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Eigenvector continuation (EC) has been shown to accurately and efficiently reproduce ground states for 
targeted sets of Hamiltonian parameters. It uses as variational basis vectors the corresponding ground-
state eigensolutions from selected other sets of parameters. Here we extend the EC approach to scattering 
using the Kohn variational principle. We first test it using a model for S-wave nucleon-nucleon scattering 
and then demonstrate that it also works to give accurate predictions for non-local potentials, charged-
particle scattering, complex optical potentials, and higher partial waves. These proofs-of-principle validate 
EC as an accurate emulator for applying Bayesian inference to parameter estimation constrained by 
scattering observables. The efficiency of such emulators is because the accuracy is achieved with a small 
number of variational basis elements and the central computations are just linear algebra calculations in 
the space spanned by this basis.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Overview

Bayesian inference is increasingly favored for uncertainty quan-
tification in nuclear physics calculations (e.g., see [1–5]), but 
the computational requirements can be substantial. In particu-
lar, Bayesian parameter estimation generally requires Monte Carlo 
sampling of the parameter space, with many evaluations of the 
likelihood with different parameters. Each evaluation may be suf-
ficiently expensive that a full parameter estimation is infeasible. 
Eigenvector continuation (EC) [6,7] has already shown that it can 
be used as an efficient and accurate emulator [8] to ameliorate this 
problem. In applying an emulator, one trains computer models of 
the relevant calculations using a representative set of parameters 
and then samples for other parameters from the model instead 
of full calculations. Efficient and effective EC emulators for nuclear 
bound-state properties and transitions have been demonstrated for 
many-body calculations using chiral effective field theory (χEFT) 
Hamiltonians [8,9].

We would also like to have fast EC emulators for scattering, 
e.g., for treating reactions and for few-body scattering used to con-
strain χEFT low-energy constants [10]. The variational method for 
ground-state energies is well known from elementary quantum 
mechanics. In addition, there are variational formulations of scat-
tering, such as those by Schwinger and Kohn (see Refs. [11–14]
and references therein). The conventional applications in scatter-
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ing are for two-body scattering, usually in partial waves, but the 
literature contains adaptations to three-body scattering, including 
nucleon-deuteron scattering [15,16], a process of particular inter-
est for χEFT [10]. Here we merge EC and the Kohn variational 
principle and explore how well it works using a series of model 
calculations, starting with two-body scattering in partial waves. As 
demonstrated below, a small number of variational basis based on 
EC can reproduce the exact calculations with great accuracy. As a 
result, the main computational cost is just linear algebra in this 
low-dimensional space.

2. Formalism

Consider a Hamiltonian Ĥ(θ) = T̂ + V̂ (θ) with adjustable pa-
rameters θ . For example, the vector θ could be the depth of a 
simple square well or the full set of low-energy constants for an 
effective field theory. EC is a variational method that employs a 
non-orthogonal basis composed of eigenvectors from different pa-
rameter sets {θ i} of the Hamiltonian. For calculating the ground 
state of Ĥ(θ), the trial wave function is

|ψtrial〉 =
Nb∑

i=1

ci |ψgs(θ i)〉, (1)

where |ψgs(θ i)〉 is the ground-state eigenvector of Ĥ(θ i). (The de-
pendence of ci and |ψtrial〉 on θ i is suppressed for notational con-
venience.) The Nb θ i s are chosen either systematically or randomly 
to span a particular range of values, see below. The effectiveness of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the EC basis can be understood by an analytic continuation analy-
sis [6,17].

The variational principle for the ground-state energy states that 
the expectation value of Ĥ(θ) in the trial state, subject to the con-
dition that |ψtrial〉 is normalized, is stationary:

δ
[〈ψtrial|Ĥ(θ)|ψtrial〉 − λ(〈ψtrial|ψtrial〉 − 1)

] = 0. (2)

The stationary solution given Eq. (1) is a generalized eigenvalue 
problem yielding Lagrange multiplier λmin, which is an upper 
bound to Egs, and the {ci} provide an approximation to |ψgs(θ)〉
through Eq. (1) [6–9].

For the extension of EC to scattering we use the Kohn varia-
tional principle (KVP) [13,18]. There are many variational methods 
for scattering, but the KVP is particularly straightforward to adapt 
to EC in a form similar to Eq. (2). Let us start with the goal of 
finding the phase shift δ�(E) at energy E for nonrelativistic two-
body scattering in an uncoupled partial-wave channel with angular 
momentum � and short-range forces only. In coordinate space, 
T̂ → −∇2/2μ with h̄ = 1 and reduced mass μ, and we allow V̂ (θ)

to be local or nonlocal.
We take the trial wave function for the extended EC to be (we 

again suppress some θ i dependence)

|ψtrial〉 =
Nb∑

i=1

ci |ψE(θ i)〉, (3)

where |ψE (θ i)〉 is the partial-wave solution for the Schrödinger 
equation with Hamiltonian Ĥ(θ i) at energy E > 0, normalized such 
that for every i,

u(i)
�,E(r) −→

r→∞
1

p
sin

(
pr − �

π

2

)
+ K(i)

� (E)

p
cos

(
pr − �

π

2

)
. (4)

Here p = √
2μE , the scattering wave function is decomposed as

〈r|ψE(θ i)〉 = u(i)
�,E(r)

r
Y�m(�r), (5)

and K(i)
� (E) = tan δ

(i)
� (E) is the partial-wave K matrix element [13]

for Ĥ(θ i) at energy E .
The KVP asserts that (also see the Supplementary Material 

(SM)) [13]

β
[|ψtrial〉

] ≡ τtrial − 2μ〈ψtrial|Ĥ(θ) − E|ψtrial〉, (6)

subject to the radial part of 〈r|ψtrial〉 being normalized as in Eq. (4)
but with K(i)

� (E)/p → τtrial, will be a stationary approximation to 
[K�(E)]exact (i.e., it is accurate to second order in the difference of 
the exact and trial wave functions although not an upper bound 
in general). The normalization condition for |ψtrial〉 is fulfilled if ∑Nb

i=1 ci = 1, which can be imposed with a Lagrange multiplier λ. 
Substituting (3) into (6) with this constraint term and requiring 
the derivatives with respect to ci and λ to be zero yields a simple 
matrix inversion problem with solution

ci =
Nb∑
j=1

(�Ũ )−1
i j

1

p
(K( j)

� (E) − λ), (7)

λ =

Nb∑
i, j=1

(�Ũ )−1
i j (K( j)

� (E) − 1)

Nb∑
i, j=1

(�Ũ )−1
i j

, (8)
where

�Ũ i j ≡ 2μ〈ψE(θ i)|2V̂ (θ) − V̂ (θ i) − V̂ (θ j)|ψE(θ j)〉. (9)

In obtaining Eq. (9) we have used that 
(

Ĥ(θ i) − E
)|ψE(θ i)〉 = 0 for 

every i. Finally, the stationary approximation to the exact partial-
wave K matrix is

[K�(E)]exact ≈
Nb∑

i=1

ciK(i)
� (E) − p

2

Nb∑
i, j=1

ci�Ũ i jc j . (10)

Thus the approximation is given by a weighted average of the K
matrices from the basis Hamiltonians with a correction term.

Note that the validity of the KVP relies only on the cancel-
lation of δτtrial with surface terms arising from the variation of 
〈ψtrial|Ĥ(θ) − E|ψtrial〉 when varying β

[|ψtrial〉
]
, which is satisfied 

by Coulomb, non-local, and complex potentials, as well as for 
coupled channels. (When the Coulomb potential is present, the 
asymptotic behavior of the scattering wave function is different 
from Eq. (4). For complex potentials, the 〈ψE (θ i)| factors in Eqs. (6)
and (9) need to be applied with time reversal [19,20]. See the dis-
cussion in the SM.) It is worth pointing out that any long-range 
potential in Ĥ(θ) independent of θ , such as Coulomb, will cancel 
from �Ũ i j in Eq. (9) and one needs only to evaluate the ma-
trix element within the range of the remaining potentials, which 
simplifies calculations. Also note that Eq. (9) can be evaluated in 
momentum space or any other convenient basis. More details on 
the derivation of Eqs. (7)–(10) are given in the SM.

As seen in Eqs. (7) to (9), the numerical effort is mainly com-
posed of (a) constructing the �Ũ matrix and (b) linear algebra 
operations with it. The computational cost in (a) can be signif-
icantly reduced by saving the θ -independent pieces, which are 
also the most time-consuming ones, instead of computing them 
while sampling the parameter space. For (b), the small dimen-
sion space—Nb ∼ 10 in the following test examples—reduces both 
memory and time in the linear algebra calculations. In contrast, di-
rectly solving elastic scattering problems, such as those performed 
here using a R-matrix package [21] (see the discussion below), in-
volve operations with matrices having dimensions of order 102, 
which is much larger than Nb . Since the computational cost of 
optimized large-matrix manipulations including multiplication and 
inversion scale as the dimension to a power between 2 and 3, the 
cost reduction using EC can be significant with the per-sample cost 
in (a), when averaged over many sampling calculations, becoming 
negligible. Nevertheless, the greatest advantage of EC will be for 
few-body scattering applications, for which the cost of direct cal-
culations for large-scale sampling is prohibitive.

The matrix �Ũ to be inverted may be expected to be in-
creasingly ill-conditioned as the basis size Nb increases. Even for 
conventional applications of the KVP, there will be ill-conditioning 
issues for certain values of E , giving rise to so-called “Kohn anoma-
lous singularities” [14,23]. The often-recommended remedy is to 
use a complex formulation (involving the S matrix rather than 
the K matrix), which mostly avoids the problem [24–27]. Here 
we also have ill-conditioning, but at all E for sufficiently large Nb . 
We find, however, that a simple regularization of the smallest sin-
gular values of �Ũ is sufficient to ameliorate the ill-conditioning 
[28,29]. This can be done by adding a small value to the diagonal 
of �Ũ (called a nugget in this context, but cf. Tikhonov regulariza-
tion [28,29]) or by using the pseudo-inverse in Eq. (8). Because we 
can accurately calculate test results, we can verify the efficacy of 
the regularization. In the following calculations, the nugget is cho-
sen to be between 10−10 and 10−8 to optimize—by hand—those EC 
estimations with an ill-conditioning problem. Kohn anomalous sin-
gularities are still present at isolated energies, but are only notice-
able on a fine E mesh. For applications of emulators to sampling 
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Fig. 1. (a) Scattering wave functions for the Minnesota 1S0 potential in Eq. (11) with E = 50 MeV (in the CM frame). The dot-dashed curves are for four choices of θ i =
{V 0R , V 0s} that comprise the EC trial basis, the dashed curve is for the exact values from Ref. [22], and the solid curve is the EC prediction. The curves have a common 
crossing point at the value of r where the second term in Eq. (4) is zero. (b) Scattering phase shifts for the same parameter sets and the EC prediction.
this should not be an issue; if necessary they can be mitigated by 
comparing different results from changing the basis size by one, as 
the position of these unphysical singularities will move.

3. EC for a model of NN scattering

We use the “Minnesota potential” [22], which was developed 
to reproduce 1 S0 and 3 S1 nucleon-nucleon (NN) scattering phase 
shifts with a simple functional form, as a test example to explore 
the application of EC for scattering. The potential is a sum of local 
Gaussian terms, without Coulomb interaction or coupled channels. 
Each S-wave channel has a repulsive short-range term and an at-
tractive term with longer range:

V 1 S0
(r) ≡ V 0Re−κR r2 + V 0se−κsr2

, (11)

V 3 S1
(r) ≡ V 0Re−κR r2 + V 0te−κt r2

(12)

The best values from Ref. [22] are 200., −91.85, and −178 MeV 
for V 0R , V 0s , and V 0t , and 1.487, 0.465, and 0.639 fm−2 for κR , κs

and κt .
To illustrate how EC works, values are chosen for θ i = {V 0R ,

V 0s} for i = 1 to 4, to form a trial basis for EC calculations in 
the 1S0 channel. These points in the parameter space are (0.,

−291.85), (100., 8.15), (300., −191.85), and (300., 8.15). Fig. 1(a) 
shows the scattering wave functions at E = 50 MeV (in the center-
of-mass (CM) frame) from the four basis potentials (blue dot-
dashed lines), the exact wave function corresponding to the best 
value parameters at the same energy (red dashed), and the wave 
function from EC based on the four-potential basis (black solid 
line). It is evident that with four basis elements the EC wave func-
tion agrees very well with the exact wave function. Fig. 1(b) shows 
the corresponding phase shifts. Again, the exact result is very well 
reproduced by the EC prediction, even though the wave functions 
and phase shifts of individual basis elements are significantly dif-
ferent.

Next we make a more global study with the same potential. 
For each channel, we vary the two potential strengths by ±100
MeV about the best values, and scan the 2-dimensional parameter 
space by comparing the EC phase shift with the exact phase shift. 
The values for the θ i = {V 0R , V 0s} parameters are randomly drawn 
using Latin-hypercube sampling [30], as used in EC bound-state 
studies [8,9]. A range of basis sizes Nb have been explored. For 
those parameter values, we compute scattering phase shifts and 
wave functions by directly solving the Schrödinger equation using 
an R-matrix package [21], which serves as input for the subse-
quent EC calculations using Eqs. (7)–(9). To explore the predictive 
power of the EC, we randomly sampled 200 points from the two-
dimensional space, and for each made EC predictions as well as 
direct calculations using the R-matrix package, whose phase-shift 
calculation, as we checked, has precision—i.e., relative error—better 
Fig. 2. Sampled points in the parameter space for the Minnesota potential in the 
1S0 channel. The best parameter set from Ref. [22] is a star, four values for the EC 
trial basis are circles, and the crosses are test point, which are either interpolations 
(blue) or extrapolations (red).

than 10−8 with the order of 102 mesh points used therein. Com-
paring these results indicates the accuracy of the EC emulator.

An example of the parameter sets for this comparison proto-
col is shown in Fig. 2, where the sampled points in the V 0R –V 0s

parameter space (for the 1S0 channel) are shown. The trial basis 
points (Nb = 4) are blue circles, the tested sample points are blue 
crosses if within the convex hull of the basis points (for these the 
EC calculations are considered to be interpolations) and otherwise 
are red crosses (these EC calculations are extrapolations), and fi-
nally the best-value point is a red star.

In Fig. 3, the mean values of the relative error (in absolute 
value) of the EC calculations for the interpolated sample points 
(left panel) and the extrapolated points (right panel) are plotted 
against the scattering energy E (in the CM frame) for three calcu-
lations using Nb = 4, 6, and 8 basis elements. (The errors are in 
the value of p/K�(E) = p cot δ(E). Since the relative error is tiny 
here, other functions of δ have almost the same relative errors.) 
With a basis size of 4, the EC calculation can reproduce the phase 
shift to better than 0.1 percent at almost all energies. The accu-
racy improves to be better than 10−4, and for most energies it 
reaches 10−6, with Nb = 6. For Nb = 8, the �Ũ matrix becomes 
ill-conditioned, but after regularizing the small singular values by 
adding a nugget (10−10) to the diagonal of this matrix when com-
puting the matrix inversion in Eqs. (7) and (8), the accuracy of 
these calculations is comparable to the Nb = 6 case. We also com-
puted the standard deviations of the absolute value of the relative 
errors, and found them to be similar in size to the mean values. 
It is interesting to note in this case that EC works equally well for 
interpolated and extrapolated points.

The major spikes in these plots and the following figures show 
that in a subset of EC calculations, the combination of potential 
parameter values and the energy can get close enough to a Kohn 
anomalous singularity that the corresponding relative error is dra-



4 R.J. Furnstahl et al. / Physics Letters B 809 (2020) 135719

Fig. 3. Relative errors between EC predictions with θ i = {V 0R , V 0s} and direct calculations of p/K�(E) = p cot δ(E) for the Minnesota potential in the 1S0 channel. This is the 
mean of the errors for (a) interpolated and (b) extrapolated parameter sets as shown in Fig. 2. The size of the nugget used for inverting �Ũ is 10−10 here.

Fig. 4. Same as Fig. 3 but for a four-dimensional parameter space with θ i = {V 0R , κR , V 0s, κs}. The nugget is set to 10−9 here.
matically larger than the errors of the nearby points. However for 
a typical application of emulators, we expect low probability for 
such fine tuning. For reference, in Fig. 3, there are 200 uniformly 
sampled in a two-dimensional parameter space with a 1 MeV mesh 
in E . Most importantly, the locations of spikes and thus the singu-
larities vary among the different EC basis sets, so detecting and 
mitigating them is straightforward.

To explore a higher-dimensional parameter set, we vary both 
the potential strength (±100 MeV about the best values) and 
the two Gaussian widths κR and κs within a ±50% range about 
their best values. So now θ i = {V 0R , κR , V 0s, κs}.1 For this demon-
stration, we uniformly sample 1000 test points within the four-
dimensional parameter space. Fig. 4 shows the parallel error infor-
mation to Fig. 3, with a nugget of 10−9 size. For the interpolated 
points, the accuracy improves from 10−3–10−4 to 10−6 or better 
as Nb increases from 6 to 10. For Nb = 14, the ill-conditioning 
issues require the use of a nugget but its accuracy is similar to 
Nb = 10. The results for the extrapolated parameter sets are worse 
than the interpolated results for Nb = 6, but become as accurate 
with Nb = 10 and larger. Again, the standard deviations of the 
relative errors are comparable to their mean values. The parallel 
results for the 3S1 channel are similar for a large enough trial ba-
sis (see the SM).

4. Other examples: p–α and α–Pb

To explore the effectiveness of EC for non-local potentials, the 
inclusion of a Coulomb potential, and for higher-partial waves, we 
use proton–α scattering in the S1/2 and P3/2 channels as exam-
ples, with the non-local potential [31]:

V�(r
′, r) = V (0)

pα,� r′� r�e−β� (r′+r). (13)

1 Note that because the κ parameters do not appear linearly in the Hamiltonian, 
one can no longer make a single set of matrix elements calculations for all of the 
test parameter sets. In other contexts this might be a relevant computational disad-
vantage.
Fig. 5. The relative errors for tanδ(E) in the p–α P3/2 channel in the two-

dimensional space θ i = {V (0)
pα,1, β1}. The nugget is set to 10−8 here.

The best values are: V (0)
pα,0 = −168.28 MeV, β0 = 0.8 fm−1, 

V (0)
pα,1 = −291.26 MeV, and β1 = 1.25 fm−1. The Coulomb poten-

tial takes the point-charge form. For each of the two channels, 
we vary both the potential strengths V (0)

pα,� around its best values 
±100 MeV and the width parameters β� around its best values 
±50%. As a representative case, the relative errors for interpolated 
points in the P3/2 channel are plotted in Fig. 5 for several basis 
sizes (additional plots for the S1/2 channel are given in the SM). 
The nugget for both channels is set to be 10−8. The performance 
of EC is again excellent except at some isolated energies, and these 
exceptions are not at the same energies for different basis sizes.

The Kohn variational approach also applies to complex poten-
tials, which are extensively used in optical potentials for nuclear 
scattering and reactions. To test the EC for these applications, 
we use a Wood-Saxon optical potential constructed for describing 
α–208Pb low-energy scattering [32]:

V (r) = V 0 f (r, R R ,aR) + iW0 f (r, R I ,aI ), (14)

with f (r, R, a) ≡ (1 + exp (r − R)/a)−1. We take V 0 = −100 MeV, 
W0 = −10 MeV, R R = R I = 8.36 fm, and aR = aI = 0.58 fm as the 
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Fig. 6. The relative errors for tan δ(E) in the α-208Pb � = 20 channel in the two-
dimensional space θ i = {V 0, W0}. Note that δ is complex. The nugget is set to 10−10

here.

best value [21]. The Coulomb potential is simplified as for point 
charges [21].

We vary the V 0 and W0 parameters in different partial waves 
(so θ i = {V 0, W0}) by ±50% around their best values [21]. In Fig. 6, 
the size of relative errors for the � = 20 channel is shown as a rep-
resentative example. The results for � = 0 are shown in the SM. 
(Note that the scattering phase shift is complex here. The verti-
cal axis of the plot is for the modulus of the relative error.) The 
lower end of the energy range is chosen such that the Sommerfeld 
parameter η is less about 10, because the numerical calculation of 
Coulomb functions in the R-matrix package becomes unreliable for 
larger values [21,33]. The upper end of the energy range is cho-
sen to match Ref. [32]. The nugget used in �Ũ ’s inversion is set 
to 10−10 in both � = 20 and � = 0 calculations. With 10 basis el-
ements, the relative accuracy for interpolated points is no worse 
than 10−4, while increasing Nb further improves it to 10−5 or bet-
ter. Again, the errors for interpolated and extrapolated points are 
similar, and the standard deviations are similar in size to the mean 
values.

Based on these results for p-α and α-Pb scattering, we expect 
EC could play an important role in fitting potential parameters for 
nuclear scattering and coupled-channel reactions.

5. Summary and outlook

We have extended the eigenvector continuation method to scat-
tering using the Kohn variational principle. The EC enables accurate 
calculations of observables for any parameter set θ given calcula-
tions of scattering wave functions and K -matrix elements from a 
limited number Nb of parameter sets θ i . Unlike the bound-state 
application of EC, for scattering the KVP does not give an upper 
bound to observables but is only guaranteed to give stationary 
results. Nevertheless, for good trial functions the KVP has been 
demonstrated in the literature to give accurate results for a wide 
range of applications [14]. An EC basis provides a very effective 
trial function and its application to the KVP is simple, involv-
ing only the inversion of the matrix defined in Eq. (9). Issues of 
ill-conditioning with increasing basis size are successfully treated 
with simple regularizations.

Here we have provided representative results from a wide range 
of tests of the EC for scattering using model problems. These in-
clude multi-dimensional parameter sets, both local and non-local 
potentials, charged-particle scattering, and complex optical poten-
tials. In all cases shown here and in all our other tests to date, 
the EC is found to be effective with moderate basis sizes both for 
interpolated and extrapolated parameter sets. We are working to 
formulate a robust uncertainty quantification and to develop a pro-
cedure for determining the optimal regularization parameter for 
ill-conditioning, which has thus far been fixed empirically.
The success of the EC enables the development of efficient em-
ulators for scattering. In subsequent work we will demonstrate 
the application to coupled channels in both coordinate-space and 
momentum-space (which is a straightforward generalization of 
the presentation here) and set up the application to Nd scatter-
ing [15,18]. It would be also interesting to apply our method to 
fit an NN potential to the NN energy spectra from Lattice QCD 
calculations, since the eigenenergies and phase shifts are directly 
connected.
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Appendix A. Supplementary material

Supplementary material related to this article can be found 
online at https://doi .org /10 .1016 /j .physletb .2020 .135719. We have 
also publicized several jupyter notebooks together with neces-
sary documentations, at https://github .com /buqeye /eigenvector-
continuation. The notebooks can be used to reproduce all the re-
sults presented in this paper and our supplementary materials.
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