fermi condensate takes the
asymptotic form [24]

hψ̄ψi ¼ O0

x3
þO1

x2
þO2

x
þOðln xÞ ð7Þ

near the boundary. Here x is the proper distance from the
boundary. On have mass dimension n and depend on only
the background geometry and the background scalar field.
For example, we have O0 ¼ c0, O1 ¼ c1ϕþ c2k, where ci
are numbers. Since Weyl anomaly is related to the UV
Logarithmic divergent term of effective action, one can
follow the same analysis performed in [2,22] and obtain
the following “integrability” relation [25]

ðδAÞ∂M ¼
�Z

M

ffiffiffiffiffiffi
−g

p hψ̄ψiδϕ
�

log ϵ
ð8Þ

between the renormalized Fermi condensate and the boun-
dary part of the variation of the Weyl anomaly. Here a
regulator x ≥ ϵ to the boundary has been introduced for the
integral on the right-hand side (rhs) of (8). For our purpose,
we turn only on thevariation of the scalar field.Using (8), one
can derive Fermi condensate near the boundary from the
boundary terms of variations of the Weyl anomaly. To
proceed, let us employ the Gauss normal coordinates to
write the metric ds2 ¼ dx2 þ ðhij − 2xkij þ � � �Þdyidyj and
expand ϕðxÞ ¼ ϕ0 þ xϕ1 þ x2ϕ2 þOðx3Þ, where x ∈
½0;þ∞Þ and ϕi give the ith derivatives of ϕ at x ¼ 0.
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From (6), we get for the left-hand side (lhs) of (8)

ðδAÞ∂M ¼ −1
4π2

Z
∂M

ffiffiffiffiffiffi
−h

p �
∇nϕ −

1

3
kϕ

�
δϕ0; ð9Þ

wheren denotes the internal normal of themanifoldM. Next,
we substitute (7) into the rhs of (8), integrate over x and select
the logarithmic divergent term, we obtain

Z
∂M

ffiffiffiffiffiffi
−h

p
½−O0δϕ2 þ ðkO0 −O1Þδϕ1 − ðO2 þ � � �Þδϕ0�;

ð10Þ

where � � � denotes terms which depend onO0 andO1 which
vanish when O0 ¼ O1 ¼ 0. Comparing (9) and (10), we
obtain O0 ¼ O1 ¼ 0 and the Fermi condensation near the
boundary:

hψ̄ψi ¼ 1

4π2
∇nϕ − 1

3
kϕ

x
þOðln xÞ; x ∼ 0: ð11Þ

Several comments are in order.
(1) Similar to the case of current and stress tensor [2,22],

the Fermi condensate is finite at the boundary since
there are boundary contributions to the Fermi con-
densation which cancel the divergence from the bulk
contribution (11).

(2) The result (11) is for the bag boundary conditions at
one loop. For general boundary conditions, there are
corrections to Weyl anomaly (6) and O0 and O1 of
(7) are nonzero [26].

(3) The result (11) for the bag boundary condition, aswell
as the general form (7) for general boundary con-
ditions can be reproduced in holographic theory [26].

(4) Similar to [2,22], the above discussions on Weyl-
anomaly-induced Fermi condensation apply not
only to conformal field theory (CFT) but also the
general quantum field theory (QFT). That is because
Weyl anomaly is well defined for general quantum
field theories [27,28].

(5) If ϕ is the Higgs field and get a vev ϕ ¼ −m, then the
fermion get a mass m and the chiral symmetry is
spontaneous broken. Our analysis implies that a
Fermi condensate is induced near a curved boundary

hψ̄ψi ¼ 1

12π2
mk
x

; x ∼ 0 ð12Þ

due to the Higgs phenomena.
(6) Note that the above discussions apply to more

general theories instead of just the free theory (4).
In fact, there are universal relations between the
Fermi condensate and Weyl anomaly [26].

Similar to the origin for the induced current discussed in
[2,3], the existence of the Fermi condensation (11) can be

understood in terms of the changed properties of the
vacuum due to the presence of boundary. For simplicity
let us consider the case of a half space flat geometry x ≥ 0.
From the form of the action (4), the fermions see a potential
of −ϕ and experience a force

Fx ¼ ∂xϕ ð13Þ

in the x-direction. This may also be derived from the
Ehrenfest theorem hdOdt i ¼ 1

iℏ h½O; H�i for the time evolution
of the observable O. For the Hamiltonian H ¼
−
R
d3xψ̄ðiγi∂i þ ϕÞψ , we obtain the “Newton’s law”

hdpx
dt i ¼ ∂xϕhψ̄ψi for the x-direction, and hdpa=dti ¼ 0

for a ¼ y, z. This gives the force (13) on single particle
states. For simplicity, let us consider the case of a constant
force ∂xϕ > 0. Consider the pair creation process at any
point P in space. Due to the presence of an upward force
(for the discussion here, we will call the positive x direction
as upward), the particles which are created to move upward
will, for the same period of timeΔt, travel a longer distance
compared to the particles which are created to move
downward. Note that the force does not differentiate
particles and antiparticles and so the number density ρP
for the fermions and antifermions contributed by source
point P will be affected by the force the same way. As a
result, ρP will not be symmetric with respect to P, but is
skewed toward the negative x direction. See Fig. 1. Now
take any observation point O in space. The amount of
condensate at O is obtaining by summing over the con-
tribution from all source points P. When there is no
boundary, obviously a constant condensate hψ̄ψi is created.
Things are different when there is a boundary at x ¼ 0. For
a source point P situated near the boundary, the particles
that are created to move downward will have less chance to
be annihilated since the space x < 0 are all absent now and
hence there are less particles that can travel up to annihilate

.

O .

�P’

P �F

FIG. 1. Fermi condensate near the boundary. The contribution
from P0 is absent when half space x > 0 is considered.
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them. As a result, the distribution of particles will be
skewed even more toward the boundary. Also the skewing
is greater as one gets closer to the boundary. Summing up
the contributions from all source points, one see immedi-
ately that the condensate is bigger toward the boundary.
Also it is positive and is proportional to the force ∂xϕ.
Obviously the same discussion holds for the case of
∂xϕ < 0. Qualitatively, we find exact agreement with the
result (11). It is worth noting that since the scalar force is
the same for the fermions and the antifermions, the virtual
pairs are pushed toward the boundary in the same manner
and there is no separation of charges. Charge neutrality of
the vacuum is maintained.
It is interesting to remark that the condensate (11) of

fermions near the boundary can also be understood as a
kind of Bose-Einstein condensation with localization in
coordinate space. Heuristically, due to the force (13), the
virtual particles experience an acceleration a ¼ Fx=m and
hence an Unruh temperature [29]

T ¼ jaj=ð2πkÞ: ð14Þ
For the discussion here, we will allow for both signs of ∂xϕ.
Since the condensate is a bosonic state and obeys the Bose-
Einstein statistics, the mean occupation number of the
condensate is given by N ¼ 1=ðeE=kT − 1Þ. Now the
particles created at a location x has a potential energy of
E ∼ Fxx. Near the boundary we have E ≪ kT and
N ∼ kT=E ∼ sgnð∂xϕÞ=mx. The condensate hψ̄ψi has
mass dimension 3 and should depend on m and ∂xϕ.
The natural relation hψ̄ψi ∼mj∂xϕj × N then gives pre-
cisely the result (11).

IV. FERMI CONDENSATION II: CONFORMALLY
FLAT SPACETIME

Fermi condensation can also occur in conformally flat
spacetime without boundaries. To demonstrate this, let us
start by deriving the anomalous transformation rule for
the Fermi condensate. Consider the theory (4) with metric
and scalar field given by ðgμν;ϕÞ. Due to the anomaly,
the renormalized effective action Ieff is not invariant
under the Weyl transformation. Generally, we have [30]
δ
δσ Ieffðe−2σgμν; eσϕÞ ¼ Aðe−2σgμν; eσϕÞ for arbitrary finite
σðxÞ. This can be integrated to give the effective
action [31–33]. Using the fact that the anomaly (6) is
Weyl invariant up to a surface term: Aðe−2σgμν; eσϕÞ ¼
Aðgμν;ϕÞ þ

R
M ∂μð ffiffiffiffiffiffi−gp

ϕ2gμν∂νσÞ, we obtain immediately
the transformation rule for the effective action:

Ieffðe−2σgμν;eσϕÞ
¼ Ieffðgμν;ϕÞ

þ 1

8π2

Z
M

ffiffiffiffiffiffi
−g

p �
ð−

�
∇ϕÞ2þRϕ2

6
þϕ4

�
σþϕ2

2
ð∇σÞ2

�
;

ð15Þ

plus a boundary term 1
24π2

R
∂M

ffiffiffiffiffiffi
−h

p
kϕ2σ, which we

drop in spacetime without boundaries. One can check that
the dilaton effective action satisfies Wess-Zumino consis-
tency ½δσ1 ; δσ2 �Ieff ¼ 0. Using (15), we obtain finally the
transformation rule for the Fermi condensate (5) under
Weyl transformation gμν → g0μν ¼ e−2σgμν, ϕ → ϕ0 ¼ eσϕ,

hψ̄ψi ¼ −
1

4π2

�
∇ðσ∇ϕÞ þ

�
2ϕ3 þ 1

6
ϕR

�
σþ 1

2
ϕð∇σÞ2

�
;

ð16Þ
plus a trivial term e−3σhψ̄ψi0. Here hψ̄ψi (resp. hψ̄ψi0)
denotes the vev of the Fermi condensate of the theory (4) in
the background spacetime gμν (resp. g0μν). Taking g0μν to be
the flat spacetime metric and the fact that the Fermi
condensation vanishes in flat spacetime, we finally obtain
(16) as the Fermi condensate in conformally flat spacetime

ds2 ¼ e2σημνdxμdxν: ð17Þ
Several comments are in order. (1) The conformal

factor σ of (16) is arbitrary and needs not to be small.
As a result, we can use (16) to calculate Fermi condensation
in general conformally flat spacetimes such as anti–
de Sitter space, de Sitter space and Robertson-Walker
universe. (2) For Robertson-Walker universe ds2 ¼
dt2 − aðtÞ2ðdx2 þ dy2 þ dz2Þ, we have at time t ¼ t�

hψ̄ψi ¼ −
1

4π2

�
H _ϕþ 1

2
H2ϕ

�
ð18Þ

where dot denotes time derivative and H ¼ _a=a is
the Hubble parameter. For simplicity we have chosen
aðt�Þ ¼ 1. (3) Unlike the case with boundaries, (16) works
well only for CFT. At high energy scale such as early
universe, the particle mass can be ignored and fermions can
be regarded as CFT approximately. Then all of the above
discussions apply. (4) The result (16) can also be derived
for strongly coupled conformal field theory that is dual to
gravity [26]. (5) The physical reason for the condensate
(16) is simple. It arises because the vacuum of the theory in
the spacetime (17) at a conformal factor σ is no longer a
vacuum as the metric changes to have a different conformal
factor σ0. As a result, a fermion condensate is created in a
way similar to the creation of particles due to cosmological
expansion (see for example, [17]).

V. GENERALIZED BANKS-CASHER RELATION

The Banks-Casher relation links the spontaneous break-
ing of chiral symmetry in QCD to the presence of a nonzero
density of zero modes of the Dirac operator of the quark
field. In ordinary consideration where the QFT is transla-
tional invariant, the condensate is a constant and one has the
following relation [18]
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hψ̄ψi ¼ πρð0Þ; ð19Þ
where ρðλÞ is the spectral density of the Dirac operator, see
(22) below. Here let us generalize the Banks–Casher
relation to the case where the condensate is not a constant.
Consider a theory of Dirac fermions in curved space
coupled to an external field X:

S ¼
Z
M

ffiffiffiffiffiffi
−g

p
iψ̄Dψ ; where iD ≔ iγμ∇μ þ X: ð20Þ

For example, X ¼ γμAμ gives the minimal coupling to
gauge potential Aμ, X ¼ ϕ gives the Yukawa coupling to a
scalar field, and X ¼ iγμνFμν gives the Pauli coupling to
gauge field strength. Let ψn be the eigenstate of the Dirac
operator iD with eigenvalue λn, and satisfies the orthogo-
normal relation

R
M

ffiffiffiffiffiffi−gp
ψ†
nψm ¼ δnm. It follows from the

path integral definition of chiral condensate hψ̄ψi ¼
Z−1 R DψDψ̄e−Sψ̄ψ that

hψ̄ψi ¼ −
X
n

ψ†
nðxÞ 1

λn
ψnðxÞ: ð21Þ

It is convenient to introduce the spectral density

ρðλÞ ≔ 1

V

X
n

δðλ − λnÞ; ð22Þ

where V is the spacetime volume. The relation (21) takes
the form

i
V
hψ̄ψi ¼ −

Z
∞

−∞
dλρðλÞ 1

λþ iϵ
ψ†
λðxÞψλðxÞ; ð23Þ

where a Wick rotation ψ̄ → iψ̄ on the spinor has been
performed to obtain the relation (23) in Minkowski space.
We have introduced an iϵ prescription (ϵ > 0) to regulate
the divergence due to the existence of zero modes of the
operator iD. Using the relation 1

λþiϵ ¼ P 1
λ − iπδðλÞ, where P

denote the Cauchy principal value, we obtain the following
generalized Banks-Cashier relation in the unintegrated
form:

1

V
hψ̄ψðxÞi ¼ πρð0Þjψ0ðxÞj2 þ iP

Z
∞

−∞
dλρðλÞ 1

λ
jψλðxÞj2:

ð24Þ
This can also be integrated to give

1

V

Z
M

ffiffiffiffiffiffi
−g

p hψ̄ψi ¼ πρð0Þ þ iP
Z

∞

−∞
dλ

ρðλÞ
λ

: ð25Þ

For flat space, the condensate is a constant due to trans-
lational invariance. For operator which anticommute with
γ5∶ fiD; γ5g ¼ 0 (e.g., minimal coupling to external gauge
field), the eigenvalues of iD always come in pairs�λ and it
is ψ−λ ¼ γ5ψλ for λ ≠ 0. In this case, the continuum
contribution in the rhs of (25) vanishes and we obtain
the standard Banks-Cashier (19). For the general case of a
curved spacetime with a non-minimal coupling, the con-
densate can become imaginary in general, and the con-
densate is related to the spectral density as in (24) and (25).
For the case of Yukawa coupling in conformally flat
spacetime, the condensate is real and we obtain the
constraint

P
Z

∞

−∞
dλρðλÞ 1

λ
jψλðxÞj2 ¼ 0; ð26Þ

even through the spectrum is not symmetric.

VI. CONCLUSIONS

In this paper we have shown that the nontrivial vacuum
structure of the theory of Dirac fermions in the presence of
an external scalar field can lead to the occurrence of Fermi
condensation. This is a direct consequence of the violation
of scaling symmetry in the presence of a background scalar
field that couples to the fermion. In general, it is also
interesting to consider the effect of external pseudoscalar
field on the Fermi condensation [26]. Due to the simple and
universal nature of the Yukawa coupling, one can expect
the Fermi condensation (11), (16) to find a wide range of
physical applications. For example the possible occurrence
of a condensate during the inflationary phase of the
universe may have nontrivial consequences on various
dynamical aspects of the early Universe such as the
reheating, the evolution of physical structure, the pattern
of symmetry realization etc. Experimentally, it may be
possible to make observation of the Fermi condensate in
optomechanical system with boundary or in a thermal
system where temperature can be stimulated by a con-
formally flat background [34].
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